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Simulation of Actively Controlled Spacecraft
with Flexible Appendages

R. R. Ryan*
University of Michigan, Ann Arbor, Michigan

Complex interplanetary spacecraft and newly proposed satellites for reconnaissance and strategic defense are
being designed with increasingly light and flexible appendages despite ever more demanding requirements for
accurate pointing and tracking. The onboard control systems required to satisfy these strict requirements during
reasonably quiescent conditions must also act effectively to limit deformation and maintain stability of motion in
the face of significant disturbances to flexible appendage motion resulting from spin-up, spin-down, orbital, and
deployment maneuvers of various types. This paper incorporates a recently proposed theory for modeling flexible
bodies into a framework for studying the effects of beamlike appendage deformation on overall system performance.
Illustrative examples involving use of the theory hi practical applications are presented, and relative merits of this
model theory vs nonlinear finite-element techniques are discussed.

I. Introduction

A NEW generation of spacecraft designs involving actively
controlled systems with extremely light, flexible ap-

pendages has motivated increased research aimed at produc-
ing accurate models of such systems for purposes of
simulation, structural verification, and control law design. A
basic requirement of any such model intended for general
simulation purposes is that it must be able to account prop-
erly for both large overall motions and concurrent small
deformations of bodies, as well as to include accurately the
important coupling effects existing between these two types of
dynamic behavior.

Recently, a new technique1 was proposed for modeling the
behavior of flexible beamlike appendages attached to a rigid
base body undergoing large overall rotations and translations.
The theory was developed by considering the base motion to
be prescribed as a function of time; effects of the base motion
on the small deformation of an elastic appendage were then
studied using the new theory and more conventional ones.2"6

The study uncovered limitations of conventional flexible
multibody formalisms applied to structural elements and pro-
vided the impetus for further development and implementa-
tion of the theory into a framework for analyzing free-flying
bodies wherein effects of flexible appendage motion on uncon-
trolled and actively controlled overall system motion could be
investigated.

The present paper has a threefold purpose. First, in order
to extend the theory to deal with free-flying systems without
prescribed base motion, the requisite additional kinematical
and dynamical equations governing motion of the base are
presented, and techniques for incorporating general external
forcing effects; such as gravitational attraction and control
system actuation, are discussed. Second, in order to illustrate
the effectiveness of the model in analyzing spacecraft, simula-
tion results for a few representative problems will be shown,
and the effect of the flexible appendage motion on overall
base motion will be highlighted in contrast to the aforemen-
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tioned work, which dealt primarily with the effect of base
motion on appendage behavior. Last, the enhanced modal
approach, on which this work is based, will be compared with
nonlinear finite-element formulations aimed at solution of
similar problems; relative efficiency, accuracy, and ease of
implementation will be discussed.

The remainder of this paper is organized as follows. The
system to be studied is described in detail in the next section.
In Sec. Ill, the theory presented in Ref. 1 is extended to the
free-flying case, and supplementary equations of motion are
given. Illustrative examples showing general use of the theory
and equations in practical applications are included in Sec.
IV. The last section concludes with a discourse on the relative
advantages and disadvantages of employing enhanced modal
techniques rather than nonlinear finite-element procedures to
perform simulations of complex deformable spacecraft under-
going general maneuvers.

II. System Description
The system to be analyzed, shown in Fig. 1, consists of a

flexible beam B, fixed at one end to a rigid body A, which is
capable of undergoing large three-dimensional translations
and rotations in a Newtonian reference frame N. The rigid
base is characterized by its mass mA and six independent
inertia parameters 7n, /12, /i3, /22> «^23> and /33, which are

Generic Cross-section dB

Fig. 1 Satellite with deformable beamlike appendage.
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measure numbers of the central inertia dyadic J of A ex-
pressed in terms of a dextral set of mutually perpendicular
unit vectors al9 a2, «3, fixed in A, and directed as shown. That
is,

J = /n

The beam is characterized by a natural length L, material
properties E0(x)9 G(x)9 p(x\ and cross-sectional properties
A0(x\ I2(x\ I3(x)9 (x.2(x)9 a3(x), K(x)9 Y(x\ e2(x), and e3(x)9
defined as follows. Let x be the distance from a point O,
located at the root of B to the plane of an arbitrary cross
section of B, when B is undeformed. Then E0(x)9 G(x)9 and
p(x) are the beam's modulus of elasticity, shear modulus, and
mass per unit length, respectively, each a function of x. The
area of the cross section located at a distance x from point O
is denoted as A0(x\ and the Saint Venant torsion factor and
the warping factor are represented by the symbols K(X) and
F(JC), respectively. In order to define the symbols I2(x)9 I3(x)9
a2(x), a3(x), e2(x)9 and e3(x)9 introduce a dextral set of mutu-
ally perpendicular unit vectors bl9 b29 b39 fixed in the plane of
the cross section located at a distance x from point O and
oriented such that b^ is parallel to the centroidal axis of B9
while b2 and b3 are parallel to central principal axes of the
cross section. Unit vectors al9 a2, a3 are parallel, respectively,
to A!, b29 b3 prior to deformation of B. The symbols I2(x) and
I3(x) denote the central principal second moments of area of
the generic cross section for unit vectors b2 and b39 respec-
tively, and u.2(x) and a3(;c) are the shear area ratios (also
called shear correction factors; see Ref. 7, p. 351) of the
section for the b2 and b3 directions. The parameters e2(x) and
e3(x) are measure numbers of the b2 and b3 components of the
eccentricity vector, which extends from the elastic center of
the generic cross section to the centroid. The elastic center, the
flexural center, and the center of twist are all assumed to
coincide in the present analysis.8 Lastly, the location of the
mass center A* of A9 relative to point 0, is specified in terms
of three scalar quantites dl9 d29 and d3 representing the al9 a29
a3 measure numbers, respectively, of the position vector ex-
tending from O to A*.

