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Planar, Time-Optimal, Rest-to-Rest Slewing Maneuvers
of Flexible Spacecraft

G. Singh, P. T. Kabamba, N. H. McClamroch
University of Michigan, Ann Arbor, Michigan

The control problem of time-optimal, rest-to-rest slewing of a flexible spacecraft through a large angle is consid-
ered. The flexible spacecraft is modeled as a linear, elastic, undamped, nongyroscopic system suitable for analysis of
planar rotational maneuvers. Minimum-time open-loop planar maneuvers are studied. The control histories are found
to be bang-bang with multiple switches in each control variable. The optimal control history is shown to have an
important time symmetry property. The switching times, final time, and costates at midmaneuver satisfy a system of
nonlinear algebraic equations that can be solved using a homotopy method. An upper bound on attitude error due to
control spillover is obtained. This helps to determine, a priori, the number of vibrational modes that need to be actively
suppressed at the final time such that a prespecified pointing accuracy is guaranteed after the maneuver has been
completed. A time-optimal slewing example is discussed to demonstrate the applicability of the results.

I. Introduction

ATTITUDE controllers for spacecraft have been based on
the assumption that the bodies being controlled are rigid.

However, future spacecraft may be quite flexible compared
with their current counterparts. Many proposed applications
require maneuvering these vehicles between two states of rest.
In some time-critical applications, these maneuvers must be
performed as rapidly as possible between two widely spaced
quiescent attitudes. It is the design of a control system for such
an application, using nonlinear control elements such as on-off
actuators, that is considered in this work.

Large angle, three-axis, rotational maneuvers of spacecraft
are usually performed by means of a sequence of single-axis

rotations. Such maneuvers may take a relatively long time and
their duration can often be reduced considerably by perform-
ing simultaneous three-axis slews. These maneuvers are neces-
sarily more complex due to the inherent nonlinearities, even for
a rigid spacecraft. Nonlinear effects are further compounded,
for the flexible spacecraft case, when even small elastic defor-
mations are considered, caused by rotational stiffening. This
problem is not only infinite dimensional but also highly nonlin-
ear. The problem of planar or single-axis rotational maneuvers
is linear for the rigid spacecraft case; but for the elastic space-
craft case, kinematic nonlinearities are significant at high rota-
tional rates, resulting in a nonlinear infinite dimensional
problem.
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Problems of rest-to-rest slewing maneuvers of rigid bodies
have received considerable attention in the past. Euler's theo-
rem on rotations has been widely used to obtain control
histories for performing simultaneous three-axis slews.1"4'7
Kranton4 has studied near minimum-time maneuvers that are
constrained so that the angular velocity vector remains fixed in
the rigid body as well as in inertial space. It is unlikely that this
occurs unless the desired change in orientation can be achieved
by rotating the body about one of the principle axis. Various
control schemes have used internal angular momentum man-
agement to bring about a desired change in orienta-
tion.8'10'13'15'16 Carrington and Junkins9 have solved the large
angle maneuver problem using a polynomial feedback form by
expanding the control as a polynomial function of system
states with coefficients determined by minimizing a quadratic
cost functional; the maneuver time was fixed in this problem.
Nonlinear state and control transformations have also been
employed to linearize the dynamical model.11"14'33 A reorienta-
tion problem was then formulated as a linear optimal control
problem in the transformed space. Control torques were ob-
tained by minimizing a quadratic cost functional. Quite re-
cently18 variable structure control theory was used in studying
rigid body slewing. Once again the control torques were ob-
tained by minimizing a quadratic performance index. Dixon et
al.5 used impulsive torques to perform minimum fuel reorienta-
tions of rigid spacecraft using a series of pulses and coasting
arcs. Bergman et al.6 employed reaction control and used a
linear programming algorithm for jet selection to perform rigid
spacecraft rotational maneuvers. In another work,7 Euler's the-
orem on rotations was Used to perform rapid reorientations
using reaction jets. This scheme for rapid reorientation re-
quired near-maximum jet torquing.

Flexible spacecraft slewing problems, like their rigid body
counterparts, have also received considerable attention. In
most of the published work the single-axis maneuver problem
has been solved by minimizing a cost functional involving
quadratic penalties on control effort, deformations, and defor-
mation rates.19'22'24"27'32 It is possible to obtain feedback con-
trol strategies in these situations. An integrated structure and
control optimization was carried out for rotational maneuvers
minimizing a quadratic cost functional by selecting feedback
control and various structural parameters simultaneously,30'31

with the maneuver time being fixed. Skaar and Tucker28'29 used
a convolution integral approach to find exact open- and closed-
loop control solutions that bring a finite number of locations
on a flexible structure to any desired final position and velocity
by minimizing a quadratic cost functional involving penalties
on control effort and control effort rate during a fixed maneu-
ver duration. Optimal open-loop controls have also been ob-
tained that perforfn these slewing maneuvers while minimizing
a structural excitation criterion.20'21 In all of the above cases,
the maneuvers considered were planar, and their dynamics
were linear. Single-axis maneuvers including the effects of kine-
matic nonlinearities have also received some attention.23 Here,
optimal open- and closed-loop controls were obtained by min-
imizing a quadratic performance index for a fixed maneuver
time. The resulting nonlinear two-point boundary value prob-
lem was solved using continuation methods. A slewing control
experiment has also been carried out to test the linear optimal
control applied to single-axis slews of a flexible structure.34 In
all of these published works the optimal control time histories
were found to be continuous.

