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The Force-Deflection Behavior of  
Functionally Graded Piezoceramic Actuators 

Paul W. Alexander*, Diann Brei†, and John W. Halloran ‡ 
University of Michigan, Ann Arbor, Michigan, 48109 

Functionally Graded Piezoceramics (FGP) overcome the current reliability limitations 
within laminated piezoceramic actuators by eliminating the bond lines and stress 
discontinuities and lowering the overall internal stress levels.  New fabrication methods for 
FGP, such as the Dual Electro/Piezo Property (DEPP) gradient technique, synergistically 
couple variations in permittivity and piezoelectric properties yielding more electrically 
efficient actuators capable of larger displacements.  Unfortunately, such FGP approaches 
naturally introduce complexity into the electric field, stress, and material profiles, making it 
more difficult to model their performance.  This paper develops a Hamiltonian energy-based 
modeling approach that fully captures the force-deflection performance of a generic multi-
dimensionally graded piezoceramic actuator.  As demonstration of the approach, two 
differently graded beams are presented: a two layered gradient that maximizes deflection 
and a linear gradient that minimizes internal stresses.  DEPP graded prototypes were 
fabricated with a powder-pressed method for the two-layered specimen and micro-
fabrication via co-extrusion for the linear gradient.  The force-deflection performance of 
each cantilevered prototype under tip loading conditions was experimentally and 
numerically validated.  The derived analytic model correlates very well with the observed 
behavior by incorporating the complex electric field variation and continuous stress 
distribution within the prototype eluded by conventional modeling methods.  This 
comprehensive quasi-static force-deflection model provides designers with an effective and 
necessary tool for the implementation of FGP as actuators with extended service lifetimes. 

Nomenclature 
a = neutral axis position 
B = blocked force 
Ci = piezoelectric performance terms  
c = material stiffness 
d = piezoelectric strain coefficient 
D = electric displacement 
e = piezoelectric stress coefficient 
E = electric field 
fi = generic displacement functions 
F = applied load 
G = electrical constant 
H = electric enthalpy density 
K = actuator stiffness 
l = length value 
li = specimen dimension in the xi direction 
Oi = constants in the generic displacement functions 
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Pi = constants in the generic displacement functions 
S = strain 
t = thickness value 
T = stress 
ui = displacements 
U = internal energy density 
UTotal = internal energy 
v = specimen volume  
Vi = electric potentials 
w = width value 
W = work 
xi = spatial coordinates 
Y = Young’s modulus 
∆ = free deflection 
∆V = electric potential difference 
ε = electric permittivity 

I. Introduction 
HE practical application of many piezoceramic actuation architectures has been limited because of their service 
lifetimes.  For example, conventional piezoceramic benders, composed of multiple material layers bonded 

together, have lifetimes on the order of only 105 to 106 cycles in high cycle applications;1,2 several magnitudes less 
than that typically required by industry.  Research has indicated that a key problem is debonding.  One potential 
solution is to establish the gradients required for deformation by varying the material properties in a continuous 
piezoceramic versus bonding dissimilar materials.3,4  Although this does decrease the performance slightly, there is a 
more significant increase in reliability because the bond lines have been removed, the stress discontinuities 
eliminated, and stress levels reduced.4 

These Functionally Graded Piezoceramics (FGP) can be created using a number of property grading approaches, 
including varying the material resistivity or conductivity,5-9 piezoelectric coefficient,4,10,11 permittivity,3,4,12-14 or 
porosity.15  The Dual Electro/Piezo Property (DEPP) grading technique is a new method that varies both the material 
permittivity and piezoelectric properties by doping lead zirconate titanate (PZT) with a high permittivity barium 
titanate (BT) dielectric.  This combination synergistically concentrates the applied electric field in the most active 
piezoceramic region, simultaneously increasing the efficiency and deformation capabilities of the actuator.  The 
DEPP technique can also be utilized to form material gradients in multiple dimensions; promising higher order 
deformations such as warping or dimpling from FGP actuators.  Unfortunately, it is more difficult to analyze and 
predict the performance of these types of monolithic FGP because of the spatially varying material properties and 
resulting non-homogenous electric field.  These FGP characteristics preclude the use of traditional modeling 
techniques that assume constant material properties and electric fields per layer or only model material gradients 
across one spatial coordinate. 

