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Compact, Generalized Component Mode Mistuning
Representation for Modeling Bladed Disk Vibration
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New techniques are presented for generating reduced-order models of the vibration of mistuned bladed disks from
parent finite element models. A novel component-based modeling framework is developed by partitioning the system
into a tuned bladed disk component and virtual blade mistuning components. The mistuning components are defined
by the differences between the mistuned and tuned blade mass and stiffness matrices. The mistuned-system model is
assembled with a component mode synthesis technique, using a basis of tuned-system normal modes and attachment
modes. The formulation developed is general and can be applied to any mistuned bladed disk, including those with
large geometric mistuning (e.g., severe blade damage). In the case of small (i.e., blade frequency) mistuning, a
compact reduced-order model is derived by neglecting the attachment modes. For this component mode mistuning
model, the blade mistuning is projected first onto the component modes of a tuned, cantilevered blade, and then
projected again onto the tuned-system normal modes via modal participation factors. In this manner, several natural
frequencies of each mistuned blade can be used to capture systematically the effects of the complex physical sources of
mistuning. A numerical validation of the developed methods is performed for both large and small mistuning cases

using a finite element model of an industrial rotor.
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aerodynamic coupling damping matrix projected
onto tuned-system normal modes
= Young’s modulus
real Fourier matrix
ej_citation force vector
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stiffness matrix in physical coordinates
mass matrix in physical coordinates
no. of blades
= no. of the retained tuned-system normal modes
corresponding to harmonic &
modal coordinates
set of tuned-cantilevered-blade mode participation
factors for the blade motion in the retained tuned-
system modes in physical coordinates and in cyclic
coordinates
set of the retained tuned-cantilevered-blade normal
and boundary modes
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Superscripts

a =

mistuned-cantilevered-blade normal mode
participation factor for a tuned-cantilevered-blade
normal mode and set of the factors

physical coordinates

structural damping coefficient

nondimensional mistuning parameter

reduced stiffness matrix or stiffness projection to the
retained component modes

eigenvalue and diagonal matrix of eigenvalues of the
retained component normal modes

reduced mass matrix or mass projection to the
retained component modes

set of the retained component normal modes in
physical coordinates and in cyclic coordinates
component interface modes

frequency

finite element degrees of freedom (DOF) of the
cantilevered-blade boundary and interior
maximum harmonic number

harmonic number

blade number

tuned blade

set of the retained cantilevered-blade normal mode
numbers

rth cantilevered-blade normal mode

finite element DOF of the blades

finite element DOF of the disk

generalized coordinates for the retained component
normal modes

partition for cantilevered-blade normal modes
generalized coordinates for the component interface
modes

partition for cantilevered-blade boundary modes

aerodynamic coupling
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B = cantilevered blade

E = Young’s modulus mistuning

e = eigenvalue mistuning

k = modes or modal participation factors for stiffness
mistuning

m = modes or modal participation factors for mass
mistuning

S = tuned system

syn = synthesized representation

8 = mistuning component or assembly of mistuning

components

Introduction

BLADED disk consists of a set of disk-blade sectors that are

typically designed to be identical. In practice, however, there
are always small variations in the structural properties of individual
blades, resulting from manufacturing tolerances, material deviations,
and operational wear. These variations are referred to as blade
mistuning. Because of mistuning, the vibratory response of an
industrial bladed disk may be considerably different from that of its
nominal, tuned design. In particular, some blades may have much
higher forced response levels due to mistuning. Over the past
40 years much research has been done on the dynamic behavior of
mistuned bladed disks [1-3], and many of these studies have been
based on lumped parameter models [4-12]. Although such simple
models do provide a basic understanding of the effects of mistuning,
they usually cannot be used to predict accurately the vibratory
response of industrial bladed disks. On the other hand, because
mistuning is random, a probabilistic analysis such as a Monte Carlo
simulation is needed, and the computational cost makes it impractical
to use finite element models directly. Therefore, various techniques
have been developed to construct reduced-order models of bladed
disks systematically from their finite element representations. These
techniques include component mode synthesis or related methods
[13-19], a receptance technique [20], and classical modal analysis
with a mistuning projection [21]. The major differences among these
reduced-order modeling techniques are the substructuring
approaches and the mistuning implementations. Another method
to obtain the response of mistuned systems without building an
attendant reduced-order model has been proposed by Petrov et al.
[22]. In this approach, the response of a mistuned system is calculated
using response levels for the tuned assembly, together with a
modification matrix constructed from the frequency response
function matrix of the tuned system and a matrix describing the
mistuning.

In many methods developed to date, reduced-order models are
obtained by substructuring a bladed disk into disk and blade
components, because this allows for easy implementation of blade
mistuning. However, an alternative approach has been proposed by
Yang and Griffin [21], in which the tuned-system normal modes are
used without substructuring to generate a reduced-order model. One
advantage of avoiding substructuring is that there is no additional
error introduced in the tuned-system model. Another advantage is
that, because the number of tuned-system normal modes required is
on the order of the number of blades, the size of Yang and Griffin’s
reduced-order model is as small or smaller than that of any other
method.

The way in which blade mistuning is implemented into a reduced-
order model is a key issue, because mistuned reduced-order models
should be able to predict the behavior of actual mistuned systems.
Castanier et al. [14] included mistuning in a component-based
reduced-order model by varying the blade modal stiffnesses that
appear explicitly in a synthesized stiffness matrix. Bladh et al. [15]
extended this method by projecting mistuning onto the normal
modes of a tuned cantilevered blade fixed at the disk-blade interface.
Because a small number of modal stiffness variations are directly
employed in the reduced-order model, the implementation of
mistuning is quite efficient. Also, because different mistuning
patterns can be used for the various individual blade modes, bladed
disks can be modeled more realistically. Therefore, this mistuning

projection method has great potential for general implementation in
reduced-order models. Yang and Griffin [21] used a similar
mistuning projection, but in theory their method requires the
knowledge of the mistuned mass and stiffness matrices in physical
coordinates, because the mistuning expressed in physical
coordinates is directly projected to the tuned-system modes.
Therefore, they only considered the case in which a mistuned blade
stiffness matrix is proportional to the tuned matrix. The method
proposed by Petrov et al. [22] also uses a mistuning matrix in
physical coordinates. Therefore, for the practical implementation of
mistuning, it is clear that the mistuning projection method of Bladh
etal. [15] is useful, with the caveats that the component mode shapes
of mistuned and tuned blades are assumed to be the same and that
only stiffness mistuning is present.

In this paper, a general reduced-order model for mistuned bladed
disks is developed. In this approach, the mistuned system is
represented by the full tuned system and by virtual blade mistuning
components, and a hybrid-interface method is used to combine them.
The mistuning components consist only of blade mass and stiffness
deviations from the tuned configuration, and all the degrees of
freedom (DOF) in the mistuning components are considered to be
interface degrees of freedom. Because no assumption is made about
mistuning in this formulation, the resulting reduced-order model can
be constructed for arbitrary mistuning, regardless of whether it is
small or large.

Most previous research on mistuning has been based on the
assumption that mistuning is small (i.e., small blade-frequency
mistuning), which is not necessarily the case. If there is large
mistuning, such as a fractured blade tip or significant variations in
blade geometry due to damage, then it is necessary to include a very
large number of tuned-system modes or tuned-component (disk and
blade) modes in the reduced-order models. This is due to the fact that
mistuning may change the mass or stiffness matrices significantly. In
this case, the mode shapes of a mistuned blade may be very different
from those of a tuned blade when comparing them with a metric such
as the modal assurance criterion [23,24]. Because of this difficulty,
the reduced-order models described above have not been able to
capture such large mistuning. In the general formulation proposed in
this paper, the attachment modes of the tuned system are used to
generate an accurate reduced-order model for the case of large
mistuning. This allows for the efficient prediction of the response of
bladed disks with large, mode shape mistuning. Furthermore,
intentional mistuning [25], which may involve geometric design
changes in local areas of the blades, can be efficiently studied with
this method.