III. Equations of Motion
Reference 1 also treats the system described in Sec. II and

contains a detailed discussion of equations of motion applica-
ble when the base motion is prescribed as a function of time.
In that regard, a geometric constraint, similar to that pro-
posed by Hughes and Fung,16 was included in the formulation
to account properly for the interrelationship of axial and
bending deformation in long, thin structural elements, and an
algorithm was presented for analyzing general beams attached
to moving bases. The treatment of beam deformation using
the embedded constraint approach quite naturally leads to
dynamical equations that are totally linear in the deformation
variables and yet properly account for motion-induced stiff-
ness variations as pointed out by Kaza and Kvaternik.17 The
present section is intended to supplement the previous equa-
tions with additional equations needed to treat three-dimen-
sional /ree base motion and arbitrary external forcing functions
such as might arise from gravitational attraction and active
control systems. As before, the interdependencies of orthogo-
nal beam displacements will be properly taken into account in
the development of equation terms that represent the coupling
effects between flexible appendage motion and large rigid-
body base motion.

To keep the number of equations to a minimum, terms and
expressions developed explicitly in Ref. 1 will, in general, not
be redeveloped or rewritten here. Enough detail will be given,
however, so that the two papers together provide a complete
set of equations and parameter definitions to allow for total
understanding as well as construction of algorithms for the

simulation of motions of systems consisting of a rigid base
portion and one or more flexible beamlike appendages.

In the previous analysis, the motion of the base A was
characterized in terms of six scalar quantities coi9 a>29 a>39 vl9
v29 and v39 with col9 co29 a>3 defined as the al9 a29 a3 measure
numbers of the inertial angular velocity vector, NwA

9 of rigid
body A9 and vl9 v29 and v3 defined as the al9 a29 a3 measure
numbers of the translational velocity Nv°9 of point O9 on the
elastic axis of B at the root, such that

and

t + co2a2 +

+ t;2a2 + V3a3

(1)

(2)

(The elastic axis is the line along which transverse loads must
be applied in order to produce bending unaccompanied by
torsion of the beam at any section.8 This axis passes through
the elastic center E of every section.)

The deformation of B9 on the other hand, was described in
terms of assumed modal functions ^(x) (y = l,...,6; / =
l,...,v) and generalized coordinates qt (i = l,...,v) in such a way
that the elastic axis stretch s(x9t)9 the two transverse shear
center displacements u2(x9t) and u3(x9t)9 and the three succes-
sive rotation angles (see Ref. 1) 9t{x9t) (i = 1,2,3) of a particu-
lar cross section, located at a distance x from 0, could be
written

(3)

Oj{x9t) <t>J+3,i(x)qM U = 1,2,3) (5)

The symbol v in these equations represents the integer number
of terms retained in the modal series. With v deformational
degrees of freedom and six rigid-body degrees of freedom of
A9 it is necessary to form at least v + 6 dynamical first-order
differential equations and v + 6 kinematical first-order differ-
ential equations in order to determine completely the configu-
ration and state of the system at any instant in time. To
facilitate the formation of dynamical equations in the next
section, it is beneficial to introduce new quantities, uf
(i = l,...,v -f-6), referred to as generalized speeds (Ref. 9, p.
87). These are defined as

qt l,».,v)

(6)

Dynamical Equations
The dynamical equations can be written in the form

(7)

where Ff. and Ft are the generalized inertia force and general-
ized active force, respectively, associated with the ith general-
ized speed uf of the system. Before these generalized forces
are given explicitly, it is necessary to form additional kine-
matic expressions.

The inertial velocity of A *, the mass center of A9 can be
described in terms of the velocity of point O and the angular
velocity of A by using the relationship

-Na>Axp°A* (8)
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wherep°A* is the position vector from O to A*, expressed in
terms of three (not necessarily positive) scalar quantities dl9
d2, and d3, such that

(9)

(10)

Hence, it follows from Eqs. (1), (2), (8), and (9) that
NvA' = (vt + a>2d} -

+ (t>3 + <Ui4 - <*>:

Terms referred to as partial velocities of A* in TV and
partial angular velocities of A in N are denoted by the
symbols Nvf* and NcoA (i = l,...,v + 6), respectively. Together
with the partial velocities of C in N, Nvf9 and partial angular
velocities of dB in N9

 NcodB
9 introduced in the earlier analysis,

they play a major role in the formulation of equations of
motion. Note that dB is a differential element of B, and C is
the centroid of this element. The partial velocity Nvf* is
defined as the coefficient of the ith generalized speed uf
(i = l,...,v + 6) in the velocity expression in Eq. (10), and Nof
is defined as the coefficient of the /th generalized speed in the
angular velocity expression given in Eq. (1). Hence,

V* = V=0 (r=l,...,v)

(i = 1,2,3)
0' = 4,5,6)

0
(' = 1,2,3)
0' = 4,5,6)

(U)

(12)

(13)

where eijk is the Levi-Civita permutation symbol, f and a
summation convention is employed. (According to this con-
vention, a repeated subscript of i, j9 k, /, or m indicates that
summation as the index that is repeated takes the values of
1,2,3, while a repeated subscript n indicates summation as n
takes the values of !,...,*>.) The linearized partial velocities
Nvf and partial angular velocities NudB have been given explic-
itly in Ref. 1 for / = 1,... ,*>. After appropriate linearization in

.vav+j

and

0 (7=4,5,6)

U = 1,2,3)

(7=4,5,6)

(14)

(15)

The symbol dtj denotes the Kronecker delta, which is equal to
unity when the subscripts i and j have the same value and
otherwise is equal to zero.

