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The goal of this research is developing a unified numerical method for simulating con-

tinuum and transitional flow. To achieve our ultimate goal, first, hyperbolic-relaxation

equations are introduced, then a new discretization method is developed. The method is

based on Huynh’s upwind moment scheme, with implicit treatment of the source term.

Our previous linear method is generalized to 1-D nonlinear hyperbolic-relaxation equa-

tions. First, a Fourier analysis is conducted to uncover the accuracy and stability. Then,

the Euler equations with heat transfer, which reduce to the isothermal Euler equations

in the equilibrium limit, are adopted as a model equation for the numerical experiment.

The analysis and numerical results show the superiority of the proposed method in both

accuracy and efficiency over the semi-discrete, method-of-line approach.

I. Introduction

A unified methodology is necessary to achieve high accuracy and efficiency when both continuum and

rarefied regimes are in the same computational domain. The methods currently available for the transition

from continuum to moderately rarefied flow switch between a continuum and a particle approach; this

strategy fails to achieve both accuracy and efficiency at the same time. Thus, our goal is developing a

unified numerical method for simulation of a flow in the continuum and transition regimes. Besides our aim,

especially in recent years, the need for robust high-order (more than second-order accurate) discretizations

for high-fidelity CFD on unstructured grids has been widely recognized. To be attractive, a high-order

method must not only be accurate, but efficient as well, thus reducing the total CPU time needed to yield a

given accuracy. In this paper we propose a combination of two approaches for robust, accurate, and efficient

schemes for advection-dominated flows on unstructured grids, one at the partial differential equation (PDE)

level and the other at the discretization level.

The first approach is replacing everybody’s favorite Navier-Stokes (NS) equations by a larger set of first-

order hyperbolic-relaxation PDEs, which contains the NS equations. (N.B.: here “first-order” refers to the

order of the PDEs.) In comparison with second-order PDE models such as the NS equations, first-order

PDE models offer many numerical advantages: robustness, accuracy, and efficiency. More specifically, the

latter require smaller discrete stencils, reducing communications in parallel processing; the first-order PDE

can replace the global stiffness from the diffusion term with the local stiffness from the source term, and yield
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the best accuracy on non-smooth, adaptively refined grids. We will therefore consider the one-dimensional

hyperbolic-relaxation form:

∂tu + ∂xf(u) =
1

ǫ
s(u), (1)

where u ∈ Rm is the vector of conserved variables, f(u) : Rm → Rm is the flux of u, s(u) : Rm → Rm is

the source term, and ǫ ∈ R+ is the relaxation time. This is the form of moment closures of the Boltzmann

equation, where the source term describes departure from local thermodynamic equilibrium. Hence, the

above hyperbolic-relaxation equation is able to describe a continuum and transitional flow, whereas the NS

equations are only valid in a flow near local thermodynamic equilibrium. In the near equilibrium (ǫ ≪ 1),

that is, when the system is stiff, the system formally reduces to a system of second-order equations,

∂tU + ∂xF(U) = ∂x(D∂xU), (2)

where U ∈ Rn, n < m, is the vector of conserved variables of the reduced equation, F(U) : Rn → Rn is the

flux of U, and D ∈ Rn×n is a tensor of diffusion coefficients, with eigenvalues proportional to ǫ.

In conjunction with the PDE approach, a discretization method that can preserve compactness in high-

order discretization is adopted. In standard finite-volume methods, high-order accuracy relies on piecewise-

polynomial reconstruction, which requires extended stencils.1 For instance, stencils for the quadratic recon-

struction (third-order accuracy) on tetrahedral grids include 50 to 70 cells.2 Discontinuous Galerkin (DG)

methods overcome the issue of reconstruction by using extra equations for updating the polynomial repre-

sentation of state variables. For a comprehensive literature review, see Cockburn and Shu.3 Currently, the

most successful DG methods are semi-discretizations combined with a TVD Runge–Kutta (RK) ordinary

differential equation (ODE) solver3, 4 denoted as DG(k)–RKs, where k is the degree of the polynomial basis

and s is the order of the RK method.

The method proposed here to solve the hyperbolic-relaxation equations is based on the ‘upwind moment

scheme5’ recently developed by Huynh for hyperbolic conservation laws. The solution representation is only

piecewise linear. The two key characteristics of this method are:

1. cell variables are updated over a half time step without any interactions with neighboring cells (Han-

cock’s observation6, 7);

2. the gradient of each flow variable evolves by an independent equation (DG representation).

We denote the upwind moment scheme by “DG(1)–Hancock method”; it looks promising in comparison to

the popular method-of-line (MOL) approach such as FV/DG–MOL. The MOL decouples the discretization

in space and time: first a semi-discrete form in space is solved, then integrated over time by a suitable ODE

solver, e.g., RKs. The upwind moment scheme
(
DG(1)–Hancock

)
is a fully discrete, one step method with

one intermediate update step needed for computing the volume integral of the flux. It requires solving a

Riemann problem twice at each cell interface. Based on a Fourier analysis, the method achieves third-order

accuracy in space and time. By design, the upwind moment scheme for a linear advection equation reduces

to Van Leer’s ‘scheme III’,8 which is a DG spatial discretization with an exact shift operator for the time
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evolution. It was shown that the method is linearly stable up to Courant number 1 with an upwind flux,

whereas DG spatial discretizations combined with MOL typically have a more strict stability condition: for

DG(1)–RK2 (second-order) the limit is
1

3
, and for the DG(2)–RK3 (third-order) it is

1

5
.3 Here we extend

the upwind moment method to a one-dimensional nonlinear hyperbolic-relaxation system.

II. Extension of the Upwind Moment Scheme to Nonlinear

Hyperbolic-Relaxation Equations (DG(1)–Hancock method)

When discretizing hyperbolic-relaxation equations (1), the source term has to be treated implicitly to

ensure the stability in the stiff regime (ǫ ≪ 1). In contrast, the advection term is treated explicitly due to

the complexity of the flux evaluation. These methods are ‘semi-implicit.’ It is expected that the stability of

a method is solely constrained by the explicit discretization, that is, by an advective CFL condition. This

can indeed be realized; however, the simple implicit treatment of source terms, e.g., the backward Euler

method, does not always guarantee high-order accuracy in the stiff regime, where the source-term effect is

important.

The unique feature of the upwind moment scheme is the evaluation of the space-time volume integral

in the update equation of the solution gradient. Indeed, this volume integral of the flux makes the method

third-order accurate. When applying the upwind moment scheme to the hyperbolic-relaxation equations,

a difficulty arises in computing the volume integral of the source term in the update equation of the cell-

average. Since the vector of cell-average variables at the next time level, ūn+1, is still unknown, no simple

quadrature rule can be used. Thus, instead of computing the volume integral by a quadrature, we use a

stiff ODE solver to solve the equation accurately. In our method, the time integral of the source term is

discretized by the two-point Gauss–Radau quadrature, which can be regarded as an L-stable ODE solver if

advection terms are omitted. The same quadrature points are used for the volume integral of the flux in the

gradient update equation, whereas Huynh’s original upwind moment method for conservation laws adopts

the three-point Gauss–Lobatto quadrature. Because the source term does not contain spatial derivatives, the

method is point-implicit, that is, the implicitness is local, requiring no information from neighboring cells.

Previously a method for the case of a linear flux and source was presented;9 here we extend the method to

a nonlinear flux and source.

II.A. DG formulation

For brevity, we only consider a one-dimensional case with a uniform grid. Let ∆x = xj+1/2 − xj−1/2 be

the cell width and Ij = [xj−1/2, xj+1/2] be the domain of cell j. The general DG method is obtained by

converting a differential equation to a weak formulation. Here, since a DG discretization is adopted only in

space, a test function v(x) : R → R is just a function of space. The Hancock method is adopted for time

discretization. Multiplying (1) by a test function, v(x), and integrating over the interval Ij leads to the
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semi-discrete form of the weak formulation:

∂

∂t

∫

Ij

u(x, t)v(x) dx = −
∫

Ij

∂xf(u(x, t))v(x) dx +

∫

Ij

1

ǫ
s(u(x, t))v(x) dx. (3)

Applying integration by parts on the flux term transfers the spatial differential operator acting on the flux

f(u) to the test function v(x),

∂

∂t

∫

Ij

u(x, t)v(x) dx = −f(u(x, t))v(x)

∣∣∣∣
xj+1/2

xj−1/2

+

∫

Ij

f(u(x, t))∂xv(x) dx +

∫

Ij

1

ǫ
s(u(x, t))v(x) dx. (4)

To derive the fully discrete method, integrate again in time over T n = [tn, tn+1],

∫

Ij

u(x, t)v(x) dx

∣∣∣∣
tn+1

tn

︸ ︷︷ ︸
Time evolution

= −
∫

T n

f(u(x, t))v(x)

∣∣∣∣
xj+1/2

xj−1/2

dt

︸ ︷︷ ︸
Boundary integral

+

∫∫

Ij×T n

f(u(x, t))∂xv(x) dxdt

︸ ︷︷ ︸
Volume integral

+

∫∫

Ij×T n

1

ǫ
s(u(x, t))v(x) dxdt

︸ ︷︷ ︸
Volume integral

. (5)

Note that (5) is still exact in the weak formulation. To discretize the weak formulation, we now approximate

the exact solution u(x, t) by uh(x, t) ∈ P1, and the test function v(x) by vh(x) ∈ P1, where the subscript

h represents the approximate solution in polynomial space. The Legendre polynomials up to degree 1 are

adopted for both basis and test functions, thus

uh(x, t) = ūj(t)φ0(x) + ∆uj(t)φ1(x), (6a)

vh(x) ∈ span{φ0(x), φ1(x)}, (6b)

where

φ0(x) = 1, φ1(x) =
x − xj

∆x
. (7)

Here, the cell-average and the undivided gradient of u(x, t) in space are defined by

ūj(t) :=
1

∆x

∫

Ij

u(x, t) dx, (8a)

∆uj(t) :=
12

∆x2

∫

Ij

(x − xj)u(x, t) dx. (8b)

Note that u(x, t) = uh(x, t) + O
(
∆x2

)
in x ∈ Ij ; however, the distributions of the true solution u(x, t) and

the approximated polynomial function uh(x, t) over the domain Ij are equivalent in the weak sense due to

the orthogonality of the Legendre polynomials,

∫

Ij

u(x, t)φk(x) dx ≡
∫

Ij

uh(x, t)φk(x) dx, k = 0, 1. (9)
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Once the basis and test functions are chosen, approximated governing equations are derived by adopting

the basis functions φ0(x) and φ1(x) as the test function vh(x). Inserting φi(x) into vh(x) leads to two

independent update equations:

∫

Ij

uh(x, t) dx

∣∣∣∣
tn+1

tn

= −
∫

T n

f(uh(x, t))

∣∣∣∣
xj+1/2

xj−1/2

dt +
1

ǫ

∫∫

Ij×T n

s(uh(x, t)) dxdt, (10a)

∫

Ij

uh(x, t)
x − xj

∆x
dx

∣∣∣∣
tn+1

tn

= −
∫

T n

f(uh(x, t))
x − xj

∆x

∣∣∣∣
xj+1/2

xj−1/2

dt

+
1

∆x

∫∫

Ij×T n

f(uh(x, t)) dxdt +
1

ǫ

∫∫

Ij×T n

s(uh(x, t))
x − xj

∆x
dxdt.

(10b)

The time-evolution term and boundary integral can be further simplified by inserting (6a) into uh(x, t), then

∆x
[
ūn+1

j − ūn
j

]
= −

∫

T n

[
fj+1/2(t) − fj−1/2(t)

]
dt

︸ ︷︷ ︸
Boundary integral

+
1

ǫ

∫∫

Ij×T n

s(uh(x, t)) dxdt

︸ ︷︷ ︸
Volume integral

, (11a)

∆x

12

[
∆u

n+1

j − ∆u
n

j

]
= −1

2

∫

T n

[
fj+1/2(t) + fj−1/2(t)

]
dt

︸ ︷︷ ︸
Boundary integral

+
1

∆x

∫∫

Ij×T n

f(uh(x, t)) dxdt

︸ ︷︷ ︸
Volume integral

+
1

ǫ

∫∫

Ij×T n

s(uh(x, t))
x − xj

∆x
dxdt

︸ ︷︷ ︸
Volume integral

,
(11b)

where fj±1/2(t) = f(uh(xj±1/2, t)). The approximation made so far is in the solution representation, which

is polynomial of degree 1, and in using the same polynomial basis for basis and test functions. The next

step is approximating the boundary integral,
∫

T n(·) dt, for the interface flux, and the volume integral,
∫∫

Ij×T n(·) dxdt, for both source term and flux by quadrature. Previously, the method for a linear flux

and source term was introduced.9 Also, a Fourier analysis of both semi-discrete HR2 and DG(1) methods

was presented.10 Here, we extend the linear method to nonlinear flux and source terms, and a Fourier

analysis of a fully discrete method is presented.