In this paper, a reduced-order model for the special case of small
mistuning is also derived from the general formulation. This model
uses the same tuned mode basis, and thus it features the same small
number of DOF as that of Yang and Griffin’s method [21]. Blade
mistuning is implemented using the mistuning projection approach
originally developed by Bladh et al. [15], which is extended here to
handle the generalized blade mistuning cases considered. By using
only a few modes of a mistuned cantilevered blade, any type of small
structural mistuning can be accurately accounted for. This new
approach to small-mistuned bladed disks is referred to as the
component mode mistuning (CMM) method. In preceding studies
[15-17], a bladed disk was substructured into disk and blade
components to project mistuning to the normal modes of a tuned
cantilevered blade. In the proposed CMM method, the mistuning is
projected without requiring a component-based representation of the
full system.

A major advantage of this method is that, even when mistuning is
present in only part of the blade such that the modal mistuning
patterns for the various blade modes are different, the influence of
mistuning may still be estimated accurately. That is, arbitrary
patterns of mistuning in the physical mass and stiffness matrices can
be efficiently and accurately implemented in a compact reduced-
order model using modal mistuning values for a few cantilevered-
blade modes. This feature is especially useful in frequency ranges
where two or more families of blade-dominated modes of the tuned
system are closely spaced. In such a frequency region, a mistuned-
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system mode may exhibit blade motion that is characteristic of
multiple types of blade modes. An example of this is shown in one of
the numerical case studies.

The primary contribution of this paper is a new method for
systematically formulating a general reduced-order model of
mistuned bladed disks, regardless of whether mistuning is small or
large. In particular, the new reduced-order model handles the effects
of large structural and geometric variations, such as damaged blades.
Another contribution is the development of a compact modeling
framework for a bladed disk with generalized small blade mistuning
and aerodynamic coupling. In particular, the CMM model allows one
to handle the cases of nonproportional mistuning of the blade
stiffness matrix and different mistuning patterns for different blade
modes.

The paper is organized as follows. The general formulation of a
reduced-order model for a bladed disk with arbitrary mistuning is
presented in the second section. The CMM representation for the
case of small blade mistuning is derived in the third section. In the
fourth section, the general approach is validated by comparing the
results of the finite element model (FEM) and the reduced-order
model (ROM) for an industrial rotor with a rogue blade, which causes
large mistuning. In the fifth section, the CMM approach is validated
numerically for the same industrial rotor but with small mistuning.
The example cases include mistuning that leads to a proportional
change in the blade stiffness matrix as well as nonproportional
mistuning. The conclusions are given in the sixth section.

General Reduced-Order Model Formulation
for a Mistuned System

A general, component-based framework is considered, in which a
mistuned bladed disk is partitioned into a tuned bladed disk
component and one virtual component for each blade, as shown in
Fig. 1. Each virtual component, or mistuning component, is defined
as having mass and stiffness matrices equal to the difference between
the mistuned and tuned matrices of a single blade. That is, the
mistuning component for blade n has the following mass and
stiffness matrices:

Mft:Mn_Mo’ Kft:Kn_Ka (1)
Note that the mistuning component matrices vanish if the blade is
tuned. Because the response of a typical bladed disk is much more
sensitive to mistuning in the blades than in the disk, only blade
mistuning is considered in this study. However, the proposed
substructuring approach could be applied to the disk as well.

To combine the tuned system and mistuning components, a
component mode synthesis (CMS) [26-28] approach is employed.
More specifically, a hybrid-interface CMS approach is used, where
the interface (or active) DOF are all the blade DOF. The tuned system
is treated as a free-interface component, whereas the mistuning
components are treated as fixed-interface components.

For the tuned-system component, normal modes and attachment
modes [28] are needed. Because it is a free-interface component, the
component normal modes are simply the modes of the tuned bladed
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component ( 15, k)

Blade mistuning
components (M3, k%)

Fig. 1 Substructuring of a mistuned bladed disk.

disk. The attachment modes are obtained by applying a unit force to
each interface DOF, successively. The reduced mass and stiffness
matrices in generalized coordinates for the free-interface component
(the tuned system) can be written using its truncated set of normal
modes @ and complete set of attachment modes ¥ as follows:

I 5" MSWS
s = [\I,STMS(I,S \I,STMS\I,S] (2a)
s ST S\
K¥= |:‘I’STI}{S(I>S ¢ ‘II,(?‘I’ :| (2b)
a=le vt
xS=1%al _ A A @ 2
{xi o v |\p} 2

For a mistuning component, a set of constraint modes [27] are
obtained by enforcing a unit displacement at each interface DOF,
successively, with all other interface DOF held fixed. Because all the
DOF in the mistuning component are interface DOF, and it is treated
as a fixed-interface component, there are no component normal
modes. Therefore, the set of constraint modes, which in this case is
the identity matrix, completely describe the motion of the mistuning
component. For the assembly of all blade mistuning components, the
mass and stiffness matrices in generalized coordinates are the same
as those in physical coordinates:

’L‘S = ITM(SI = 1‘45 = Bdiag I:Mf,] (33)
n=1,...N

= I"K*T = K’ = Bdiag [K;z} (3b)
n=1,...N

x4 =1p%, = pj, (3c)

where Bdiag [] denotes a block-diagonal matrix with block n
n=I1,...N
corresponding to blade n.

The synthesis of the tuned system and mistuning components is
achieved by satisfying displacement compatibility at the component
interface (i.., X = x%). This yields, from Egs. (2¢) and (3¢)

@ {ps + Vipy = pY @

This constraint equation leads to the synthesized representation of a
mistuned system:

[’ ™ + (1 4 jy)e|p?" = [@5W]' f (5)
where

, VMDY B MO

0w syn — ,'LS + |: FT r FT T (63)
WS MODS. WS MO,
S KPS dS KOS

Ksyn:KS+|: r r r ) Fi| (6b)
U KRS WS KOS

wn _ | P }
= 6¢
P {Pi (6c)

Asindicated in Eq. (6), the mistuned system is described only with
the normal modes and the attachment modes of the corresponding
tuned system. Because no assumption has been made about
mistuning in deriving this reduced-order model, the formulation is
entirely general and applicable to any kind of mistuned system. The
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only restriction is that the number of DOF in a mistuned part must be
the same as that in the corresponding part of the tuned system. The
number of attachment modes required is the same as the number of
DOF of the mistuning components. Although the number of
attachment modes may be large (i.e., the number of blade DOF), the
attachment modes can be calculated easily and they improve the
convergence rate of the natural frequencies and mode shapes of the
ROM as the number of tuned-system normal modes increases, as will
be discussed in the fourth section. Therefore, an accurate ROM of a
reasonable size can be achieved in a systematic manner for arbitrary
mistuning by using this general formulation.

Simplified Reduced-Order Model Formulation
for Small Mistuning

In this section, the general ROM developed above is simplified by
assuming that blade mistuning is small compared to nominal
properties in the modal domain, that is, |(k7}" —«$)/kj;| < 1.
Because the simplified ROM employs mistuning in component
modal coordinates of a tuned cantilevered blade, this new technique

for small mistuning is called the CMM method.

Approximation for Small Mistuning

Recently, Yang and Griffin reported on modal interaction [29] and
applied the results to the modeling of mistuned bladed disks [21]. The
main idea for their method is that, when a tuned bladed disk has
normal modes closely spaced in a frequency range, a slightly
mistuned bladed disk also features closely spaced modes in the same
range, and thus the mistuned normal modes can be expressed using a
subset of the tuned normal modes. This means that the tuned normal
modes outside of the frequency range of interest, or any static modes,
can be ignored in modeling a mistuned system with small mistuning.

Using this approach, if W5 and the corresponding modal
coordinates p3, are ignored in Eq. (6), then the synthesized
representation becomes

L = [1 + <1>§"M5<1>§] (Ta)
e =[A% + o) K'0} | (7b)
P =1{ps) (7¢)

In general, a bladed disk features sets of blade-dominated modes
grouped into narrow frequency bands, and the number of normal
modes in each band is on the order of the number of blades.
Therefore, Eq. (7) provides an accurate representation of a small-
mistuned bladed disk in a frequency range of interest with matrices of
order N.

It can be observed in Eq. (7) that the mass and stiffness deviation
matrices in physical coordinates are projected to the blade portion of
the tuned-system normal modes (in this study, mistuning is limited to
the blades). Hence, the reduced mass and stiffness matrices can be
obtained only if M? and K? are either known or at least estimated so
that they match the mass and stiffness characteristics of the actual
blades in a certain frequency range. However, such estimation
becomes impractical when M? and K are not proportional to the
corresponding tuned matrices, which is the case when each blade
mode family features a different mistuning pattern.