Slewing problems using on-off type actuation have recently
begun to receive attention. In a recent account,37 an optimal
open-loop control is obtained for a fixed maneuver time where
the intermediate switching time is selected to minimize the
post-maneuver energy. Near-optimal maneuvers to perform
these retargetings, which minimize a weighted combination of
maneuver time and fuel consumption, were also obtained re-
cently.35-36 Thompson et al.38 have solved the planar rest-to-
rest slewing problem by shaping the control input profiles. The
resulting control is not bang-bang, and the maneuvers thus

performed are not minimum time. All of the above have dealt
with planar sewings. Monaco and Stronelli39 suggest a steady-
state feedback control strategy for simultaneous three-axis
slews, utilizing reaction wheels and on-off controls, which
brings the system state to the desired final state. All of these
accounts, however, stop short of obtaining a time optimal con-
trol, using on-off type actuation only, which minimizes maneu-
ver time.

In the present work we examine the minimum time, planar,
rest-to-rest rotational maneuvers of a flexible spacecraft. All
controls are assumed to be magnitude limited. The spacecraft
is modeled as a linear, elastic, undamped, nongyroscopic sys-
tem. Time optimal control histories, which bring the rigid body
mode and a finite number of vibrational modes to rest at the
final time, are obtained. The system is assumed to be in a state
of rest initially. The control histories are found to be bang-
bang with multiple switches:

The original results of this work are that:
1) The optimal control history has a time symmetry

property.
2) The optimal switching times, optimal final time, and the

costates at midmaneuyer satisfy a system of nonlinear algebraic
equations.

3) The pointing error resulting from spillover into uncon-
trolled models is quantified.

Based on these observations the numerical optimization
problem can be reduced to a problem of solving a set of alge-
braic equations for only one-half of the switching times and the
final time. In this work a homotopy method is used to obtain
solutions.

It should be pointed out that the results obtained here are
applicable to all linear, elastic, undamped, nongyroscopic me-
chanical systems possessing one rigid body mode and a finite
number of undamped elastic modes, in rotation or translation.

To outline briefly the remainder of this paper, we formulate
the time optimal control problem in Sec. II and give a specific
physical example that conforms to the dynamical model de-
scribed there. Next, in Sec. Ill, we present the important prop-
erties of the time optimal control. In Sec. IV we outline a
homotopy approach that can be used to obtain solutions to the
resulting set of nonlinear algebraic equations. In Sec. V we
examine in detail some example maneuvers. We conclude by
summarizing the original contributions and limitations of this
work, and we mention future research directions.

II. Formulation of the Time-Optimal Control Problem
Consider the linearized rotational dynamics of a flexible

spacecraft where control inputs are used to actively control the
rigid body mode and flexible modes. Consider a rigid central
body, as in Fig. 1, to which TV (TV > 2) identical flexible ap-
pendages are attached. The following assumptions are made to
obtain a mathematical model:

1) The appendages displacements, slopes, and central body
rotation rates remain small.

2) The appendages are inextensible.
3) Appendage displacements are restricted to a plane or-

thogonal to the central body's axis of rotation.
4) The deformations of the appendages relative to their un-

deformed shapes are identical and antisymmetric; see Fig. 1.
5) No structural damping is present.
6) The appendages are rigidly attached to the central body

with uniform spacing between them.
The spacecraft is to be controlled by a single torque actuator

located on the central body and m torques located at identical
locations on each of the N appendages (see Fig. 1). The exten-
sion of this formulation to a system controlled by force actua-
tors or a combination of torque and force actuators is
straightforward and results in a similar model.

Let 0(0 be the angular displacement of the central body,
y(x,t) the lateral displacement of the flexible appendages at x,
the distance along the appendage measured from the ap-
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Fig. 1. Spacecraft configuration.

pendage root, 0 < x ^ L; where L is the overall length of one
appendage. Let Qe and Qy be the generalized forges associated
with 0(t) and .y, respectively. Let '/* be the rotational inertia of
the undeformed vehicle about the axis of rotation, -R the radius
of the central body (which is assumed cylindrical, with its axis
of symmetry pointing along the axis of rotation), EI(x) the
appendage material stiffness and p(x) be the appendage mate-
rial density, respectively. Here [ ], [ ]x, [ ]xx denote first
partial time derivative, first and second partial spatial deriva-
tives, respectively, of the quantity within parentheses and [ ]'
denotes transpose.

Application of Hamilton's principle40 results in the following
coupled linear partial and ordinary differential equations and
the associated boundary conditions:

p(x)(R + x)yn dx = Q0 (1)

N{[EI(x)y(x,t)xx]xx + p(x)(y(x,t)tt + (R + *)&}} - Qy (2)

{[EI(x)yxx]xSy}(x = L}- {[EI(x)yxx\xdy\x = 0) = 0 (3)

[EI(x)yxxdyx\x = L)- [EI(x)yxxdyx\x=0) = 0 (4)

Let the appendage lateral displacement be expressed as
y(x,t) = D^! faWq^f); where (/>,<» and qt(f) are the assumed
mode shape and the corresponding generalized coordinate re-
spectively (i = 1,2,3,...,«), and n is the number of vibrational
modes retained in the control model. Further, define the fol-
lowing quantities:

(5)

where T = (rx T2 T3 ... rm):andl = (l 1 1 ... iy is a vec-
tor of appropriate dimension. The quantities defined above,
when used in Eqs. (1) and (2), result in the following coupled
linear ordinary differential equations:

Mq

(6)

(7)

where the ijth element of Ox is N{[(/)i(x)]x}(x=u). Using Eq. (6)
in Eq. (7) we obtain:

