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Abstract

A reduced-order model formulation is presented for examining the forced response of tuned and mistuned
bladed disks. The technique developed uses modal information obtained from highly detailed finite element
models to create, in a systematic manner, much simpler and computationally inexpensive models of bladed
disks. The small size of the reduced-order model and associated computational savings enable analysts to
examine the effect of mistuning strength and pattern, interblade coupling, and localized modes on forced
response amplitudes. Previously, this was a formidable task with finite element modeling for even a single
mistuning pattern.

1 Introduction

Bladed disks are spatially repetitive structures,
and their geometry is fully described by that of a fun-
damental region, or sector. In addition, the dynamic
characteristics of a sector determine the dynamic be-
havior of the entire structure. Modern structural
analysis of bladed disks takes advantage of this fact
and is greatly simplified by the assumption of cyclic
symmetry. A structural model of a generic bladed
disk is illustrated in Figure 1. Cyclic symmetry en-
ables engineers to create highly detailed finite ele-
ment models of a single sector, shown in Figure 2,
in order to examine the dynamic response of the
entire assembly. However, cyclic symmetry implies
that all sectors in a blade assembly are identical,
that is, that the system is tuned. Unfortunately,
small differences in the structural properties of in-
dividual blades, due to manufacturing and material
tolerances, or in-service degradation, often destroy
ideal symmetry. These irregularities are referred to
as blade mistuning. The collapse of symmetry may
lead to qualitatively different dynamic behavior than
that experienced by a perfectly tuned assembly. In
particular, irreqularities may inhibit the propagation
of vibrations within the structure and confine the
vibrational energy to mostly a single sector. Mode
shapes may become spatially localized and, as a re-
sult, a single blade may experience deflections much
larger than that predicted by a tuned analysis.
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Figure 1: Full bladed-disk structural model.

Wei and Pierre1 documented the existence of lo-
calized modes in mistuned bladed disks through the
investigation of a single-degree of freedom per sector
model. Lumped-mass models of bladed disks, such
as that used by Wei and Pierre, capture the basic dy-
namics of the assembly, but are difficult to relate to
more descriptive finite element models. Correlation
of lumped mass and finite element models requires
a tedious iteration of mass and stiffness parameters
until satisfactory correlation is established. In gen-
eral, there is no organized or rigorous approach for
developing lumped mass models from finite element
models.

In practice, blade mistuning is random, and sta-
tistical analyses that utilize computational Monte
Carlo simulations are critical in predicting the re-
sponse amplitudes of bladed disks. A Monte Carlo
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Figure 2: Single sector structural model.

simulation of a full finite element blade assembly,
however, is enormously costly, and is not even fea-
sible for most industrial turbomachinery rotors (see
Kruse and Pierre2). Reduced-order modeling (ROM)
is thus required in order to enable statistical anal-
ysis of bladed disk response. In 1994, Ottarsson
et al.3 introduced a technique for developing ROM
of bladed disks directly from finite element models.
The procedure involves a component mode analy-
sis of the bladed disk, with a truncated number of
modal amplitudes describing the response of the as-
sembly. The key idea introduced by Ottarsson et
al.3 is that the motion of an individual blade con-
sists of both cantilever blade elastic motion and disk-
induced static motion. The principal advantage of
the technique is the considerable computational sav-
ings associated with solving a full mistuned rotor
with a reduced set of degrees of freedom. A second
advantage is that the ROMs can be systematically
generated from finite element models. Since finite
element models are used extensively in the design
process, the method is likely to have an significant
impact on actual turbomachinery designs.

In this paper, Ottarson et al.'s free response for-
mulation for tuned and mistuned bladed disks is ex-
tended to the forced response case. The formula-
tion of the forcing vector in the ROM generalized
coordinates is described in Section 2. In Section 3,
validation results are presented for a selected case
study. The ROM is then used to examine the phys-
ical mechanisms of vibration localization and forced
response amplitude increase due to mistuning. Fi-
nally, Section 4 contains a brief statistical study of
forced response amplitudes using the ROM.

There are three significant contributions of this
work. First, the technique presented establishes a
systematic approach for developing ROMs that are
representative of industrial turbomachinery rotors,
and for obtaining their forced response in an accu-
rate and inexpensive way. Second, the method will
enable engineers to examine the effect of blade mis-
tuning and interblade coupling on forced response
amplitudes; this was not possible to date with finite

element models. Third, it will also enable designers
to carry out parametric studies of mistuned systems,
and to determine the statistical variation in stress
amplitudes due to random mistuning.

2 Reduced-Order Model
Formulation for Forced Response

In the ROM formulation for bladed disk free re-
sponse, Ottarsson et al.3 introduce the idea that the
motion of an individual blade consists of cantilever
blade elastic motion and disk-induced static motion.
Figure 3 illustrates these two types of blade motion.
The finite element displacements of the blades are
thus expanded as:

u = Uda+Ubb (1)
where Ud is the blade portion of the disk-induced
mode shapes, Ub contains the mode shapes of the
cantilevered blades, and a and b represent disk and
blade modal coordinates, respectively.