Component Mode Mistuning Projection

Bladh et al. [15] introduced a mistuning projection method in
which the stiffness mistuning matrices in physical coordinates are
projected to the normal modes of a tuned blade cantilevered at its
root. The projection gives a diagonal matrix of modal stiffness
deviations with the assumption that the tuned and mistuned blade-
alone mode shapes are the same. With this approach, nonpropor-

tional blade mistuning can be implemented efficiently using the
modal stiffness deviations, without requiring the estimation of K?.
However, since the ROM is generated by substructuring a rotor into a
disk and blades, the model size is larger than that of Yang and
Griffin’s model [21], which is on the order of the number of blades.

In this section, the blade portion of the tuned-system normal
modes in Eq. (7) is represented by a linear combination of boundary
modes and selected component modes of a tuned cantilevered blade,
with the coefficients referred to as modal participation factors. Using
this basis, the mistuning projection method of Bladh etal. [15] can be
employed without substructuring the tuned system. Furthermore, it is
shown that, even when the mistuning projection matrices are not
diagonal, using only the diagonal terms is a good approximation as
long as the motion of a blade in a mistuned system is dominated by
one mode of a tuned cantilevered blade.

To carry out this projection, the modal participation factors first
need to be obtained to represent the blade motion in tuned-system
modes. If only cantilevered-blade normal modes are used to describe
the blade motion, then the displacements at the boundaries (e.g.,
disk-blade boundary, shroud-to-shroud boundary) cannot be
captured. Therefore, additional modes are required to describe
motion at the boundary. However, because it is not feasible to
measure these additional boundary modes, the proposed approach is
to determine them by minimizing their contribution to the mistuning
projection, which is eventually ignored for small boundary
displacements.

Here, the additional mode set is introduced in the following form:

L
7]
where W2, which is not yet determined, corresponds to the interior
DOF of a cantilevered blade, and I corresponds to the boundary DOF
that are held fixed in the cantilevered blade model. The number of
modes in this set is the number of boundary DOF so that any
boundary motion can be described. Because mistuning is usually
random, the nominal mass and stiffness matrices of a blade, M2, K5,
are used in minimizing the contribution of the boundary modes.
Then, the mass and stiffness projections to the boundary modes

become
uﬁﬁ[wg]T[Mff” be][“’B] (8a)
I Mib.u Mbb,o 1

BT KB K% B
B __ o ii,o ib,o 0
o[k wn ] @

Now, by taking the first variation of u%, and «7,, in W}, the
boundary mode contributions to the mass and stiffness projections
are minimized, and W5 and W5 can be obtained from the following
equations:

M B

ii,o

YBm 4 ME =0 (9a)

K§,¥5' + Kj,, =0 (9b)
Here, it should be noted that W5* is the set of Craig-Bampton
constraint modes [27] of a cantilevered blade.

Now, the motion of the nth blade in the tuned-system modes is
described by cantilevered-blade normal modes and boundary modes

as follows:

B B.m m
[ e ¥ ] [ Tg.n :| for mass mistuning

0 I Qyn
=\ Tor witilq (10)
o o ¢.n : : :
for stiffness mistuning
0 1 Qyn

Therefore, the blade portion of the tuned-system modes can be
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expressed as

I®U")q"
&7 =1{or (11)
(I®UYq"
where
m q’(lf ‘Ilgm k <I>§ ‘Ilg’k m qéln
At B I A B IR
K
qk — q(j),n

ql//.n

and ® denotes the Kronecker product. Note that since W2 and W5+
are different, g}, and qg . are also different. The modal participation
factors can be easily calculated because a tuned system is a structure
with cyclic symmetry (see the Appendix). In most cases, only a few
normal mode participation factors per blade (often just one or two for
unshrouded rotors) are dominant, because the blade motion in a
tuned-system normal mode tends to be well correlated to that of a
cantilevered-blade normal mode (this will be discussed further in the
fifth section). Therefore, a few dominant modes are sufficient for the
normal mode set, ®5.

Inserting Eq. (11) into Eq. (7), the reduced mass and stiffness
matrices become

’Lsyn =1+ qu(I ® UmT)MB(I ® U’”)qm =1

§
I+qur|:ﬂ¢¢n I’«g’w.n]qzn

N
+ Z q:'nTUmTM(’)l Umqn d)([/ ' ’Lw‘// '

n=1

(12a)
P - A3+qkT(I®UkT)K5(I®Uk)q — AS

n Kali‘l
+Zq”UkTKbqu _As+zq [ ::;Z Kfj:/// ]qk

(12b)

where

Rioon =00 M, @0 iy, =@f [Mb whn M,,,,,]

ii,n

”’18//«//,11 = \I’g,m I:MS ‘I’B " + Mlh n]

u,n

B,m
lhn‘I’ +Mbbn

sz’n - <I>Bl K?l n<1>B K¢1// n <I>Bl I:Kb \I’Bk + Ktb n]

ii,n

tbn‘I’Bk + Kbbn

i,n

Kt?ﬂll/n - ‘I’B o |:K8 ‘I’B g + bi n]
Because M? and K¢ are not necessarily proportional to the nominal
matrices, U"T M3 U™ and U¥" K U* are full matrices, as shown in
Eg. (12).

Equation (12) can be used for any small-mistuned bladed disk, but
it requires mistuning values for the boundary modes. These values
cannot be readily measured, but they can be computed for cases in
which the mistuning distribution within the blades is known (e.g., if
one assumes proportional mistuning). Now, suppose that the
displacements at the boundaries in the tuned-system normal modes
are very small, so that the contribution of the boundary modes to the
mistuning projection is negligible. This is the usual case for
unshrouded rotors. Then, the dominant cantilevered-blade normal
modes are sufficient to project mistuning without losing accuracy. In
this case, the partitions pertaining to the boundary modes can be
ignored and the reduced mass and stiffness matrices can be

approximated as

;Lsy“NI+Zq¢nlL¢¢nq¢n (13a)
n=1
N

£~ AS + qufnxgwq;n (13b)

n=1

Note that pl,, and «j, , still have off-diagonal terms if the
mistuned mass and stiffness matrices are not proportional to the
nominal matrices. However, each column of g, and q(’;n is usually
dominated by one modal participation factor, and the motion of each
blade in a system with small mistuning is usually dominated by one
mode of a tuned cantilevered blade. In this case, the off-diagonal
terms of ;ng and lcgw, which represent the coupling between
cantilevered-blade modes due to mistuning, can be neglected.
Therefore, Eq. (13) can be simplified further:

RLEN) Z ayrdiag,cx (i, )@, (42)

N
PRLESY + Z q];&,rndiagrER (Kg(j).n,r)q(,;‘n (14b)

n=1

where

/“Lj)qin r— (DBT M?l nd)B Kiqﬁ.n r q)BT Kfl nq)B
In this equation, the required number of the modal mistuning values
per blade is the number of the retained cantilevered-blade normal
modes.

Next, the calculation of the modal mistuning matrices, ;L‘jwﬂ and
lcg;d,_”, and their diagonal terms is discussed. Assuming that the mode
shapes of the actual (i.e., mistuned) nth cantilevered blade have been
measured or computed, the tuned-cantilevered-blade normal modes
can be expressed as linear combinations of the mistuned-
cantilevered-blade normal modes as follows:

7 =2, s)
where v,, is a matrix consisting of the modal participation factors.