With the partial velocities and partial angular velocities
defined as in the preceding paragraph, the generalized inertia
forces for the system composed of bodies A and B appear as

Ff

- r*»f -Nac
Pdx- (LN

dx

(16)

fThe quantity eijk can be expressed as

% = & ~7)(7 - *X* - 0

where NaA* is the inertial acceleration of the mass center of A,
NctA the inertial angular acceleration of A in N9

 Na>dB the
linearized inertial angular velocity of a generic differential
element dB of B, Nac the linearized inertial acceleration of the
centroid of a generic differential element located at a distance
x from 0, N£dB the linearized angular acceleration in AT of a
differential element of B, I dx the central inertia dyadic of dB,
and all other terms have been previously defined. The dyadic
I can be represented as I = p(Ii\blbl + I22b2b2 + ^33^3^3) where
7n, 722, /33, expressed in terms of the central principal second
moments of area 72 and 73, are given by

(17)

It is important to note that whereas quantities related to the
deformation of B have been linearized in the generalized
coordinates q\^..,qv and in the generalized speeds M?,...,wjt, no
quantities have been linearized in the variables u*+l,...,u*+6,
which characterize the arbitrarily large base motion. The
acceleration NaA* and angular acceleration N&A can be derived
in a straightforward manner by temporal differentiation, in N9
of the velocity and angular velocity expressions appearing in
Eqs. (10) and (1), respectively.

The system generalized active forces appear in their most
complete form as

= a) - (R)c
x =

- r^p-wcdx+( •(I)d*d*

(18)

where the quantities (R)A*, (#)* = *, (#)c, and (T)A
9 (J)2tff,

(T)dB are defined as follows. Consider the system of all forces
and torques acting on A to be replaced with a couple of
torque (T)A and a resultant force (K)A* whose line of action
passes through A*. Furthermore, assume that all of the forces
acting on a particular cross section dB of B can be replaced
with a couple of torque (T)dB applied to dB and a resultant
(R)c whose line of action passes through the centroid C of the
section. When forces are distributed along the length of the
beam, then (T)dB and (R)c are to be treated as functions of x,
as shown in the third line of Eq. (18). Alternatively, when a
set of forces is concentrated over a particular cross section at
a distance x = a from point 0, then (T)dB and (R)c at that
cross section are denoted as (T)dB

=a and (/?)f=ff, and their
contribution to the generalized active forces is determined as
shown in line 2 of Eq. (18). All of these active forces and
torques can be viewed as consisting of two distinct contribu-
tions; that is, a contribution due to internal forces arising
from elastic strains and a contribution from external forces,
including contact forces (e.g., friction forces, actuator forces)
and distance or body forces (e.g., gravitational forces, drag
forces, magnetic forces). The external force contribution to
the generalized active forces will be treated subsequently; at
present, only internal forces will be considered. The contribu-
tion of these internal forces was given in Ref. 1 for the case in
which the motion of A is prescribed as a function of time.
Allowing A to move freely does not alter this result. Hence,

(19)

where Htj is equivalent to d2Uldqt dqp with U representing the
system strain energy.
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Once the operations indicated in Eq. (16) have been carried
out and the result has been substituted along with the quan-
tity Ft (i = l,...,v + 6) from Eq. (18), into Eq. (7), one arrives
at the v + 6 first-order dynamical equations, which can be
expressed in matrix form as

(20)

where M, <&, and JT are mass, gyroscopic, and stiffness
matrices, respectively, all of size (v + 6) x (v + 6), &* is a
(v + 6) x 1 column matrix of force terms, u* and u* are
(v + 6) x 1 column matrices with uf and uf as the respective
i th elements, and q is a (v + 6) x 1 column matrix with
element qt in the /th row for i = l,...,v and zero in the /th row
for / = v + l,...,v + 6. The matrices Ji, <&, JT, and & appear
in partitioned form as

(21)

(22)
0

where M, G, K, and F are thejnatrices given in Ref. 1,
whereas ift, M*, M, K*, f, and F are new matrices of size
6 x v, v x 6, 6 x 6, v x v, v x 1, and 6x1 , respectively, and
will be given in explicit form presently. (To maximize clarity
and conciseness, all terms involving beam eccentricities have
been dropped from the analysis. To include them, one simply
needs to augment the kinematic quantities in the equation of
motion with the e2 and e3 terms as shown in Ref. 1.) First,
however, it is convenient to introduce five symbols, mB9 Pl9
^2» ^82> anc* /B3> to represent new modal integrals, in addition
to the modal integrals Wklip Xki, Xklip Yki9 Ykly, Zki, Z
and *iy (ij
analysis.

klip
l,...,v; kj = 1,...,6) introduced in the previous

mB = | p dx (23)

pxdx, P2= I px2dx (24)

P/22 d^, IB3 = P/33 dx (25)

>-£"*• p"f
'["'>*<*' '--f

The elements of !?f and M*, namely, My and MJJ (/ = 1,...,6;
j = l,...,v), are given as

,j = Y4J + Z4,,

M6

y = l,...,v) (26)

'=l,..,v) (27)

7 = l,...,v) (28)

The matrix M is symmetric (i.e., Mii = Mji, for i,j
= 1,...,6); therefore, only the terms My (/ = !,..., 6;
j = /,... ,6) will be recorded. Specifically,

Mn = mA(d\ + dl) + /„ + (IK + IB3)

M12 = -r.