In order to derive the ROM from the standard
finite element model of a sector, two finite element
models of bladed-disk components are required. The
first model is that of a single disk-blade sector. Cyclic
symmetry is utilized to determine the disk-induced
static mode shapes, ud

 m. Since static blade motion
is sought, the blade elements are massless. The sec-
ond model is that of a cantilevered blade, leading to
the generation of the elastic cantilever blade mode
shapes, ub.

The derivation of the ROM equations of free mo-
tion for tuned and mistuned bladed disks is detailed
in Reference.3 The final form of the equations is
restated here for convenience:

" I + Bdiag [udTMbUd] UdTMbUb 1 F a
. , . Ur!MbUd , I jib

udTKbud

UdTKbUb

udTKbub

(2)

where Bdiag denotes a block diagonal matrix, and
diag denotes a diagonal matrix.

In this section, the ROM is generalized to the
case of external excitation, and the corresponding
equations of forced motion are derived. Consider
that the bladed disk is subject to an arbitrary exter-
nal force vector, F, which may be applied to all the
blade degrees of freedom of the assembly. The corre-
sponding modal force vector is derived from Hamil-
ton's Principle:

(6U - ST)dt = f * 6Wextdt (3)
't, Jt,L
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where the external virtual work is

L * 6Wtmtdi= f*6uTFdt (4)
>/ti

u is the displacement vector containing all blade de-
grees of freedom in the assembly and F is the corre-
sponding force vector on those degrees of freedom.
Substituting Eq. (1) into Eq. (4) yields

SWextdt = f 3 6bTUbTFdt + I * <5aTUdTFdf
Jti Jti

(5)
from which the equations of forced motion are ob-
tained as

1 +Bdiag [ugTMbUg] UdTMbUb 1 F a 1
UbTMbUd I J L b J

0 0
0 diag(2C)< (l+jGstrue)

Kd + [Ud KbU
UdTKbUb

UdTKbUb

diag(l + <5,-)®Kb

UdTF
UbTF (6)

Note that in addition to external excitation, both
structural and viscous damping have been introduced
into the ROM.

The external excitation is assumed to be har-
monic in time and to differ only in phase from sector
to sector, or blade to blade. This type of excitation
results from the rotation of the bladed disk under a
stationary force in the flow field, and has been widely
used in the literature.4'5 The external force vector
can then be expressed as

(7)

fe)<t>N-l

where

N (8)

is the interblade phase angle of the excitation, f is
the force vector on a single blade, and C is the en-
gine order excitation. The expression for the ROM
force vector in Eq. 6, [udTF UbTFJ , is not prac-
tical because of the size of the quantities involved,

which pertain to the entire assembly. A more con-
venient form that minimizes memory storage can be
expressed in terms of the blade force vector, f, and
the disk-induced and cantilever blade mode shapes
of a single sector, ud

im and ub, respectively. This
formulation requires using the properties of circulant
matrices (see Appendix A or the book by Davies6),
as follows.

To begin, the disk portion of the modal force vec-
tor, Ud F, is expressed in terms of sector-referred
quantities. The assembly force vector, F, is first ex-
pressed in terms of the sector force vector as:

F = \/JV ec (9)

where ® is the Kronecker product and ec is the
Cth column of the Fourier matrix, both defined in
Appendix A. The disk-induced static mode shapes
for the assembly, Ud, are then expressed in terms of
those for the individual sectors as:

where

Ud = [en®Un,l,e

•.en<8>u^md , ' ><J

(10)

(11)

and * denotes the complex conjugate. Note that the
Oth and, for N even, the Fth harmonic modes do
not occur in complex conjugate pairs. Using Eqs.
(9) and (11), UjfF is expressed as:

J! — \i )

Taking the transpose and making use of Eq. (A. 5)
yields:

(13)

The Fourier columns, en and e^, are orthogonal to
ec except when n — C. Thus, the engine order
excitation, C, determines which mode shapes of the
assembly are being excited. The disk portion of the
modal force vector, Ud F, is zero except for the C-
harmonic mode shapes. This can be restated as

UdTF = [o, . . . , 0, (u£TF)T , 0, . . . , OJ (14)

Using the cyclic symmetry property,3 a finite ele-
ment analysis typically yields the real and imaginary
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(cosinus and sinus) parts of the modes of a sector.
Hence, the disk-induced static blade modes are writ-
ten as:

u£,m> fi^m = u£,m ± ju*)m (15)
The corresponding pair of complex conjugate modes
for the entire assembly are generated from the Kro-
necker product of the nth harmonic column of the
Fourier matrix and the complex conjugate pair of
disk-induced modes are:

The final form of the modal forcing vector,
UdTF

U»TF
is:

We may rewrite Eq. (16) as:

U2,m = (e< + je*) ® (u
- je*) <S> (uUS,m =

(16)

(17)

where e£ and <^ denote the nth harmonic cosine and
sine vectors from the real form of the Fourier matrix,
Eq. (A.3). Note that e£ and e£ are essentially the
real and imaginary portions of the complex form of
the Fourier matrix, scaled to maintain unit modal
masses for the real representation of the disk modes.
This becomes, after simplification:

- e
(18)

Defining a new pair of eigenvectors as the real and
imaginary portions of UjJ m and Un|ln yields, from
Eqs. (12), (14), and (18):'

. - ec : ® f ) .