The mode orthogonality with respect to the mass and stiffness
matrices for the mistuned cantilevered blade is written as follows:

1= (MB + M), )®! (16a)

ii,0

A2 =l (K, +K),)®! (16b)
Premultiplying by v7, postmultiplying by v,, and using Eq. (15),
viv, = @ (MB, + M}, )08 =T+ by, (170
vIAZv, = @ (KE, + Ki,)®8 = AZ + ki, (I7b)
Therefore,
w zdw =vly, -1 (18a)
5y, =y Ay, — A8 (18b)
The rth diagonal terms of the above mistuning matrices are

12 25¢,n.r = vzw,nvr.n -1 (193)



2290 LIM ET AL.

K l;(ﬁ,n.r = vz‘".nAﬁvr.n - )"fu (19b)
Because the column vector v,.,, is dominated by the factor of the rth
mistuned mode v,, ,, for small mistuning cases, the diagonal terms
can be approximated as

12 izﬁ,n,r ~ v%hn -1 (203)

K iqﬁ,mr ~ )‘Irg.nv%r,n - )\Irgg (ZOb)

If only the eigenvalues (or natural frequencies) of the mistuned
cantilevered blades are known, then the mass and stiffness
mistunings cannot be obtained from the above equation. However, if
only stiffness mistuning is assumed, an equivalent stiffness
mistuning value K%N can be computed. Because no mass mis-
tuning is assumed, ;Lgd,_n_, =0, and v%,, ~ 1. Then, the equivalent
stiffness mistuning value becomes

K s XA, — AL, Q1)

Note that this eigenvalue mistuning was employed in the study by
Bladh et al. [15].

Typically, unsteady aerodynamic coefficients are obtained using
aerodynamic codes based on a set of cantilevered-blade normal
modes in a cyclic assembly (i.e., a cascade) using a complex cyclic
coordinate transformation [30]. Therefore, using the cantilevered-
blade mode participation factors computed for the mistuning
projection in the CMM method, aecrodynamic coefficients can also be
projected to the normal modes of the tuned system.

Then, the equations of motion for a small-mistuned system with
aerodynamic coupling can be expressed as

[~ (L™ + 1) + joct + (1 + jy)es™ + kp5 = @5 f (22)

where p¢, k¢, and ¢“ are the aerodynamic coupling mass, stiffness,
and damping matrices in modal coordinates of tuned-system normal
modes.

Large Mistuning Case Study: Rogue Blade

The industrial bladed disk depicted in Fig. 1 is used in this study.
This integrally bladed rotor (or blisk) has 29 blades, and it is the
second stage of a compressor used in an advanced gas turbine
application. The rotor model was clamped at the ribs located at the
outer edges of the disk, which is a rough approximation of boundary
conditions due to neighboring stages. The finite element model was
constructed with standard linear brick elements (eight-noded solids),
and the total model size was 126,846 DOF.

For a tuned bladed disk, each system mode shape consists of
identical motion in each sector except for a fixed sector-to-sector
phase difference. Thus, looking at a point in the same relative
location in each sector, the mode shapes are sinusoidal in the
circumferential direction. This leads to nodal lines across the disk
called nodal diameters. Figure 2 displays the free vibration natural
frequencies of the tuned bladed disk versus the number of nodal
diameters. The natural frequencies and mode shapes were obtained
via cyclic symmetry analysis using a finite element model of a single
sector. The blade-dominated mode families are labeled on the right-
hand side of Fig. 2, where F is a flexural bending mode, T is a torsion
mode, S is a stripe or chordwise bending mode, and R denotes
elongation in the radial direction. The frequency bounds that will be
discussed in the remainder of this paper are marked by dotted
horizontal lines in Fig. 2, with the corresponding frequency labeled
on the right side.

In this large mistuning case study, a rogue blade scenario was
considered in which one blade suffers severe mistuning due to
foreign object damage, with all other blades being tuned. Large
mistuning was introduced by changing the rogue blade geometry
significantly, as depicted in Fig. 3. It was assumed that the mass
density and Young’s modulus were not changed. Therefore, M® and

System Mode
Characterization
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Fig. 2 Natural frequencies versus number of nodal diameters for the
tuned rotor FEM.

K?, which are needed to build the large mistuning ROM, were
obtained from the rogue blade geometry. For constructing the ROM,
only a single-sector finite element model was required because the
attachment modes corresponding to all of the rogue blade DOF were
obtained from a cyclic symmetry analysis.

The size of the resulting reduced-order model is equal to the
number of kept tuned-system normal modes plus the number of
attachment modes. In this case study, a ROM was initially
constructed for the frequency range 32-36 kHz (which includes 3T
and 2S modes), and the results were compared with those of the finite
element model of the full mistuned bladed disk. At a minimum, the
tuned-system normal modes in the frequency range of interest were
retained, and the attachment modes for all the nodes in the rogue
blade were also included. Therefore, the reduced-order model had at
least 66 DOF corresponding to the tuned-system modes in the range
32-36 kHz, plus 2496 DOF corresponding to the attachment modes.
Although this size is much greater than that of a ROM for small
mistuning, it is still much smaller than the parent FEM. Furthermore,
a modal analysis could be performed on the reduced-order model to
yield a set of normal modes of the mistuned bladed disk. The
mistuned-system modes in the range 32-36 kHz could then be
selected and used to compute the mistuned forced response.
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Fig. 3 Rogue blade geometry.
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Fig. 4 Convergence of average natural frequency error for the large
mistuning case.

To validate the ROM, the convergence of the ROM natural
frequencies to the FEM results was examined by increasing the
number of tuned-system normal modes. Also, the forced response
calculated with the ROM was compared to the FEM results. Figure 4
shows the average natural frequency error versus the number of
tuned-system normal modes. The tested frequency ranges for the
tuned-system normal mode basis were 32-36 kHz, 26—43 kHz, and
22-45 kHz, and the 66 estimated mistuned natural frequencies that
exist between 32 and 36 kHz were chosen for comparison with the
FEM results. As can be seen in Fig. 4, the estimated natural
frequencies converge to the FEM results as the number of tuned-
system normal modes increases. Also, note the very small average
error, less than 0.02%, even when the smallest ROM is considered.

Next, the forced response was investigated. From Fig. 4, it is clear
that 136 tuned normal modes in the range 26-43 kHz plus the
attachment modes are sufficient to describe the behavior of the
mistuned system in the range 32-36 kHz, so this ROM was used to
compute the forced response. A structural damping coefficient of
0.006 was used. A unit force normal to the blade surface was applied
to one of the nodes at the tip of each blade (see Fig. 3), and engine
order 1 and 5 excitations were considered. Engine order excitation is
the effective traveling wave excitation that a bladed disk experiences
asitrotates through the unsteady flow. Thus, the forcing function was
assumed to be harmonic in time and differs only in phase from blade
to blade. The phase at the nth blade, 6,, is given by

2rC(n —1
0, = 7(1\] ) (23)
where C is the (integer) engine order of the excitation.

The Euclidean displacement norm was computed for each blade,
and the maximum response amplitude of any blade was found at each
sampled excitation frequency, so as to provide an envelope of the
maximum blade amplitudes versus frequency. The ROM results are
shown and compared with the FEM results in Fig. 5. As can be seen,
excellent agreement was obtained, thus providing further validation
of the ROM’s accuracy.

In Fig. 5, note that an additional resonance appears near 34.3 kHz
in the response of the mistuned system with the rogue blade, and that
this peak is larger than the two resonant peaks for the tuned bladed
disk. Hence, the presence of a single rogue blade can significantly
alter the forced response, and this effect is accurately captured by the
ROM. The other two resonant frequencies of the rogue blade system
are almost the same as those of the tuned system, and the peak
amplitudes are similar. In the case of engine order 1 excitation, the
first main peak corresponds to the 30th mode of the 66 mistuned
modes in the 32-36 kHz range, the second peak corresponds to the
36th mode, and the third peak corresponds to the 66th mode. In the
case of engine order 5 excitation, the three largest peaks correspond
to the 4th, 36th, and 41st modes. These mistuned modes are depicted
in Fig. 6 (the displacement of a node at the tip of each blade is shown).

0.2
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- - Rogue-ROM
-+ Tuned-FEM

Engine Order: 1

Maximum Blade Displacement Norm [mm]

0 . . .
32 33 34 35 36
Excitation Frequency [kHz]
a)
025 R FEM ' '

— Rogue- i .
Z~ Rogue_ROM Engine Order: 5
-+ Tuned-FEM

Maximum Blade Displacement Norm [mm]

32 33 34 35 36
Excitation Frequency [kHz]
b)
Fig. 5 Forced response results from the FEM (126,846 DOF) and a
ROM (2632 DOF) for two cases of engine order excitation.
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Fig. 6 Five of the 66 mistuned modes in the 32-36 kHz range.