[M -(\IJ*)mm']q = -(T/J*)m + [0V, - (N/J*)ml/}e

(8)

Introducing a coordinate transformation q = Uiy, where U is
a normalized modal matrix such that U'[M - (\/J*)mm ']
U = / and U'KU = fl2 [where I is a unit matrix and (i2 =
diag(w2), and / = 1,2,3,...,«], Eq. (8) is transformed into

fj + Q2!/ = - (T/J*)U'm + U'{®x - (N/J*)m l'}t (9)

Finally we define the following state and control variables:

xl = 9 + (l/J*)m'q, x2 = *i, x'3 = tji9 x'4 =>//M; / = l,2,...,w

(10)

u0 = T//*, t/y = (N/J*)TJ9 J = l,2,...,m (11)
and the parameters:

/=,1,2,...,« (12)

(13)

here [ ] ~ l denotes matrix inverse, [ ]/ and [ ]/, stand for the ith
and ijth elements of the argument [ ], respectively.

Using Eqs. (10-13) in Eqs. (6) and (9), the following state
space description of the plant dynamics are obtained:

xl=x2 (14)
m

•*;>=!«/ (15)

i = 1,2,3,..., (16)

(17)

M = T
Jo

= 7V
Jo

dx

If T is the torque applied by the torquer located on the
central body and 7} is the torque applied by the torquer located
at x == LJ on an appendage, wherey = l,2,...,m (see Fig. 1), then

Defining the state vector as x = (
and the control vector as u =(u0,ul,u2,...9umy, we obtain the
state representation of the control model

(18)

where A = block diagjAJ, B = block colfB/] and

B,=

(19)

(20)
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where 0° = l;y = 0,l,2,...,ra. The pair (A,B) is assumed to be
normal.4^

The following constraints are imposed on the m + 1
controllers:

\UJ\^UP /= 0,1,2,...,™

The boundary conditions to be satisfied are:

*(-tf/2) = (- x(tf/2) =

(21)

(22)

where 0y is the total slew angle. It is assumed, without loss of
generality, that the time interval over which the controls are
active is [ - tf/29if/2\. Outside of this interval all controls are
turned off, i.e. u(t) =0. We wish to find the optimal control
vector w(f)* that minimizes tf while satisfying Eqs. (18-22).

III. Properties of the Time-Optimal Control
Pontryagin's maximum principle41 is used to characterize the

time-optimal control vector u(f)*. It has been assumed, with-
out loss of generality, that the maneuver is centered about time
t = 0. Exactly n modes are suppressed at the final time. We use
the Hamiltonian H = 1 + p(t)'[Ax(t) + BII (f)], where p(t) =
\P\t)9q\t)9p\t)9q\t)9...9p\t)9qn(t)\' is the costate vector.
The necessary (and in this case sufficient) conditions for opti-
mality, along with Eqs. (18-22), are:

p(f) = -

where /e[-/;/2,/;/2],

where j = 0,l,2,3,...,m and te[ - tf!2,tf/2]

(23)

(24)

(25)

where sgn(x) = 1 if x>Q and sgn(#) = -1 if x<0, is the
signum function. Here, Eq. (25) also implies that H(f) =0
where f€[-*J72,^/2].

It is also straightfoward to show42 that the optimal control
exists, is unique, and is of the bang-bang variety with, possibly,
multiple switches in each control variable. The normality of
(A,B) prohibits the existence of singular arcs.

Theorem 1: For the optimal control problem defined by Eqs.
(18-22), the optimal control u(i)* is an odd function of time,

i.e., w(0* = -u( - t)*,. - t?/2< t < t}-/2, where tj is the opti-
mal maneuver time.

Corollary I: For the optimal control problem defined by Eqs
(18-22), the optimal costate vector satisfying Eq. (23) is such
that:

XO)=(/>gA/>J,0,..,/>g,0)' (26)

Theorem 1 implies that each control variable must switch
an odd number of times. They do not necessarily switch at
the same times, but all switch synchronously at time r=0 .
Suppose that they'th optimal control variable, uj(t)*9 switches
2kj+\ times, where j = 0,1,2,.. .,w; and define v=Zj!0K
These switches must occur at times — /•£;, — tj

k/_i9...9 — ̂ ,0,
t\9...9 tjy r _ j , tj

kj\ where these switching instants satisfy

0 < t\ < tJ
2 tf/2, j = (27)

These switching instants for each control input are distinct
because coincidence of two switching instants would imply that
the respective control does not switch at such a time. Let

-tf/2<t<-t{i, j = 0,1,2,...,™ (28)

represent the initial sign of uj(t). Because uj(t) changes sign at
times — tjki9 — tjtf_l9...9 — tj

i$9tj
i9...9tj

ki_l9tj
ki9 where these switch-

ing times satisfy Eq. (27), Eqs. (14-17) are easily integrated. To
satisfy the boundary conditions (22), the following algebraic
equations, which govern the switching times and the final time,
are obtained:

y=0

. + 2( - I)*1 cos(fl)X) t ( - l = 0

(29)

(30)

where i = 1,2,...,«.