In the past, efforts in modeling functionally graded piezoceramics often use classical laminate theory as a basis.  
This approach assumes homogeneous material properties in a single layer, with multiple layers composing the 
FGP.16-19  Laminate theory limits the material property variation to a step-wise pattern with the step size dictated by 
the thickness of the lamina.  Other research20,21 has produced models that could account for continuous gradients, yet 
still model only layered FGP with severe restrictions placed on the variation of the electric field, limiting it to 
polynomial variation.  Zhu and Meng22 have adapted energy based methods to predict the performance of bonded 
laminate bimorph actuators23 to FGP actuators, but only for discretely layered specimens.  Wu with others24 use 
energy methods and allow for continuously graded specimens, but limit the material gradient to a single direction.  
All research efforts to date focus specifically on the deflection performance of FGP, completely neglecting the 
effects of external mechanical loads which the actuator must work against.  This severely limits the use of current 
models for realistic design of any loaded FGP actuator. 

This paper presents a comprehensive analytic model for the force-deflection behavior of generic multi-
dimensional FGP actuators that accounts for variations in the material stiffness, permittivity, and piezoelectric 
coefficients as functions of spatial coordinates and predicts the complex electric field distribution within the actuator 
based upon electrostatics.  The model includes external mechanical and internal piezoelectric loads; thereby, 
capturing the complete quasi-static force-deflection behavior including the internal stresses within the actuator and 
the forces it can generate.  As an example, this modeling theory was applied to the case of FGP cantilever beams 
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(benders) that have a generic material gradient in the thickness direction with an external mechanical tip load.  The 
model was compared to experimental results and numerical model predictions for DEPP graded FGP actuators with 
different material gradients: a two composition gradient that maximizes deflection and a linear material gradient that 
minimizes internal stress levels.  The numerical models provided valuable insight into the design tradeoff between 
displacement performance and internal stresses as well as illustrating the limitations of layered material gradient 
modeling.  Correlation between models and experimental observations was exceptionally good, allowing for the 
future expansion of the derived models and DEPP grading technique to multi-dimensional FGP which promise to 
greatly enhance the capabilities of piezoceramic actuation. 

II. Analytic Force-Deflection Model for a Generic FGP 
Past research efforts sought to capture only the free deflection behavior of FGP,16-21,22,24 yet to be utilized in real 

applications; the force-deflection performance must be known.  Current deflection models cannot be simply 
extended to incorporate forcing effects because they employ assumptions that limit the material gradient to discrete 
steps, resulting in inaccurate predictions of the activating electric field and the internal stresses distribution in an 
FGP.  To predict the force-deflection behavior of FGP, the model must accurately represent the graded material 
properties and resulting variation in the electric field as well as account for external loads the FGP may experience 
during actuation in a real applications.  A Hamiltonian approach was employed to include these factors into a single 
modeling methodology that predicts deformations as a function of mechanical and electrical loading along with the 
resulting stress profile for single and multi-dimensional FGP actuators. 

The desired deformations (u) within an FGP can be derived using Hamilton’s principle that states a system will 
always tend to a state of minimum energy.  This state is found by setting the variation of the work due to external 
loads (δW) and the variation of the internal energy (δUTotal) to zero, 

 0=− TotalUW δδ . (1) 

The work (W) follows the conventional definition as the product of the external forces multiplied by the component 
of FGP deflection in the same direction.  Because of the non-homogenous material profiles, the typical integrals that 
appear while deriving the internal energy expression cannot be simplified until the material system is known.    

A. Internal Energy 
The internal energy of the FGP (UTotal) can be determined from piezoelectric theory and is the integral of the 

FGP internal energy density (U) of a piezoceramic,25 

 DEHU += , (2) 

where H is the electric enthalpy density, D is the electric displacement, and E is the applied electric field.  The 
variation of the internal energy density is defined as: 

 EDHU δδδ += . (3) 

When the FGP is in actuator form, the electric field is prescribed and will not vary (δE =0); thus, the internal energy 
variation reduces to the variation in electric enthalpy,  

 HU δδ = . (4) 

The electric enthalpy density (H) is defined in terms of the strain (S), electric field (E), material compliance 
under a constant electric field (cE), piezoelectric stress coefficient (e), and electric permittivity under constant strain 
(εS), 
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The resulting variation of the electric enthalpy density (δH), and thus the internal energy, is: 
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To formulate the internal energy (Eq. (6)) in terms of easily measured material properties, the piezoelectric strain 
coefficient (d) is substituted for the piezoelectric stress coefficient (e) using the equivalence relationship: 