The 30th and 66th modes are nearly sinusoidal waves of harmonic 1
in terms of the blade number, and the 4th and 41st modes are nearly
sinusoidal waves of harmonic 5. However, the 36th mode is highly
localized to blade 1, which is the rogue blade. Clearly, the largest
forced response peak around 34.3 kHz is associated with a rogue-
blade-dominated response shape.

Small Mistuning Case Study

To validate the CMM technique for the case of small mistuning,
the industrial bladed disk in Fig. 1 was used again. To build a CMM-



2292 LIM ET AL.

L7

L1777

[ ]
17

s

77
',

e A S

77
{7

7~

ey A S S |
'~

=

227
S

=

Wy
\n\,{;/“,\

Blade-Alone Model
Fig. 7 Single-sector and blade-alone models of an industrial rotor.

Single-Sector Model

based reduced-order model, two tuned finite element models were
required, as depicted in Fig. 7:

1) A single-sector model, from which the normal modes of the
tuned system were obtained via cyclic symmetry analysis
(commercial finite element analysis software packages, such as
MSC/NASTRAN, have cyclic symmetry routines). There were
4374 DOF per sector in the finite element model.

2) A blade-alone model, from which the cantilevered-blade
normal modes and the static constraint modes were obtained. This
model had a total of 2496 DOF, and there were 96 DOF at the
interface between the blade and the disk.

The tuned-system normal modes were obtained from the single-
sector model. Figure 2 shows the occurrence of numerous natural
frequency veering regions. Earlier studies [18,31] have shown that
large increases in the mistuned forced response, relative to the tuned
response, are likely to occur in veering regions. Therefore, the ability
of CMM models to capture the mistuned response in veering regions
was tested, and two such regions were investigated: veering region 1
is located at three nodal diameters, around 28 kHz; and veering
region 2 is located at five nodal diameters, around 34 kHz. These
regions are labeled in Fig. 2.

For this industrial rotor, displacements at the blade root were very
small compared to those at the blade’s interior, such that the
contribution to the mistuning projection of the boundary modes
defined at the blade—disk boundary could be neglected. Hence the
normal mode mistuning projection used in Eqs. (13) or (14) was
sufficient to construct a mistuned ROM. Although the CMM method
can handle many types of small blade mistuning, for simplicity
mistuning is introduced here as slight variations in the Young’s
modulus of the blades. That is, only stiffness mistuning was
considered, and two cases were investigated: a case of a proportional
change in the blade stiffness matrix, and a case of a nonproportional
change.

Proportional Mistuning

For a proportional mistuning case, the Young’s modulus for blade
n was assigned as

E,=E,(1+ 8

where 8 is the mistuning value for blade n. Hence the natural
frequencies of all the cantilevered-blade normal modes are mistuned
by the same percentage and the mode shapes remain unchanged.

In this case, there are no off-diagonal terms in Kiq)’n, and only the
eigenvalues of the cantilevered blades are mistuned. Hence, Eq. (14)
is appropriate for implementing mistuning and lc‘;(p,n becomes
exactly 5£AE. A dimensionless eigenvalue mistuning parameter 8¢,
is introduced as

Table 1 Eigenvalue mistuning pattern for the case study rotor with
proportional mistuning

Blade 8¢ (=8¢ Blade 8¢ (=8¢
1 0.05704 16 0.04934
2 0.01207 17 0.04479
3 0.04670 18 0.03030
4 —0.01502 19 0.00242
5 0.05969 20 0.01734
6 —0.03324 21 0.02919
7 —0.00078 22 —0.00328
8 —0.01688 23 0.00086
9 0.00242 24 —0.03654
10 —0.02747 25 —0.03631
11 —0.03631 26 —0.01665
12 —0.03570 27 0.00783
13 —0.03631 28 —0.01169
14 —0.03631 29 —0.01332
15 0.00242
83 — w%,n - wg,o
ron 7
wr,o

where w, ,, is the rth natural frequency of the nth blade and w, , is the
rth natural frequency of a tuned blade. For proportional stiffness
mistuning, §¢,, is equal to 8£ for any mode r, and the eigenvalue
mistuning pattern is the same for all blade modes. The specific
pattern used to obtain the FEM and CMM results is shown in Table 1.

The CMM model is constructed by selecting a set of tuned-system
normal modes to capture mistuned-system normal modes, and a set
of cantilevered-blade normal modes to describe the blade motion in
the tuned-system normal modes. Because the modal density is high
in the investigated veering regions in Fig. 2, a narrow frequency band
can be selected for the tuned-system mode basis. For example,
26-29 kHz can be chosen for veering region 1. The selection of
cantilevered-blade modes depends on the tuned-system modes
chosen for a basis. Namely, modal participation factors for the tuned-
system modes in cyclic coordinates need to be calculated using a
sufficient number of cantilevered-blade modes [see Eq. (11) and the
Appendix], and the dominant cantilevered-blade modes can be
determined by comparing the magnitudes of these factors.

Here Kjw‘n_, =§¢,w?%,, and it is pre- and postmultiplied by the
corresponding modal participation factors in the mistuning
projection. Hence if the levels of random mistuning are on the
same order for any mode r, the modal participation factors weighted
by the corresponding cantilevered-blade natural frequencies are
meaningful in determining what are the dominant cantilevered-blade
modes. Figure 8§ shows the weighted-average modal participation
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B o]
o o
o o
o o
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Participation Factor

5 10 15 20 25 30
Cantilevered-Blade Mode Number

o

-
=

32~36 kHz

Weighted Mode
Participation Factor
D
=)

o
o

0 [T

5 10 15 20 25 30
Cantilevered-Blade Mode Number

b)
Fig. 8 Weighted-average cantilevered-blade mode participation
factors for the blade motion in the tuned-system modes: a) in veering
region 1, and b) in veering region 2.
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factors, which are defined as

Ny =

v @ro P I G141

q4r= i (24)
' 2 h=o N

when the lowest 30 cantilevered-blade modes are used to describe
the blade motion in the tuned modes in the ranges 26-29 kHz and
32-36 kHz.

It should be noted that the number of cantilevered-blade modes
and corresponding mistuning patterns does not affect the size of the
ROM, but it can affect its accuracy. Nevertheless, it is desirable to
retain a small number of mistuning values, and the dominant
cantilevered-blade modes required for accurate mistuning
representation can be determined from Fig. 8. For instance, only
the seventh cantilevered-blade mode is dominant for the range of 26—
29 kHz, because the corresponding weighted-average modal
participation factor is much greater than the others. For the same
reason, the eighth and ninth modes are dominant for the frequency
band of 32-36 kHz. This means that the eigenvalue mistuning
patterns for the seventh mode and for the eighth and ninth modes are
sufficient to predict the behavior of the mistuned system in the
veering regions 1 and 2, respectively.

Once a basis of tuned-system modes is selected and the dominant
cantilevered-blade modes are identified for the mistuning projection,
a ROM can be built using the CMM technique for the mistuning
values in Table 1. Next, the results from the ROM are compared with
the FEM results.

The convergence of mistuned natural frequencies and modal
assurance criterion (MAC) [23,24] ratios are presented in Figs. 9 and
10 for two frequency bands: 26—29 kHz for region 1, and 32-36 kHz
forregion 2. Figure 9 shows the average error of the mistuned-system
natural frequencies estimated by the CMM model relative to the
FEM natural frequencies, versus the number of retained
cantilevered-blade modes. Figure 10 shows the average MAC ratio
between the CMM and the FEM mistuned modes versus the number
of retained cantilevered-blade modes. Because most tuned-system
normal modes in the range 2629 kHz are dominated by the seventh
cantilevered-blade mode, the frequency error and MAC ratio are
significantly improved when the seventh mode is retained in the
CMM model. Similarly, the frequency error and MAC ratio in the
range 32-36 kHz show great improvement when the eighth and ninth
cantilevered-blade modes are retained. These convergence trends
could be predicted from Fig. 8.

The forced response to engine order excitation is considered in the
two veering regions indicated in Fig. 2: engine order 3 excitation is
applied in region 1, and engine order 5 and 24 excitations are applied
in region 2. In both cases, the loads and the structural damping
coefficient are the same as for the large mistuning study in the fourth
section. The effect of aerodynamic coupling is not considered.