II.B. Boundary Integral of the Flux (Interface-Flux Calculation)

At the cell-interfaces, xj±1/2, the time integral of a flux is approximated by the midpoint rule. Thus when

a flux is integrated over the time interval in [tn, tn+k], the flux at tn+k/2 is considered as the averaged flux:

tn+k∫

tn

fj±1/2(t) dt ≈ (k∆t) f
n+k/2
j±1/2 , (12)

where ∆t = tn+1 − tn and k ∈ [0, 1]. Since the approximated solution at the cell-interface, uh(xj±1/2, t), is

discontinuous, a Riemann problem is solved exactly or approximately to compute the interface-flux. Let f̂
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be the solution of a Riemann solver, then

f
n+k/2
j±1/2 ≈ f̂j±1/2

(
u

n+k/2
j±1/2,L,u

n+k/2
j±1/2,R

)
. (13)

For a linear flux, f(u) = Au where A ∈ Rm×m, the upwind flux is given by

f̂(uL,uR) = A+uL + A−uR, (14)

with A± = RΛ±L, where Λ ∈ Rm×m is the diagonal matrix of eigenvalues of A. For a nonlinear flux,

common approximate Riemann solvers are given by the following form:

f̂(uL,uR) =
1

2
[f(uR) + f(uL)] − 1

2
Q [uR − uL] , with Q =





R|Λ|L upwind11,

|λi|max I Rusanov12,

∆x

∆t
I Lax–Friedrichs13,

(15)

where I ∈ Rm×m is the identity matrix. The cell-interface values at the half-time, u
n+k/2
j+1/2,L/R, are obtained

by a Taylor-series expansion of u(x, t) in space and time using the Cauchy–Kovalevskaya (or Lax–Wendroff)

procedure: replacing the time derivative by the spatial derivative,

u(x, t) = u(xj , t
n) + (x − xj)∂xu(xj , t

n) + (t − tn)∂tu(xj , t
n) + O

(
∆x2, ∆t2, ∆x∆t

)

≈ un
j + (x − xj)∂xu

n
j + (t − tn)

[
−∂xf(u

n
j ) +

1

ǫ
s(un

j )

]

= un
j +

[
(x − xj)I − (t − tn)A(un

j )
]
∂xu

n
j +

t − tn

ǫ
s(un

j ), x ∈ Ij , t ∈ T n, (16)

where A(u) =
∂f

∂u
with A(u) : Rm → Rm×m. Replacing point values, un

j and ∂xu
n
j , by cell-averages and

undivided gradient values preserves the second-order accuracy since un
j = ūn

j + O
(
∆x2

)
and ∆x∂xu

n
j =

∆u
n

j + O
(
∆x3

)
. Also, the source term is evaluated from the approximated solution, u(x, t), instead of

the known solution, ūn
j , to make the source term implicit. This is again does not affect the order of

approximation. Finally, the approximation of the state variable u(x, t) in domain Ij × T n is given by

u(x, t) ≈ ūn
j +

[
(x − xj)I − (t − tn)A(ūn

j )
] ∆u

n

j

∆x
+

t − tn

ǫ
s
(
u(x, t)

)
. (17)

Inserting x = xj ±
∆x

2
and t = tn +

k∆t

2
leads to the cell-interface values for a Riemann solver:

u
n+k/2
j+1/2,L = uj(xj + ∆x/2, tn + k∆t/2)

= ūn
j +

1

2

[
I − k∆t

∆x
A(ūn

j )

]
∆u

n

j +
k∆t

2ǫ
s
(
u

n+k/2
j+1/2,L

)
, (18a)

u
n+k/2
j+1/2,R = uj+1(xj+1 − ∆x/2, tn + k∆t/2)

= ūn
j+1 −

1

2

[
I +

k∆t

∆x
A(ūn

j+1)

]
∆u

n

j+1 +
k∆t

2ǫ
s
(
u

n+k/2
j+1/2,R

)
. (18b)

Note that the implicit character is caused by the source term. In practice, for fluid dynamics equations, this

predictor step can be simplified by using a different form of governing equations. Typically, the primitive

form leads to a linear source term:

s(w) = Qww, (19)
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where w ∈ Rm is the vector of primitive variables, and Qw ∈ Rm×m. The constant coefficient matrix Qw

can be inverted analytically, thus the predictor step is evaluated explicitly as follows:

w(x, t) =

[
I − t − tn

ǫ
Qw

]−1
[
wn

j +
(
(x − xj) I − (t − tn)A(wn

j )
)∆w

n

j

∆x

]
. (20)

Once primitive variables at the half-time step are obtained, these values are used as the input for a Riemann

solver (15) to compute the interface flux.

II.C. Volume Integral of the Source Term

When a DG spatial discretization with a piecewise linear solution representation is applied to hyperbolic-

relaxation equations, three volume integrals appear in (11): one is in the update equation of ūj , and the

other two are in the update equation of ∆uj . The same strategy as in the upwind moment method can

be applied to the latter two volume integrals, assuming state variables in all quadrature points in time

are already known. This is true as long as the update equation for ūj is solved first. A difficulty arises

when a quadrature rule is applied to the volume integral in (11a). Since this is the update equation of the

cell-average variables ūj , the updated state variables at a quadrature point, ūn+1
j , are still unknown. Yet,

we can update ūj by iterating with a quadrature for the volume integral of the source term; however, the

quadrature rule or points have to be chosen carefully when solving systems of stiff ODEs.

Here, we focus on constructing a third-order discretization in time for the source term, while accepting

second-order accuracy in space, so as to circumvent the quadrature in space, more specifically, removing

the ∆uj dependence in the volume integral of s(uh) in (11a). Thus, the following source term expansion in

space is adopted:

s(uh(x, t)) = s(ūj(t)) +
x − xj

∆x
Q(ūj(t))∆uj(t) + O

(
∆x2

)
, (21)

where Q(u) =
∂s

∂u
with Q(u) : Rm → Rm×m. Inserting (21) into the volume integral of the source term

in (11a) leads to ∫∫

Ij×T n

s(uh(x, t)) dxdt = ∆x

∫

T n

s(ūj(t)) dt + O
(
∆x3

)
. (22)

This approximation removes the coupling between (11a) and (11b), allowing independent updates of the two

equations.

In order to integrate the above equation, quadrature points have to be chosen carefully due to its stiffness.

Also, to ensure stability in the stiff regime (ǫ ≪ 1), the time-integration method for the source term needs

to be implicit. Previously, the backward Euler method, which is only first-order accurate, was used to

integrate the source term and obtain the intermediate stage.9 Unfortunately, linear analysis shows that the

source-term discretization is overall only second-order accuracy due to the first-order temporal discretization

in the intermediate step. In order to achieve high-order accuracy, and circumvent the stiffness, a fully-

implicit method is preferable. The properties of the classes of implicit Runge–Kutta methods are tabulated

in Table 1. Based on these properties, the Radau IA, Radau IIA, and Lobatto IIIC methods, which possess
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Table 1. The properties of the classes of implicit Runge–Kutta methods are tabulated.14 The order p is based on the

linear theory, and the stage order p̃ is the lower bound obtained by the nonlinear theory. Thus, in general, the order

of a method q satisfies p̃ ≤ q ≤ p.

s-stage RK method order p stage order p̃ linear stability nonlinear stability

Gauss 2s s A-stability algebraic stability

Radau IA 2s− 1 s − 1 L-stability algebraic stability

Radau IIA 2s− 1 s L-stability algebraic stability

Lobatto IIIA 2s− 2 s A-stability No algebraic stability

Lobatto IIIB 2s− 2 s − 2 A-stability No algebraic stability

Lobatto IIIC 2s− 2 s − 1 L-stability algebraic stability

both L-stability and nonlinear stability, are candidates for time integration of the source term. In order to

achieve third-order accuracy in time, the Radau IA/IIA methods require only two stages (s = 2, p = 3),

whereas the Lobatto IIIC method requires three stages (s = 3, p = 4). To minimize the computational cost

of the fully-implicit procedure for the source term in a scheme, we chose the former, particularly the Radau

IIA method, for the source-term integral. Hence, the volume integral of the source term is approximated as

∫∫

Ij×T n

s(uh(x, t)) dxdt ≈ ∆x∆t

[
3

4
s(ū

n+1/3
j ) +

1

4
s(ūn+1

j )

]
, (23)

where a new intermediate stage at time level n+
1

3
is introduced. The overall update equations are given by

ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

[
f̂
n+1/6
j+1/2 − f̂

n+1/6
j−1/2

]

︸ ︷︷ ︸
explicit

+
∆t

3

1

ǫ

[
5

4
s(ū

n+1/3
j ) − 1

4
s(ūn+1

j )

]

︸ ︷︷ ︸
implicit

, (24a)

ūn+1
j = ūn

j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]

︸ ︷︷ ︸
explicit

+
∆t

ǫ

[
3

4
s(ū

n+1/3
j ) +

1

4
s(ūn+1

j )

]

︸ ︷︷ ︸
implicit

. (24b)

To solve this system numerically, first the interface fluxes are computed explicitly. Then, the problem reduces

to finding the solutions of systems of nonlinear algebraic equations of the following form:

uA = Cf + Cs sA(uA), (25)

where

uA =




ū
n+1/3
j

ūn+1
j


 , sA(uA) =




s(ū
n+1/3
j )

s(ūn+1
j )


 , (26a)

Cf =




ūn
j − ∆t

3

1

∆x

[
f̂
n+1/6
j+1/2 − f̂

n+1/6
j−1/2

]

ūn
j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]


 , Cs =

∆t

ǫ




5

12
I − 1

12
I

3

4
I

1

4
I


 , (26b)

with uA,Cf ∈ R2m,Cs ∈ R2m×2m, and sA(uA) : R2m → R2m. Here, the Newton-Raphson method is adopted

to find the solution, thus the iteration process at p-step is given by

up+1
A = up

A − [IA − CsQA(up
A)]

−1
[up

A − Cf − Cs sA(up
A)] , p = 0, 1, 2 . . . , (27)
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where

QA(uA) =
∂sA

∂uA
=




Q(ū
n+1/3
j ) 0

0 Q(ūn+1
j )


 , QA(uA) : R

2m → R
2m×2m, (28)

and IA ∈ R2m×2m. To start up the iteration, the initial guess at the time level n, u0
A =

[
ūn

j ; ūn
j

]
, is used.

The iteration on the system of 2m equations can be reduced to 2(m − l) equations where l < n, since the

first l entries of the source term are zero.

In general, when the Newton-Raphson method is implemented, it is more efficient to adopt LU -decomposition

to the matrix [IA − CsQA(up
A)], and solve the system of linear algebraic equations instead of inverting it.

However, the structure of the source term is typically simple, and the inverse matrix, [IA − CsQA(up
A)]

−1
,

can be obtained analytically as a function of uA. The advantage of the choice of hyperbolic-relaxation

equations over the NS equations is clear here: since the method is point-implicit due to the source term, the

inverse of the matrix is still local, whereas the implicit treatment of the diffusion term in the NS equations

makes the domain of dependence global.