Moreover, Eqs. (26) and (23) allow a closed-form computation
of the switching function of each control variable. Requiring
that these switching functions vanish at their respective switch-
ing times and satisfaction of Eq. (25) implies:

2 X atjUjtf/2
y=o y=o j=o

" sin(a)n?//2) Pi
Pi

Pl_

-2

0

0

0

0

0

0

0

(31)
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Equations (29-31) represent a system of n + v + 2 nonlinear
algebraic equations in n + v + 2 unknowns that are as follows:
v switching times tj

r, I <r < kj,j = 0,1,...,m; the final time tf/2'9
and the n + 1 costates at midmaneuver po,po9...9pQ. Because
Eqs. (29-31) have been obtained from Eqs. (18-22), they are
necessary conditions for optimality. In addition, Eqs. (29-31)
are also sufficient provided that

p'(t)bj^Q9 t^t{ (32)

where 1 <r <kjj = 0,1,2,...,ra, and 0<t<tf/2. Also, where
p(t)eU2n+2- is defined by Eqs. (26) and (23), and bj is theyth
column of B in Eq. (18), 0 <y < m. This implies that on the
interval (0,^/2), the only zeros of the yth candidate switching
function are the candidate switching times tj

r9 1 ̂  r < kj\ and
y=0,l,...,ra.

Theorem 2\ Suppose that for some integers kJ
9 0 <j < m,

Eqs. (29-31) admit a solution (*>, 1 < r < kj, 0 <y < m; tf/2;
p^ 0 < / < n) satisfying the inequalities of Eqs. (27) and (32).
Then 1) theyth component of the optimal control solving prob-
lem (18-22) switches exactly 2kJ+l times at instants
- t{j, — *i/_ lv.., — tJ

l,Q,tJ
l,...,tJ

kj_1,tJ
kj:> and 2) the optimal ma-

neuver time of problem (18-22) is exactly tf.

We notice that if v = w, Eqs. (29) and (30) are a set of n-+ 1
equations with n + 1 unknowns. Under a mild additional as-
sumption, the solution of Eqs. (29) and (30) completely char-
acterizes the optimal control. We have the following corollary.

Corollary 2: Suppose that integers kJ\Q <j<m satisfy
^JLo kj = n. Also, assume that Eqs. (29) and (30) admit a solu-
tion (/{, 1 < r < kj\ 0 <y < m; tf/2) that is regular43 and sa-
tisfies Eqs. (27), (31), and (32). Then the claims of Theorem 2
are true.

Equations (29-31) form the basis of a numerical algorithm
to solve the optimal control problem (18-22). One potential
difficulty with these equations is that a,, kj\ where 0 <y < m are
not known a priori. In our examples we have chosen m — 0,
corresponding to a single control variable. We have noticed
that in most cases v = n and we have extensively made use of
Corollary 2. The case v < n is exceptional but can occur if
modal frequencies are rational multiples of each other. The
case v > n can also occur, but seems to be restricted to some
particular ranges of the parameter (Of/Uo)a>2. To obtain the
optimal switching times and the final time we proceed as fol-
lows: We suppose that v = n and use Corollary 2 to determine
if the solution is optimal. If Eqs. (29) and (30) do not admit a
regular solution, we explore the situation v ̂  n by increasing or
decreasing v and use Theorem 2 to determine whether a candi-
date solution is indeed optimal; if it is, then it is the only
solution to the optimal control problem, because Eqs. (29-32)
are both necessary and sufficient for optimality.

Control Spillover
The optimal control characterized in Sec. II is based on a

control model which has n flexible modes. This control law is
now applied to an evaluation model, of the same form as Eqs.
(14-17), which has M flexible modes (M > n) in addition to the
rigid body mode. We introduce the following notation:

where / = « + !,«+ 2,...,M and

<r= U'w/J* = (al9(r2,...,

Consider the effect of control spillover on the M-n residual
modes whose dynamics are given by Eqs. (16) and (17). In this

analysis, assume that the control is given by

ttl-t}/2,t}l2]= 0,

The spillover results in free vibration after the maneuver has
been completed. This spillover effect is now characterized.
Equations (16) and (17), when integrated, result in

(33)*'(0=exp(A,0

where t > tf /2, i = n + \9n .+ 2,...,M. Therefore
m

~2£ PjSjjr cos(cozO
7 = 0

m
2 £ pjSv sm(cott)

where the constants

(34).

(35)

I - 2 cos(w/4y*)

+ - + 2( - 1)̂ ' cos(co^*) + (- l)kJ+! (36)

where i = n + l,w +2,...,M and j = 0,1,2,...,m. Note that

The constant residual energy, after completion of the maneu-
ver, is defined as Er = (l/2) S^n+1 [ooJx^tf'Wx^tfp)] and
can be expressed as

M r / m \ 2-1
^=2 Z o>? I/W (37)

*=i.+ i |_ V/-o / J

Spillover into the residual modes results in an attitude error
for the rigid central body. A bound on this attitude error can
be obtained. Using Eq. (10) we obtain

0e(0=2 (38)

where t > tf/2. Using Eqs. (35) and (36) in Eq. (38), two upper
bounds on |0e(0| are obtained. Using Eq. (35) we obtain

Mz (39)

where t > tf/2, and using Eq. (36) we obtain a separate bound:
M ( f m Til

|^(0|^2 X \(atla>Z £ *jP'jUj(2 + 2kJ) V (40)
<• = «+! ( L/ = 0 JJI

where t > tf/2. The bound in Eq. (40) is tighter than the bound
in Eq. (39) if:

(41)
y=o

where / = w + l,w + 2,...,M. These expressions are further sim-
plified when we examine the scalar control case.