§c §c
T (19)

Taking the transpose and making use of Eq. (A.5)
gives:

U{LTF =
°T <5?» "cT f ec -T f,m

ec

r (20)

Likewise, the blade portion of the modal forcing vec-
tor is

Ub TF= [(\/JVec)

Oc-i,i '

ec ec
ScJec

,T - T

2mdf -§c GC
i. f 4- pS* f*r^S.m,!1 ^ HC eC

-* .f

(21)
(23)

The principal advantage of expressing the modal
forcing vector on a sector basis lies in the memory

Taking the transpose and making use of Eq. (A.5) savings associated with storing the disk-induced and
cantilever blade mode shapes of a sector, rather than

T / _ % / _ . T _ \ the mode shapes for the entire assembly. In this
U F = \VNe<zj <g> \U fJ (22) manner, the sector mode shapes are projected onto
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(a)

Figure 3: Cantilever blade (a) and disk-induced (b)
motions.

the sector force vector to obtain modal forces. Cyclic
symmetry arguments are then used to calculate the
reduced-order model force vector. Thus, the ROM
mass and stiffness matrices and the force vector are
computed only once and then stored.

3 Case Study of ROM Versus
Finite Element Correlation

Figure 2 depicts a single sector of a simplified
bladed-disk with 24 blades. Table 1 lists material
properties for the bladed disk. As an example and
validation case, finite element and ROM forced re-
sponses are examined for both tuned and mistuned
configurations. Cyclic symmetry routines in MSC/-
NASTRAN are used to calculate the forced response
of the tuned finite element model. This model con-
sists of eight-noded brick elements, with the inner
hub of the disk constrained to have zero displace-
ment. The disk portion of the model contains 75
elements, while the blade is modeled with five ele-
ments. There are 360 degrees of freedom per sector
in the finite element model. In contrast, the reduced-
order model consists of five disk-induced modes and
four cantilever blade modes, for a total of nine de-
grees of freedom per sector.

The mistuned finite element model consists of the
entire blade assembly, as shown in Figure 1. The
same mesh pattern is used in the single-sector cyclic
symmetry model and the full mistuned finite element
model. Mistuning is introduced into the assembly
by allowing each blade to have a different Young's
modulus. For the ith blade, one has

i = E0(\ + Si) (24)

where E0 is Young's modulus for a tuned blade, and
Si is the dimensionless random mistuning, obtained
from a uniform distribution with standard deviation
<r. Table 2 lists the mistuning distribution used in
the case study. Before proceeding with the forced
response correlation, it will prove valuable to review
the free response characteristics of the system.

Material Property
Modulus of Elasticity, E0
Modulus of Rigidity, G

Density, p
Structural Damping, Gstruc

Property Value
200 GPa
80 GPa

7.86 Mg/m3

0.0025

Table 1: Bladed disk material properties.

3.1 Free Response Characteristics

It is convenient to describe the mode shapes of
bladed disks in terms of nodal diameters and nodal
circles. Nodal diameters are nodal lines across the
diameter of the disk, while nodal circles are nodal
lines in the circumferential direction. Information
about the nodal diameter and nodal circle charac-
teristics of a mode are conveniently summarized by
a plot of natural frequencies versus the number of
nodal diameters, as shown in Figure 4. Natural
frequencies associated with zero nodal diameter are
characterized by mode shapes in which all sectors
vibrate in phase, while one-nodal diameter modes
exhibit a 15" phase shift between adjacent blades
for this 24-blade assembly. The phase shift is incre-
mented by 15° for each consecutive increase in the
number of nodal diameters, until each blade even-
tually vibrates 180° out of phase with its nearest
neighbors, corresponding to the twelve-nodal diam-
eter case. Figure 5, for instance, illustrates a six-
nodal diameter mode, with a 90° phase shift between
adjacent blades. For a general TV-blade system, the
phase shift between adjacent blades is