II.D. Volume Integral of the Flux

II.D.1. Gauss–Lobatto Points (Original Upwind Moment Scheme)

First, we review Huynh’s original upwind moment scheme.5 The method utilizes the three-point Gauss–Lobatto

quadrature for both space and time integration of the flux, thus the volume integral is approximated by

∫∫

Ij×T n

f(uh(x, t)) dxdt ≈ ∆t

∫

Ij

1

6

[
f(u(x, tn)) + 4f(u(x, tn+1/2)) + f(u(x, tn+1))

]
dx

≈ ∆t

∫

Ij

f(û(x)) dx

≈ ∆t
∆x

6

[
f(û(xj−1/2)) + 4f(û(xj)) + f(û(xj+1/2))

]
, (29)

where

û(x) = ˆ̄uj + ∆̂uj
x − xj

∆x
, (30a)

ˆ̄uj =
1

6

(
ūn

j + 4ū
n+1/2
j + ūn+1

j

)
, (30b)

∆̂uj =
1

2

(
∆u

n

j + ∆u
n+1

j

)
. (30c)

Here, (̂·) denotes a time-averaged value. When the discretization of conservation laws, (11) with s = 0, is

considered, the volume integral appears only in the second equation (11b). Since the cell-average variables are

updated first, ūn+1
j is already known when the volume integral is evaluated. Thus ˆ̄uj is evaluated explicitly

whereas ∆u
n+1

j in (30c) is still unknown, and an iteration process is required. To start the iteration process,

the slope at the time level n is used as the initial guess; however, Huynh reported that no improvement was

observed by iterations, and suggested to replace (30c) by

∆̂uj = ∆u
n

j . (31)
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When the flux is linear, f(u) = Au, the volume integral (29) is evaluated exactly in space and approximately

in time, thus
∫∫

Ij×T n

f(uh(x, t)) dxdt = ∆xA

∫

T n

ūj(t) dt

≈ ∆x∆t Aˆ̄uj , (32)

where ˆ̄uj is given by (30b). In (30b), the new intermediate stage, ū
n+1/2
j , is introduced, and computed in

advance by updating over a half time step:

ū
n+1/2
j = ūn

j − 1

∆x

tn+1/2∫

tn

[
fj+1/2(t) − fj−1/2(t)

]
dt

= ūn
j − ∆t

2

1

∆x

[
f̂
n+1/4
j+1/2 − f̂

n+1/4
j−1/2

]
. (33)

Note that the method only requires the cell-average value at the half-time step, not the undivided gradient,

since the slope at the time level n is used in the entire space-time domain according to (31). Once the

intermediate state is obtained, from (11), the final update equations become

ūn+1
j = ūn

j − ∆t

∆x

[
f̂
n+1/2
j+1/2 − f̂

n+1/2
j−1/2

]
, (34a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6

[
f̂
n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2

∆x∆t
f(ûj)

]
, (34b)

where f(ûj) is given by (29). In summary, the original upwind moment scheme is a one-step method with

one intermediate stage for the volume integral, requiring two Riemann solvers at each cell-interface.

II.D.2. Gauss–Radau Points

When the hyperbolic-relaxation equations are considered, quadrature points for the flux in (11b) need to be

modified based on the quadrature for the source term. Since we adopt the two-point Radau IIA method (23)

as the time integrator for the source term, the same Radau points are employed for the volume integral

of the flux. Hence, the Gauss–Radau quadrature in time and the Gauss–Lobatto quadrature in space are

applied:
∫∫

Ij×T n

f
(
uh(x, t)

)
dxdt = ∆t

∫

Ij

[
3

4
f
(
u(x, tn+1/3)

)
+

1

4
f
(
u(x, tn+1)

)]
dx + O

(
∆t4

)

≈ ∆t

∫

Ij

f
(
ũ(x)

)
dx

≈ ∆t
∆x

6

[
f
(
ũ(xj−1/2)

)
+ 4f

(
ũ(xj)

)
+ f
(
ũ(xj+1/2)

)]
, (35)

where

ũ(x) = ˜̄uj + ∆u
n

j

x − xj

∆x
with ˜̄uj =

1

4

(
3ū

n+1/3
j + ūn+1

j

)
. (36)

Here, the undivided gradient is frozen at the time level n in order to keep the treatment explicit. In the

update equation of the undivided gradient, the intermediate-stage value, ∆u
n+1/3

j , is required, and another
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volume integral of the flux over the time domain T n′

= [tn, tn+1/3] is needed. Since the flux is not a stiff

term and the cell-averaged variables at the quadrature points k = 0,
1

3
are known, the trapezoidal rule is

applied in time while the Gauss–Lobatto quadrature is applied in space:

∫∫

Ij×T n′

f
(
uh(x, t)

)
dxdt =

∆t

3

∫

Ij

1

2

[
f
(
u(x, tn)

)
+ f
(
u(x, tn+1/3)

)]
dx + O

(
∆t3

)

≈ ∆t

3

∫

Ij

f
(
ǔ(x)

)
dx

≈ ∆t

3

∆x

6

[
f
(
ǔ(xj−1/2)

)
+ 4f

(
ǔ(xj)

)
+ f
(
ǔ(xj+1/2)

)]
, (37)

where

ǔ(x) = ˇ̄uj + ∆u
n

j

x − xj

∆x
with ˇ̄uj =

1

2

(
ūn

j + ū
n+1/3
j

)
. (38)

II.E. Integral of the Moment of the Source Term

The second-order approximation of the source term, (21), is inserted into the volume integral of the moment

of the source term in (11b), and the Gauss–Radau quadrature is used for time:

∫∫

Ij×T n

s(uh(x, t))
x − xj

∆x
dxdt =

∆x

12

∫

T n

Q(ūj(t))∆uj(t) dt + O
(
∆x3

)

≈ ∆x∆t

12

[
3

4
Q(ū

n+1/3
j )∆u

n+1/3

j +
1

4
Q(ūn+1

j )∆u
n+1

j

]
. (39)

Following the same procedure for the cell-average update, the Radau IIA method is adopted for the source

term, and the final update formulas for the undivided gradient are given by

∆u
n+1/3

j = ∆u
n

j − ∆t

3

6

∆x

[
f̂
n+1/6
j+1/2 + f̂

n+1/6
j−1/2 − 2

∆x∆t
f(u

n+1/6
j )

]

︸ ︷︷ ︸
explicit

+
∆t

3

1

ǫ

[
5

4
Q(ū

n+1/3
j )∆u

n+1/3

j − 1

4
Q(ūn+1

j )∆u
n+1

j

]

︸ ︷︷ ︸
implicit

,

(40a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6

[
f̂
n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2

∆x∆t
f(u

n+1/2
j )

]

︸ ︷︷ ︸
explicit

+
∆t

ǫ

[
3

4
Q(ū

n+1/3
j )∆u

n+1/3

j +
1

4
Q(ūn+1

j )∆u
n+1

j

]

︸ ︷︷ ︸
implicit

,

(40b)

where f(u
n+1/6
j ) and f(u

n+1/2
j ) are obtained by (37) and (35) respectively. Once the interface fluxes and

volume integrals of fluxes are computed explicitly, the problem is again reduced to solving a system of linear

algebraic equations:

∆uA = ∆Cf + CsQA(uA)∆uA, (41)

where

∆uA =




∆u
n+1/3

j

∆u
n+1

j


 , ∆Cf =




∆u
n

j − ∆t

3

6

∆x

[
f̂
n+1/6
j+1/2 + f̂

n+1/6
j−1/2 − 2

∆x∆t
f(u

n+1/6
j )

]

∆u
n

j − ∆t

∆x
6

[
f
n+1/2
j+1/2 + f

n+1/2
j−1/2 − 2

∆x∆t
f(u

n+1/2
j )

]


 , (42)
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with ∆uA, ∆Cf ∈ R2m. Since uA is already known by (27), no iteration is required, and ∆uA is obtained by

∆uA = [IA − CsQA(uA)]
−1

∆Cf. (43)

As mentioned previously, the structure of the source term is typically simple; the inverse of the above matrix

can be obtained analytically.

III. Analysis for 1-D and 2-D Linear Advection Equations

III.A. Discretization Methods

A Fourier analysis is employed to uncover the linear properties of methods for hyperbolic conservation

laws without source terms; hyperbolic-relaxation systems will be analyzed in Section IV. The analysis

is also called a ‘Von Neumann analysis’ named after John von Neumann who originally introduced the

analysis for parabolic differential equations.15 The actual applications of the analysis can be found in many

textbooks.16, 17 The analysis shows the order of accuracy, the dominant numerical dissipation/dispersion

errors for the low-frequence mode, and the linear stability of a method. Note that the assumptions required

for a Fourier analysis are uniform grids and periodic boundary conditions. The dimensionless 1-D and 2-D

linear advection equations,

∂tu + r∂xu = 0, |r| ≤ 1, (44a)

∂tu + r∂xu + s∂yu = 0, |r|, |s| ≤ 1, (44b)

are considered as the model equations. Here, the normalization is rather uncommon. The advection speed

is normalized by the larger ‘frozen’ wave speed (= 1) arising further on in hyperbolic-relaxation equations.

The motivation of this normalization will be clear once hyperbolic-relaxation systems are considered.

The Courant number, ν, is defined by the dimensionless frozen wave speed, 1, instead of the advection

speed, r, thus

ν := 1
∆t

∆x
, ∆x, ∆t ∈ R

+. (45)

Again, this definition is rather uncommon. Conventionally, the Courant number for a linear advection

equation is defined by

ν̃ := r
∆t

∆x
, (46)

where the advection speed, r, is normalized by the spatial and temporal scales. To make analysis consistent

with the results later presented for the linear hyperbolic-relaxation equations, we adopt ν as the Courant

number here. The conventional expression can be recovered by substituting

rν = ν̃. (47)

Recall that, for a linear advection equation, both the upwind moment scheme (with Gauss–Lobatto

quadrature for the volume integral) and the proposed method (with Gauss–Radau quadrature) are identical

to Van Leer’s scheme III.8 The upwind moment method (DG(1)–Hancock) is compared with three other
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Table 2. The combinations of space and time discretization methods. First row: semi-discrete methods; second row:

the fully discrete methods.

High-Resolution Godunov (HR) Discontinuous Galerkin (DG)

Runge-Kutta (RK) HR2–RK2, HR2–RK3 DG(1)–RK2, DG(1)–RK3

Hancock (Ha) Hancock (HR2–Ha) Upwind moment (DG(1)–Ha)

methodologies: a semi-discrete higher-resolution Godunov method (HR) with method-of-lines (MOL) or

Hancock time integration, and a DG(1)–MOL method. These methods can be regarded as the combination

of a spatial and a temporal discretization, and are tabulated in Table 2. Here, we adopt the notations HRs

and RKs, where s is the order of accuracy, and DG(k) where k is the degree of the polynomial basis. A

Fourier analysis for the 1-D advection equation shows that the upwind moment method is linearly stable

up to the Courant number 1 with an upwind flux, whereas DG spatial discretizations combined with MOL

typically have a more strict stability condition: for DG(1)–RK2 (second-order) the limit is
1

3
, and for the

DG(2)–RK3 (third-order) it is
1

5
.3

III.B. Methodology

III.B.1. Difference Operators in Fourier (Frequency) Space

To investigate and compare the properties of a method, it is useful to write a method in compact form. Let

the forward, δ+, and backward, δ−, difference operator be

δ+uj = uj+1 − uj , (48a)

δ−uj = uj − uj−1. (48b)

Then, translation over any number of cells can be expressed by applying these difference operators multiple

times, e.g.,

uj+2 = (I + δ+)2uj , (49a)

uj−2 = (I − δ−)2uj , (49b)

where I is the identity operator, that is, uj = Iuj . Using these difference operators, the simplest fully

discrete methods can be expressed as

un+1
j = G(ν, r, q)un

j , (50)

where G is an amplification factor or matrix, and q is the dissipation parameter of the q-flux (15).18 Since

the fully discrete method considered here is a multi-stage one-step method, it can be written as the forward

Euler method in time, thus

un+1
j − un

j

∆t
= M(ν, r, q, ∆x)un

j , or un+1
j = [I + ∆tM(ν, r, q, ∆x)]un

j , (51)
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where M is a ‘spatial-temporal’ difference operator. Comparing to the (50), the amplification matrix, G,

can be expressed in terms of M:

fully discrete : GM = I + ∆tM. (52)

Conversely, a semi-discrete method is only expressed in an ODE form:

∂uj(t)

∂t
= N(r, q, ∆x)uj(t), (53)

where N is a ‘spatial’ difference operator. The notation of the two difference operators is made distinct on

purpose: to a fully discrete method is assigned M, and to a semi-discrete method N. Note that since a

semi-discrete method is only discretized in space, N is not a function of ν, thus an ODE solver is in charge

of the temporal discretization. Here, two RK methods are adopted for the time integration in semi-discrete

methods. The two- and three-stage RK methods are second- and third-order accurate in time respectively.

For a system of linear equations, a RK method simply generates the series expansion of the matrix exponential

eN∆t up to a certain order, thus

RK2: GN = I + ∆tN +
∆t2

2
N2, (54a)

RK3: GN = I + ∆tN +
∆t2

2
N2 +

∆t3

6
N3. (54b)

In a Fourier analysis, the investigation of the amplification factor G is the main interest. When a

finite-volume method is applied to a scalar linear equation, this factor is a scalar, thus the derivation is

straightforward. However, when a DG method is applied, even though the target equation is a scalar

equation, an amplification factor becomes a matrix due to the introduction of extra variables in each cell. To

extract the behavior of a method, eigenvalues of G must be obtained by solving a characteristic equation,

det(G − gI) = 0, (55)

where g is an eigenvalue of G.