 E
nmijknmkij cde = , (7) 

yielding the variation of the internal energy density, 
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The variation of the total internal energy (δUTotal) of an FGP is the integral of the internal energy density (Eq. (8)) 
over the FGP volume (v), 
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B. Displacement Functions 
The strain terms present in total internal energy variation (Eq. (9)) are determined using the standard definition, 
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where the displacement components (ui) are defined as functions (fi) of the spatial coordinates x1, x2, and x3, 

 ( )321 ,, xxxfu ii = . (11) 

Using a standard solid mechanics approach, these functions are assumed to have a user-defined form with unknown 
constants that need to be determined.  The appropriate form of these equations is dictated by the actuator shape, 
gradient characteristics, and mounting conditions. 

The unknown constants within the displacement functions are found via the equilibrium equations and boundary 
conditions generated by applying the Hamiltonian principle to the internal energy of the actuator and the work done 
by any external loads (Eq. (1)).  While this procedure sounds standard, it differs from the norm because the material 
properties and driving electric field can be complex functions of the spatial coordinates, which makes the unknown 
constants radically different than those that would describe conventional piezoceramics. 

C. Electric Field 
A prime example of the difference between conventional piezoceramics and FGP is the electric field.  

Homogeneous piezoceramics experience a constant electric field across their entire thickness; whereas, an FGP has 
a nonlinearly varying electric field due to the graded material permittivity.  The DEPP gradient technique 
specifically exploits this variation in electric field for improved motion generation; thus, accurate electric field 
prediction is critical. 

As with conventional piezoelectric actuators, the three direction (x3) denotes the poling direction.  It is assumed 
that a single electric field (E3) is applied in this direction, (E1=E2=0), and any slight discrepancies due to edge effects 
and material grading are negligible.  Because the electric permittivity of the material is allowed to vary with spatial 
position (ε33(x1,x2,x3)), the electric field also varies with position (E3(x1,x2,x3)).  From dielectric theory, it is known 
that the product of the electric field intensity and the material permittivity anywhere along an electric field line (x1=l, 
x2=w, x3 varies) must equal a constant value (G) throughout a dielectric, 
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 ( ) ( ) GxwlxwlE =33333 ,,,, ε . (12) 

The integral of the electric field across the thickness direction is directly related to the potential difference applied to 
the actuator (∆V), 

 ( ){ } 333

3

,, dxxwlEV
x
∫−=∆ . (13) 

The electrical permittivity of the material is dictated by the material composition, which can be experimentally 
determined.  Once the permittivity profile (ε33(x1,x2,x3)) is known, the electric field can be defined for an applied 
voltage through substitution of Eq. (12) into Eq. (13),  
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This relationship holds for discretely layered FGP as well as for continuously graded FGP and can be simplified 
for material gradients in one or two directions.  However, the field is never a constant as assumed by conventional 
theory.  Though the derivation of the electric field profile is straight forward, the profile itself can be very complex 
because it is proportional to the reciprocal of the permittivity gradient, where continuous permittivity gradients can 
lead to difficulties if trying to analytically solve for the resulting electric field distribution. 

III. FGP Beam Model with a One-Dimensional Material Gradient 
The derived modeling procedure for a general FGP can be employed for a wide range of structural shapes and 

material gradients.  To demonstrate the procedure, the method is applied here to the case of the widely used beam 
actuator graded through its thickness.  Figure 1 depicts the coordinate system, dimensions, and electrical and 
mechanical loads used in this derivation.  The material stiffness in the length direction is represented using the 
Young’s modulus (Y) of the material, c1111

E(x3)=Y11(x3).  Since the FGP beam is designed to produce bending 
deformations it is necessary to calculate the position of the beam’s neutral axis (a) in the thickness, accounting for 
the material variation, 

