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Abstract
Higher order upwind leapfrog schemes for two dimen-
sional advection, acoustics and aeroacoustics are de-
veloped and applied to several examples. Advection
schemes are applied to scalar advection with uniform and
nonuniform creeping flow speed. Acoustics schemes are
implemented successfully in polar coordinates with new
damping technique. Increasing the order of accuracy for
Aeroacoustics schemes was achieved and implemented to
the reflection of acoustic pulse problem.

1 Introduction
In this paper we continue a sequence of developments
[1, 2, 3] of Iserles' 'generalised' or 'upwind' leapfrog
schemes [4]. The philosophy on which these schemes are
based is to avoid numerical dissipation by constructing
them to be time-reversible, but the symmetry that en-
sures this is a skew symmetry with regard to the centroid
of the stencil, rather than (as with conventional leapfrog
schemes) a strict symmetry in both space and time.

Implementing this strategy calls for different spe-
cial measures in the cases of advection and wave motion.
For advection the coefficients of the scheme change dis-
continuously as the advection speed switches from one
quadrant to another unless the schemes appropriate to
each quadrant are suitably blended. 'Section 2 describes
schemes of both second- and fourth-order accuracy, and
shows that they can indeed be blended successfully. For
wave propagation problems, it is possible to retain re-
versibility, but only by adopting a strategy of staggered
storage that involves edge-based variables. For this rea-
son, edge-based storage is used in the advection schemes
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also. Section 3 discusses schemes for pure wave problems,
and Section 4 combines wave propogation with advection
(the aeroacoustic problem).

2 Two Dimensional Advection
Equation

For two dimensional advection equation,

ut + aux + buy — 0 (1)

two of the simplest choices of stencil that follow the
above principles are shown in Figl. The first one is the
three level compact scheme with staggered grid(storage
at cell edges). It is a time reversible second-order one
and the most compact scheme we can imagine.

Up = Ud+ (1 -

where v = aA.t/A.x and /j, = 6A</Ay. The other one,
shown in Figl.b is a three level time reversible scheme
with node-based storage. It attains also second order
accuracy but it is extended into ?/-direction.

Up = u,j + (1 — 2z/)(u2 ~ MS) — TT(UI ~ U3 + U4 ~ ue)

2.1 Fourth-order advection schemes
Although the second order schemes are compact and very
easy to implement, their accuracy is not sufficient to
simulate long-range advection problem and they require
very fine grids to obtain reasonable accuracy. There-
fore it is indispensible to increase the accuracy to fourth
or sixth order. With higher order scheme, if grid size
is reduced by a factor k in each direction, the stor-
age for a n-dimensional problem will be reduced by a
factor kn and cpu by kn+l. To raise the order of ac-
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(a) (b)

Figure 1: Three time level stencils for two dimensional Figure 3: Four time level fourth-order stencils for two
advection equation, (a) Staggered grid (b) Uniform Grid dimensional advection equation

-Cs [(MI - 2w2 -I- u3) -
-C4 [(«7

- 2u5 + u6)]

where

1),
- 1), C4 = i»/(2/i - I)2

Figure 2: Three time level fourth-order stencils for two
dimensional advection equation

curacy to four or six, the stencil could be extended
in either the space or time domain. Figure 2 shows
fourth-order time reversible stencils for advection equa-
tions, just extended in space. Scheme(a) is appropri-
ate for a propagation direction aligned with +x, say
— 7T/4 < a < 7T/4, a — tan-1(6/a). Scheme(b) is with
+y, say x/4 < a < 3/47T. They are quite compact, but
require special treatment at boundaries.
Scheme (a)

ua = MC + (1 — 2i/)(M2 — MS) — 2/z(M8 — Mil) where
— C*l [2(M7 + M I O — Mg — Mi 2 ) — (MI + 6M2 + M3)

+(w4 + 6Ms + MS)] — Ci [2(Mi + M4 — MS — MG)

M9)
M3)

(3)
Schemes(a), (b) must be blended if a is close to ±7r/4(see
section 2.2). Figure 3 shows another set of fourth-order
time reversible stencil. They are four level and extended
in space slightly. Scheme(a), (b) and (c) each are ade-
quate for x-direction, oblique and y-direction advection.
Again a blending function is used for nonconstant advec-
tion directions.
Scheme (a)

Ua = «62 - («c5 -

Uc3 -

Uc7 - Uc8) -

= (Si/ -l)/(i/+ 1)

- Uc4)

- Uc6)

-C3 [(u? -
-C4 [(MI ~

-f-
M6)]

C3 =
C4 =

-ft

where

?! = i j / ( j / - l ) (2z/- l ) , Ci = Ys//(2i/ - l)(2f + 1) Scheme (b)