For a single Fourier mode, the solution at cell j can be represented as follows:

uj = û0 exp

(
i
2πj

N

)

= û0 exp(iβj), β ∈ [−π, π], (56)

where β is the spatial frequency of the wave. Here, β = 0 corresponds to the low-frequency limit, and β = π

is the high-frequency limit. Using a Fourier representation, the difference operators are now replaced by

exponential functions,

δ+ = eiβ − 1, (57a)

δ− = 1 − e−iβ . (57b)

Inserting these relations into a matrix operator, M or N, removes the difference operators in an amplification

matrix.
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III.B.2. Exact Solution

An exact solution is critical to examining the order of accuracy of a method. The exact solution of (44a) in

the harmonic mode is given by

u(x, t) = û0e
ik(x−rt), (58)

where k is the spatial wave number. The exact amplification factor is obtained by expressing u(x, t + ∆t) in

terms of u(x, t),

u(x, t + ∆t) = û0e
ik(x−rt)e−irk∆t

= e−irk∆tu(x, t). (59)

It shows that the exact amplification factor for the time step ∆t, and the exact eigenvalue of the spatial

discretization operator in (53) are given by

gexact = e−irk∆t, λexact = −irk. (60)

In a Fourier mode, the wave number k is related to the frequency of a wave β by

k =
β

∆x
, (61)

thus the amplification factor and spatial eigenvalue become

gexact(ν̃, β) = e−irνβ = e−iν̃β , λexact = − ir

∆x
β. (62)

III.C. Difference Operators and Their Properties in 1-D

In this section, a Fourier analysis is employed to uncover the dominant truncation errors in the low-frequency

limit, the order of accuracy, and the stability conditions of various discretization methods.

III.C.1. HR–MOL Method

A semi-discrete high-resolution Godunov method combined with the method-of-lines (HR–MOL) for the 1-D

linear advection equation (44a) has the following form:

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2(t) − f̂j−1/2(t)

)
, (63)

where the linear flux, f(u(t)) = ru(t), is evaluated at each cell interface. The interface flux f̂j±1/2(t) must

be evaluated at various time levels, depending on the time discretization method (ODE solver) chosen. The

interface flux is obtained as in the q-flux (15). For the linear advection equation, it becomes

f̂j+1/2(t) =
r

2

(
uj+1/2,L(t) + uj+1/2,R(t)

)
− q

2

(
uj+1/2,R(t) − uj+1/2,L(t)

)
, q > 0, (64)

where the input values of the flux function are the linearly reconstructed values at the cell interface j + 1/2:

uj+1/2,L(t) = ūj +
∆x

2

(
ūj+1 − ūj−1

2∆x

)
, (65a)

uj+1/2,R(t) = ūj+1 −
∆x

2

(
ūj+2 − ūj

2∆x

)
. (65b)

15 of 42

American Institute of Aeronautics and Astronautics



The linear reconstruction of the original piecewise constant values leads an HR–MOL method to second-

order accuracy in space whereas the original Godunov method, which uses the piecewise constant data, is

first-order accurate. Here, we denote the second-order semi-discrete Godunov method as HR2–MOL.

After inserting the cell interface fluxes into the original semi-discrete form (63), and some algebra, the

spatial difference operator, NHR2, in the semi-discrete form of (53) is given by

NHR2 = − 1

8∆x

[
(q − r)(δ+)2 − 2(q − 2r)δ+ + 2(q + 2r)δ− + (q + r)(δ−)2

]
, (66a)

or, for a Fourier mode, using (57),

NHR2 = − 1

8∆x

[
(q − r)e2iβ + 2(3r − 2q)eiβ + 6q − 2(2q + 3r)e−iβ + (q + r)e−2iβ

]
. (66b)

The identical result can be obtained by setting ν = 0 in the spatial-temporal operator for the Hancock

method (86), derived further below.

Accuracy Taking the low-frequency limit of the difference spatial operator, NHR2, leads to the asymptotic

eigenvalue:

λHR2 = − ir

∆x
β − ir

12∆x
β3 − q

8∆x
β4 + O

(
β5
)
. (67)

The order of accuracy in space is obtained by replacing β by the wave number k, then

λHR2 − λexact = − ir

12
∆x2 k3 − q

8
∆x3 k4 + O

(
k5
)
; (68)

the method appears to be second-order accurate in space. To examine the overall order of accuracy, the RK2

and RK3 method (54) are employed for the time integration; their local truncation errors have the following

forms:

LTEHR2RK2 = − ir

12

(
∆x2 + 2r2 ∆t2

)
k3 − r

8

[q
r
− (rν)3

]
∆x3k4 + O

(
k5
)
, (69a)

LTEHR2RK3 = − ir

12
∆x2 k3 − r

8

(
q

r
∆x3 +

1

3
r3 ∆t3

)
k4 + O

(
k5
)
. (69b)

Thus, the HR2–RK2 method is second-order accurate in space and time, and the HR2–RK3 is second-order in

space and third-order in time. It clearly shows that the third-order time integration method (RK3) eliminates

the ∆t2–term in the HR2–RK2 method, making the method third-order accurate in time. However, since a

semi-discrete method decouples the space and time discretizations, a higher-order time integration can not

eliminate the second-order spatial discretization error. Thus, the HR2–RK3 method is still second-order in

space.

Stability We adopt a numerical approach to investigate the linear stability condition. The modulus of

the amplification factor, |gHR2RK2(ν̃, β)|, evaluated with the upwind and Lax–Friedrichs fluxes, is shown in

Figures 1(a) and 1(b) respectively. The shaded area indicates the stability region, where |gHR2RK2(ν̃, β)| ≤ 1.

These two figures show that the HR2–RK2 method is linearly stable for ν̃ ≤ 1 with both the upwind and

the Lax–Friedrichs fluxes.
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(a) HR2–RK2 method with the upwind flux
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(b) HR2–RK2 method with the Lax–Friedrichs flux

Figure 1. Contour plots of the modulus of the amplification factor, |gHR2RK2(ν̃, β)|, computed with the upwind (left)

and Lax–Friedrichs (right) fluxes. These show that the HR2–RK2 method is stable for ν̃ ≤ 1.

III.C.2. DG–MOL Method

A semi-discrete DG method combined with the method-of-lines (DG–MOL) for the 1-D linear advection

equation (44a) has update formulas for both the cell-average and undivided gradient,

∂ūj(t)

∂t
= − 1

∆x

(
f̂j+1/2(t) − f̂j−1/2(t)

)
, (70a)

∂∆uj(t)

∂t
= − 1

∆x
6
(
f̂j+1/2(t) + f̂j−1/2(t) − 2rūj(t)

)
, (70b)

where the volume integral of the flux in the second equation simplifies owing to the linearity. The q-flux (64)

is adopted for the cell interface fluxes with linearly interpolated values:

uj+1/2,L = ūj +
1

2
∆uj , (71a)

uj+1/2,R = ūj+1 −
1

2
∆uj+1. (71b)

Note that a DG method does not need to approximate the slope ∆uj(t) by using data from the neighboring

cells since the slope is also stored as a variable in each cell. After inserting the difference form of fluxes, and

some algebra, the spatial difference operator has the following form:

NDG(1) = A
+D+ + C + A

−D−, (72)

where

A
+ =

q − r

2∆x




1 −1

2

6 −3


 , A

− =
q + r

2∆x



−1 −1

2

6 3


 , C =

r

∆x




0 0

0 −6q

r


 , D± = δ±I, (73)

or, for a Fourier mode,

NDG(1) = A
+eiβI + C

′ − A
−eiβI where C

′ = − r

∆x




q

r

1

2

−6
3q

r


 . (74)
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Here, the notation “DG(1)” stands for a method representing the solution as piecewise polynomial of degree 1.

The identical result can be obtained by setting ν = 0 in the spatial-temporal operator for a DG–Hancock

method (96)–(98). In order to obtain the eigenvalues of the spatial operator, the characteristic equation of

NDG(1), given by

(∆xλ)2 +
[
(q − r)δ+ − (q + r)δ− + 6q

]
∆xλ + 3q

[
(q − r)δ+ − (q + r)δ−

]
− 3(q2 − r2)δ+δ− = 0, (75)

is solved for λ. Because of the lengthy expression of the roots in the general form, we present only the result

for the upwind flux, q = r, as an example:

λ
(1),(2)
DG(1), upwind =

r

∆x

(
−3 + δ− ±

√
9 − 12δ− + (δ−)2

)
(76a)

=
r

∆x

(
−2 − e−iβ ±

√
−2 + 10e−iβ + e−2iβ

)
. (76b)

Accuracy The asymptotic eigenvalues in the low-frequency limit are given by

λ
(1)
DG(1) = − ir

∆x
β − r2

72q∆x
β4 + O

(
β5
)
, (77a)

λ
(2)
DG(1) = − 6q

∆x
+

3ir

∆x
β + O

(
β2
)
, (77b)

where the former is the principal root and the latter is the extraneous one. Since a temporal discretization

has not been considered yet, all errors appearing here are attributed solely to the spatial discretization. The

order of accuracy in space is obtained by replacing β by the wave number k, then

λ
(1)
DG(1) − λexact = − r2

72q
∆x3 k4 + O

(
k5
)
, (78a)

λ
(2)
DG(1) − λexact = − 6q

∆x
+ O(k) , (78b)

thus the principal root is third-order accurate in space, and the extraneous root is zeroth-order. Fortunately,

the extraneous root damps quickly since the leading error, − 6q

∆x
, is a large negative real value.

To examine the overall accuracy, the time integration methods RK2 and RK3 (54) are employed. Then,

the local truncation errors become

LTEDG(1)RK2 = − ir3

6
∆t2 k3 − r

72

(
r

q
∆x3 − 9r3∆t3

)
k4 + O

(
k5
)
, (79a)

LTEDG(1)RK3 = − r

72

(
r

q
∆x3 + 3r3 ∆t3

)
k4 + O

(
k5
)
. (79b)

The first equation shows that the temporal discretization RK2 introduces a second-order error in the

DG(1)–RK2 method, hence the DG(1)–RK2 method is third-order in space, yet second-order in time. Since

the RK3 method is third-order accurate, the DG(1)–RK3 method is third-order in both space and in time.

Stability The stability domain of the DG(1)–RK2 method was first presented by Cockburn and Shu,19

and they referred to the stability proof for a simpler case by Chavent and Cockburn.20, 21 Here, we present

the stability limit by plotting the modulus of the two amplification factors independently. The modulus of

the accurate and inaccurate amplification factors, |g(1),(2)
DG(1)RK2|, computed with the upwind flux are shown
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in Figures 2(a) and 2(b) respectively. The figures show that the accurate amplification factor possesses

larger stability domain (ν̃max = 0.468) than the inaccurate amplification factor (ν̃max = 1/3). Overall, the

stability is constrained by the inaccurate amplification factor, so DG(1)–RK2 with the upwind flux is stable

for ν̃ ≤ 1/3.

Counterintuitive results are shown in Figures 2(c) and 2(d), where the Lax–Friedrichs flux is employed.

The contour plots of the modulus show that neither the accurate nor inaccurate amplification factor is

stable for any Courant number, even when ν̃ = 0. Thus, the DG(1)–RK2 with the Lax–Friedrichs flux is

unconditionally unstable. This was originally found by Rider and Lowrie.22 The same result is obtained

for the DG(1)–RK3 method. This is somewhat surprising since the Lax–Friedrichs flux adopts the largest

possible dissipation coefficient,
∆x

∆t
, among all q-fluxes to stabilize the method. A reason for the destabilizing

result produced by this most dissipative flux function can be found by comparing the dominant numerical

dissipation in (79) to that in (69). For a DG method, the dissipation parameter q appears in the denominator,

whereas an HR method contains in the numerator. Thus, for a DG method, as the numerical dissipation in

the flux increases, the method actually becomes less dissipative, at least at low frequencies. This is completely

opposite to the behavior of an HR method. Hence, the most dissipative flux leads to the least low-frequency

dissipation, resulting in an unconditionally unstable DG method. More specifically, the instability originates

in the extraneous root, λ
(2)
DG(1). The leading error in the extraneous root, multiplied by the time step ∆t (this

product appears when a time integration method is applied), evaluated with the upwind and Lax–Friedrichs

fluxes, reads:

∆t λ
(2),LxF
DG(1) = −∆t

6q

∆x
= −6, (80a)

∆t λ
(2),upwind
DG(1) = −∆t

6r

∆x
= −6ν̃. (80b)

Assume, for instance, that the RK2 method is used for time integration, then the above eigenvalues should

satisfy a necessary condition, ∆t λ ∈ [−2, 0], for stability in the low-frequency limit. The second equation,

for the upwind flux, satisfies this stability condition as long as ν̃ ≤ 1

3
. Conversely, the first equation

never satisfies the stability condition, no matter how small the time step is; thus, DG(1) together with the

Lax–Friedrichs flux is unconditionally unstable.