(25)N

1942

where <£» is the interblade phase angle, N is the num-
ber of blades, and N,na is the number of nodal di-
ameters. These modes are accordingly referred to
as constant interblade phase angle modes. Plotting
the natural frequency versus the number of nodal
diameters for the assembly in Fig. 1 reveals several
interesting features. First, as the number of nodal
diameters increases, the disk becomes stifTer rapidly.
Thus, the slanted lines in Fig. 4 correspond to disk-
dominated modes. In the absence of blade tip or
mid-span shrouding, the number of nodal diame-
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Blade Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Mistuning Si
-0.005173
-0.018767
-0.018214
-0.003899
-0.050068
-0.008520
0.014171
0.076210
0.029285
0.027175
0.027682
-0.049229
-0.080759
-0.049068
0.059333
-0.069234
-0.004147
0.004288
0.018403
-0.054743
0.023942
0.038109
0.041102
0.039275

,x10

Table 2: Random mistiming pattern, obtained from
a uniform distribution with standard deviation a =
5%.

ters does not significantly stiffen blade-dominated
modes. Lines that are approximately horizontal,
therefore, represent families of blade-dominated modes
Second, there are six areas, called eigenvalue veer-
ings, in which blade and disk families of modes veer
away from each other. Physically, eigenvalue veer-
ings are indicative of the degree of coupling between
families of disk and blade modes. The strength of
a veering is measured by the distance between the
natural frequencies and the local curvature in the
veering region.7

The nodal diameter description assumes that the
mode shapes of the rotor are themselves cyclic, that
is, spatially extended. This is true for tuned bladed
disks. However, small blade mistuning may alter
the mode shapes and cause the concentration of vi-
brational energy to mostly a single blade—the so-
called phenomenon of localization. The observation
that the first-order mode shape perturbation due to
mistuning is inversely proportional to the difference
in the tuned system's natural frequencies, leads to
the well-known property that the localization of the
mode shapes is most accute in frequency regions of

4 6 8
Number of Nodal Diameters

10 12

Figure 4: Natural frequencies versus number of
nodal diameters. Note the excellent agreement be-
tween the finite element and the ROM natural fre-

Sin(360°)

S'm(270°)
Sin(180°)

Sin(90°)
Sin(0°)

Figure 5: Six nodal diameter mode.

high modal density.7
From Fig. 4, it appears that both families of

out-of-plane and in-plane blade modes exhibit high
modal density and are therefore susceptible to mode
localization upon the introduction of mistuning (here
in-plane refers to the plane of the disk). Since the
modal density for the in-plane modes is larger than
that for the out-of-plane modes, localization effects
are expected to be more prominent in the former.
This was indeed observed in the study by Ottars-
son et a/.3 When mode localization occurs, vibra-
tional energy is largely concencentrated in a single
blade instead of being spatially extended through-
out the structure; hence there is a strong likelihood
that the forced response of the mistuned structure
will greatly exceed the tuned response.8
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3.2 Forced Response: Out-of-Plane Loading

Although typical external excitations consist of
both in-plane and out-of-plane loading, these two
types will be considered separately. Out-of-plane
loading consists of right- and left-side harmonic unit
loads located at the tip of the blade and normal to
plane of the blisk. The engine order excitation, C, is
equal to five. Thus, excitation varies in phase from
blade to blade by 75 degrees. In terms of the nodal
diameter description of the modes given earlier, this
loading only excites the fifth nodal diameter out-of-
plane blade mode of a tuned blisk. Note that the
fifth engine order excitation lies in the middle of a
strong eigenvalue veering (veering 2 in Fig. 4), be-
tween the first family of blade modes and the first
family of disk modes. This particular excitation was
found to be more susceptible to localization effects
and to yield larger forced response amplitude in-
creases due to mistuning than any of the other en-
gine order excitations in this frequency range.

A scalar representation of blade deflection ampli-
tude, the displacement norm, is utilized to represent
the forced response of the assembly in terms of fre-
quency. The displacement norm is defined as the
square root of the sum of the squares of the blade
displacement amplitudes for all blade degrees of free-
dom. In the tuned system response, all blades have
identical displacement norms. This is not true, how-
ever, for a mistuned rotor, where all blades feature
different response amplitudes. In the mistuned case,
the largest displacement amplitude norm through-
out the assembly is selected at each frequency, defin-
ing the largest frequency response.

Figure 6 depicts the frequency response of the
tuned assembly using both finite element and reduced-
order models, in the frequency region encompassing
the first family of blade modes. It shows that the
amplitude of the ROM resonant response, using the
standard formulation given in Section 2, is within
7% of the finite element resonant response. Note the
modest frequency offset of approximately 1%. This
offset can be largely eliminated with an eigenvalue
adjustment for the cantilevered blade natural fre-
quency of the out-of-plane blade mode.3 Note that
the eigenvalue adjustment consists of an iteration of
a single variable until nearly exact frequency corre-
lation is obtained in Figs. 4 and 6. With eigenvalue
adjustment, the ROM resonant response only differs
from the finite element response by 1%. Figure 7
depicts a comparison of the mistuned finite element
and ROM frequency responses. Again, the ampli-
tude and frequency errors remain unchanged at 7%
and 1%, respectively, in the standard ROM form-

- Finite Element
- - ROM: Standard Derivation
- - ROM: Eigenvalue Adjustment

7750 8000 8250
Excitation Frequency, (rad/sec)

8500

Figure 6: Comparison of tuned finite element and
ROM frequency responses, for out-of-plane excita-
tion with (7=5.