Scalar Control Case
Here we assume that only one control input is used to con-

trol the maneuver. This assumption, in terms of the assump-
tions about the physical models (Fig. 1) means that the N
torque actuators, one on each appendage with identical loca-
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tions on the appendages, taken together represent one control input. We can also consider a spacecraft controlled by only one
torque actuator located on the rigid central body as another special scalar control case. Equations (29) and (30) become:

k_l)2 - - + 2( - 1 (42)

where i = 1,2,...,«. Equation (31) can be written as:
- - + 2( - 1) * cos(c>,f i) = 0 (43)

2aC/0f//2 2a*70 sin

— 4<xtk — 4a sir

2aC/0 sin(cV//2)

-4asin((yA)

tf/'o

-2

0 (44)

where we have used a = a, and /?j, / = 0,1,2,...,n are defined in
Eqs. (12) and (13). (The only difference is that the index j is
fixed here for the given actuator location; e.g., j = 0 for the
actuator location on the rigid central body.) Satisfaction of Eq.
(32) implies that

Pot + I 96 0 (45)

where t =£tr,Q < t < tf/2, and r = 1,2,... Jc.
Costates at midmaneuver, and /?j and i = 1,2,...,« appear

here as po9Pjpo,...9Pjpo. It is evident that for the given optimal
control problem with a scalar input, if only /?j and i = 1,2,...,«
are changed through a change in the actuator location, so long
as /?j 7^ 0 and i = 1,2,...,«, (which is prohibited from normality
considerations), it is always possible to rescale p& i = l,2,.../i
(such that fijpi) and i = l,2,...,w remain invariant) so that Eqs.
(44) and (45) are still satisfied for the same values of switching
and final times. We therefore observe the following proposi-
tion:

Proposition: As indicated above, the time-optimal control
history of the system [Eqs. (18-22)], where control is effected
using only one control input, is independent of actuatory loca-
tion. It only depends on the modal frequencies, cot and
i = 1,2,...,«, and the parameter 9f/U0.

The preceding proposition would enable us to optimize the
actuatory location such that some structural excitation crite-
rion is minimized, without effecting the optimal maneuver
time.

It has been observed upon solving Eqs. (42) and (43) that for
(Of/Uo)col > 1, the maneuver time is not significantly different
from the time needed to maneuver an equivalent rigid body in
a time-optimal fashion. This is apparently true regardless of the
number of actively controlled modes. Active suppression of
additional modes at the final time results in different optimal
control history without a significant increase in maneuver
time, provided that (9f/Uo)col is sufficiently large. Assuming
(^//^o)w i > 1, the following serves as a good approximation of
the optimal maneuver time:

-[sin(P)/P]2}2-°-5 (46)

where P = 0.5[(9f/Uo)co^\°-5. Here we note that the optimal
slewing time for an equivalent rigid body is 4(^/0}^.

The approximations to the post-maneuver energy and the
attitude error of the central body are obtained using Eqs. (37)
and (38), respectively. These are:

M

/=«+!
t>t}/2 (48)

Since Sij9 as defined previously, does not depend on 7, we have
used Sf = Sy where / = « + !,«+ 2,...,M. Equations (39) and
(40) become

\Oe(t)\<U0t? (49)

> tf/2 (50)

respectively, where we have supposed that the control switches
of 2n + 1 times. Once again, Eq. (50) provides a tighter bound
than Eq. (49) if

(51)

where i = n + l,/i + 2,...,M.

IV. Determination of the Time-Optimal Control
As observed in Corollary 2, the numerical optimization

problem can be reduced to a set of algebraic equations in Eqs.
(29) and (30). The solutions of these equations can be obtained
using a homotopy scheme.43 The scheme proposed here is ap-
plicable to the scalar control case described previously. The
generalization to the vector control case is straightforward.
We define the following nondimensional variables:

where i = 1,2, .'..,«. The constant parameters are defined as

r/ = (ojco! > 1, i = 1,2,...,«, P = (D\QfIUQ

Table 1 Spacecraft dimensions, appendage material,
and maneuver specifications

Er=2 (47)

Radius of the rigid central body, R
Length of one appendage, L
Appendage material stiffness, El
Appendage material density, p
Mass of the rigid central body
Maximum torque available, T
Command slew angle, Qf
Total rotational inertia, /*

1.00m
40.00m

1500.00 N-m2

0.04096 kg/m
400.00 kg
150.00 N-m
90.00 deg

2081.97547 kg-m2
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Table 2 Modal quantities

i:

CO;P'j
1.

1.151
98.283

2

3.009
24.404

3

7.529
3.946

4

14.546
1.102

5

23.962
0.428

6

35.752
0.203

7

49.908
0.110

8

66.429
0.065

9

85.312
0.041

10

106.557
0.028

CASE n = 0
oo
d

IT

OLO

O
1—

CD

is
0§
O
o:

o
0
dm
i

Fig. 2 The en
time histories f

oo
6in -.

Z

yj|

oh-
m

cz
o
0
d
7

Fig. 3 The ei
time histories f

|

IT

ll-oi—
DO

P"
E

o
0
d
LO

1^8
0)00

LJ
Q

.. 13

CD

X

Q

d

ergy,
9T n •

0)co •
Q'"

LJ
Q

CD

X

Q

d

icrgy
or n

^
0)00-

LJ
Q
^>
tg

m
X

Q

d

|

CM

J)

||

LJ
Z
LJ

8
cR

rigid
= 0.

0
0
d
s:

CO
0)

go
-DO

O
LJz
LJ

O
0.

(PoJ

, rigid
= 1.

8
§TCM

CO

•Jl

LJz

8

- /
//-

/x
0

,-\ ———ENERGY
/ \ ——— ATTITUDE
/ \ ——— TORQUE

\

^ V _ _ _ _ _
9.33861 15.00

TIME (sec.)

central body attitude and optimal control

CASE n = 1

r1
/^/)

———ENERGY
——— ATTITUDE

, ~ ——— TORQUE
u \

\jf~~
9.45 D13 15.00

TIME (sec.)