Figures 11 and 12 depict the tuned and mistuned forced response
results in veering region 1. In Fig. 11, 34 tuned-system modes (in the

10
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Fig. 9 Convergence of average natural frequency error.
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Fig. 10 Convergence of average MAC ratio.
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Fig. 11 Frequency response for engine order 3 excitation, obtained by
the FEM and a 34-DOF CMM model.
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Fig. 12 Frequency response for engine order 3 excitation, obtained by
the FEM and a 106-DOF CMM model.

range 26-29 kHz) are used, while Fig. 12 is for 106 tuned-system
modes (in the range 22—-34 kHz). In the case of 34 tuned modes, only
the seventh cantilevered-blade mode is employed to project
mistuning to the tuned-system modes. In the case of 106 modes, the
sixth, seventh, and eighth cantilevered-blade modes are used because
these three modes are dominant in the range 22—-34 kHz. Note that the
largest resonant blade amplitude of the mistuned system is 2.24 times
larger than that of the tuned system. In Fig. 11, there are slight
differences between the FEM and CMM results for both the tuned
and mistuned responses, although for this ROM the average natural
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Fig. 13 Frequency response for engine order 5 excitation, obtained by
the FEM and a 66-DOF CMM model.
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Fig. 14 Frequency response for engine order 24 excitation, obtained by
the FEM and a 66-DOF CMM model.

frequency error is only 0.0075% and the average MAC ratio is
99.8958%. This difference can be explained by noting that the
mistuned-system modes obtained from the CMM model are in the
range 26-29 kHz. Hence, the effects of modes outside this frequency
range are not included, and the CMM and FEM results differ even for
the tuned response, especially near the edges of the frequency band.
As can be seen in Fig. 12, when a wider frequency band is chosen, the
discrepancy between FEM and CMM results decreases. But, if one
considers the peak amplitudes at resonant frequencies, the 34-DOF
CMM model results match the FEM results very closely.

Veering region 2 is more complicated because two close blade-
dominated mode families are present in its frequency range. A set of
66 tuned-system modes (32-36 kHz) was used for the CMM
modeling, and the eighth (3T) and ninth (2S) cantilevered-blade
modes were used for the mistuning projection. Figures 13 and 14
depict forced response results for engine order 5 and 24 excitations,
respectively. Note the excellent matches between CMM and FEM
results, indicating that the effects of modes outside the 32-36 kHz
range are negligible. Also, because the only difference between
engine order 5 and engine order 24 excitations for the 29-blade
system is the sign of the phase angle of the forcing vector, the tuned
forced response is the same in both cases. However, the mistuned
forced response results differ for engine orders 5 and 24, and the
amplification factors of the largest resonant amplitude are 1.51 and
1.34, respectively.

Nonproportional Mistuning

Here, nonproportional mistuning is considered, and lc‘;w is a full
matrix. However, as discussed in the third section, it is a good
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Fig. 15 Illustration of two different Young’s modulus values for a blade
in the nonproportional mistuning case.

approximation to use only the diagonal terms of lc‘;(b,n, which are
approximately the eigenvalue mistuning values. Note that the
mistuned blades feature different eigenvalue mistuning patterns for
different cantilevered-blade modes. Therefore, the number of
mistuning patterns required equals the number of cantilevered-blade
modes used in the mistuning projection. Although the mode shapes
of cantilevered blades are changed by this type of mistuning, Eq. (14)
with only the diagonal mistuning values is employed again, as in the
proportional mistuning case. The results are compared with those
obtained using Eq. (13) with full mistuning matrices.

The nonproportional mistuning is introduced by using two
different sets of Young’s modulus values for the FEM of the
cantilevered blades. One (6% ) is for the lower left and upper right
parts of blades and the other (8% ,) is for the lower right and upper left
parts of blades, as illustrated in Fig. 15. The Young’s modulus
mistuning parameters are listed in Table 2, and Fig. 16 shows the
resulting eigenvalue mistuning patterns for several cantilevered-
blade modes.

As can be seen in Fig. 16, the eigenvalue mistuning patterns are
slightly different from each other. Thus, inaccurate results might be
obtained by choosing only one of these patterns, because the
dynamic characteristics of a bladed disk can be very sensitive to
mistuning. The solution is to use all the mistuning patterns that are
available. If there is only one blade-dominated mode family in the
frequency band selected for the tuned-system mode basis, as in the
case of veering region 1, then a single mistuning pattern may be
sufficient. However, if multiple blade-dominated mode families are
close and they are included in a reduced-order model, as in the case of
veering region 2, then every dominant cantilevered-blade mode
should have its own mistuning pattern.

Table 2 Young’s modulus mistuning parameters for the case study
rotor with nonproportional mistuning

Blade 5, 5, Blade 8, €,

1 0.04080 0.01030 16 0.01990 0.03120
2 —0.06110 —0.04990 17 —0.02490 —0.07530
3 0.01430 0.02780 18 0.06380 0.01350
4 —0.06230 —0.07580 19 0.03140 —0.00080
5 —0.01170 —0.00390 20 —0.01220 —0.00320
6 —0.02700 —0.03210 21 0.03390 —0.01210
7 0.05190 0.00450 22 —0.03220 —0.04590
8 —0.06720 —0.11630 23 —0.00830 0.00530
9 0.03710 0.01770 24 0.06010 0.08270
10 0.06520 0.01460 25 0.02540 0.04540
11 0.06790 0.05580 26 —0.03980 —0.08310
12 0.04000 0.05910 27 0.04700 0.04230
13 —0.00850 —0.05080 28 0.01780 0.01180
14 —0.00020 —0.04850 29 —0.05070 —0.06600
15 —0.03960 —0.02800
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Fig. 16 Mistuning patterns of cantilevered-blade eigenvalues corre-
sponding to modes 6-11 for the case study rotor with nonproportional
mistuning.
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Fig. 17 Frequency response for engine order 3 excitation, obtained by

the FEM and the 106-DOF CMM model with the single eigenvalue

mistuning pattern of the seventh cantilevered-blade mode applied to the

first through 15th cantilevered-blade modes.

These observations are substantiated by investigating the forced
response for excitations corresponding to veering regions 1 and 2. In
region 1, a single eigenvalue mistuning pattern corresponding to the
seventh cantilevered-blade mode has a dominant effect, as in the
proportional mistuning case. For the CMM reduced-order model,
106 tuned-system normal modes (22-34 kHz) were retained.
Figure 17 shows the forced response in veering region 1 by the FEM
and the CMM model. In the CMM model, the eigenvalue mistuning
patterns for the first through the 15th cantilevered-blade modes were
set to be the same as that of the seventh mode, although they were
actually different. As can be seen, the CMM results are in very good
agreement with the FEM results. This is because the mistuning
pattern for the dominant cantilevered-blade mode is correct.

Figures 18 and 19 show forced response results in the 32-36 kHz
range, obtained by four different ROMs and by the FEM. As
mentioned earlier, there are two blade-dominated mode groups in
this range. In all four cases, 136 tuned-system normal modes (26—
43 kHz) were used as a basis, but mistuning projections were
performed differently. In Fig. 18a, the single mistuning pattern of the
eighth cantilevered-blade mode was used, while in Fig. 18b, the
single mistuning pattern of the ninth cantilevered-blade mode is
used. For these single mistuning pattern cases, mistuning is projected
to the lowest 15 cantilevered-blade modes. In Fig. 19a, the two
mistuning patterns of the eighth and ninth cantilevered-blade modes
are used to project the mistuning values to the corresponding
cantilevered-blade modes, respectively. In Fig. 19b, the six
mistuning patterns of the sixth to the 11th cantilevered-blade modes
are used in the mistuning projection.

Results show clearly that the ROMs with two and six eigenvalue
mistuning patterns predict the mistuned-system response consid-
erably better than those with the single mistuning patterns. In fact,
using a single pattern is seen to lead to poor results, including for the
resonant response amplitudes. This demonstrates that when multiple
blade-dominated mode groups are so close that they interact in the
response of a mistuned system, all the eigenvalue mistuning patterns
corresponding to the dominant cantilevered-blade modes are needed
for an accurate reduced-order model. For a bladed disk with several
different eigenvalue mistuning patterns, it can be difficult or
impractical to obtain K?® in physical coordinates, especially if
changes in the individual mistuned mode shapes need to be
considered. Nevertheless, the CMM technique only requires the
eigenvalue mistuning patterns, which can be measured, thus
enabling the projection of nonproportional mistuning to tuned-
system modes.