— Finite Element
- - ROM: Standard Derivation
•- - ROM: Eigenvalue Adjustment

7750 8000 8250
Excitation Frequency, (rad/sec)

8500

Figure 7: Comparison of mistuned finite element
and ROM largest blade frequency responses, for out-
of-plane excitation with C=5.

Tuned

Mistuned

Finite
Element

375.1
-1.1
-61.3
571.2
-1.6

-95.2

ROM:
Standard

Derivation
357.9 (-5%)
-1.0 (-9%)
-59.3 (-3%)
539.3 (-6%)
-1.5 (-8%)

-90.9 (-4%)

ROM:
Eigenvalue
Adjustment
405.6 (+8%)
-1.1 ( 0%)

-67.5 (+10%)
624.7 (+9%)
-1.8 (+10%)

-105.8 (+11%)

Table 3: Comparison of finite element and ROM
principal stresses (MPa) at the resonant peak, for
out-of-plane excitation with C—5. Principal stresses
for the mistuned system can be as much as 52%
higher than those for the tuned system.
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ulation. Adjusting the first out-of-plane blade natu-
ral frequency results in nearly exact amplitude and
frequency correlations. Note in Figs. 6 and 7 that
the increase in the largest resonant response ampli-
tude due to mistuning is 55%.

Once the displacement field has been solved for
with the efficient ROM, displacements can be im-
ported back into the finite element model for post
processing of stress contours. Since all nodal dis-
placements are prescribed, the finite element soft-
ware merely performs the forward matrix calcula-
tions to obtain the stress field. Table 3 compares the
resonant principal stresses obtained by finite element
and reduced-order modeling. Principal stress values
are listed for the first row of nodes past the root of
the blade. Stress values at the root of the blade are
not reported, since there is no fillet to alleviate the
stress singularity. Principal stresses from the stan-
dard ROM formulation are 3 to 9% lower than the
finite element model stresses, while principal stresses
from the modified ROM (with eigenvalue adjust-
ment) are 0 to 11% higher than the finite element
stresses. The reader should note that the principal
stresses for the mistuned model are as much as 52%
larger than the tuned principal stresses. This 52%
increase in principal stress corresponds to the 55%
increase in resonant response amplitude observed
from Figs. 6 to 7.

3.3 Forced Response; In-Plane Loading

The in-plane loading consists of top and bottom
harmonic unit loads located at the tip of the blade
and acting in the circumferential direction. Here,
the frequency range lies near the family of first in-
plane blade modes, and the engine order excitation
is taken equal to zero. Thus, all blades in the as-
sembly are subjected to identical, in phase loads.
For a tuned system, it means that the zero nodal
diameter, in-plane blade mode will be excited. Re-
ferring to Figure 4, eigenvalue veering 3 is charac-
terized by a large separation distance and is sig-
nificantly weaker than veering 2 in the out-of-plane
case. Tuned results, depicted in Figure 8, indicate
a 10% resonant amplitude discrepancy between the
finite element and standard ROM results. The fre-
quency discrepancy, moreover, equals 6% with in-
plane loading, compared to 1% in the out-of-plane
case (Fig. 6). Modifying the standard formulation
by adjusting the eigenvalue associated with the first
in-plane cantilevered blade mode results in nearly
exact amplitude and frequency correlations for the
forced response. Figure 9 illustrates the mistuned fi-
nite element and ROM largest frequency responses.
Amplitude and frequency errors remain unchanged

0.2

- Finite Element
- - ROM: Standard Derivation
- - ROM: Eigenvalue Adjustment

2.8 2.9 3 3.1
Excitation Frequency, (rad/sec)

3.2

Figure 8: Comparison of tuned finite element and
ROM frequency responses, for in-plane excitation
with C=0.

o.a

£0.6

$0.4
Q

0.2

- Finite Element
ROM: Standard Derivation

- ROM: Eigenvalue Adjustment

2.8 2.9 3 3.1
Excitation Frequency, (rad/sec)

3.2
xlO*

Figure 9: Comparison of mistuned finite element
and ROM largest blade frequency responses, for in-
plane excitation with C—0.