1 central body attitude and optimal control

CASE n = 2

r
V

OrbO

———ENERGY
——— ATTITUDE

TOPHI ir

9.45780 15.00
TIME (sec.)

Table 3 Optimal final time and switching times for the four cases
(P = 28.8706), s

Fig. 4 The energy, rigid central body attitude and optimal control
time histories for n = 2.

We will refer to P as the maneuver parameter. Equations (29)
and (30) can now be rewritten as:

-P/« =0
(52)

(53)

FJ On + 1 >yn r-
n

+ 2 LJ ( — 1)' cos(rfyn _ . , , ) + (_ n« H
. / = i J '

n *n-2

1 4.7250660 0.5117851 —
2 4.7280912 0.7807244 0.5739997
3 4.7292194 0.8517724 0.7056135
4 4.7292236 0.8530396 0.7079743

0.2332373 —
0.2406521 0.0527481
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where7 = l,2,...,n, and where we have supposed that the con-
trol switches 2n + 1 times. We now define the following homo-
topy functions:

(54)

(55)

where 7 = l,2,...,n and where A is the homotopy para-
meter, 0 < A < 1 . Notice that ^T/j;ll+1,...,j;1,l,All,...,Ai) =
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Table 4 Predicted and actual attitude errors comparison for t > t*/2

The number of modes suppressed at tf/2,n: 0

Maximum pointing error (exact), deg:
Predicted upper bound using Eq. (50), deg:

16.9760
81.4671

2.1523
9.7163

0.2625
0.4052

0.0037
0.0463

0.0018
0.0096

Q = Fj(yn+i,yn,yn-i,-,y2,yi) where j = 0,1,2,...,«. Inclusion of
the additional parameters A1,A2v..,An, in Eq. (54) helps prevent
ill-conditioning of Eqs. (54) and (55) as yk^+yk-i or .Xi~*0-
For example, if yk -*yk-i then A^ ^ &k-i ^ 0 and a^ other A,
are set to zero; if yl -» 0 then At ^ 0 and all other A, are set to
zero. The starting points of these homotopy maps, i.e., for
A = 0, are as follows:

_____ n = o
——— n = 1

^_7+1 = (l/ry)cos-1[(-iy-1/2]

where j = 1,2,...,ft, and

(56)

(57)

For specified values of parameters P,r2,r3,...,rw the homotopy
path, starting at A = 0, is followed by numerically integrating
the basic differential equations45 arising from Eqs. (54) and
(55) until A = 1, where yj and j = 1,2,...,ft. -I-1, are the solutions
of Eqs. (52) and (53). These switching times are now substi-
tuted in Eq. (31) to construct a candidate costate vector. If this
costate vector satisfies Eq. (32), then the solutions jy and
y = l,2,...,ft H-1 are optimal.

V. Example Slewing Maneuvers
Consider a flexible spacecraft with two uniform flexible ap-

pendages, whose material and maneuver specifications are
given in Table 1 One torque actuator located on the rigid
central body is used to control the slewing. The rigid body
mode and the first 10 vibrational modes are retained in the
evaluation model. The normalized mode shapes for a fixed-free
cantilever beam are used as the assumed mode shapes. The
results of the modal analysis appear in Table 2. Four situations
are now considered in which the first, the first two, the first
three, and the first four vibrational modes are used, in addition
to the rigid body mode, to define the control model; and hence
are actively suppressed at the final time. The solutions of Eqs.
(50) and (51) for a 90 deg rest-to-rest slewing maneuver corre-
sponding to a parameter value P = 28.87059 appear in Table 3.
These optimal switching and final times apply to a 90 deg
rest-to-rest maneuver centered about time t = 0. It takes
9.338607 s to slew an equivalent rigid body through 90 deg.
The maneuver times for maneuver starting at t = 0 for cases
where the first, the first two, the first three, and the first four
modes are actively suppressed at the final time are found to be
9.45013,9.457802,9.458439 and 9.458447 s, respectively. All of
these maneuvers are found to have begun with u(t) = + U0
(i.e., a = +1). The difference in maneuver times decreases as
we increase the number of modes suppressed at the final time.
Moreover since co*Of/U0 = 28.8706 > 1, we observe that the
time to slew an equivalent rigid body is not significantly differ-
ent from the slewing times of any of the four cases.

The rigid hub would continue to oscillate after the maneuver
has been completed due to the energy spillover to the residual
modes. This results in a pointing error of the rigid central body.
A bound on this pointing error can be determined. Using Eqs.
(49-51) we are able to determine the number of modes that
need to be actively controlled at the final time so that we are
guaranteed a prespecified pointing accuracy after the maneuver
has been completed [Eq. (50) applies here]. The exact maxi-
mum attitude error and the upper bound on the attitude error
obtained using Eq. (50) are compared in Table 4. In this case
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ird-

' \
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i
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— i
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Fig. 7 The post-maneuver rigid central body attitude time history
(n = 0, 1, 2).

Qo

12.25
TIME .(sec.)

15.00

Fig. 8 The post-maneuver rigid central body attitude time history
(/i=3,4).