To remedy the instability of the Lax–Friedrichs flux, Rider and Lowrie propose the following modified

Lax–Friedrichs flux:22

fmLxF
j+1/2(uL, uR) =

r

2
(uL + uR) − z

2

∆x

∆x
(uR − uL), (81)

where z =
1

3
for DG(1), and z =

1

5
for DG(2). These constants are chosen such that the maximum stable

Courant number is the same as for the DG method combined with the upwind flux. The motivation of the

choice of constant becomes clear when the leading error is again considered:

∆tλ
(2),mLxF
DG(1) = −∆t

6 qmLxF

∆x
= −6z, (82)

thus as long as z ≤ 1

3
, the leading error satisfies the stability condition, ∆t λ ∈ [−2, 0]. Since the condition

is merely necessary and not sufficient, the full stability domains based on the modified Lax–Friedrichs flux
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are obtained numerically and shown in Figures 2(e) and 2(f). For this flux function, both accurate and

inaccurate eigenmodes possess the same stability limit, ν̃ ≤ 0.424. This is less restrictive than DG(1)–RK2

with the upwind flux; however, it can be observed that the modified Lax–Friedrichs flux is more dissipative

than the upwind flux, especially for high frequency modes.

III.C.3. HR–Hancock Method

The original Hancock method is a fully discrete one-step method.6, 7 Here, we denote the method as

“HR–Hancock” or “HR–Ha.” The update formula is slightly different from an HR–MOL method, and

given by

ūn+1
j = ūn

j − ∆t

∆x

(
f̂

n+1/2
j+1/2 − f̂

n+1/2
j−1/2

)
, (83)

where the time level of the flux evaluation is already specified: t = tn+1/2. Again, the q-flux (64) is adopted;

however, the input values of the flux function are given by a Taylor series expansion in space and time, thus

u
n+1/2
j+1/2,L = ūn

j +
1

2

(
1 − r

∆t

∆x

)
∆u

n

j , (84a)

u
n+1/2
j+1/2,R = ūn

j+1 −
1

2

(
1 + r

∆t

∆x

)
∆u

n

j+1. (84b)

As in the HR–MOL method, the slope ∆uj is obtained by the average of two slopes over cells (j +1, j, j−1),

hence
∆u

n

j

∆x
=

1

2

(
ūn

j+1 − ūn
j

∆x
+

ūn
j − ūn

j−1

∆x

)
=

ūn
j+1 − ūn

j−1

2∆x
. (85)

After inserting the difference form of fluxes, and some algebra, the spatial-temporal difference operator is

given by

MHR2Ha = − 1

8∆x

[
(q − r)(1 + rν)(δ+)2 + (q + r)(1 − rν)(δ−)2

]

+
1

4∆x

[
(q − 2r + r2ν)δ+ − (q + 2r + r2ν)δ−

]
, (86a)

or, for a Fourier mode, using (57),

MHR2Ha = − 1

8∆x

[
(q − r)(1 + rν)e2iβ + (q + r)(1 − rν)e−2iβ

]

− 1

4∆x

[
(3r − 2q − rqν)eiβ + (3q + r2ν) − (3r + 2q − rqν)e−β

]
. (86b)

When the upwind flux, q = r, is used, and we set the Courant number equal to 1 (rν = ν̃ = 1), then the

above operator reduces to

∆t MHR2Ha = −δ−, (87)

which is the exact upwind difference operator. Inserting the above equation into the original update

scheme (83) leads to

ūn+1
j = ūn

j − δ−ūn
j

= ūn
j−1. (88)

Thus, the HR2–Hancock method produces the exact shift.
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(a) DG(1)–RK2 method with the upwind flux, |g(1)|
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(b) DG(1)–RK2 method with the upwind flux, |g(2)|
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(c) DG(1)–RK2 method with the Lax–Friedrichs flux, |g(1)|
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(d) DG(1)–RK2 method with the Lax–Friedrichs flux, |g(2)|
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(e) DG(1)–RK2 method with the modified Lax–Friedrichs

flux, |g(1)|
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(f) DG(1)–RK2 method with the modified Lax–Friedrichs

flux, |g(2)|

Figure 2. Contour plots of the modulus of the amplification factor, |gDG(1)RK2(ν̃, β)|, computed with the upwind (top),

Lax–Friedrichs (middle), and modified Lax–Friedrichs (bottom) fluxes. The upwind flux leads to the stable method for

ν̃ ≤ 1/3, whereas the Lax–Friedrichs flux results in the unconditionally unstable method. The modified Lax–Friedrichs

flux remedies the instability, and stable for ν̃ ≤ 0.424.
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Accuracy Replacing the difference operators by their Fourier symbols (57) and taking the low-frequency

limit leads to the asymptotic eigenvalue

λHR2Ha = − ir

∆x
β − r2ν

2∆x
β2 −

(
ir

12∆x
− iqrν

4∆x

)
β3 −

(
q

8∆x
− r2ν

6∆x

)
β4 + O

(
β5
)
. (89)

The order of accuracy in space is obtained by letting ν → 0, and replacing β by the wave number k,

λHR2Ha − λexact = − ir

12
∆x2 k3 + O

(
k4
)
, (90)

thus the method is second-order accurate in space. To examine the overall order of accuracy, the amplification

factor, gHR2Ha = 1 + ∆t MHR2Ha, is considered; the local truncation error is given by

LTEHR2Ha = − ir

12

(
∆x2 − 3q ∆x∆t + 2r2 ∆t2

)
k3 − r

8

[q
r
− (rν)3 + 2rν(qν − 1)

]
∆x3k4 + O

(
k5
)
.

(91)

Here, a new expression, ∆x∆t, appears in the leading error term. Since the time step scales as the grid size,

∆t ∝ ∆x, based on the CFL condition, this term is second-order error. Thus, the HR2–Hancock method is

second-order in space and time.

Stability The modulus of the amplification factor, |gHR2Ha(ν̃, β)|, evaluated with the upwind and Lax–Friedrichs

fluxes are shown in Figures 3(a) and 3(b) respectively. The shaded area indicates the stability region, where

|gHR2Ha(ν̃, β)| ≤ 1. These two figures show that the HR2–Hancock method combined with both upwind and

Lax–Friedrichs fluxes is linearly stable for ν̃ ≤ 1. Compared to the HR2–RK2 method shown in Figures 1(a)

and 1(b), the HR2–Hancock is less dissipative, and also possesses the shift condition: |gHR2Ha(1, β)| = 1 for

any β.
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(a) HR–Hancock method with the upwind flux

0 0.2 0.4 0.6 0.8 1 1.2

0 

 π/4 

 π/2 

 3π/4 

 π

0.1
0.2

0.4

0.6

0.6

0.
8

0.8

0.9

0.9

0.9

1.1

1.
2

1

1

1

Courant number, ν̃ = rν

F
re

q
u
en

cy
o
f
a

w
av

e,
β

(b) HR–Hancock method with the Lax–Friedrichs flux

Figure 3. Contour plots of the modulus of the amplification factor, |gHR2Ha(ν̃, β)|, computed with the upwind (left)

and Lax–Friedrichs (right) fluxes. These show that the HR2–Hancock method is stable for ν̃ ≤ 1.

22 of 42

American Institute of Aeronautics and Astronautics



III.C.4. DG–Hancock Method

A DG–Hancock method is also fully discrete, and introduces two variables for a scalar equation, yielding a

2 × 2 amplification matrix. The update formulas for cell-average and undivided gradient have the following

form:

ūn+1
j = ūn

j − ∆t

∆x

(
f̂

n+1/2
j+1/2 − f̂

n+1/2
j−1/2

)
, (92a)

∆u
n+1

j = ∆u
n

j − ∆t

∆x
6
(
f̂

n+1/2
j+1/2 + f̂

n+1/2
j−1/2 − 2rǔj

)
, (92b)

where the interface fluxes are evaluated at the time level, tn+1/2, by the q-flux (64). The input values for

the flux function at the time level tn+k/2 are given by

u
n+k/2
j+1/2,L = ūn

j +
1

2

(
1 − r

k∆t

∆x

)
∆u

n

j , (93a)

u
n+k/2
j+1/2,R = ūn

j+1 −
1

2

(
1 + r

k∆t

∆x

)
∆u

n

j+1. (93b)

The volume integral of the flux over the domain [xj−1/2, xj+1/2]× [tn, tn+1] simplifies owing to the linear flux.

Hence, the spatial integration is done exactly, and a quadrature is only required in time. Two techniques

are employed: 3-point Gauss–Lobatto and 2-point Gauss–Radau quadratures. These quadratures, with their

necessary intermediate update equation, are as follows:

3-point Gauss–Lobatto

ǔj,GL =
1

6
(ūn

j + 4ū
n+1/2
j + ūn+1

j ), where ū
n+1/2
j = ūn

j − ∆t

2

1

∆x

(
f̂

n+1/4
j+1/2 − f̂

n+1/4
j−1/2

)
, (94)

2-point Gauss–Radau

ǔj,GR =
1

4
(3ū

n+1/3
j + ūn+1

j ), where ū
n+1/3
j = ūn

j − ∆t

3

1

∆x

(
f̂

n+1/6
j+1/2 − f̂

n+1/6
j−1/2

)
. (95)

Here, the cell-interface fluxes, f̂
n+1/6
j±1/2 and f̂

n+1/4
j±1/2 , are again obtained by the q-flux, with the input values (93)

with k =
1

6
,
1

4
respectively. Even though the two quadratures use different points, owing to the linear flux

both Gauss–Lobatto and Gauss–Radau lead to the identical volume integral of the flux, hence ûj,GL ≡ ûj,GR.

After inserting the flux formula into the update scheme, and some algebra, a space-time difference operator

in the form of (51) results; using the notation un
j = [ūn

j , ∆u
n

j ]T it can be written in the form

MDG(1)Ha = A
+D+ + C + A

−D−, (96)

where

A
+ =

q − r

2∆x




1 −1

2
(1 + rν)

6(1 + rν) −3 − 6rν − 2(rν)2


 , A

−=
q + r

2∆x




−1 −1

2
(1 − rν)

6(1 − rν) 3 − 6rν + 2(rν)2


 , (97a)

C =
r

∆x




0 0

0 −6
(q

r
− rν

)


 , D±= δ±I, (97b)
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or, when applied to a Fourier mode,

MDG(1)Ha = A
+eiβI + C

′ − A
−e−iβI where C

′ = − r

∆x




q

r

1

2
(1 − qν)

−6(1 − qν)
3q

r
− 2rqν2


 . (98)

When the upwind flux q = r is used, and we set the Courant number equal to 1 (rν = ν̃ = 1), the above

operator reduces to

∆tMDG(1)Ha = −δ−I, (99)

which is again the exact upwind difference operator. Combined with the forward Euler time integrator (52),

the method reduces to the exact solution un+1
j = un

j−1. Thus the DG(1)–Hancock method produces the

exact shift.

As mentioned earlier, even though a scalar equation is considered, a DG method produces a difference

operator in matrix form. Thus, the characteristic equation of MDG(1)Ha is a quadratic form:

(∆xλ)2 +
[
(q − r)

(
(rν)2 + 3rν + 1

)
δ+ − (q + r)

(
(rν)2 − 3rν + 1

)
δ− + 6(q − r2ν)

]
∆xλ

− 1

4
(rν)2

[
(q − r)2(δ+)2 + (q + r)2(δ−)2

]
+ 3(q − r2ν)

[
(q − r)δ+ − (q + r)δ−

]

− 1

2
(q2 − r2)

[
6 − (rν)2

]
δ+δ− = 0, (100)

which provides two eigenvalues; principal and extraneous. Since the general forms of eigenvalues are lengthy,

only the eigenvalues for the upwind flux, q = r, are presented here as an example:

λ
(1,2)
DG(1)Ha, upwind =

r

∆x

[
1 − 3rν + (rν)2

]
δ−

− r

∆x
(1 − rν)

[
3 ∓

√
9 − 6(2 − rν)δ− +

(
1 − 4rν + (rν)2

)
(δ−)2

]
. (101)

The asymptotic analysis that follows, though, is based on the general q-flux.