M13=-A

[ -X2J

+ P2 + IK + 2

M23 = - mAd^ + J3

M33 = mA(d\ + P2 + IK + 2

55

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

The matrix K*, with elements Kfj, is related to the matrix
M*, with elements Af *, in the following way:

(47)

Hence, explicit Kfj terms can be found directly from the terms
in Eqs. (29-32).

The element ft in the /th row of the matrix f is defined as

t± Z ̂ ;+v
7 = 1

(48)

while the elements of F, namely, F, (i = 1,...,6), appear as
and

J-l

+ (Z46iJ-Z64iJ)}qJ

1iJ - W12iJ -

(«=l,...,v) (29)

(i-l,...,v) (30)

(J=l,...,v) (31)

= 0 O' = l,...,v) (32)

+ C02(03(J22 - J33)

(49)
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F2 = mx{</i[a>i(p2 4 ft)3d! - ct)i</3) - ct^ + co2d3 - (O3d2)]

4 d3[0}3(v2 4 ft)3<*l - ft)i</3) — C02(V3 + ^1^2 - <

4- ft)ift)2«/32 —
v

Z
7 = 1

-f 2Xl/ola>3 4 X2jco2co3 4- -?3 — to?) 4

(50)

4 ft)ia)2(/n — /22) + ft)|/i2 4- Q)2ft)3/13 — ft) 1/2

+ 2[ - (51)

H- mjB{ft)3t;2 — G)^} + Pi(a)2 H- co?)
v

-f Z

(52)^

F5 = ~ ^3(^1 + co2d3 - co3d2)}

Z {[ -
7-1

(53)

v + 5 v + 6

CV + 6 4" 5V4.

5CV + 6 + Sv

(M*)r is added to the lower left partition of e^in Eq. (21).
This does not affect the accuracy of the solution since each
term in M* is a function of qt (i = l,...,v); thus, when qj is
multiplied by M| (i = 1,...,6; jr = l,...v), negligible terms of
degree two and higher in #i,...,#v, q\9...9qv result. Another, less
rigorous, method to symmetrize the mass matrix is simply to
discard the terms arising from M*. Although no formal
analytical justification for this action has yet been developed,
an extensive study of simulations with and without these
terms suggest that their influence is indeed negligible for
practical applications.

Kinematical Equations
In addition to the v 4 6 first-order dynamical equations

governing the motion of A and B in N, it is necessary to form
at least v 4 6 first-order kinematical equations before a com-
plete solution for the position and orientation of A and B in
N can be obtained. The first v kinematical equations are

q.= uf (/ = l,...,v) (55)

To write the remaining six equations, one must introduce six
additional generalized coordinates, #v+iv»#v + 6» which can
be defined in many ways. Here they will be chosen to describe
the position of point O and the inertial orientation of A.
Accordingly, let

y + 4

SV + 4

(54)

The matrices K* and f appearing in Eq. (22) serve merely to
extract terms from K and F, which are explicit functions of
ti*+l (i = 1,...,6). Hence, even though K* and t contain ti*+l
(i = 1,...,6), the elements Jf & and &t of matrices 3C and «^,
respectively, do not contain such terms.

It is clear from Eq. (21) that the matrix M\$ nonsymmetric.
This unfortunate fact is a consequence of linearizing in some,
but not all, of the generalized coordinates and generalized
speeds. One may, however, employ a symmetric version of M
for purposes of computational efficiency. To do this, the term

(/ = 1,2,3) (56)

where p*° is the position vector from a particular point <^,
fixed in N9 to point O, and nl9. w2, »3, form a dextral set of
mutually perpendicular unit vectors fixed in N. To describe
the orientation of A in N9 align al9 a2, a3 with nl9 »2, n3,
respectively, and subject A to successive dextral rotations in N
of amounts qv + 4, qv + 5, and qv + 6 about lines parallel to al9 a2,
and a3, respectively. After such a reorientation, the unit
vectors at and it, (i9j = 1,2,3) are related by a direction cosine
matrix NCA in the following way:

n3]NCA (57)

with NCA given by

—sv + 4sv + 5sv + 6 H- cv + 6cv + 4

where
cv + i±cosqv 0'= 4,5,6)

(58)

(59)

With the position of point O and the orientation of A
described in terms of generalized coordinates as stated, the
remaining six kinematical equations are given as

<7v + 2 =

<?v + 3 =

qv + 4 =

ft + v2
NCA

2 4- t>3"C?3

£ + v2
NCA

2 4 v3
NCA

3

v2
NCA

2 4 v3

v + 6 - a>2sv + 6)/cv

(60)

(61)

(62)

(63)

(64)

(65)

Here ^C^ represents the element in the ith row and yth
column of NCA. Because a numerical solution of Eqs. (63)
and (65) would become unbounded when cos#v + 5 = 0 (e.g.,
#v + 5 = 90deg), it may be expedient to replace the three
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kinematical Eqs. (63-65) with a set of four numerically
well-behaved equations involving quantities e1? £2, £3» and £4,
known as Euler parameters. These are related to the direction
cosines NCy in such a way that9

-£3e4)

the terms (F^m (i = l,...,v + 6) appear explicitly as

l-2fii-2ef
2(e1fi2 + £3£4) 1 - 2fi

_2(e3el-s2s4) 2(s2e3

2(s2e3 - £^4)

(66)

Kinematical equations formed in terms of the Euler parame-
ters appear as9

(67)

(68)

Consequently, Eqs. (60-62) and (67) and (68) can be used
effectively in a numerical simulation in order to produce
information concerning the position and orientation of the
base at any instant.