 ( ){ } ( ){ }∫∫ =
3
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Figure 1.  FGP cantilever beam with thickness-graded material properties. 
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where l3 is the thickness of the FGP beam.  Linear piezoelectric theory is assumed, and the piezoelectric coefficients 
other than those in beam’s length coordinate are assumed negligible for this application (d333=d322=0), and 
simplifying the notation to d311(x3)=d31(x3).  Likewise, the electric field is assumed to vary only through the 
thickness (E3(x3)).  The FGP material gradient within the beam is not further restricted and can either be a 
continuous gradient or a discrete step function.  For example, a two layer discrete gradient produces the most 
deflection, but also has the highest internal stresses, which is a reliability concern.4  For a linear gradient, the 
actuator deflection is only moderately reduced compared to the discretely layered case, but internal stress 
discontinuities are completely eliminated and the peak stress is greatly reduced, leading to extended lifetimes.4  The 
tradeoff between performance and reliability is one aspect of FGP actuators that is important to evaluate for a given 
application.  The models developed here will predict the quasi-static performance and associated stresses of these 
FGP actuators to aid designers in balancing these deflection-stress tradeoffs of FGP beams. 

A. Beam Displacement Functions 
The derived energy method is applied to the beam configuration in Fig. 1 by specifying the displacement 

components of the actuator.  These functions were selected assuming Bernoulli-Euler bending deformations, 

 [ ]
1

3
311 x

f
axfu
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∂−−= ,  (16) 

 02 =u , (17) 

 
33 fu = , (18) 

where  f1 and f3 denote cubic polynomial functions of x1 in the form: 

 3
13
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121103 xPxPxPPf +++= , (19),(20) 

where Oi and Pi are unknown constants that must be solved for. 
The strain components necessary for determining the internal energy are calculated by substituting the 

displacement components (Eqs. (16)-(18)) into the strain relation (Eq. (10)), 
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with all other strain components reducing to zero. 

B.  Hamiltonian Terms 
 To formulate the specific Hamiltonian terms for the beam actuator described in Fig. 1, the work and internal 
energy terms must be determined for the applied electrical and mechanical loading conditions.  Substituting in the 
beam strain (Eq. (21)) and imposing the assumptions simplifies the variation of internal energy (Eq. (9)) to: 
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For most beam actuators, the tip of the actuator is utilized to apply a force (F) to an external system, as depicted 
in Fig. 1.  These loading conditions give rise to a work term in the Hamiltonian relationship, 
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C. Equations of Equilibrium 
To establish the equations of motion, the work and internal energy terms are substituted into the Hamiltonian 

expression (Eq. (1)), 
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where the known terms Ci are included for simplification, 
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and would normally be simple coefficients for a homogeneous piezoceramic.  The electric field distribution (E3(x3)) 
in these terms can be solved for using a simplified form of Eq. (14), 

 ( )
( ) ( )∫

⎭
⎬
⎫

⎩
⎨
⎧

∆−=
3

0

3
333

333

33
1

l

dx
x

x

V
xE

ε
ε

, (30) 

with ∆V equal to V2-V1.  Clearly this is not a constant but is a function of position. 
The Hamiltonian expression (Eq. (24)) is integrated by parts, and in conjunction with cantilever end conditions, 

gives two coupled equilibrium equations and six boundary conditions, 
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D. Comprehensive Force-Displacement Model 
This system of equations is used to solve for the Oi and Pi constants, which are substituted back into the 

displacement functions (Eqs. (16)-(18)) to form the displacement relationships as a function of the mechanical and 
electrical forcing, 
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Simplified versions of force-displacement equations (Eq. (38)-(40)) result in common performance parameters 
used to evaluate an actuator.  The free deflection of the actuator (∆) is the tip displacement in the x3 direction when 
the applied tip load is absent (F=0), 
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and the blocked force (B) is the applied tip load that negates any deflection (u3=0), 
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with the actuator stiffness (K) being the ratio of these values, 
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E. Stress Profile 
Another important relationship that stems from the force-displacement equations is the stress profile.  Increased 

actuator lifetime is an important benefit of graded piezoceramics over conventional actuators.  The continuous 
stresses within the FGP play a major role to increasing device reliability.  The stress (T) profile present within a 
generic FGP can be determined using the appropriate constitutive equation, 
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where in this case, the material properties (c, d) and electric field (E) are not constants.  In the beam example, the 
primary stress in the one direction (T11) is calculated from the constitutive equation (Eq. (44)) with the strain (S11) 
found by substituting the displacements functions (Eq. (38)-(40)) into the strain relation (Eq. (10)), 
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The first half of Eq. (45) accounts for the external loads on the beam and varies linearly across the thickness as in 
non-piezoelectric beams.  The last portion of the equation adds the piezoelectric forcing effects that are responsible 
for stress discontinuities in layered piezoceramic actuators; discontinuities that are eliminated in a continuously 
graded FGP. 