Accuracy Replacing the difference operators by their Fourier symbols (57), and taking the low-frequency

limit, leads to

λ
(1)
DG(1)Ha = − ir

∆x
β − r2ν

2∆x
β2 +

ir3ν2

6∆x
β3 − r

72∆x

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν

(
1 − qν + (rν)2

)
]

β4 + O
(
β5
)
,

(102a)

λ
(2)
DG(1)Ha = − 6r

∆x

(q

r
− rν

)
+

ir
[
3 − 6qν + 2(rν)2

]

∆x
β + O

(
β2
)
. (102b)

When comparing with the exact eigenvalue (62), it is clear that λ
(1)
DG(1)Ha is the principal root and λ

(2)
DG(1)Ha

is the extraneous one. Based on the range of the dissipation parameter, r ≤ q ≤ ∆x

∆t
, it is easily shown that

q

r
− rν ≥ 0. Thus, the leading term independent of β in λ

(2)
DG(1)Ha is a negative real value, and corresponding

extraneous wave is damped quickly. The order of accuracy in space is obtained by letting ν → 0,

λ
(1)
DG(1)Ha − λexact = − r2

72q
∆x3 k4 + O

(
k5
)
, (103a)

λ
(2)
DG(1)Ha − λexact = − 6q

∆x
+ O(k) , (103b)
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thus the principal root is third-order accurate in space and the extraneous root is zeroth-order.

The overall accuracy is derived by the eigenvalues of the amplification matrix of a fully discrete form,

GDG(1)Ha = I + ∆tMDG(1)Ha. Following the same procedure as before, the local truncation error of an

accurate mode is given by

LTE
(1)
DG(1)Ha = − r

72

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν(1 − qν)

]
∆x3 k4 + O

(
k5
)
. (104)

Therefore, the DG(1)–Hancock method is third-order in space and time.

Stability The modulus of the accurate and inaccurate amplification factors, |g(1),(2)
DG(1)Ha|, computed with the

upwind fluxes are shown in Figure 4. Compared to the DG(1)–RK2 method illustrated in Figures 2(a) and 2(b),

the DG(1)–Hancock method possesses a wider stability region, ν̃ ≤ 1, and also is less dissipative at high

frequencies. When the Lax–Friedrichs flux is employed, as for DG(1)–RK2, the DG(1)–Hancock method

becomes unconditionally unstable.
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(a) DG(1)–Hancock method with the upwind flux
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(b) DG(1)–Hancock method with the upwind flux

Figure 4. Contour plots of the modulus of the amplification factor, |gDG(1)Ha(ν̃, β)|, computed with the upwind flux.

These show that the DG(1)–Hancock method with the upwind flux is stable for ν̃ ≤ 1.

III.C.5. Dominant Dispersion/Dissipation Error in 1-D

The results of a Fourier analysis for each method are listed below for comparison. Even though our main focus

in this section is the analysis and comparison of the DG–Hancock method to the HR/DG–MOL methods,

we also present results for two newly developed methods: the spectral finite volume (SV) method23 and the

arbitrary high order schemes using derivatives (DG–ADER method).24 The details of the analysis for these

methods are omitted here. The local truncation errors show the dominant dispersion error, O
(
k3
)
-term,

and the dissipation error, O
(
k4
)
-term. Moreover, owing to the equivalence of the Fourier analysis and the

modified-equation analysis, the leading error term indicates the order of accuracy.
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semi-discrete methods:

LTEHR2RK2 = c3

[
1 + 2(rν)2

]
k3 + c4

[q
r
− (rν)3

]
k4, (105a)

LTEHR2RK3 = c3 k3 + c4

[
q

r
+

1

3
(rν)3

]
k4, (105b)

LTEHR3RK3 = +
2

3
c4

[
q

r
+

1

2
(rν)3

]
k4, (105c)

LTE
(1)
DG(1)RK2 = c3

[
2(rν)2

]
k3 +

1

9
c4

[
r

q
− 9(rν)3

]
k4, (105d)

LTE
(1)
DG(1)RK3 =

1

9
c4

[
r

q
+ 3(rν)3

]
k4, (105e)

LTE
(1),upwind
DG(2)RK3 =

1

9
c4

[
3(rν)3

]
k4, (105f)

LTE
(1)
SV2RK2 = −1

2
c3

[
1 − 4(rν)3

]
k3 +

2

9
c4

[
r

q
− 4(rν)3

]
k4, (105g)

fully discrete methods:

LTEHR2Ha = c3

[
1 − 3qν + 2(rν)2

]
k3+ c4

[q
r
− (rν)3 + 2rν(qν − 1)

]
k4, (105h)

LTE
(1)
DG(1)Ha =

1

9
c4

[
r

q

(
1 − (rν)2

)2

1 − r2ν/q
− 3rν(1 − qν)

]
k4, (105i)

LTE
(1)
DG(1)ADER = c3

[
rν

(
r

q
− rν

)]
k3 +

1

9
c4

[
r

q

(
1 − 4

r

q
(rν) + 3(rν)2

)]
k4, (105j)

LTE
(1),upwind
DG(2)ADER =

1

15
c4 [rν(1 − rν)] k4, (105k)

where

c3 = − ir

12
∆x2 , c4 = − r

8
∆x3 . (106)

The above equations show that the leading errors of the HR3–RK3, DG(1)–RK3, DG(2)–RK3, DG(1)–Hancock,

and DG(2)–ADER methods are O
(
∆x3

)
, whereas in the rest of methods they are O

(
∆x2

)
. Interestingly,

the DG(1) spatial discretization can yield a third-order method, at least for a linear equation discretized

on a uniform grid, if a proper time integration method is adopted. The Hancock and RK3 method lead to

a third-order method; note that, DG(1)–RK3 requires three flux calculations at each cell-interface whereas

DG(1)–Hancock requires two to achieve the same order. The DG(2) spatial discretization together with the

same (third) order of temporal discretization provides a third-order method: DG(2)–RK3 and DG(2)–ADER.

In these methods, the leading error can be attributed to the temporal discretization, as can be seen by letting

ν̃ = rν → 0 : the O
(
k4
)
-term disappears. The analysis also shows the lower dissipative of DG discretizations:

the leading-error coefficient of a DG(1) method is
1

9
of the value for HR2,

1

6
of the value for HR3, and

1

2
of

the value for SV2.

The stability limit of the methods when combined with the upwind and Lax–Friedrichs fluxes are shown in

Table 3. In an HR (finite-volume) method, the linear stability limit increases as the order of method increases
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due to the inclusion of wider stencils. Conversely, DG and SV methods reduce their stability domain while

increasing the order of accuracy, because increasing the number of unknowns per cell is equivalent to a

grid refinement. Among the DG(1)–Hancock, DG(1)–RK3, and DG(2)–RK3, all third-order accurate, yet

DG(1)–Hancock possesses the largest stability domain, ν̃max = 1.0. Nevertheless, DG(1)–Hancock requires

only two Riemann solvers per cell-interface per time-step, whereas both DG(1)–RK3 and DG(2)–RK3 need

three Riemann solvers.

Table 3. The maximum stable Courant number, ν̃max := r
∆t

∆x
, of a method applied to the 1-D linear advection equation

is tabulated. The DG(1)–Hancock method is seen to possess the largest stability domain among all DG discretizations

listed here.

method order p
maximum Courant number, ν̃max

upwind: q = r Lax–Friedrichs: q = ∆x/∆t

semi-discrete

HR1–RK1 1 1.0 1.0

HR2–RK2 2 1.0 1.0

HR2–RK3 2 1.175 1.499

HR3–RK3 3 1.625 1.681

DG(1)–RK2 2 0.333 unstable

DG(1)–RK3 3 0.409 unstable

DG(2)–RK3 3 0.209 unstable

SV2–RK2 2 0.500 unstable

SV3–RK3 3 0.333 (unconfirmed)

fully discrete

HR2–Hancock 2 1.0 1.0

DG(1)–Hancock 3 1.0 unstable

DG(1)–ADER 2 0.333 unstable

DG(2)–ADER 3 0.170 unstable

III.D. Difference Operators and Their Properties in 2-D

In this section, a several discretization methods are applied to the two-dimensional linear advection equa-

tion (44b), and a Fourier analysis is employed to uncover their dominant dissipation and dispersion error,

order of accuracy, and domain of linear stability. Four methods, HR2–RK2, HR–Hancock, DG(1)–RK2, and

DG(1)–RK3, are compared to the DG(1)–Hancock method. For brevity, the detailed analysis is only pre-

sented for the DG(1)–Hancock method. The exact amplification factor and exact eigenvalue of 2-D spatial

differentiation can be expressed as

gexact(ν̃x, ν̃y, α, β) = e−i(rνxα+sνyβ) = e−i(ν̃xα+ν̃yβ), (107a)

λexact = −i

(
r

∆x
α +

s

∆y
β

)
, (107b)

where α and β are spatial frequencies in the x- and y-directions, respectively.

27 of 42

American Institute of Aeronautics and Astronautics



III.D.1. DG–Hancock Method

The DG–Hancock method on rectangular grids has the following update formulas:

ūn+1
i,j = ūn

i,j −
∆t

∆x

(
f̂

n+1/2
i+1/2,j − f̂

n+1/2
i−1/2,j

)
− ∆t

∆y

(
ĝ

n+1/2
i+1/2,j − ĝ

n+1/2
i−1/2,j

)
, (108a)

∆xu
n+1

i,j = ∆xu
n

i,j −
∆t

∆x
6
(
f̂

n+1/2
i+1/2,j + f̂

n+1/2
i−1/2,j − 2rǔi,j

)

− ∆t

∆y
12




1∫

0

(
ξ − 1

2

)
ĝ

n+1/2
i,j+1/2(ξ) dξ −

1∫

0

(
ξ − 1

2

)
ĝ

n+1/2
i,j−1/2(ξ) dξ


 ,

(108b)

∆yu
n+1

i,j = ∆yu
n

i,j −
∆t

∆y
6
(
ĝ

n+1/2
i,j+1/2 + ĝ

n+1/2
i,j−1/2 − 2sǔi,j

)

− ∆t

∆x
12




1∫

0

(
η − 1

2

)
f̂

n+1/2
i+1/2,j(η) dη −

1∫

0

(
η − 1

2

)
f̂

n+1/2
i−1/2,j(η) dη


 ,

(108c)

where the fluxes in both coordinate directions are given by the q-flux (64). The volume integral of the

flux simplifies owing to flux linearity, and quadrature is only required in time. Again, both Gauss–Lobatto

and Gauss–Radau quadratures in time for ǔi,j lead to identical final update formulas. After inserting the

difference form of the volume integral of the fluxes and the q-flux, the difference operator has the form

un+1
j =

(
I + ∆tMDG(1)Ha

)
un

j , (109)

where

MDG(1)Ha = A
+D+

x + A
−D−

x + B
+D+

y + B
−D−

y + C (110)

with

D±
x = δ±x I, D±

y = δ±y I, (111)

and the coefficient matrices are given by

A
+ =

qx − r

2∆x




1 −1

2
(1 + rνx) −sνy

2

6(1 + rνx) −3 − 6rνx − 2(rνx)2 −(3 + 2rνx)sνy

6sνy −(3 + 2rνx)sνy 1 − 2(sνy)2




, (112a)

A
− =

qx + r

2∆x




−1 −1

2
(1 − rνx)

sνy

2

6(1 − rνx) 3 − 6rνx + 2(rνx)2 −(3 − 2rνx)sνy

−6sνy −(3 − 2rνx)sνy −1 + 2(sνy)2




, (112b)

B
+ =

qy − s

2∆y




1 −rνx

2
−1

2
(1 + sνy)

6rνx 1 − 2(rνx)2 −(3 + 2sνy)rνx

6(1 + sνy) −(3 + 2sνy)rνx −3 − 6sνy − 2(sνy)2




, (112c)

B
− =

qy + s

2∆y




−1
rνx

2
−1

2
(1 − sνy)

−6rνx −1 + 2(rνx)2 −(3 − 2sνy)rνx

6(1 − sνy) −(3 − 2sνy)rνx 3 − 6sνy + 2(sνy)
2




, (112d)
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C =




0 0 0

0 − 6r

∆x

(qx

r
− rνx

) 6s

∆y
rνx

0
6r

∆x
sνy − 6s

∆y

(qy

s
− sνy

)




. (112e)

Accuracy In view of the lengthy formula, let us assume the wave frequencies in the x- and y-directions

are the same, thus α = β. Furthermore, in the O
(
β4
)
-term, a square mesh, ∆x = ∆y = ∆h, is assumed.