(2) ^^1(1 -̂̂ sTi"- MeJ)6-"^

-C4(U65 - Ub6 + Mc6 - Mc7) - C5

[ — 2f4)(U2 — MS) — 2l/(Mg — MI!) _(7g(uji — M(,2 + MJ3 — Mj4 + Mci

- M4 — MS — M6) — (M7 + 6M8 + M9)

Scheme (b)

ub4 - uc4)
~ MM + Mci - Mc3)

- Ut,7 + Uc5 - Mc6)

2 + Mc3 - Mc4)

+ Mi2)] -

M3) + (u4

"10 -U9- Mi2)
where
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C-2

C3
C4
C5

C6

scheme (c)

!/ +1)
+1)

/ +1 )

Uc7 - Mc8)

-C3(ubi - ub3 + uc4 - uc6) - C4(ub2 - ub5 + uc2 - uc5) Figure 4. Illustration of the test case for accuracy com-
—C^wji — MM + uc3 — uc4) — Ce(ub3 — ub6 + Mcl — uc4) parison of fourth-order advection schemes

where

- (5/z-

C*3 =

(74 =

- v -

+ 1)Cg = J^2(/i + "X/* + ^ —

2.2 Blending Function
Choosing schemes between (a) and (b) in Figure 2 de-
pends on the advection direction and either one or some
combination of these schemes are chosen. For x-direction
advection, scheme(a) is used and scheme(b) is for y-
direction. If the advection direction is oblique, a com-
bination of scheme(a) and (b) is used to transit from
one to another continuously. To blend two schemes will
introduce slight dissipation and the dissipation rate is
proportional to d<f>2, where d<j> is the phase difference of
two updated scalars, i.e. it is eighth-order for the fourth-
order schemes. If a is less than 40° scheme(a) is used,
and scheme(b) for a > 50°. If a is between 40° and 50°,
it is necessary to blend scheme(a) and scheme(b). The
blending function is selected as

_ 1

r(a) = sm(0.l7r(o-45°))

Both schemes update the variable very accurately in the
transition area, d<j> is very small and dissipation, propor-
tional to £/(/>2, is much smaller. For four level schemes,
Figure 3, blending function is needed at the transi-
tion area. When a is between 30° and 35° scheme(a)
and (b) are blended and scheme(b) and (c) blended for
60° < a < 65°.

2.3 Numerical Experiment
First of all, to compare the accuracy of the above, a sim-
ple test problem, shown in Figure 4 is chosen. A Gaus-
sian distribution, u(x,y) = exp(—/n2/0.22(x2 + y2)) on

(a) (b)

Figure 5: Three level scheme accuracy test result
(a)advection along x-direction (b)advection oblique to
x-direction, a = 45.0°

coarse grid is advected parallel and oblique to the grid
line. The grid size is Ax = A?/ = 0.1 and time step
is Ai = 0.04. Numerical results after 5,000 iteration
are shown in Figure 5 and Figure 6. The distribution
revolved through computational domain 50 times. Fig-
ure 5 shows the results updated by three level scheme.
The first result, Figure 5.a shows leading errors and peak
value is decreased to 82.7 percent of initial profile. Fig-
ure 5.b shows lagging errors and its peak value is 82 per-
cent of the exact one. The extra dissipation due to blend-
ing the two schemes is neglible. Figure 6 is the results
of the four level schemes. Figure 6.(a) is preserving the
initial profile extraordinarily well and Figure 6.(b) shows
slight lagging errors in the y-direction; its peak value is
82 percent of the exact one. It is updated with two ad-
jacent schemes and blended slightly. Both schemes used
for this computation have very accurate phase property
in x-direction and show lagging error in y-direction.
To demonstrate the method on a polar grid and with
non-uniform velocities, we considered a scalar distribu-
tion advected with the speed of creeping flow around a
circular cylinder. That is, we solved.

ut ar • ur

49
= 0 (4)
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where

(a) (b)

Figure 6: Four level scheme accuracy test result
(a)advection along x-direction (b)advection oblique to
x-direction, a = 32.5°

5.0

Figure 7: Scalar advection problem with creeping flow
speed, t=14.0, top:exact solution, bottom numerical re-
sult

ar =

a» —

cos

, sin -
3a

Uniform velocity,Uoo and cylinder radius,a are given
the value 1.0. A Gaussian distribution u(x,y) =
exp(—/n2/0.32 • [(x + 3)2 + (y — I)2]) was given as an ini-
tial distribution. Computational domain was confined
as 1 < r < 5, and 0 < 9 < ir. The grid size was
60x90. Numerical result is compared with the exact solu-
tion. Initial distribution was advected at different speed
and stretched severely, Figure 7. Both solutions appear
rather "lumpy" due to interpolation onto the coarse grid,
but agreement between them is very clear.