External Forces
In order to perform simulations of practical interest in

connection with flexible spacecraft and satellites, the equa-
tions of motion presented here should be augmented with
additional contributions to the generalized active forces to
account for realistic external forces such as gravity, active
control, atmospheric drag, solar heating, etc. The procedure
for including the contribution of a very general external
forcing function in the system generalized active forces was
presented in Eq. (18), where the terms (K)A\ (fl) j=<T, (R)c,
and (IV4, (!)**=<„ (T)dB, defined previously, can be assumed
to represent external force effects. Any set of forces can be
expressed in terms of these quantities or can be included
directly in the system generalized active forces by simply
dot-multiplying each force with the partial velocity, in N, of
its point of application.9 A demonstration of the use of the
procedure in accounting for active control laws and gravita-
tional effects will be given here. The effects of solar-induced
heating and atmospheric drag have been investigated for
similar systems in Refs. 10-12, and will not be considered
further.

To develop the expressions for the contribution of gravita-
tional forces and control forces to the generalized active forces
for a system consisting of one beam attached to a rigid base,
proceed as follows. Assume the function of an active control
system is to apply a set of time-dependent forces to the
system, this set being equivalent to a couple of torque (TQon^)A

acting on A and a force (Fcont)T applied at a point t located on
the elastic axis of B at the tip. Then the control system
contribution to the generalized active forces F/(i = l,...,v + 6)
is

(l = 1,-.,V + 6)

(69)

where NSJ is the ith linearized partial velocity of t in N. With
(^cont)'4 and C'cont)1 expressed in component form as

Tlctti T3ca3 (70)

(71)

, = Tle -

(72)

(73)

(74)

c+\I,= 7'3c- <t>2j(L)<]jFlc+L+

4)cont = F\c (Fv + s)cont = &2c (fv + 6)cont =

(75)
(76)

where fty and ytj are modal integrals defined in Ref. 1 to
account for spin-induced dynamic stiffness effects.

Next, consider the gravitational forces exerted on A and B
by a particle of mass m located at a point & fixed in a
Newtonian reference frame. The contribution of these forces
to the generalized active forces can be approximated as

Kp^r] -3/2}

4- Na>f - {3Gm[(p*A*)2]

J°

N?f - { - Gmpp*c[(p*c)2] ~3/2} djc (i = l,...,v 4- 6)
(77)

where p*A* and p*c are position vectors from point & to
points A * and C, respectively.

IV. Simulation Results
A computational algorithm based on the previously pre-

sented equations has been developed and used to simulate the
free-flying motion of actively controlled spacecraft during
various practical maneuvers. Some results from these simula-
tions will be shown here to 1) illustrate the use of the theory
incorporating free base mption and external forces and 2)
point out differences between this theory and conventional
multibody methods.

Two orbital motions will be considered: one concerning a
controlled planar motion in low Earth orbit and the other
involving a large-angle, three-dimensional reorientation ma-
neuver followed by a precise pointing motion during geosyn-
chronous orbit. Before these are discussed, however, a few
simulation results will be presented for motions in which
gravity is neglected entirely; these focus attention primarily on
flexible-body and rigid-body interaction.

Rigid-Body/Flexible-Body Interaction
Many satellites used to conduct scientific experiments and

perform measurements of magnetic properties, electrical prop-
erties, radio-wave transmission, etc., in space, consist of a
fairly rigid hub and one or more flexible booms extending
from the hub and having instrumentation packages attached.
In order to measure properties of the surrounding plasma, a
number of maneuvers are executed,13 such as spin-up, spin-
down, and steady spin about principal axes of the base, slews
about principal base axes, and orbit change maneuvers. Spin-
up is often accomplished by firing short bursts of gas from
thrusters attached to the base. To simulate such a procedure,
consider the system depicted in Fig. 2 to be at rest initially
with no external forces applied. Starting with if = 0, a 5-s pulse
of a set of thrusters is represented by letting

F — F — F — T — T — ft C7K\* lc — z 2c — •* 3c — ± Ic — * 2c v V ' °/
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Fig. 2 Satellite system.
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Fig. 3 Single-pulse spin-up: rotational speed.

f O . l N -•> m
- 5 < f £ < 6 0 0 s (79)

where Flc, F2c, F3c, Tlc, T2c9 and T3c are the terms introduced
at the end of the last section to account for control system
actuation. The free-flying base A is a solid, 120-kg, rectangu-
lar parallelepiped with sides of length 2, 3, and 1 m, parallel
to al9 «2» aa» respectively. The flexible appendage B is a uni-
form cantilever beam of length 20-m, flexural rigidities
E0I2 = E0I3 = 5 N • m2, torsional rigidity GK' = 6 N • m2,
cross-sectional area A0 =4 x 10~4m2, and a mass per unit
length p =0.2 kg/m.