Tuned

Mistuned

Finite
Element

182.7
' -3.6

-30.8
480.4
-9.8
-81.2

ROM:
Standard

Derivation
186.8 (+2%)
-3.7 (+3%)

-34.1 (+11%)
475.7 (-1%)
-9.4 (-4%)

-86.8 (+7%)

ROM:
Eigenvalue
Adjustment

209.4 (+15%)
-4.1 (+14%)

-38.2 (+24%)
528.0 (+10%)
-10.4 (+6%)

-96.3 (+19%)

Table 4: Comparison of finite element and ROM
principal stresses (MPa) at the largest resonant
peak, for in-plane excitation with C=Q. Principal
stresses for the mistuned system can be as much as
163% higher than stresses for the tuned system.
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at 10% and 6%, respectively, in the standard for-
mulation. Adjusting the first in-plane blade natural
frequency results in nearly exact amplitude and fre-
quency correlations. Figures 8 and 9 show that the
increase in resonant response amplitude due to mis-
tuning is 142%.

Table 4 compares finite element and ROM prin-
cipal stresses at resonance (in the mistuned case,
the largest peak is selected). Principal stresses from
the standard ROM formulation are from 4% lower to
11% higher than the finite element principal stresses.
Principal stresses from the modified ROM are 6% to
24% higher than the finite element stresses. The
resonant principal stresses for the mistuned assem-
bly exceed the tuned principal stresses by as much
as 163%.

3.4 Localization Phenomena
and Structural Interblade Coupling

It was shown above that the principal stress in-
crease due to mistuning dramatically increased from
52% for out-of-plane excitation with (7=5, to 163%
for in-plane excitation with C=0. Previous sections
have also alluded to eigenvalue veerings and how lo-
cal curvature and separation distance between fami-
lies of blade and disk modes are an indication of the
coupling between these modes. In this section, we
examine more closely the effect of both engine or-
der excitation and eigenvalue veerings on the forced
response of the case study rotor.

Although the high modal density associated with
the blade modes indicates when localized modes may
occur, the existence of localized modes alone is not
enough to guarantee that the forced response am-
plitudes of a mistuned assembly will deviate sig-
nificantly from those of a tuned system. Wei and
Pierre8 and Ottarsson and Pierre9 determined, for
a single-degree of freedom per sector bladed disk
model, that moderately weak coupling between blades
is required for significant amplitude increases in the
forced response. If there is no interblade coupling,
then each blade acts as an individual mistuned os-
cillator, and the mistuned response does not deviate
significantly from the tuned response. As coupling
increases, an avenue is created for the blades to com-
municate vibrational energy, which raises the possi-
blity of confining energy to a few blades. The mis-
tuned response may then deviate significantly from
the tuned response, until further increases in cou-
pling prohibit the confinement of energy, yielding
tuned-like response for large coupling values.

Structural coupling of the blades through the
disk, which is exemplified by eigenvalue veerings, is
only one form of interblade coupling present in in-

dustrial rotors. Other forms of interblade coupling
include aerodynamic and acoustic coupling. Qual-
itatively, it is difficult to discern the level of in-
terblade coupling based on eigenvalue curvature due
to the fact that natural frequencies only occur at
integer numbers of nodal diameters. That is, the
modes shapes associated with natural frequencies
form standing waves that undergo, over the assem-
bly, integer multiples of 2?r phase shift. To describe
accurately the eigenvalue veerings in Figure 4, a pro-
gram was written to calculate the frequency corre-
sponding to a traveling wave. The idea is to as-
sume that the interblade phase angle is a continu-
ous variable and solve the eigenvalue problem for a
single sector. Thus, boundary degrees of freedom
that separate sectors, referred to as side-two nodes
in the finite element literature, assume the displace-
ment magnitude associated with the side-one degrees
of freedom, except for the addition of an e-7* phase
shift, where the interblade phase angle, <j>, is now a
continuous variable.

Figure 10 illustrates the traveling wave frequen-
cies for the case study rotor. The percent increase
of the largest blade response in the mistuned as-
sembly over the tuned response is indicated at the
various veering locations. There are six eigenvalue
veerings of interest in Figure 10. Veering 2 is char-
acterized by a large separation distance, reflecting
the strong coupling between the first families of disk
and blade out-of-plane modes. There is 39%, 55%,
and 45% increase in the largest mistuned response
over the tuned response for engine order excitations
four, five, and six, respectively, in veering 2. Note
that the percent increase is largest at the center of
the veering.

Interblade coupling is weaker in veering 4 than
in veering 2 and thus forced response amplitude in-
creases should be larger for the former. Yet, the
percent increases of the mistuned response over the
tuned response are equal, since responses can not
be calculated in the middle of veering 4. There is
a 23% and 55% increase in the mistuned response
over the tuned response at engine order excitations
1 and 2, respectively, in veering 4. If it were pos-
sible to provide noninteger engine order excitation,
one speculates that the percent increase in the mis-
tuned response would increase dramatically in veer-
ing 4. The importance of where the excitation lies
in the veering regions can be further illustrated by
examining veerings 5 and 6. Both veerings exhibit
extremely weak interblade coupling, yet engine or-
der excitation 9 falls closer to the center of veering
6 than engine order excitation 5 does to the center
of veering 5. The percent increase of the mistuned
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Figure 10: Traveling wave frequencies versus num-
ber of nodal diameters as a continuous variable.

system over the tuned system is 42% in veering 6,
as compared to 23% for veering 5. Interblade cou-
pling is larger in veering 1 than in veerings 5 and
6, and the percent increase, 54%, is higher. Veer-
ing 3, which gives the largest percent increase of the
mistuned response over the tuned response, 142%,
represents moderately weak interblade coupling.