3 Two Dimensional Acoustics
For two dimensional acoustics, the linearized Euler
Equations without mean flow are used.

Pt + UX + Vy = 0

ut + p, = 0
Vt + Py = 0

(5)

To mode the wave propagation precisely, characteristic
equations are preferred.

(p ± u)t ± (p ± u)x

(P ± V)t ± (P ± V)y

(6)
(7)

where q is a pressure stored with y— direction velocity, v.
Equation 6 is aligned with ^-direction and Equation 7
with 7/-direction. (p ± u) waves are mainly propagated
along x-direction and p and u need to be updated and
stored at same point. Again, (p ± v) waves are mainly
transported along y-direction and p and v should be up-
dated and stored at same point. Hence pressure is up-
dated twice with different equations [3], it is stored at
different points to avoid any dissipation or instability.
To satisfy the criteria mentioned before, staggered grid,
shown in Figure 8 is used in this study. The stencil shown
on Figure 8.b is used to update the point where (p,u)
are stored and equations are discretized as below.

(p+u)a =

50

where v — At/ Ax, \i = At/ Ay. This is a three time
level time reversible second order scheme for acoustics.
It is compact and very simple to implement for given
problem, but it requires a fine grid to resolve acoustic
problem due to low order of accuracy. To improve phase
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Figure 9: Three level stencil for fourth-order upwind

Figure 8: Illustrating staggered grid and three level sten- leapfrog scheme
cil for second order upwind leapfrog scheme

3.1.1 One dimensional study
, _ _ _ _ « / O N

properties, stencils are extended in space as shown in ' ' r
 r \°)

Figure 9. This is for (p+u) wave computation. Obtain- „, , . , ,. , , u „-,,.° , • i mi The spherical wave equation has a source term,—-. Ihising a fourth-order scheme is straightforward, ihe second ,. , , , . , ,. ,. , .,, ,, . r .° . . equation could be simply discretized with the given sten-
order scheme for (p+u) wave is written with second order ., -,-,. 1A^ ' cil, Figure 10.
truncation term

(p + u]a = U)7] - 2 ) ( « 2 - us) - ( (9)

— I H ( V Q — VT) — —-——(v — l)(2f — I)(PXXX + uxxx) However, Fourier analysis reveals that the spurious mode
2 A A 2 is unstable. This unstable spurious mode excites an error

-(1v - $)qxyy — ————(4i/2 — 6^ + $)vxxy that grows rapidly and overwhelms the physical mode.
To avoid the instability, special handling of source term

^^y-(^~l)(^ + l)vyyy

6
At3

12
ig necessary and we can rewrite the equation as follows.

(ru)« + (ru)r = 0 (10)
Then, discretizing the truncation errors and adding them
to the left hand side increases the order of accuracy to Then it can be discretized stably as
four.

(r, + Ar/2)(m - u2) + (re -

P^« = [(PS - PS) - 3(P6 - PY)] /Ax3
- u4)

uxxx = [(us - «s)

Xyy - 2U6

- «?)] /Ax3

- ("3 -

(re
Ar = 0

This second order scheme is stable and preserves the
— TTT [(HI — 2ws + wg) — («4 — 2«s + ^12)]) /AxAj/2 magnitude exactly. Simplifying the above equation leads

to

-(99 - 2io - 912)] /4AxAj/2 At At

Ar.

9 ) - (v4 - 2

- w7)] /Ay3

2)]) /Ax2 Ay
(11)

This stable scheme has an extra term compared with
the unstable scheme, Equation 9 and this term turned
out to be stabilizing the scheme.

3.1 Stable Discretization of Source Term 3'1-2 Two Dimensional Acoustics with Cylin-
drical Coordinate

In two dimensional acoustics, the linearized Euler equa- .
, . . , . , . , j- , • , , , u lo obtain a stable acoustics scheme, the governing equa-tions in cylindrical coordinate include a source term,• —•£. . , , - , , . , • ,
c. • i u jr f i u - * * • * u - r^ - tions are modified slightly in the way mentioned above.Since simple handling of this term generates instabilities, ° J J

special discretization for this term is necessary. This was j }
studied with the simple spherical wave equation. Pt + ~(ru)r + ~Ve ~ "

o i
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Figure 10: Three level stencil for one dimensional spher-
ical wave equation

Figure 11: Second-Order stencil for two dimensional
acoustics in cylindrical coordinate

+ ~Pe = 0r

(12)

(13)

For discretization, these equations are written in charac-
teristic form.