If the beam appendage were rigid, the time history of the
angular rate co3 associated with the based-fixed unit vector «3
would appear as shown by the solid line in Fig. 3, where co3
is plotted vs time for 600s. Soon after the 5-s pulse, co3
reaches a steady-state value, and spin-up is complete. How-
ever, when the flexibility of the appendage is taken into
account in the simulation, one obtains the dashed line result
for o>3 in Fig. 3. These results clearly show the effect that
motion of the flexible appendage (see Fig. 4) has on motion of
the base. Instead of a constant^velocity steady-state spin, the
hub alternately speeds up and slows down in a pulsating
fashion. This rigid-body/elastic-body coupling, which plays
such an important role here, is not accurately treated in the
conventional multibody programs discussed in Refs. 2-6
unless the flexible appendage is discretized or substructured in
the multibody system model. Suppose that the previous simu-
lation is repeated with T3c changed to 1.0 N • m. Using stan-
dard appendage modes and a continuous, unsubstructured
beam model along with an algorithm based on the conven-
tional modal modeling approach used in these programs, one

Time (sec)
Fig. 4 Single-pulse spin-up: beam transverse tip deflection.

- NEW THEORY
-._ — -. CONVENTIONAL

V

Fig. 5 Single-pulse spin-up: comparison of theories.

obtains the dashed-line .curve for (o3 vs time shown in Fig. 5
for the first 200 s of motion; the solid line represents results
obtained with an algorithm based oh the theory in this paper
combined with that of Ref. 1,

A number of techniques have been proposed for controlling
the amplitude of the in-plane, beam-tip deflection, shown in
Fig. 4, and thereby reducing the steady-state variation in co3.
One such strategy, termed the "half-period-pulsing"
method,13 involves firing the thrusters twice iri a precise
sequence. The initial firing imparts a certain angular momen-
tum to the system resulting in both rotation of the base and
vibration of the appendage. Then, a second thruster pulse of
equal magnitude and direction to the first is applied after a
time interval equal to one-half the period of the fundamental
bending mode of the system. [The term fundamental bending
mode, as used here, is to be interpreted as the first mode
obtained by solving an eigenproblem resulting from 1) lin-
earizing the previous v-+ 6 nonlinear equations about a state
of constant-speed (ca3) rotational motion and zero deforma-
tion and 2) assuming an exponential solution.] The idea is to
use the second pulse both to increase spin and negate vibra-
tibnal momentum. This strategy is investigated here in order
to illustrate the effectiveness of the current theory and accom-
panying algorithm in treating controlled spacecraft motion.
Figure 6a shows the time histories of a>3 and the in-plane tip
deflection u2(x = L) obtained from a simulation identical to
the single-pulse simulation except that a second pulse is fired
at a time (33 s) equal to approximately half the period of the
fundamental mode calculated for a case of zero steady-state
spin. After the second pulsej the tip deflection is indeed
reduced considerably, and the mean spin rate is increased.
This strategy appears to be effective arid can be repeated
indefinitely to achieve any desired spin rate. Figure 6b dis-
plays results from a simulation during which double pulses of
5-s duration and 33-s separation are repeated for the first
300 s of the motion.
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Fig. 6 Multipulse spin-up maneuvers.
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To use this strategy in an open-loop fashion requires an
accurate model to provide ah indication of the frequency of
the fundamental mode as the spin speed increases. Conven-
tional methods indicate that this frequence decreases with
increasing spin speed whereas, in reality, the frequency of the
fundamental mode increases. For the stimulation reported in
Fig. 5, the error in the fundamental frequency found using the
conventional modal modeling theory was approximately 10%.
Development of optimal control schemes based on such an
erroneous model could lead to dynamic instabilities unless
sufficient measurement capabilities and control law robustness
were built into the system.

Planar Librational Motion
Next, the effect of appendage flexibility on the behavior of

a satellite during orbit will be investigated using the same
system introduced earlier. First a planar librational motion,
studied previously in Ref. 9 (p. 330), will be considered
followed by a three-dimensional, large-angle reorientation of
an orbiting satellite.

1000.\ 2000.0 3000j0 4000.0 5000.0 £000.0

For the first motion, consider the mass center A* of A to be
initially placed at a point 622km above the Earth's surface
with a velocity in N (Newtonian reference frame) equal to the
velocity of a particle that occupies the same position as A *
and is moving on a circular orbit around the Earth. The base
A is given an initial angular velocity such that it is not
rotating relative to a line joining ^ (Earth's mass center) and
^4*, and the beam appendage is initially at rest in A. Further-
more, the base-fixed unit vector a3 is aligned with the orbit
normal, and the angle (p, shown in Fig. 2, is given an initial
value of 45 deg. If no active control is applied to the system
subsequent to the initial time, simulation results for the angle
cp and the beam-tip transverse deflection u2 (see Fig. 7) reveal
that the system oscillates about the local vertical and the
beam vibrates.