Figure 20 shows forced response results for the same frequency
range as in Fig. 19. The difference is that the changes in the blade
mode shapes due to mistuning were considered, and Eq. (13) was
employed. The eigenvalues and mode shapes of the first through 15th
cantilevered-blade modes were used, and the full matrices of ﬂjmn
and lc‘;w corresponding to the first through the 15th cantilevered-
blade modes were obtained. Note that the eigenvalues and mode
shapes were obtained from the finite element models of the mistuned
blades. In Fig. 20a, only the mistuning values corresponding to the
eighth and the ninth cantilevered-blade modes were used in the
ROM, while in Fig. 20b, the mistuning values for the sixth through
the 11th cantilevered-blade modes were used. These results are seen
to be more accurate than those in Fig. 19, because mode shape
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Fig. 18 Frequency response for engine order 5 excitation, obtained by
the FEM and 136-DOF CMM models with a single eigenvalue mistuning
pattern of a) the eighth and b) the ninth cantilevered-blade mode applied
to the lowest 15 cantilevered-blade modes.
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Fig. 19 Frequency response for engine order 5 excitation, obtained by
the FEM and 136-DOF CMM models with eigenvalue mistuning
patterns of a) the eighth and the ninth, and b) the sixth to 11th
cantilevered-blade modes applied to the corresponding cantilevered-
blade modes.

mistuning was included. Also, the results in Fig. 20b are slightly
better than those in Fig. 20a. However, note that the accuracy of the
results in Fig. 19, which only includes eigenvalue mistuning, is very
good.

Finally, note that the reduced-order modeling framework
presented in this paper can be readily applied to shrouded rotors.
The interested reader is referred to a previous study by the authors
[32].

Conclusions

A general reduced-order modeling framework for mistuned
bladed disks was developed by treating a mistuned system as a
combination of a tuned-system component and virtual blade
mistuning components. This approach handles the case of large blade
mistuning, such as geometric blade damage. The method employs
tuned-system normal modes and attachment modes to represent
mistuned-system normal modes.

A compact ROM for the important case of small blade mistuning
was also derived from the general formulation, using a component
mode mistuning method. In the CMM method, the finite element
models of a tuned sector and a tuned cantilevered blade are required.
A linear combination of selected cantilevered-blade normal modes
and disk-blade (and possibly shroud—shroud) boundary modes are
employed to describe the blade motion of the tuned-system normal
modes that are obtained from the single-sector model. Thereby,
mistuning values in the modal domain of the cantilevered-blade
component modes are projected onto the tuned-system normal
modes. The boundary modes are defined by minimizing their
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b)
Fig. 20 Frequency response for engine order 5 excitation, obtained by
the FEM and 136-DOF CMM models with mistuning values obtained
using eigenvalues and mode shapes corresponding to a) the eighth and
the ninth, and b) the sixth to 11th cantilevered-blade normal modes.

contribution in the mistuning projection, and they can be neglected
when the tuned-system modes feature displacements at the
boundaries that are much smaller than those at the interior of a blade.
Therefore, in many cases, modal mistuning values corresponding to a
few dominant cantilevered-blade modes are sufficient to predict the
response of a mistuned system. The modal mistuning values
corresponding to cantilevered-blade modes can be computed easily
from the natural frequencies and mode shapes of mistuned blades.
This means that actual arbitrary mistuning in the physical domain can
be efficiently implemented in a ROM with a small number of
mistuning values in the modal domain.

Starting with a finite element model of an industrial
turbomachinery rotor, the general ROM was validated for a large
mistuning case in which one blade was damaged and featured a
significant geometric change from the tuned design. It was observed
that the estimated natural frequencies of the mistuned rotor
converged rapidly as the selected number of tuned-system modes
was increased. Also, the forced response results from the ROM
showed excellent agreement with the FEM results.

The CMM method for small blade mistuning was validated for the
case in which the mistuned stiffness matrix is proportional to its
tuned counterpart, as well as for the nonproportional stiffness
mistuning case. For proportional stiffness mistuning, a single
eigenvalue mistuning pattern was sufficient for mistuning
implementation. For nonproportional mistuning, the mistuning
values corresponding to multiple dominant cantilevered-blade
modes were required when two blade-dominated mode groups were
close. Overall, the CMM method was shown to capture complex
mistuning effects with extremely compact ROMs, with the number
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of degrees of freedom on the order of the number of blades.
Therefore, the CMM method provides tremendous computational
savings with good accuracy relative to finite element analysis.
Furthermore, compared to previous ROMs, the CMM method is
especially useful for predicting mistuned response in higher
frequency regions, because 1) there are often many closely spaced
blade-dominated mode families; and 2) the blade vibration has
shorter wavelength and is more strongly affected by small, local
variations in blade properties or geometry.

Appendix: Modal Participation Factors
of Cantilevered-Blade Normal Modes

Because a tuned bladed disk features cyclic symmetry, a system
mode can be represented by a mode of a single sector in cyclic
coordinates and its harmonic number. Therefore, once the modal
participation factors for the blade portion of a cyclic single-sector
mode are obtained, all the factors for the corresponding full system
mode in physical coordinates can be easily computed.

Tuned-system normal modes can be obtained from a single-sector
finite element model as

&S = (F ® I)Bdiag [62] (A1)
h=0,....H

where Bdiag,_,__y[-] denotes a pseudo-block-diagonal matrix, in
which the block sizes can be different, and tI>i is areal cyclic normal
mode set corresponding to harmonic /4. In this manner, the blade
portion of the tuned-system modes in physical coordinates is
expressed as follows:

@S = (F ® I)Bdiag [®7 ] (A2)
h=0,...H

Next, <i>§’h is described by cantilevered-blade component modes.

[ LA ] [ 0y ]
~ ~‘_S 0 1 qul
&5, = [?gh} =Jor ’ (A3)

®) W[

0 I |[qy,
where g, 47 > qfy» and gl are the participation factors of the
cantilevered-blade and boundary modes in the blade portion of the

cyclic tuned-system modes of harmonic /4. From Eq. (A3), it is
obvious that

qn,=4,,=®, (A4)

Before calculating the modal participation factors of the
cantilevered-blade modes, it should be noted that the normal modes
and the boundary modes of a cantilevered blade are orthogonal with
respect to nominal mass and stiffness matrices. This is proved using
Eq. (9),

@[ Mi, MG, [ e

Ml
o 1" Mii, v, + My,
] Lo o

8" 0
= |: 0 ] [Mﬁzo‘llg'm + be.o] =0 (ASa)
q’(’f r Kﬁo K?b,o ‘I’(B;’k _ (I)f r Kg.o‘llg.k +Kﬁvo
0 Kﬁ:,o th.o 1 0 KIBLTU‘I’fk + Kgb.u
o7 0
- . =0 A5b
[ 0 } [” + K} "

Using these orthogonality conditions, é;;’_h and éf;,.h can be obtained

from Eq. (A3) as follows:

(I)B T - (I)B T <I>B \I,B,m ém
o MB<I>S — o MI? o o N:ﬁ,h
o S [V e[S [

=[1 0][6%}2% (A6a)
3T . o877 ®B Bk ék

o BHS — o B| *o o é.h
o o= [Vl S

=[AZ 0] G| = Az (A6b)
N ¢ qu.h B 0q¢.h

Once ¢, and t]f; » are obtained, gy, and q’d{).n are expressed using
the real Fourier matrix F and the Kronecker product in the same
manner as in Eqs. (A1) and (A2). That is,

@, | = (Fe DBdiagi_slaz] A7)
¢, | = (F @ DBdiag_4[d5,] (A7)
Acknowledgment

This work was supported by NASA Grant NAG3-2604, as part of
the GUIde Consortium on blade durability at Carnegie Mellon
University.

References

[1] Srinivasan, A. S., “Flutter and Resonant Vibration Characteristics of
Engine Blades,” Journal of Engineering for Gas Turbines and Power,
Vol. 119, No. 4, 1997, pp. 742-775.