[as per Eq. (50)], we need to control at least six modes (pre-
dicted accuracy of 0.0011 deg), so that we are guaranteed a
pointing accuracy of better than 0.0019 deg. However, an accu-
racy of this magnitude is realized, in actuality, if we suppress
only the first four modes at the final time. There appears to be
a sizeable difference between the actual attitude errors and the
attitude error predicted using Eq. (50). The difference, how-
ever, becomes smaller and smaller as more modes are actively
suppressed at the final time. The agreement between the two
quantities compared above is also dependent, somewhat, on
the required pointing accuracy. For example, Eq. (50) predicts
that we need to control two modes actively to be guaranteed an
attitude accuracy better than 0.41 deg. In actuality, we must
also control at least the first two modes to have a pointing error
of less than 0.41 deg. The optimal control, energy, and the rigid
hub attitude (6) time histories during and after the maneuver
for the five cases (n = 0, 1,2, 3, 4) are presented in Figs. 2-6.
Post maneuver time histories of the rigid central body attitude
(6) are magnified in Figs. 7 and 8 (cases shown correspond to
n = 0, 1, 2 and n = 3, 4, respectively). The residual energies for
the cases examined are found to be 20.673, 5.199,2.763, 0.011,
and 0.014 J(for n =0,1,2, 3, and 4, respectively). It decreases
initially as more modes are brought to rest at the end of the
maneuver, but then it increases slightly as we suppress an addi-
tional mode at the final time. In contrast, the maximum point-
ing error of the central body decreases throughout, implying
perhaps that it is the maximum pointing error and not the
residual energy that is the proper measure of the maneuver
accuracy.
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VI. Conclusions
The time-optimal, single-axis, rest-to-rest rotational maneu-

ver of an elastic spacecraft has been considered. The main
results of the present work are as follows:

1) The optimal control history has an important time sym-
metry property.

2) The optimal switching times, the final time, and the
costates at midmaneuver satisfy a system of nonlinear algebraic
equations that can be solved using homotopy methods.

3) When only one control input is used, the optimal control
history is independent of actuator locations (as described
earlier).

4) Upper bounds on the attitude error of the central rigid
body, arising from control spillover, are obtained.

The numerical optimization problem has been reduced to a
system of nonlinear algebraic equations in the optimal switch-
ing times and the optimal final time. A homotopy method has
been proposed to obtain solutions to these equations. Upper
bounds on the pointing errors of the central body have been
presented. These provide a rough estimate of the number of
vibrational modes that need to be actively suppressed at the
final time so that the pointing accuracy is better than a pre-
specified value. It is found that, if the maneuver parameter is
sufficiently large, the slewing time for an equivalent rigid body
provides a good estimate of the time required to slew the elastic
spacecraft.

It is noticed that it is possible to achieve very fine pointing of
an elastic spacecraft by controlling only a few of the elastic
modes. In the example maneuver presented, it is seen that for
a large angle rest-to-rest slewing maneuver, fine terminal point-
ing accuracy is achievable if the first four vibrational modes are
actively suppressed.

There are, however, some limitations of the present work.
The analysis here is restricted to linear, elastic, undamped,
nongyroscopic systems. However, some natural damping is al-
ways present. The assumption regarding small angular veloc-
ities might fail to hold for minimum time rotational maneuvers
unless the control limits are sufficiently small. Both of these
assumptions, however, greatly simplify the analysis. The pres-
ence of damping destroys the symmetry property of optimal
controls, which is one of the main results of this paper.

There are obvious implications of the results presented here.
For example, there is a suggested separation of the time-opti-
mal control problem and the structural optimization problem
when only one control input is present. The time optimal con-
trol problem can be solved independently of the structural op-
timization problem of locating the actuators to optimize some
structural excitation criteria (without affecting the optimal
control history).

Appendix
Theorem 1: For the optimal control problem defined by Eqs.

(18-22), the optimal control «(0* is an odd function of time,
i.e., n(r)* = -u( -0*, - tj 12 < t < tf/2, where tj is the opti-
mal maneuver time.

Proof-. Normality of the pair (A,B) guarantees that an opti-
mal control exists41'42 and is unique. The remainder of the
proof is to demonstrate that the unique optimal control «(/)*
satisfies the following symmetry property:

where - t?/2< t < tf/2.
Let tf, x(t)*, u(t)*, and te[ - tf/2,tf/2] denote the optimal

time, optimal state, and the optimal control. There is a vector
function p(f) =(p\t\q\t\p\t\q\t\^p\t\qn(i)\ where
t e [ - t f / 2 , t f / 2 ] such that:

(A2)

where t e [ - t f / 2 , t f / 2 ]

where t e [ - t f / 2 , t f / 2 ]

Uj(t)* = - C/.sgn E ff3q*(t) I
L/ = 0 J

where./ = 0,1,2,3,.. .,m and t e [ - t f / 2 , t f / 2 ]

1 +XO'[A*(0* + B«(/)*] s 0

where te(-tf\2,tf\2)."i

(A3)

(A4)

(A5)

(A6)

(AT)-

Existence and uniqueness theorems41'42 guarantee that Eqs.
(A2-A7) have the unique solution *?,*(/)*, n(0*, p(t\ and

Now consider the related time optimal control problem.