Under these assumptions, the asymptotic eigenvalues based on the upwind flux, (qx, qy) = (r, s), become

λ
(1)
DG(1)Ha = −i

(
r

∆x
+

s

∆y

)
β − 1

2

(
r

∆x
+

s

∆y

)2

∆tβ2 +
i

6

(
r

∆x
+

s

∆y

)3

∆t2β3

− r + s

72∆h

[
4 − 5(r + s)

∆t

∆h
+ 2(r + s)2

(
∆t

∆h

)2

− 4(r + s)3
(

∆t

∆h

)3
]

β4 + O
(
β5
)
,

(113a)

λ
(2),(3)
DG(1)Ha = − 3

∆h

[
(r + s) − ν(r2 + s2) ±

√
(r − s)2

(
1 − 2(r + s)ν

)
+ (r2 + s2)2ν2

]
+ O(β) . (113b)

Replacing the wave frequency by the wave number, k =
β

∆h
, and letting ∆t → 0 brings out the spatial order

of accuracy:

λ
(1),upwind
DG(1)Ha − λexact = −r + s

18
∆h3 k4 + O

(
k5
)
, (114a)

λ
(2),upwind
DG(1)Ha − λexact = − 6r

∆h
+ O(k) , (114b)

λ
(3),upwind
DG(1)Ha − λexact = − 6s

∆h
+ O(k) , (114c)

thus, the spatial discretization is third-order accurate. Comparing the dominant dissipation error (114a) to

the error obtained in the one-dimensional case, (103a), the multi-dimensionality increases the dissipation by

a factor 4. This multi-dimensional error originates with the line integral of the flux along the cell interfaces,

the last term in (108b) and (108c). When the Lax–Friedrichs flux

(
qx = qy = q =

∆h

∆t
in the O

(
β4
)

term

)

is adopted, the asymptotic eigenvalues become

λ
(1),LxF
DG(1) = −i

(
r

∆x
+

s

∆y

)
β − 1

2

(
r

∆x
+

s

∆y

)2

∆tβ2 +
i

6

(
r

∆x
+

s

∆y

)3

∆t2β3

− r + s

72[(r2 + s2)∆t − q∆h]

[
(6q2 + r2 + s2) − 12q(r2 + rs + s2)

(
∆t

∆h

)

+ 2(r + s)2
(
3q2 + 2(r2 + s2)

)(∆t

∆h

)2

− 3q(r + s)2(3r2 + 2rs + 3s2)

(
∆t

∆h

)3

+ 4(r + s)4(r2 + s2)

(
∆t

∆h

)4]
β4 + O

(
β5
)
,

(115a)

λ
(2),LxF
DG(1)Ha = − 6q

∆h
+ O(β) , (115b)

λ
(3),LxF
DG(1)Ha = − 6

∆h

[
q − (r2 + s2)ν

]
+ O(β) . (115c)

As in the one-dimensional case, the Lax–Friedrichs flux, q =
∆h

∆t
, leads to the constant leading error

− 6q

∆h
= −6 in λ

(2),LxF
DG(1)Ha, thus the method becomes unconditionally unstable.
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The overall order of accuracy for the scheme with the upwind flux becomes

LTE
(1),upwind
DG(1)Ha = −r + s

72

[
4 − 5(r + s)ν + 2(r + s)2ν2 − (r + s)3ν3

]
∆h3 k4 + O

(
k5
)
, (116)

thus the accurate eigenmode of the two-dimensional DG(1)–Hancock method is third-order in space and

time.

Stability The unity contour of the amplification-factor modulus |gmethod| is shown in Figure 5 for various

upwind schemes. The shaded area indicates the region where |gmethod(ν̃x, ν̃y)| ≤ 1 for any α, β ∈ [0, π]. The

numerical result shows that a sufficient condition for the two-dimensional DG(1)–Hancock to be stable is

ν̃2D := (ν̃x + ν̃y) ≤ 0.664, (117)

more restrictive than in one dimensional, and also more restrictive than for the two-dimensional HR2–RK2/Hancock

method (ν̃2D ≤ 1.0), but still 50% less restrictive than for the two-dimensional DG(1)–RK2 method (ν̃2D ≤ 0.333).

The stability limits for the upwind and Lax–Friedrichs fluxes are also summarized in Table 4.

III.D.2. Dominant Dissipation/Dispersion Error in 2-D

The results of a Fourier analysis for each method are listed below for comparison.

semi-discrete methods:

LTEHR2RK2 = c3

[
1 + 2(r + s)2ν2

]
k3 + c4

[
1 − (r + s)3ν3

]
k4, (118a)

LTE
(1)
DG(1)RK2 = c3

[
2(r + s)2ν2

]
k3 +

4

9
c4

[
1 − 9

4
(r + s)3ν3

]
k4, (118b)

LTE
(1)
DG(1)RK3 =

4

9
c4

[
1 +

3

4
(r + s)3ν3

]
k4 (118c)

fully discrete methods:

LTEHR2Ha = c3

[
1 − 3(r + s)ν + 2(r + s)2ν2

]
k3+ c4

[
1 − 2(r + s)ν + 2(r + s)2ν2 − (r + s)3ν3

]
k4,

(118d)

LTE
(1)
DG(1)Ha =

4

9
c4

[
1 − 5

4
(r + s)ν +

1

2
(r + s)2ν2 − 1

4
(r + s)3ν3

]
k4,

(118e)

where

c3 = − i(r + s)

12
∆h2 , c4 = − (r + s)

8
∆h3 . (119)

The local truncation errors show the dominant dispersion error
(
O
(
k3
)
-term

)
, and the dissipation error,

(
O
(
k4
)
-term

)
. Compared to the one-dimensional results (105), the leading dissipation error of a two-

dimensional DG(1) method increases by a factor 4 due to the multi-dimensionality. In contrast, an HR2

method possesses the same amount of dispersion and dissipation for both one- and two-dimensional dis-

cretizations. The DG(1)–Hancock and DG(1)–RK3 methods are superior with a leading error O
(
∆h3

)
; the

rest of the methods have error O
(
∆h2

)
.
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Figure 5. Stability domain of various upwind methods applied to the 2-D linear advection equation. The shaded area

indicates the region where |gmethod(ν̃x, ν̃y)| ≤ 1 for α, β ∈ [0, π]. The Hancock time-integration yields the largest stability

domain even in two dimension.
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Table 4. Maximum 2-D Courant number, ν̃2D
max := (ν̃x + ν̃y)max, for various methods applied to the 2-D linear advection

equation. The stability domain of DG(1)–Hancock reduces to ν̃2D
max = 0.664 in two dimensions, yet greater than for

DG(1)–RK2/RK3.

method order p
maximum Courant number, ν̃2D

max := (ν̃x + ν̃y)max

upwind: (qx, qy) = (r, s) Lax–Friedrichs: (qx, qy) =

(
∆x

∆t
,
∆y

∆t

)

semi-discrete
HR2–RK2 2 1.0 1.0

DG(1)–RK2 2 0.333 unstable

DG(1)–RK3 3 0.409 unstable

fully discrete
HR2–Hancock 2 1.0 1.0

DG(1)–Hancock 3 0.664 unstable

IV. Analysis for 1-D Linear Hyperbolic-Relaxation Equations

In the previous section, discretization methods for hyperbolic conservation laws were analyzed by adopting

the 1-D and 2-D linear advection equations as the model equations. In order to extend the analysis to a

method for hyperbolic-relaxation equations, we now consider a dimensionless 2×2 linear model system,25–27

∂tu + ∂xv = 0, (120a)

∂tv + ∂xu = −1

ǫ
(v − ru). (120b)

Here, u is the conserved variable, v is the flux of u, and ǫ > 0 is a dimensionless relaxation time. In vector

form, u = [u, v]T , f = [v, u]T , and s = [0, ru − v]T in (1). This system has ‘frozen’ wave speeds ±1 when

relaxation is weak (ǫ ≫ 1); when relaxation dominates (ǫ ≪ 1), it reduces to the advection-diffusion equation,

∂tu + r∂xu = ǫ(1 − r2)∂xxu + O
(
ǫ2
)
, (121)

with an ‘equilibrium’ wave speed r. For stability, |r| ≤ 1.

Previously, a Fourier analysis of the semi-discrete HR2 and DG(1) methods showed that the upwind

flux based on the frozen wave speeds ±1 applied to the model equations (120) reduces to the Rusanov flux

(q = 1) when ǫ → 0.10 Hence, at the discretization level, solving (120) by using the upwind flux (also with

q = 1 for this system) is identical to directly solving (121) with the Rusanov flux (q = 1) when ǫ → 0.

Note that the upwind flux for the advection-diffusion equation (121) is obtained by q = r. This means

that the semi-discrete HR2 and DG(1) methods for (120) are not strictly upwind in the equilibrium limit

(ǫ → 0). It was further shown that the dominant dispersion/dissipation errors of semi-discrete methods in

the low-frequency limit are given by (68) for HR2 and (78) for DG(1) with q = 1, while the exact solution

in this case is

λexact = −irk − ǫ(1 − r2)k2 − 2iǫ2r(1 − r2)k3 + O
(
ǫ3
)
. (122)

In this paper, we extend the analysis to a fully discrete method.
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At first, to demonstrate an extra difficulty arising due to the stiff source term, operator splitting is adopted

in the time integrator. This splitting decouples the time evolution of the flux and source terms, allowing us

to compute these independently. The great advantage of this method, particularly for hyperbolic-relaxation

equations, is that the source term, which yields exponential damping, can be integrated exactly. In order to

isolate the error introduced by the operator splitting, we eliminate the spatial discretization error by taking

the flux derivative from the exact solution. Thus, the operator-split update operator for (120) taken the

form

u(1) = e
∆t
2

Qun,

u(2) = e−ik∆tMu(1), (123)

un+1 = e
∆t
2

Qu(2),

where

M =
∂f

∂u
=




0 1

1 0


 and Q =

1

ǫ




0 0

r −1


 . (124)

Following the same procedure as in the previous section, the local truncation error in the low-frequency limit

is found to be

LTEsplitting =

[
(1 + e∆t/ǫ)(1 − r2)∆t

2(1 − e∆t/ǫ)
+ ǫ(1 − r2)

]
k2 + O

(
k3
)

≃ −1 − r2

12

∆t2

ǫ
k2 = − (1 − r2)ν2

12

∆x2

ǫ
k2, (125)

where the Courant number is defined by (45). The above equation shows that the splitting is second-order

in space and time. However, since the above error is in the O
(
k2
)
-term, the numerical dissipation adds to

the physical dissipation −ǫ(1 − r2)k2 in (122), leading to an incorrect diffusion coefficient. Furthermore, in

the near-equilibrium limit (O(ǫ) ≪ 1), the time step and grid size must be severely restricted,

O(∆t) = O(ν∆x) = O(ǫ) , (126)

otherwise the excessive numerical dissipation damps all waves in the domain.

The above example shows that straightforward decoupling of flux and source term leads to accuracy

in the near-equilibrium limit only when (126) is satisfied. In order to overcome this severe restriction,

coupling between flux and source term is necessary; for instance, an MOL with several stages, or a fully

discrete method in which the flux is affected by the source term. Below, we examine a Fourier analysis

of four methods applied to the linear hyperbolic-relaxation equations (120). The local truncation error

of DG(1)–Hancock is compared to HR2–MOL, DG(1)–MOL, and HR2–Hancock. As the time integrator

for HR2–MOL and DG(1)–MOL, we adopt a second-order implicit-explicit (IMEX) Runge–Kutta method:

IMEX–SSP2(3,3,2).28 This time integrator requires three stages for both explicit and implicit terms to

33 of 42

American Institute of Aeronautics and Astronautics



achieve second-order accuracy. The update formulas are given by

u(1) = un +
∆t

4ǫ
s(u(1)),

u(2) = un − ∆t

2
∂xf(u

(1)) +
∆t

4ǫ
s(u(2)), (127)

u(3) = un − ∆t

2

[
∂xf(u

(1)) + ∂xf(u
(2))
]

+
∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
,

un+1 = un − ∆t

3

[
∂xf(u

(1)) + ∂xf(u
(2)) + ∂xf(u

(3))
]

+
∆t

3ǫ

[
s(u(1)) + s(u(2)) + s(u(3))

]
.