I l l -3

\pt ± -(r«)«] ± \pr ± -(rti)P] +-v9 = 0 (14)

[p, ± vt] ± \pe ± ve] + ur + - = 0 (15) Figure 12. Tegt of damping technique with cylindrical
coordinates including coordinate origin, top:initial dis-

This manipulation does not have any effect on Equa- tribution with grid, bottom pressure contour at t=4.0
tion 15 and the discretization of this equation does not
need extra damping term. If Equation 14 is discretized
on the stencil of Figure 11,

(p + «)5+1 = (p + «)S~1
/\ 7"

- « - «

= (P - «)rx + a -

This damping technique is applied to fourth-order
schemes in the same way and a stable fourth-order acous-
tics scheme in cylindrical coordinate is obtained. To
test this damping technique, an initial value problem
was tested on a cylindrical grid including the origin. A Figure 13: Explanation of acoustic scattering problem
pressure bump positioned at (x = 2.0, y = 0.0) initially,
passed the grid singularity at the origin without any kind
of instability, Figure 12, as time evolved.
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This problem is one of the second computational aeroa-
coustics benchmark problems[8]. An acoustic wave from
the line source is scattered off the circular cylinder. This
problem is a two dimension approximation to the sound
field generated by a propeller scattered off the fuselage of
an aircraft. Length is nondimensionalized by the diameter
of circular cylinder, D, velocity by speed of sound,c, time
by D/c, density by undisturbed density p0 and pressure
by p0c2. The linearized Euler equations are used as the
governing equation.

Pt - = S

Ut + Pr — 0

vt + -pe = 0r

(16)

where u and v are the disturbed velocities in radial and
azimuthal direction. The 'line source' is represented by a
rather narrow Gaussian source distribution.

S = exp —In (x - 4)2 + t/2

0.22 = 8?r

A huge grid was used for this computation. Ten
grid points per wavelength were put in radial direction,
Ar/D = 1/40. The aspect ratio of the grid at the source
was set to 1.0 and a small time step was used because of
small grid size in azimuthal direction on the surface. Fig-
ure 14 shows the scattered pressure contour on the whole
computational domain and figure 15 compares the numeri-
cal solution with the analytic one for rp2 at r = 15.0. The
numerical solution matches well with the analytic. The
second problem is an initial value problem.

5 = exp \—ln
(x - 4)2 + y2

0.22

Figure 16 shows pressure pulse contour at t — 6.0. The
reflected wave from the surface follows the pressure wave
from the source directly. Pressure histories were checked
at three points(A, B and C) and showed in figure 17. The
solution of coarse grid(Ar/D = 1/12) has little deviation
from the analytic solution and other solutions are well
matched with the analytic one.

4 Two Dimensional Aeroacoustics

Two dimensional linearized Euler equations with uniform
mean flow are written in characteristic form.

Figure 14: Acoustic scattering, 0.5 < r < 16.0
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0

u)y + vy = 0 (17) _. , _ „, . . .. , . ., ,. . ,.figure 15: Comparison ol directivity, solid line : numeri-
(q ± v)t + Mx(q + v), + (My ± l)(q ± v)y + ux = 0 (18) cal soiutionj dotted iine . analytic solution, r = 15.0

where Mx and My are free stream Mach numbers in x—
and y— direction and q is pressure stored with velocity
v. For simplicity, developing the aeroacoustic scheme for
(p + u) wave is discussed mainly. Developing schemes for

53



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

Figure 16: Pressure pulse contour of initial problem sim-
ulation, 0.5 < r < 10.0, t=6.0
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Figure 18: Second and fourth-order aeroacoustics
schemes (a)second-order scheme, (b)fourth-order scheme

where Mx and My are free stream Mach numbers in x—
and y— direction and q is pressure stored with velocity
v. For simplicity, developing the aeroacoustic scheme for
(p+u) wave is discussed mainly. Developing schemes for
other variable, (p — u) and (q±v) are very similar to that
of (p+u) and omitted here. Since characteristic variable,
(p+ u) is advected in a;— direction and also y— direction,
second-order compact scheme is not possible and stencil
must be extended in y— direction, Figure 18. a.

4.1 Fourth-order upwind leapfrog
scheme for aeroacoustics

To increase the order of accuracy to four, the stencil
for the second-order scheme is extended in space, Fig-
ure 18. b. Discretizing the characteristic equation on this
stencil does not achieve the fourth-order accuracy and
its modified equation has a couple of second-order trun-
cation terms.

iUi = (p + u)t + (Mx u)x + My(p + u)y

Uyyy)

We still need to discretize pyyy and uyyy to obtain fourth-
order accuracy. Discretizing these terms directly requires
a larger stencil which makes it hard to implement the
scheme, especially at domain boundaries. Therefore dis-
cretizing the second-order truncation terms without ex-
tending the stencil is explained in the following section.