IV. DEPP FGP Beam Prototypes 
Several FGP beam actuators were fabricated for 

experimental testing.  The new DEPP material 
gradient technique, which grades both the permittivity 
and piezoelectric properties, was chosen because it 
concentrates more of the electric field within the 
material that has a higher piezoelectric coefficient, 
generating larger bending motions while reducing the 
required driving electric potential for the actuator.  
For these prototypes, American Piezo Ceramic’s lead 
zirconate titanate (PZT) based powder, APC 856, and 
Ferro’s high permittivity barium titanate (BT) based 
dielectric powder, Z9500 were selected because 
combining these materials in compositions that range 
from 100% PZT to 80/20 vol% PZT/BT resulted in a 
dramatic 140% increase in the material permittivity in 

 100 vol% PZT 

80/20 vol% PZT/BT 

 
 a) High displacement specimen 

100 vol% PZT 
95/5 vol% PZT/BT 
90/10 vol% PZT/BT 
85/15 vol% PZT/BT 
80/20 vol% PZT/BT 

 b) Low internal stress specimen 
Figure 2.  Initial specimen material compositions. 
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Figure 3.  DEPP gradient material property variations with composition. 
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conjunction with a 96% variation in the piezoelectric properties.  Two specific material gradient profiles were 
fabricated to illustrate the capabilities and expected benefits of functionally graded piezoceramics: a two 
composition specimen that produces large displacements and a five composition linear graded specimen with 
reduced internal stresses (Fig. 2).4  The actual material compositions present in the test specimens across their 
thickness (x3) were measured as a function of Barium content using a Cameca SX100 electron microprobe.  The 
associated material property variations (Y11(x3), d31(x3), ε33(x3)) were determined based upon the composition (Fig. 
3). 

A. High Displacement FGP  
The high displacement specimen was fabricated from two different material compositions: pure PZT and the 

80/20 vol% PZT/BT mixture.  The two powders were layered evenly across a 2 in by 1 in die and cold pressed at 
15,000 psi.  The resulting 2 mm thick plate was embedded in a PZT powder bed and sintered at 1320 oC for two 
hours.  The plate was cut into thin beams and each was sputter coated with a gold-palladium electrode and polled 
with 2000 V.  Figure 4 gives a photograph and schematic of a finished high displacement specimen. 

The material composition 
profile is shown in Fig. 5, 
displaying the microprobe 
measurements as well as a curve 
fit to the data.  While the 
gradient is clearly bimodal, there 
is a continuous change versus a 
discrete step between the two 
modes.  This steep gradient will 
produce large deflections 
because of the dramatic change 
in material composition over a 
small portion of the beam’s 
thickness; but, this gradient is 
also responsible for dramatic 
swings in the internal stress 
profile.  This trend is best 
illustrated in step-wise graded FGP where the discrete change in composition results in a stress discontinuity 
lactated where material in compression is adjacent to material in tension.  The continuous gradient in the large 
deflection prototype eliminates this discontinuity and slightly reduces the internal stress levels of the actuator, but 
the stress levels are still high relative to a linear gradient. 

B. Low Internal Stress FGP 
Production of more complex and precise material gradients, such as the linear gradient, requires the capabilities 

of the Micro-Fabrication by Co-eXtrusion (MFCX) process composed of five different steps: media preparation, 
feedrod formation, co-extrusion, burnout and sintering, and post processing.  The extrusion media was prepared by 
incorporating each of the powder compositions with thermoplastic binders in a 120 oC shear mixer, taking care to 
match all composition viscosities so there will be no cross-sectional distortion during extrusion.  Each batch of 
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l2 

Gradient from 100 vol% PZT 
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Figure 4.  Photograph and schematic of the high displacement FGP. 
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Figure 5.  BT concentration across the high displacement FGP. 
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media was compacted at 120 oC by 
770 kg to form a 25 mm square 
feedrod.  The desired low stress 
FGP prototypes consist of five equal 
sized layers of the different material 
compositions, stacking 5 mm thick 
slices of each and hot pressing them 
into a single feedrod (Fig. 2).  
During the next step, co-extrusion, 
the feedrod was reduced in the 
layered dimension from 25 mm to a 
1 mm thick tape.  This single 
extrusion run produces a large 
quantity of FGP tape that can be cut 
into numerous beams and patches.  
The polymers in the media were 
removed from the green ceramic through a seven segment burnout process that minimizes warping of the sample.  
The specimens were sintered at the manufacturer specified temperature of 1320 oC and the resulting ceramic 
specimens were electroded by sputter coating two surfaces of the actuator with AuPd and poled with 2000 V.  The 
finished low stress test specimen is displayed in Fig. 6. 