The local truncation error of each method is obtained after some algebra, yielding

semi-discrete methods:

LTEHR2MOL =

[
c3

(
1 + (rν)2

)
+

1

6
c̃3ν

]
k3+

[
c4

(
1

r
− 1

3
(rν)3

)
+

1

6
c̃4

]
k4, (128a)

LTE
(1)
DG(1)MOL =

[
c3(rν)2 +

1

6
c̃3ν

]
k3+

[
1

9
c4

(
r − 3(rν)3

)
+

1

12
c̃4

]
k4, (128b)

fully discrete methods:

LTEHR2Ha =

[
c3

(
1 − 3ν + 2(rν)2

)
+

1

2
c̃3ν

]
k3+

[
c4

(
1

r
− (rν)3 + 2rν(ν − 1)

)
+

1

3
c̃4

(
1 +

3

4
ν

)]
k4,

(128c)

LTE
(1)
DG(1)Ha =

[
1

9
c4

(
r
(
1 − (rν)2

)2

1 − r2ν
− 3rν(1 − ν)

)

+
c̃4

12(1 − r2ν)2

(
1 +

1

3
r2 +

ν2

6

(
2r2(r2 − 9) + 3r4ν + r4(9 − 7r2)ν2 + 3r6ν3

))
]

k4,

(128d)

where the coefficients of errors attributed to the flux (explicit) discretization are

c3 = − ir

12
∆x2 , c4 = − r

8
∆x3 , (129)

and the source term (implicit) errors have coefficients

c̃3 = −iǫr(1 − r2) ∆x , c̃4 = −ǫ(1 − r2) ∆x2 . (130)

The above equations show that HR–MOL, DG(1)–MOL, and HR–Hancock have a first-order error ∼ k3, as

c̃3 = O(ǫ∆x). However, numerically, this error term is not pronounced in the near-equilibrium limit since

ǫ ≪ 1, thus the dominant error of the methods stem from c3 = O
(
∆x2

)
. Similarly, the dominant error of

DG(1)–Hancock is c4 = O
(
∆x3

)
.

V. Numerical Experiments

V.A. Linear Advection Equation

To confirm the previous analysis and demonstrate the efficiency of the DG(1)–Hancock method, the 1-D

linear advection equation,

∂tu + ∂xu = 0 with r =
1

2
, u(x, 0) = cos(2πx), (131)
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is solved over the domain x ∈ [0, 1] with periodic boundary conditions. The numerical solution at tend = 300,

after the harmonic wave has propagated 150 times across the domain, is compared to the exact solution.

The upwind flux is used to compute a cell-interface flux, and we set the Courant number for each method

equal to 90% of the method’s linear stability limit listed in Table 3;

νHR2–RK2 = νHR2–Hancock = νDG(1)–Hancock = 0.9, (132a)

νDG(1)–RK2 = 0.3, νDG(1)–RK3 = 0.37, νDG(2)–RK3 = 0.19. (132b)

At first, to assess the dispersion and dissipation errors of methods qualitatively, the numerical solution by

DG(1)–Hancock at tend is plotted together with solutions by three other methods: HR2–RK2, HR2–Hancock,

and DG(1)–RK2. The numerical results superimposed on the exact solution are shown in Figure 6. The

DG(1)–Hancock method produces the least dispersive/dissipative result among the four methods. As shown

in the local truncation errors (105), the leading error of the HR2–RK2, DG(1)–RK2, and HR2–Hancock

methods is dispersive, caused by the O
(
k3
)
-term. Thus, a traveling wave solution suffers especially with

HR2–RK2 and DG(1)–RK2. However, HR2–Hancock has surprisingly little dispersive/dissipative error,

which can be understood from the shift condition (88) which the Hancock method would satisfy at ν̃ = 1.

Secondly, a grid convergence study is conducted, with results are shown in Figure 7. The L2-norms of

solution errors are plotted against the number of degrees of freedom (solution parameters). It is seen that

DG(1)–Hancock converges with third-order accuracy, while its error levels are almost comparable to those

of DG(2)–RK3.

Even though Figure 7 provides the accuracy of a method, it does not show its efficiency. There-

for, L2-norms of solution errors are plotted against CPU time in Figure 8. This figure reveals that the

DG(1)–Hancock is actually more efficient than DG(2)–RK3: the former method has only two unknowns
(
DG(1)

)
and a two-stage update formula (Hancock), whereas the latter method has three unknowns

(
DG(2)

)

and a three-stage update formula
(
RK(3)

)
.

Finally, CPU time normalized by the CPU time of the DG(1)–RK2 method for a specific error level is

shown in Figure 9. Remarkably, the DG(1)–Hancock method is almost two orders of magnitude more efficient

than the DG(1)–RK2 method. However, this could be a flattered result since the model equation we are

solving is merely the 1-D linear advection equation. We expect that, when a nonlinear problem is considered,

the efficiency of DG(1)–Hancock will be degraded; in fact, the numerical results in the next section still show

an order of magnitude difference with DG(1)–MOL for a 1-D nonlinear hyperbolic-relaxation system.

V.B. Hyperbolic-Relaxation Equations

V.B.1. Model Equations and Initial Conditions

To demonstrate the accuracy of the DG(1)–Hancock method when applied to a nonlinear hyperbolic-

relaxation system, the Euler equations with heat transfer, which reduce to the isothermal Euler equations
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of degrees of freedom. DG(1)–Hancock is almost com-

parable to DG(2)–RK3.
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Figure 8. L2-norms of error plotted against CPU

time. DG(1)–Hancock is the most efficient method.
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in the equilibrium limit, are adopted as a model equation:29

∂

∂t




ρ

ρu

ρE




+
∂

∂x




ρu

ρu2 + p

ρuH




= −1

ǫ




0

0

ρ(T − T0)




, (133)

where the pressure is given by the ideal gas law, p := (γ − 1)ρe = ρRT . The frozen characteristic speeds

are u ± a, u, where the speed of sound is given by a :=
√

γp/ρ. In the equilibrium limit (ǫ → 0), the

nonequilibrium temperature T converges to the constant equilibrium temperature T0, instantaneously. As a

result, the above equations tend asymptotically to the following isothermal Euler equations:

∂

∂t




ρ

ρu


+

∂

∂x




ρu

ρu2 + p∗


 =




0

0


 , (134)

where the gas becomes polytropic and the pressure is given by p∗(ρ) := ρRT0. The equilibrium characteristic

speeds are u ± a∗, where the constant speed of sound is a∗ :=
√

p∗/ρ =
√

RT0.

Consider an initial-value problem with the following C∞ initial distributions:

ρ0(x) = exp

(
u0(x)

a∗

)
, (135a)

u0(x) =





−a∗, x < −5,

a∗ tanh

[
− 10x

(x + 5)(x − 5)

]
, x ∈ [−5, 5],

a∗, x > 5,

(135b)

p0(x) = (a∗)2ρ0(x), (135c)

plotted in Figure 10. The initial conditions are chosen such that the analytical solution of the isothermal

Euler equations becomes a simple wave solution; one of the Riemann invariants remains constant: J−
iso(x, t) =

ln ρ0 −
u0

a∗
≡ 0. Also, the flow properties are non-equilibrium (T 6= T0) only within the domain x ∈ [−5, 5].

The equilibrium speed of sound, equilibrium temperature, and the ratio of specific heats are set as follows:

a∗ =
√

0.4, T0 = 1, γ = 1.4. (136)

The computational domain is confined to x ∈ [−16, 16] with uniform grids, and the solution at the time

tend = 5.0 is used for checking grid convergence and comparison among methods.

V.B.2. Richardson Extrapolation for Grid Convergence

In order to determine the order of accuracy of the various schemes, we need to know the exact solution

of (133) at the time tend. When the frozen limit (ǫ → ∞) is considered, the exact solution must be obtained

with the regular Euler equations. Conversely, at the equilibrium limit (ǫ → 0), the exact solution is derived

from the isothermal Euler equations, (134). Simple-wave solutions are available for these two conservation
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for density, ρ0(x), and normalized velocity, u0(x)/a∗.
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puted by the DG(1)–Hancock method, is superposed

to the exact solution of the isothermal Euler equa-

tions.

laws; however, the resulting exact solutions are not strictly the exact solution of (133). For instance, when

O(ǫ) ≪ 1, an asymptotic expansion shows that a series of O
(
ǫk
)
-term appears on the right-hand side of the

conservation laws,

∂tU + ∂xF(U) = O(ǫ) ∂xxU + . . . . (137)

Thus, the actual exact solution should be derived from (137), which contains an infinite series in terms of ǫ.

This could be possible if a simple system is considered; however, the derivation can be cumbersome.

To overcome this difficulty, Richardson extrapolation, which does not require knowledge of the exact

solution, is adopted for the grid-convergence study. In brief, successive grid solutions provide an estimated

exact solution, ūi,exact, and the coefficients of the local truncation error, cj , in the following form:

ūi = ūi,exact + c1∆x + c2∆x2 + c3∆x3 + . . . . (138)

Thus, once the right-hand side of the above equation is computed, the error at the cell i is given by

errori(u) := ūi − ūi,exact

= (c1)i∆x + (c2)i∆x2 + (c3)i∆x3 + . . . , (139)

after which, the Lp-norm on the uniform grid is obtained by

Lp(u) :=

[
1

N

N∑

i=1

|errori(u)|p
]1/p

. (140)

V.B.3. Numerical Results

The DG(1)–Hancock method is compared to two semi-discrete methods: HR2–MOL and DG(1)–MOL. As

to the time integrator, we adopt the IMEX–SSP2(3,3,2) (127). In order to verify the accuracy of a method
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in the stiff regime (ǫ ≪ O(1)), the relaxation time is taken as

ǫ = 10−8. (141)

Due to the implicit treatment of the source term, the time step is solely constrained by the maximum acoustic

wave speed, thus

∆t = νmethod
∆x

|u| + a
, (142)

where νmethod is the Courant number of the method used. Here, we set a Courant number as 90% of a

method’s linear stability limit:

νHR2–MOL = 0.9,

νDG(1)–MOL = 0.3, (143)

νDG(1)–Hancock = 0.9.

The density distribution at tend = 5.0, superposed to the exact solution of the isothermal Euler equations,

is shown in Figure 11. Even though the exact solution of the isothermal Euler equations does not contain the

O(ǫ)-term, the numerical result is in good agreement with the exact solution. This is because the relaxation

time, ǫ, is so small (ǫ = 10−8), thus the O(ǫ)-term is negligible, at least in the eyeball norm.

To disclose the order of accuracy of each method, Richardson extrapolation is adopted for the grid-

convergence study. The L1-norm of density error, L1(ρ), is shown in Figure 12. The plot shows that the

all three methods are second-order accurate, yet the DG(1)–Hancock method has an error nearly an order

of magnitude lower than the HR2/DG(1)–MOL method. Note that previously the linear analysis predicts

third-order convergence of the DG(1)–Hancock method (128d); however, due to the linearization of the

source term in space (21), the method reduces to second-order accuracy for the nonlinear source.
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Figure 12. L1-norms of density error, L1(ρ), for three

methods are compared, showing the high accuracy of

the DG(1)–Hancock method.
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In Figure 12 it is shown that the DG(1)–Hancock method is superior to the other two methods in terms

of the accuracy; however, the method would not be attractive if it required enormous CPU time to achieve

the high accuracy. Thus, we examine the overall efficiency of each method. Here, we define the efficiency

based on the total CPU time to achieve a target error level. CPU time normalized by the CPU time of the

DG(1)–MOL method for a specific error level is shown in Figure 13. It clearly shows the high efficiency of

DG(1)–Hancock compared to HR2/DG(1)–MOL. Such a high efficiency is achieved by the combination of

the accurate computation due to the DG spatial discretization and the wide stability domain owing to the

Hancock temporal discretization.

VI. Conclusions

A discretization method, DG(1)–Hancock, for systems of 1-D nonlinear hyperbolic-relaxation equations

is introduced. The method is based on Huynh’s upwind moment scheme, with implicit treatment of the

source term. For the source term integration, we adopt the fully-implicit two-point Radau IIA method. A

Fourier analysis of the DG(1)–Hancock method applied to the 1-D and 2-D linear advection equations shows

that the method is third-order accurate, and stable for ν̃1D ≤ 1 and ν̃2D ≤ 0.664 respectively. In addition,

the local truncation error is compare among various methods; for 1-D, the dominant dissipation error of a

DG method is
1

9
of the error of a second-order Godunov-type method; for 2-D, it increases to

4

9
due to the

multidimensional discretization.

The method is then applied to a linear hyperbolic-relaxation systems for a Fourier analysis. The results

obtained with upwind fluxes show that the dominant dispersion/dissipation errors in the near-equilibrium

limit are identical to the local truncation error obtained for the linear advection equation, approximated with

the Rusanov flux. The Euler equations with heat transfer, which reduce to the isothermal Euler equations

in the equilibrium limit, are adopted as a model equation. The numerical results confirm the analysis, and

show the superiority of the DG(1)–Hancock method over Method-Of-Line-based semi-discrete schemes. A

comparison of the overall efficiencies of the methods shows that the DG(1)–Hancock method is not only

producing highly accurate results, but the method is computationally more efficient in achieving a specific

error level.
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