Suppose, however, that it is desired to control the satellite
actively in such a way as to cause A* to move on a circular
orbit with cp = 0. The system then moves in the so-called
spoke mode, with the beam's elastic axis perfectly aligned with
the local vertical at all times. If the beam appendage B is
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considered to be rigid, a control scheme to accomplish this
objective can be designed quite easily. For example, one can
set Flc = F2c = F3c = Tlc = T2c = 0 for all time and assign T3c
(the a3 measure number of the torque applied to A) to be a
linear function of two quantities ft and V, referred to as the
attitude rate and tip speed, respectively. These quantities are
denned as

7 = 1

where the summations are simply neglected for the case when
B is considered to be rigid. Thus, T3c can be written in the
form

(81)

where fcn and kv are proportional control gains. Suppose that
kv is zero and fcn is chosen so as to provide an underdamped
response of the satellite when the appendage is considered to
be rigid. With fcn = 1.185 N • m • s and initial conditions iden-
tical to those used to produce Fig. 7, one obtains the simula-
tion results shown in Fig. 8a, where the dashed curves with
black dots represent the appropriate underdamped response
for the case in which the appendage is considered as rigid,
whereas the solid curves represent the response of the system
when B is characterized by three transverse vibrational bend-
ing modes in the a1-a2 plane. These results suggest that the
control system, designed as if B were rigid, works reasonably
well even when B is significantly deformable. Although the
beam does vibrate, the angle cp is reduced to a very small
value, with minimal control effort beyond that required for a
rigid appendage.

One can, of course, also use this theory and associated
algorithms to investigate the usefulness of various modal
control schemes, as well as study the possible deleterious
effects of noncolocated control schemes. For example, assume

that the scalar T3c that was previously made proportional to
the attitude rate of the base is now assigned to be propor-
tional to the speed V measured at the beam tip. Thus,
measurements are made at the tip location, and control
torques are applied at the base. Choosing kv in such a way
(kv = 0.0575 N • s) so as to yield an underdamped response of
the system when B is rigid and performing a second simula-
tion with identical initial conditions and parameters as those
used in Fig. 8a, one obtains the results illustrated in Fig. 8b.
These results substantiate the well-known problems with em-
ploying noncolocated control (sensors and actuators at sepa-
rate locations) for flexible spacecraft. Unless a more robust
controller than the one employed here is used, instability can
be expected.

Large-Angle Reorientation Maneuvers
Last, a pointing maneuver of importance for both commu-

nication and strategic defense satellites will be studied. Con-
sider the system shown in Fig. 2 to be moving in a nearly
circular, equatorial, geosynchronous orbit, with the beam's
elastic axis pointing directly inward toward the center of the
Earth. Suppose, furthermore, that at some specific time, it is
desired to reorient the satellite and change its target. Such a
maneuver could be accomplished by firing different sets of
base-fixed thrusters in sequential fashion with the intent of
causing the base to rotate successively about lines parallel to
base principal axes. With a proper thruster firing sequence,
any desired orientation could, in theory, be achieved. Using
this notion, the following control strategy has been formu-
lated by considering B to be rigid, as was done in the
preceding examples. If /i, /2, and /3 denote central princi-
pal moments of inertia of the "rigid" satellite corresponding
to principal axes parallel, respectively, to al9 a2, and a3, then
attitude behavior of the rigid satellite is governed by Euler's
dynamical equations written in the form

">! - (/2 - = 7*! + G, (82)

Colocated Control
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Fig. 9 Reorientation of a satellite in a geosynchronous orbit.
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where T, and Gt (i = 1,2,3) represent the at measure numbers
of the control torques and gravity torques, respectively. In
order to bring the satellite from its initial orientation to the
desired final orientation in a specified time, the functions 7\,
T2, and T3 must be carefully chosen. Assume that one can
determine a set of body-three: 1-2-3 rotation angles9 <5f, <5f,
and <5f such that if the satellite in its initial orientation relative
to an orbiting reference frame were subjected successively to
dextral rotations of amount <5f about al9 (5* about a2, and 6 J
about a3, it would end up in the desired final orientation
relative to the same orbiting reference frame. The functions
Tl9 T2, T3 will be chosen in the form

T, = ktff - dt) - ffA - G, (i = 1,2,3) (85)

where Sl9 62, and 63 are body-three: 1-2-3 successive rotation
angles describing the current orientation relative to the initial
one, and kt and at are non-negative "proportional" and
"derivative" control gains. If Eqs. (82-84) are linearized m
the variables c0l5 o)2, and co3, and if cbt is approximated by Si9

Time (sec)

then the governing attitude equations can be rewritten as (no
summation convention employed)

(i = 1,2,3) (86)

This is the standard form of the equation for a damped
oscillator. Appropriate values for at and kt can thus be chosen
to provide the desired combination of peak time, settling time,
and overshoot. To assess the performance of such a control
law for both a rigid and deformable satellite, consider the
repositioning maneuver sequence illustrated in Fig. 9. The
satellite is originally in an Earth-pointing geosynchronous
orbit, and it is desired to reorient the satellite from this
orientation to the final one shown in the sketch. The appro-
priate values of the body-three: 1-2-3 angles <5f, <5|, S%,
introduced earlier, are 90, —30, and 20 deg, respectively. Note
that these angles describe the desired orientation of the satel-
lite relative to the inertial orientation that the satellite would
have at the same orbit location if its attitude relative to the
rotating orbital reference frame had remained undisturbed.
The dotted-line curves in Fig. 10 show the angles Sl9 d2, d3 as
a function of time, these results having been obtained from a
simulation in which B was treated as rigid. Performing a
subsequent simulation in which the deformation of B is
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described by three transverse bending modes in each of the
two principal transverse directions, as well as one torsional
mode, the resulting values for Sl9S29S3 appear as the solid lines
in Fig. 10. Figure 11 displays the two transverse displacements
and the twist of the beam tip during this maneuver.

