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Table 3 Estimates of state variable speed for F-4C aircraft

Speed

Variable Method 1 Method 2

x,y
E
h
V
7
X

0.00049
0.0055
0.023
0.035
0.090

00

0.00013
0.0027
0.0029
0.0033
0.044
0.059

magnitude of the time-scale separations. For example,
method 1 predicts that E is much slower than h or K, which
are themselves of about the same speed, whereas method 2
indicates that E, h, and Fall have very nearly the same speed.

Comparing the variable ordering shown in Table 3 with the
ordering assumed in past analyses (Table 1) shows general
agreement. The only exception is that x has been treated as a
variable of intermediate speed, whereas the present analysis
shows it to be the fastest variable of all. This discrepancy has
been recognized,8"-9 but x has been retained as an in-
termediate variable for two main reasons in spite of this
recognition. First, treating x as slower than h and 7 gives
singular perturbation solutions that model maneuvers such as
"high- and low-speed yo-yos," which are known to be im-
portant in optimal turning of high-performance aircraft,
whereas treating x as faster than h and 7 does not.12 Second,
the adjoint equation associated with x can be analytically
integrated, making the inclusion of x in slower subsystems
relatively easy. •

Conclusion
Two methods for time-scale separation analysis of dynamic

systems have been proposed. These methods are based on the
concept of state variable speed and require knowledge only of
the dynamical equations and bounds on state and control
variables. They are not as rigorous as other proposed
methods, but they do not require a priori knowledge of an
optimal trajectory, are relatively easy to apply, and are an
improvement over the ad hoc methods currently in use.

The two methods were applied to a typical class of aircraft
flight dynamics problems and equations were derived for state
variable speed estimation. A numerical example showed that
the time-scale separations as computed by the two methods
proposed here generally agree with previous ad hoc time-scale
separation assumptions.
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Introduction

THE general problem of approximating a high-order linear
dynamical system by a low-order "reduced-order model"

has received considerable attention in the literature during the
last fifteen years. See Ref. (1) for an extensive bibliographical
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list. However, as pointed out,1 it is important to know a
measure of the error introduced by the approximation. The
more restricted problem of the optimal approximation of a
linear system by a reduced-order model for a given error
measure has also been treated in the literature.2'10 The
original solution by Wilson2'3 is as follows: Consider a
minimal, asymptotically stable, time-invariant, linear system
with a candidate reduced-order model.

xs=Asxs +

y=csxs

xr=Arxr +

(1)

(2)

(3)

(4)

/?"5 is the system state, xrtRr is the reduced-order
model state (nr<ns), u£Rm is the input, ytRp is the output,
and As, Bs, Cs, Ar, Br, Cr are matrices of appropriate
dimensions. Also consider the corresponding "error system"

x* =
As O

O Ar

e=[Cs,-Cr]xe =

with impulse response

He(t)=CeeAe'Be

u=Aexe (5)

(6)

The reduced-order model will be chosen in such a way as to
minimize the square of the norm of the error system impulse
response

J=tr[ He(t)Hj(t)dt
Jo (7)

The gradient of /with respect to Ar, Br and Cr is computed in
the following way:

(8)

(9)

(10)J —

dj_
oAe

dJ_
dBe

dj

0 Be = t Wc CT
e

(11)

(12)

(13)

where superscript T denotes matric transposition, and Wc and
W0 are symmetric positive definite matrices of order ns + nr.
The matrices Ar, Br, Cr being submatrices of Ae> Be and Ce,
the gradients dJ/dAr, dJ/dBr, dJ/dCr are the corresponding
submatrices of dJ/dAe, 8J/dBe and dJ/dCe. Therefore, once
Eqs. (8-9) are solved for Wc and W0, Eqs. (11-13) can be used
by a gradient algorithm to update Ar, Br and Cr and converge
to an optimal reduced-order model.

One fundamental restriction of this method and other
kindred results found in the literature4'10 is that the system,
Eqs. (1-2) and its reduced-order model, Eqs. (3-4) must be
asymptotically stable. If this were not the case, the cost J of
Eq. (7) would generally not exist and Eqs. (8-9) would become
meaningless. Indeed, even if the unstable dynamics of Eqs. (1-
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2) were compensated by some unstable dynamics of Eqs. (3-
4), numerical errors would cause the generalized integral in
Eq. (7) to diverge.

This restriction on the applicability of Wilson's method can
be relaxed in the following way. Rather than using a uniform
penalty on the impulse response in Eq. (7), we suggest using a
degressive weight in such a way as to give more consideration
to the recent past history of the system. Using an exponential
weight yields a cost function of the form

J=tr(°°He(t)H^(t)e~2oitdt
Jo

(14)

where a is a real nonnegative constant. Note that for a
positive and large enough, the cost J of Eq. (14) is always
guaranteed to exist. I/a can be viewed as a time constant over
which we ^want the impulse response of the reduced-order
model to approximate that of the system.