[2] Slater, J. C., Minkiewicz, G. R., and Blair, A. J., “Forced Response of
Bladed Disk Assemblies—A Survey,” Shock and Vibration Digest,
Vol. 31, No. 1, 1999, pp. 17-24.

[3] Castanier, M. P., and Pierre, C., “Modeling and Analysis of Mistuned
Bladed Disk Vibration: Status and Emerging Directions,” Journal of
Propulsion and Power, Vol. 22, No. 2, 2006, pp. 384-396.

[4] Wagner, J. T., “Coupling of Turbomachine Blade Vibrations Through
the Rotor,” Journal of Engineering for Power, Vol. 89, No. 4, 1967,
pp- 502-512.

[5] Dye,R. C.F., and Henry, T. A., “Vibration Amplitudes of Compressor
Blades Resulting From Scatter in Blade Natural Frequencies,” Journal
of Engineering for Power, Vol. 91, No. 3, 1969, pp. 182-188.

[6] Ewins, D. J., “The Effects of Detuning Upon the Forced Vibrations of
Bladed Disks,” Journal of Sound and Vibration, Vol. 9, No. 1, 1969,
pp. 65-79.

[7]1 Ewins, D. J., “A Study of Resonance Coincidence in Bladed Discs,”

Journal of Mechanical Engineering Science, Vol. 12, No. 5, 1970,

pp- 305-312.

El-Bayoumy, L. E., and Srinivasan, A. V., “Influence of Mistuning on

Rotor-Blade Vibrations,” AIAA Journal, Vol. 13, No. 4, 1975, pp. 460—

464.

Griffin, J. H., and Hoosac, T. M., “Model Development and Statistical

Investigation of Turbine Blade Mistuning,” Journal of Vibration,

Acoustics, Stress, and Reliability in Design, Vol. 106, No. 2, 1984,

pp. 204-210.

[10] Wei, S. T., and Pierre, C., “Localization Phenomena in Mistuned
Assemblies with Cyclic Symmetry, Part 1: Free Vibrations,” Journal of
Vibration, Acoustics, Stress, and Reliability in Design, Vol. 110, No. 4,
1988, pp. 429-438.

[11] Wei, S. T., and Pierre, C., “Localization Phenomena in Mistuned
Assemblies with Cyclic Symmetry, Part 2: Forced Vibrations,” Journal

[8

—

[9

—



2298 LIM ET AL.

of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 110,
No. 4, 1988, pp. 439-449.

[12] Lin, C.-C., and Mignolet, M. P., “An Adaptive Perturbation Scheme for
the Analysis of Mistuned Bladed Disks,” Journal of Engineering for
Gas Turbines and Power, Vol. 119, No. 1, 1997, pp. 153-160.

[13] Irretier, H., “Spectral Analysis of Mistuned Bladed Disk Assemblies by
Component Mode Synthesis,” Vibrations of Bladed Disk Assemblies:
Proceedings of the ASME 9th Biennial Conference on Mechanical
Vibration and Noise, ASME, New York, 1983, pp. 115-125.

[14] Castanier, M. P., ()ttarsson, G., and Pierre, C., “A Reduced-Order
Modeling Technique for Mistuned Bladed Disks,” Journal of Vibration
and Acoustics, Vol. 119, No. 3, 1997, pp. 439-447.

[15] Bladh, R., Castanier, M. P., and Pierre, C., “Reduced Order Modeling
and Vibration Analysis of Mistuned Bladed Disk Assemblies with
Shrouds,” Journal of Engineering for Gas Turbines and Power,
Vol. 121, No. 3, 1999, pp. 515-522.

[16] Bladh, R., Castanier, M. P., and Pierre, C., “Component-Mode-Based
Reduced Order Modeling Techniques for Mistuned Bladed Disks—
Part 1: Theoretical Models,” Journal of Engineering for Gas Turbines
and Power, Vol. 123, No. 1, 2001, pp. 89-99.

[17] Bladh, R., Castanier, M. P., and Pierre, C., “Component-Mode-Based
Reduced Order Modeling Techniques for Mistuned Bladed Disks—
Part 2: Application,” Journal of Engineering for Gas Turbines and
Power, Vol. 123, No. 1, 2001, pp. 100-108.

[18] Bladh, R., Castanier, M. P., Pierre, C., and Kruse, M. J., “Dynamic
Response Predictions for a Mistuned Industrial Turbomachinery Rotor
Using Reduced Order Modeling,” Journal of Engineering for Gas
Turbines and Power, Vol. 124, No. 2, 2002, pp. 311-324.

[19] Moyroud, F., Fransson, T., and Jacquet-Richardet, G., “A Comparison
of Two Finite Element Reduction Techniques for Mistuned Bladed
Disks,” Journal of Engineering for Gas Turbines and Power, Vol. 124,
No. 4, 2002, pp. 942-952.

[20] Yang, M.-T., and Griffin, J. H., “A Reduced Order Approach for the
Vibration of Mistuned Bladed Disk Assemblies,” Journal of
Engineering for Gas Turbines and Power, Vol. 119, No. 1, 1997,
pp. 161-167.

[21] Yang, M.-T., and Griffin, J. H., “A Reduced Order Model of Mistuning
Using a Subset of Nominal System Modes,” Journal of Engineering for
Gas Turbines and Power, Vol. 123, No. 4, 2001, pp. 893-900.

[22] Petrov, E. P., Sanliturk, K. Y., and Ewins, D. J., “A New Method for

Dynamic Analysis of Mistuned Bladed Disks Based on the Exact
Relationship Between Tuned and Mistuned Systems,” Journal of
Engineering for Gas Turbines and Power, Vol. 124, No. 3, 2002,
pp- 586-597.

[23] Allemang, R. J., and Brown, D. L., “A Correlation Coefficient for
Modal Vector Analysis,” Proceedings of the 1st International Modal
Analysis Conference & Exhibit, Union College, Schenectady, NY,
1982, pp. 110-116.

[24] Allemang, R. J., “The Modal Assurance Criterion—Twenty Years of
Use and Abuse,” Sound and Vibration, Vol. 37, No. 8,2003, pp. 14-21.

[25] Castanier, M. P., and Pierre, C., “Using Intentional Mistuning in the
Design of Turbomachinery Rotors,” AIAA Journal, Vol. 40, No. 10,
2002, pp. 2077-2086.

[26] Hurty, W. C., “Dynamic Analysis of Structural Systems Using
Component Modes,” AIAA Journal, Vol. 3, No. 4, 1965, pp. 678-685.

[27] Craig,R.R.,Jr.,and Bampton, M. C. C., “Coupling of Substructures for
Dynamics Analyses,” AIAA Journal, Vol. 6, No. 7, 1968, pp. 1313—
1319.

[28] Craig, R. R., Jr., Structural Dynamics: An Introduction to Computer
Methods, Wiley, New York, 1981, Chap. 19.

[29] Yang, M.-T., and Griffin, J. H., “A Normalized Modal Eigenvalue
Approach for Resolving Modal Interaction,” Journal of Engineering
for Gas Turbines and Power, Vol. 119, No. 3, 1997, pp. 647-650.

[30] Pierre, C., and Murthy, D. V., “Aeroelastic Modal Characteristics of
Mistuned Blade Assemblies: Mode Localization and Loss of
Eigenstructure,” AIAA Journal, Vol. 30, No. 10, 1992, pp. 2483-2496.

[31] Kruse, M. J., and Pierre, C., “Forced Response of Mistuned Bladed
Disks Using Reduced-Order Modeling,” Proceedings ofthe 37th AIAA/
ASME Structures, Structural Dynamics, and Materials Conference,
Vol. 4, AIAA, Reston, VA, 1996, pp. 1938-1950.

[32] Lim, S., Bladh, R., Castanier, M. P., and Pierre, C., “A Compact,
Generalized Component Mode Mistuning Representation for Modeling
Bladed Disk Vibration,” Proceedings of the 44th AIAA/JASME/ASCE/
AHS Structures, Structural Dynamics, and Materials Conference,
Vol. 2, AIAA, Reston, VA, 2003, pp. 1359-1380; also AIAA
Paper 2003-1545.

A. Berman
Associate Editor