Minimize:

J = f ° dt
J-tf/2

subject to:

where te[ — tf/2,Q\

where j = 0,l,2,3,...,ra and te[-tf/290]

x(-tf/2) = C-0/2,0,0,0,.^0)'

(A8)

(A9)

(A10)

*., f) ^.IL-ft V2Z> ft ^.nL\f |v.Z/ \-iLf-\n• ,u,^r4 ,u,x4 ,...,u,A:4 ; |^2?-^4 ^Irs,
I = 1,2,...,«} (All)

As in the original problem, it can be shown that this problem
has a unique optimal solution denoted by f£, xL(f)*, uL(f)*,
and fe[-Jj/2,0]. There is a vector function pL(f) =
[Po(0^o(0^f(0^]P(0,...^»(0^i<01, and *G[-fJ/2,0] such
that:

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

*L(t)* = AxL(t)* + BuL(t)

where fe-(-rJ/2,*J/2)

where ;e[-fj/2,0]

ujL(tY = - t/y

where; = 0,1,2,3,.. .,m and te[ - ^/2,

where te(-tf/2,G).
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Now define:

u(i)=uL(i)*

where te[ - t£/2,Q] and

u(i)=-uL(-t)*

(A19)

(A20)

where «e[0,rJ/2], and where x(t), p(t) = [p0(t),q°(t),pl(t),
q1(i),...,p"(t),q"(tj\', and te[ - ttl2,t*J2] by

where t e [ - t f / 2 , t f / 2 ]

p(t)*=p(t)

where t e [ - t f / 2 , t f / 2 ] and

W(0* = n(0

where te[-tf/2,tff2]

Equations (A19) and (A20) then imply that

X-^!/2)=(-6>//2,0,0,0,...,0)'

(A21)

(A22)

ii(0*=-n(-0si (A23)

It is straightforward to show that:

X(t*L/2)=(ef/2,0,0,Q,...,0)'

[ n -,

E$V(0
i = Q J

where y = 0,1,2,3,...,m and fe[-fj /2,f£2]

where *e( -/£/2,/£/2),

By construction, therefore, f*,*(OXO»XO> and /e[-f£/2,
/J/2] satisfy Eqs. (A2-A7). The uniqueness of the solutions
of Eqs, (A2-A7) implies that

/* _(/• -

where t e [ - t f / 2 , t f / 2 ]

Theorem 2: Suppose that for some integers kj, and 0 <j < m,
Eq. (29-31) admit a solution (*>," 1 < r < kj\ 0 <y < ra; fy/2; /?'j,
0 < / < «) satisfying inequalities in Eqs. (27) and (32). Then:

1) The yth component of the optimal control solving
problem (18-22) switches exactly 2k V + 1 times at instants
~ 4>'» ~ &- I—— - ^,0, '̂,...,^_ !,4y .

2) The optimal maneuver time of the optimal control sol-
ving problem (18-22) is exactly tf.

Proof: Suppose that for some integers kj, 0 < j < m, Eqs.
(29) and (30) admit a solution (tj

r, 1 < r < kj] 0 <j < m; tf/2;
/?i,,0 < / < «) satisfying inequalities in Eq. (27). Using this solu-
tion in Eq. (31) we obtain the costates at midmaneuver and
hence obtain p(t)eR2n+2, satisfying Eqs. (23) and (26). Using
thisp(0, we define u(t)eUm+1 by Uj(t) = -
0 <y < m , -tf/2 < / < tf/2. It is easily verified that the func-
tions p(i)'bj vanish exactly at instants — tj

kj9 — tj
kj_1,..., — t\,

Q,tji,...,tj
k/_l,tj

kj; 0 <j < m. Moreover, between —tf/2 and tf/2,
these functions have no other zeros because of Eq. (32). There-
fore, the preceding u(t) is a piecewise constant such that Uj(t)
switches at instants ( ± //, 1 < r < kj; 0). Integrating Eq. (18)
with initial conditions [first of Eq. 22] yields:

J-o

-(2/0)0

(2/oO I *jl
7 = 0

7 = 0

in

(2/«2) E ̂
y = 0

7 = 0

• + 2( — 1) (X)

- + 2(-r

--+2(-l)fc/

•-+2(-l)*

-- + 2(-l)*

•-fly/2

- - + 2( - 1)*

j
+'

(A24)

But because #, 1 < r < ̂ , 0 <y < m, ///2 satisfy Eqs. (29) and (30), Eq. (A24) yields x(tf/2) = ^72,0,0,0,...,0,0)', the desired final
state. As a consequence, thep(0 and u(t) just constructed satisfy all the necessary and sufficient conditions for optimality in Eqs.
(18-26) and are therefore the optimal costate and control, respectively, i.e.

'/* = _ fj— If, 1 < r < kj; (A25)
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Corollary 2: Suppose that integers kj\ 0 < j < m satisfy
JL'Jl

=QJk = n. Also assume that Eqs. (29) and (30) admit a solu-
tion (#', 1 < r < kj\ 0 <j < m; tf/2) which is regular43 and sa-
tisfies Eqs. (27), (31), and.(32). Then the claims of Theorem 2
are true.

Proof: Suppose Eqs. (29) and (30) admit a regular solution
as assumed. Consider the vector equation (31) for

>/>S)'- Rewriting Eqs. (29) and (30) as

2( -1

(-2M) X «/jt/, [008(0)^/2)-2 cos(co^)
7 = 0

4- •" + 2( — I)*7 cos(coitji) + ( — 1)^ + 1 ] = 0

= uf

(A26)

(A27)

where i = l,2,...,w. It is seen that the coefficient matrix in Eq.
(31) is exactly the transpose of the jacobian of Eqs. (A26) and
(A27). Regularity of the solution t{, 1 < r < k\ 0 '<*j < m, and
tf/2 of Eqs. (29) and (30) implies the existence and uniqueness
of the solution of Eq. (31). Using this solution, a costate vector
p(t) satisfying Eq. (23) can be constructed. Satisfaction of Eq.
(32) by the costate vector thus obtained implies that all of the
necessary and sufficient conditions are met. The costate thus
constructed is therefore the. optimal costate and the optimal
control is characterized by the regular solution of Eqs. (29) and
(30).
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