The idea of using exponential weighting functions is not
original. In Refs. 12 and 13, such an idea is used to guarantee
a stability margin for a time-invariant, linear-quadratic
regulator. However, the present context is clearly different.
Similarly to the results in Refs. 12 and 13 we have the
following:

Lemma:
Suppose a is large enough to render the matrix Ae — al

stable, /being the unit matrix. Then the cost function J of Eq.
(14) and its gradient are given by Eqs. (10)-(13), but where W0
and Wc satisfy

(Ae - oil) Wc + Wc (Ae - al) T + BeBT
e = 0

Proof
Equations (14) and (6) yield

and the same derivation as in Ref. 2 can be made, with Ae —
al replacing Ae.

Example
The result of the lemma allows us to design optimal reduced

order models for unstable and marginally stable systems by
approximating their impulse responses over a finite horizon.
This method has been applied to obtain a fourth-order-
reduced-order model of the pitch motion of a satellite with
flexible radial appendages. The original model is of order six.
The input being an actuator torque along the pitch axis, the
output is the pitch angle itself. The system has a rigid body
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mode, so that its impulse response is the sum of a ramp
function and damped sinusoids (see Ref. 11 for details).
Consequently, Wilson's method is not directly applicable.
Figure 1 compares the impulse response of the original system
with that of the optimal fourth-order model obtained for
several values of a. It appears, as expected, that the impulse
response is approximated over an interval of duration
proportional to 1/ce.

Conclusion
We have shown how methods now existing for optimal

model reduction of asymptotically stable sytems can be ex-
tended to nonasymptotically-stable systems. This extension
can be very simply implemented in software now existing,
making it useful and convenient for the optimal model
reduction of marginally stable and unstable systems.
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Angular Motion Influence on Re-entry
Vehicle Ablation or Erosion

Asymmetry Formation
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Nomenclature
a = E/2W;(B2

max+B2
min)/2

b = (E2 -4K2&) " /2tf; (0max - e2
min)/2

E = constant determined by initial conditions, Eq. (6)
/ = pitch or yaw moment of inertia
Ix = roll moment of inertia
K = constant determined by initial conditions, Eq. (5)
p = roll rate
pr = roll rate parameter, pp/2
t =time
B = pitch angle (Euler angle)
0max = maximum value of B during epicyclic oscillation
0min = minimum value of B during epicyclic oscillation
B = pitch rate
At =IX/I
T = phase angle, Eq. (8)
0 = roll angle relative to wind (Euler angle)

0 = windward-meridian rotation rate
</>max = maximum value of 0 during epicyclic oscillation
0min = minimum value of 0 during epicyclic oscillation
j/ = precession rate

W = undamped natural pitch frequency
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Introduction

A BALLISTIC re-entry vehicle usually enters the at-
mosphere with some angular misalignment betweerj the

vehicle's axis of symmetry and its velocity vector which
together, by definition, comprise the entry total angle of
attack.1'2 The angle of attack converges with increasing at-
mospheric density until it reaches a quasisteady trim value
determined by the magnitude of mass and configurational
asymmetries. During the period in which the angle of attack
converges, the motion is generally epicyclic and is charac-
terized by a highly transient windward-meridian rotation
behavior, in contrast to trimmed motion in which both the
angle of attack and the windward meridian tend to be
quasisteady.3 It has been postulated that the change in the
vehicle's shape as a result of combined ablation and erosion
should occur preferentially along surface meridians that
spend the longest duration windward, i.e., where the wind-
ward-meridian rotation rate is minimum. Such points would
be subjected to maximum cumulative pressures and heating
and, in the case of erosive environments, to maximum
cumulative particle impacts.

The coupling between angle of attack and windward-
meridian rotation rate is derived for undamped epicyclic
motion. The locus of meridians about the vehicle where the
windward-meridian rotation rate is minimum and where
incipient shape change would be expected to occur is
calculated, and its influence on trim formation is discussed.

Analysis
The undamped, small-angle equations of missile angular

motion in classical Euler coordinates, for only a linear static
moment and constant roll rate, are1'3

(1)

(2)

p — 0 +1/' .= const (3)

in which w2, the square of the aerodynamic pitch frequency,
has been substituted for the ratio of the static moment
derivative to the pitch moment of inertia. In the subsequent
analysis, co is assumed to be constant.

In terms of ^ and fi, defined in the Nomenclature, Eqs. (1)
and (2) can be written

(4)