In summary, there are two competing factors,
free mode localization and interblade coupling, which
influence response increases due to mistuning. As
interblade coupling decreases, an analysis based on
mode localization predicts a monotonic increase in
response amplitudes,1 Yet, if coupling becomes to
small, there is no avenue to communicate vibrational
energy between blades and mistuned response ampli-
tudes diminish to tuned response predictions. From
a design standpoint, the graph of natural frequency
versus nodal diameters provides invaluable informa-
tion about the qualitative behavior of bladed disks.
Worst case design and loading conditions are char-
acterized by high modal densities and moderately
weak interblade coupling.

4 Numerical Simulations of
Forced Response Statistics Using ROM

As the above free and forced response results il-
lustrate, reduced-order modeling of bladed disks cor-
relates well with much larger finite element mod-
els. The technique successfully captures and predicts
mistuning effects on response amplitudes—something
virtually impossible to achieve for most industrial
finite element models. More importantly, as indi-
cated below, reduced-order modeling enables engi-
neers to determine the statistical characteristics of

blade forced responses for randomly mistuned bladed
disks.

Figure 11 illustrates a Monte Carlo simulation
of the statistics of the largest blade response am-
plitude, at any frequency in the range of 7,500 to
8,500 Hz (corresponding to the first family of out-of-
plane blade modes), and for engine order five excita-
tion. The simulation consists of frequency sweeps of
one thousand different mistuning patterns, obtained
from a uniform distribution with 5% standard devia-
tion. Figure 11 required two days of computational
time on a 64 Mhz UNIX workstation and was ob-
tained with the standard ROM. The tuned response,
which is indicated in Figure 11, represents the op-
timal distribution of vibratory energy and clearly
corresponds to the smallest response amplitude and
the minimum stress state. Unfortunately, perfectly
tuned bladed disks are not realizable, and the in-
crease in blade response amplitude due to mistun-
ing must be accounted for. Random mistuning must
be compensated for by increasing the overall fatigue
strength of the blades to meet some statistically de-
termined stress level. Alternatively, if feasible, the
designer could choose a deliberate mistuning pattern
that minimizes the increase in mistuned vibratory
stresses. In both instances, reduced-order modeling
can aid the designer in capturing mistuning effects.

In Fig. 11, the 95th percentile of the largest blade
response amplitude (the amplitude such that 95% of
all mistuned rotors feature a smaller largest ampli-
tude) is seen to correspond to a 47% increase over
the tuned system resonant response amplitude. The
corresponding 95th percentile principal stresses are
<?i = 526.2, o-2 = -1.5, and az = -88.9 MPa. Re-
call that the tuned principal stresses are a\ — 357.9,
<r2 = —1.0, and 0-3 = -59.3 MPa. Stresses for the
95th percentile of the largest blade response ampli-
tude are thus as much as 47% higher than the cor-
responding tuned stresses. If the current design is
based on tuned stress magnitudes, fatigue proper-
ties of the blades should be increased to compen-
sate for the random nature of mistuning (assuming
it is acceptable that 5% of bladed disks do not meet
this condition). Alternatively, Table 5 lists a 5th
percentile mistuning pattern in which the largest
mistuned vibratory stresses are a\ = 423.7, o"2 =
— 1.2, and 03 = —70.9 MPa. This deliberate mistun-
ing pattern limits the principal stress increase over
tuned levels to only 18%. The choice of increasing
the fatigue strength to some statistically determined
amplitude or of deliberately mistuning the system is
up to the designer. But, it should be pointed out
that a specific mistuning pattern may not reduce
the vibratory stresses at other frequency regions of
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Figure 11: Histogram of the largest blade response
amplitude at any frequency, for out-of-plane excita-
tion with C=5. Obtained by Monte Carlo simulation
of 1,000 different mistuned systems with uniform dis-
tributions of 5% standard deviation.

Blade Number
1
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Mistuning 8?
-0.044449
-0.033217
-0.036770
0.041214
-0.059288
0.077369
-0.017369
0.009893
0.039600
0.002804
-0.014880
0.077372
-0.020565
0.073124
0.021230
-0.059587
-0.021516
-0.028875
-0.041692
-0.059717
0.066580
-0.010611
0.085981
0.004279

Table 5: Random mistuning distribution that lim-
its the largest vibratory stress level (corresponding
to the 5th percentile of the largest reponse amplitude
statistics).

operation or in other modes of vibration. In fact,
a specific mistuning pattern may result in larger in-
creases in vibratory stresses in other frequency re-
gions. Statistically determining the maximum vibra-
tory stress levels and increasing the fatigue strength
of the individual blades is a more robust design strat-
egy if the operational range of rotor encompasses
several modes of vibration.