O.O7
O.
O.O5
O.04.
O.O:
O.
O.O1

O
—O.O-
—O.O2

—0.0

1.02

Figure 17: Pressure history at point A, B and C, dotted
line : analytic solution, Ar=l/12, 1/16 and 1/20
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4.1.1 Discretization of pyyy

At least four different points of p are necessary to dis-
cretize Pyyy. On the stencil, Figure 18.b, however, only
three different points of p are available in y— direction
and it is not possible to discretize pyyy. q is also a pres-
sure stored with velocity in y—direction,?; and four points
are available in y— direction. With these four q points,
we can discretize qyyy. Therefore, replacing pyyy with
qyyy and discretizing can eliminate one of the second-
order truncation terms. However, simply replacing pyyy
with qyyy turned out to be unstable. It was better to
replace py with qy. Therefore, characteristic equations
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for aeroacoustics in this paper are.

(q ± v)t + Mx(p ± v)x + (My ±
Vy =0(19)
ux = 0 (20)

py is replaced by qy in Equation 19 and qx by px in
Equation 20.

4.1.2 Discretization of uyyy
There is no precise equivalent to the above trick. How-
ever, if we assume that the vorticity field is known at
each edge, we can replace uyyy with wyy and vxyy.

= v:xyy "yy (21)

vxyy can be discretized with the given stencil and wyy is
found simply. For the example given next, w = 0 initially
and will remain so. For the aeroacoustic problem, with
a uniform background flow, any vorticity present in the
perturbation is a convected quantity. We would be able
to compute it using the methods of section 2.

4.2 Sixth-order upwind leapfrog scheme
Increasing the order of accuracy to six was attempted
by extending the stencil in space in the way described
before. The discretized equation again has a fourth-
order truncation teim,uyyyyy and fully sixth-order aeroa-
coustic schemes are obtained by replacing the truncation
term with vxyyyy and <jJyyyy.

uyyyyy — (22)

4.3 Numerical experiment - Reflection
of an acoustic pulse

For the numerical experiment, reflection of an acoustic
pulse off a wall in the presence of a uniform flow in semi-
infinite space was considered, figure 19. The linearized
Euler equations in characteristic form are

(q±v)t + M(p±v)x±(q±v)y+ux = 0

where M is free stream Mach number and q is again an-
other pressure stored with v. In this experiment, four
different schemes are tested and the results are com-
pared with the analytic one. The first one was 'near-
fourth-order';it uses the setncil of figure 18.b but does
not include the additional corrections discussed in 4.1.2,
the second was a fourth-order one with equation 21, the
third was a fourth-order scheme with larger stencil and
the last was a sixth-order one. In this example, there was
no initial vorticity distribution and vorticity remained
zero during time evolution.

t = 0, u = v = 0

p = exp I —/n2
25

M = 0.5

200

-100 200
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Figure 19: Illustration of example for aeroacoustics
schemes

The pressure wave propagates in all direction while being
also advected in a;—direction. Figure 20 shows pressure
contours at three different times. Figure 21 shows the
numerical solutions with the analytic one. The analytic
solution is represented merely by its grid-point values,
so that the peaks are clipped by linear interpolation in
the plots. Pressure profiles at x = 50 along y—direction
at t = 100 are compared. On the finest grid, Ax = 2.0,
all schemes performed very well. On a slightly coarser
grid, Ax = 2.5, the second-order scheme begins to show
significant errors in certain regions. On the coarest grid,
Ax = 5.0, both the sixth-order and wide-stencil fourth-
order schemes continue to do well. None of the schemes,
however, gave meaningful results with Ax = 10.0 and we
do not show these results.

5 Conclusion
The upwind leapfrog method which is time reversible and
upwind biased, was multidimensionalized successfully for
advection, acoustic and aeroacoustics with edge-based
storage. A range of test problems have demonstrated ac-
curate solutions on coarse grids. Since, however, higher
order schemes with space-extended stencils require spe-
cial treatment at boundaries(wall, far-field), more stud-
ies for higher order method adaptable to both boundaries
are necessary.
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Figure 20: Pressure pulse contours at different times, top
: t=20.0, middle : t=60.0, bottom : t=100.0
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Figure 21: Pressure profiles along y-axis at a; = 50,
t=100, top : Ax=5.0, middle : Ax=2.5, bottom :
Ax=2.0
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