The results indicate that whereas the control system suc-
ceeds in bringing about the desired reorientation, even when
the satellite is flexible, the time it takes to complete the whole
reorientation sequence is much greater and the corresponding
cost involved in operating the control system is higher for the
flexible satellite than for the rigid satellite, chiefly because the
very strict tolerances on pointing could not be reached until
after a considerable settling time of the beam vibrations.

It is important to state here that the controllers employed in
the previous simulations were chosen in a simple way to
clarify the key issues involved in the interaction between
flexible appendages and rigid base motion. In practice, a more
sophisticated approach to control law design and develop-
ment would normally be employed in order to optimize the
performance of the active control system. Such optimal con-
trol schemes can easily be incorporated in an algorithm based
on the equations given here.

V. Discussion and Conclusions
This paper, in conjunction with Ref. 1, provides a compre-

hensive theory and equations of motion for a free-flying rigid
body with flexible beamlike appendages. The present theory
has been compared with conventional modal modeling meth-
ods applied to beams and has been found to yield results that
agree much more favorably with experimentally observed
behavior. However, the increased accuracy of the results has
been gained at the expense of generality. The conventional
modal modeling method purports to treat any flexible compo-
nent, whether it is composed of beams, plates, shells, or
three-dimensional solids, whereas the present theory is appli-
cable only to components and appendages that behave in a
beamlike manner. Unfortunately, straightforward application
of the conventional theory to any structural elements under-
going continuous large rotations yields inaccurate simulation
results unless discretization or substructuring techniques are
artificially performed. Naturally, the extent of the inaccuracy
depends on the relative magnitude of the rate of change or
orientation of the element and the flexural rigidities of the
element. One valid conclusion that can be made is that in
order to simulate accurately general aerospace structures un-
dergoing large overall motions and small deformations (i.e.,
small strains), it is necessary to treat each distinct type of
structural element constituting the system in a special way.
Large rotation theories for beams, plates, and shells must be
built into whatever system equation formulation procedure is
employed, regardless of whether assumed mode techniques are
used.

A natural question that often arises is: If it is necessary to
incorporate these special structural theories in the dynamical
formulation anyway, what advantage is there in using as-
sumed mode methods as opposed to nonlinear finite-element
methods? The following discussion is intended to address this
question and shed light on practical implications of employing
each method. First of all, a brief explanation of the differences
between assumed mode methods and finite-element methods
will be given.

The assumed mode method of treating flexible multibody
systems undergoing large overall motions has been the most
popular to date owing to a number of attractive features.
First, one can easily take advantage of previously constructed
structural finite-element models to provide eigenfunctions for
the nonlinear simulation, thereby assuring some fidelity of
models throughout the design and analysis process. Second,
reducing the size of the system of equations for control design
purposes is very easy to do with the assumed mode method by
simply truncating the number of assumed modes employed.

Third, in many cases, good accuracy in simulation results can
be obtained with a minimum of generalized temporal coordi-
nates (and corresponding equations) because the assumed
modal functions usually characterize the flexible-body defor-
mation very well.

On the other hand, some of the advantages of the finite-
element method are that: 1) the piecewise continuous polyno-
mial shape functions are easier to work with in the
computational algorithm and cheaper to evaluate than their
modal counterparts; 2) it is easier to allow for changes in
boundary conditions of a flexible body (such as during de-
ployment) with finite-element methods owing to the local
nature of the shape functions and the standard global assem-
bly procedures; and 3) an identical geometric model can be
used in the nonlinear simulation as was used in earlier phases
of design and structural analysis.

To give some idea of relative computational speed, CPU
times on an Apollo DN3000 were monitored during the
simulation reported in Fig. 5. Three analyses were performed:
the first used the conventional assumed mode modeling
method now employed in commercial software; the second
was based on an algorithm employing the theory included in
this paper; and the third used a fully nonlinear finite-element
technique. As a benchmark, the present theory with 20 modes
was used to establish the "correct solution."

The algorithm based on the assumed mode modeling theory
included in this paper was able to reproduce the correct
solution with 2% error in 381 CPU seconds by employing
only three transverse bending modes in the simulation. An
algorithm based on the conventional assumed mode modeling
approach, although not able to produce as accurate results
(see Fig. 5), took only 299 CPU seconds with three modes to
complete the simulation. The finite-element implementation,
however, required nearly 10 elements to obtain comparable
accuracy with that of the new modal method and used more
than 6200 CPU seconds. With three and five elements, respec-
tively, the simulation times were 714 and 2557 CPU seconds,
and the error was in the 5-10% range.

One reason for the unusually long simulation times with the
finite-element implementation is that six degrees of freedom
are allowed at each nodal point connecting the discrete ele-
ment domains, whereas the simulations based on the assumed
mode methods included flexibility in only one transverse
direction. The unnecessary degrees of freedom could have
been eliminated from the finite-element analysis; however, the
absolute-coordinate, sparse-matrix analysis scheme employed
would have required that additional constraint equations be
processed at an expense greater than that of retaining all of
the extra degrees of freedom in the problem.

Although the numerical results are by no means general or
conclusive, they do suggest that it is worthwhile to pursue a
general development of flexible multibody simulation al-
gorithms that utilize the assumed mode procedures but also
include large-rotation structural element theories.
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