5 Conclusions

In this paper, the ROM free response formula-
tion presented by Ottarsson et al.3 was successfully
extended to the forced response case. The ROM
forcing vector was expressed in terms of single sec-
tor quantities, which minimizes computer memory
and computational costs.

Responses from reduced-order and finite element
models were compared for a case study rotor. Both
resonant displacement amplitudes and principal stres-
ses from the ROM were within 10% of the finite
element model. The key distinction between the
two solutions is the computational savings associ-
ated with the ROM. The mistuned finite element
model had 8,640 degrees of freedom, whereas the
mistuned ROM had 216 degrees of freedom. Once
satisfied that the ROM correlated well to the fi-
nite element model of the rotor, the ROM was used
to determine the statistical characteristics of forced
responses for randomly mistuned bladed disks. A
Monte Carlo simulation of one thousand different
mistuning patterns found that 95% of all mistuned
rotors featured response amplitude and principal stress
increases that were at most 47% over their tuned
counterparts. The ROM was further used to de-
termine a deliberate mistuning pattern that limited
the increase in response amplitudes and principal
stresses due to mistuning to less than 18%.
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Appendix A

The general form of a square circulant matrix is

C = circ(ci,c2 , . . . ,cN) =

C2 Cff

CN

C2 C3

(A.I)
Circulant matrices of order N posses TV indepen-
dent eigenvectors. Furthermore, all circulant matri-
ces share the same set of eigenvectors that make up
the Fourier matrix:

Ski =

E = (ew)

7r?e

The real-valued form of Eq. (A.2) is:

if '•=!
if l<i<P

for N even
if P<i<N

k=l,...,N (A.3)

k,i=l,...,N (A.2)

The Kronecker product of two matrices is

C = A<8>B =

(A.4)
A useful property of the Kronecker product is

(A ® B) (C <g> D) = (AC) <8> (BD) (A.5)

Appendix B: Nomenclature

(Matrix dimensions in parenthesis)

C Engine order excitation
Ei Young's modulus of blade i
EQ Young's modulus for a tuned blade
Gstruc Structural damping coefficient
j Imaginary number = V—T
m Number of modes
mi. Number of cantilever blade modes
rrid Number of disk-induced static modes
n Harmonic number
HFE Number of blade finite element degrees of

freedom per sector
TV Number of blades
Ndia Number of nodal diameters
P Maximum number of harmonics, or nodal

diameters, P = int [y]
<§,- ith blade stiffness mistuning
ST Variation of kinetic energy
6u Virtual displacement
6U Variation of strain energy
SWext External virtual work
C Viscous damping ratio
(j>i Interblade phase angle, i = 1,.. . , P
u> Excitation frequency
® Kronecker product (See Appendix A)
an Vector of generalized coordinates corre-

sponding to the n nodal diameter disk
modes (m<j, 1)

1949
American Institute of Aeronautics and Astronautics



a Vector of generalized coordinates for all
disk modes, a = [&£, af,..., a^]

bi Vector of generalized coordinates corre-
sponding to the ith blade's cantilevered
modes (rrib, 1)

b Vector of generalized coordinates for all N
blades, b= [b?,bJ)...,b£]T(m tJV,l)

E Fourier matrix
en nth column of the Fourier matrix
e£ nth harmonic cosine vector from the real

form of the Fourier matrix
«£ nth harmonic sine vector from the real

form of the Fourier matrix
f Force vector on a single blade (HFE , 1)
F Forcing vector on the entire assembly of

blades (npsN, 1)
Kb Finite element stiffness matrix of a free

blade (riFE,nFE)
Kb Blade portion of the stiffness matrix of the

entire assembly (npEN,nFEN)
Kd Modal stiffness matrix of the entire disk

(mdN,mdN)
Mb Finite element mass matrix of a single

blade (npE,nFE)
Mb Blade portion of the mass matrix of the

entire assembly (npEN,npEN)
ub ith cantilever blade mode for one blade

Ub Matrix of cantilever blade modes for one
blade (n^B,mj)

Ub Cantilever blade modes for the entire
assembly (HFE^, mj^V)

u£m,Un*m Complex conjugate pair of disk-
induced modes, nth harmonic, mth mode

Un,m Real part of u^m

u^m Imaginary part of u^m

U|J Matrix of nth harmonic disk-induced
modes for a single sector (npE , m<i)

Unim,U{|*m Complex conjugate pair of disk-
induced modes for the entire assembly,
nth harmonic, mth mode (npsJV, 1)

U£ Matrix of nth harmonic disk-
induced modes for the entire assembly
(nFEN,md)

Ud Matrix of disk-induced modes for the en-
tire assembly (npEN, mdN)
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