The MFCX process was used to fabricate a linearly graded FGP initially in the form of a five layered feed rod 
consisting of 100, 95, 90, 85, and 80 vol% PZT.  The microprobe analysis of the finished specimen’s composition 
(Fig. 7) displays the same smoothing of the compositional variation that was present in the high displacement 
specimen; but this time, the layered origins are completely erased giving way to a linear gradient that will drastically 
reduce the internal stress levels.4 

V. FGP Beam Force-Deflection Model Validation 
These prototypes were employed in quasi-static experimental tests to validate the beam models under a variety 

of electrical and mechanical loading conditions.  In addition, numerical models were constructed to gain insight into 
the error sources arising from linear assumptions and the displacement-stress tradeoffs in graded piezoceramics as 
well as the ramifications of a layered modeling approach. 

A. Experimental Force-Deflection Procedure 
The quasi-static behavior of the fabricated test specimens were measured using the experimental set up shown in 

Fig. 8.  Force-deflection curves were generated by activating the FGP actuator with a set electric potential supplied 
by a Kepco APH 2000 DC power supply and applying loads to its tip by dialing-in a micrometer on a Newport 
M462 three-axis stage with a Cooper LPM 620 load cell in-line with the prototype and measuring the resulting 
displacement with a Philtec A88NE1 fiber optic probe.  For each driving potential, the applied force was increased 
incrementally until the actuator displacement was completely negated, giving the actuator’s blocked force.  The 
procedure was repeated by incrementally reducing the applied load to zero to complete the force deflection curve for 
a single test.  The entire process was repeated for various driving electrical potentials. 
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Figure 6.  Photograph and schematic of the low stress FGP. 
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B. Analytic Quasi-Static FGP Beam Model Validation 
In addition to the experiments, full three-dimensional numeric models of the FGP beam specimens were 

constructed using ABAQUS CAE v6.3.  All the various material properties were programmed into the model, 
including the stiffness, density, dielectric constant, and piezoelectric coefficients of the graded material.  The models 
consist of linear piezoelectric materials meshed with 
20-node quadratic piezoelectric brick elements 
(C3D20E) in a cantilever configuration (Fig. 9).  
The free deflection of the actuators was obtained by 
applying an electric potential to the top and bottom 
surfaces of the models and measuring the deflection 
in the x3 direction at the midpoint of the beam’s free 
end.  Blocked force conditions were imposed by 
locking the nodes along the beam tip’s mid-plane in 
the x3 direction, and summing the resulting reaction 
forces.  The predicted stress distribution across the 
beam’s thickness was measured through the beam’s 
center a few elements away from the cantilevered 
end to avoid end effects yet obtain the highest stress 
levels present within the beam.  The key limitation 
of numeric modeling, and consequently the impetus 
for developing analytic solutions, is the fact that 

 

Kepco DC power supply 

Voltmeter  
(for fiber optic probe) Newport 3-axis stages 
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Figure 8.  FGP force-deflection experimental test apparatus, photographs and schematic. 
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Figure 9.  Finite element model of an FGP beam. 
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material properties cannot by varied continuously across the beam thickness.  Instead, the model is limited to 
discrete material properties that are assigned on a per element basis.  Therefore, the resolution which one can 
express a continuous material gradient is limited by the dimensions of the elements composing the model.  Increased 
model accuracy requires a significant number of elements, even in the simple beam models constructed for this 
paper.  Though the numeric model easily accounts for out-of-plane deformations and all piezoelectric effects, it can 
not exactly model continuous material gradients. 

C. High Displacement FGP Results 
Figure 10 graphically displays the quasi-static performance of the high displacement prototype with force-

deflection curves for 700, 450, and 200V.  Each of the force-deflection tests performed on the actuator and the 
corresponding model predictions are summarized in Table 1.  The maximum deflection of this prototype reached 
43.5 µm at 700 V, with a 481 mN blocked force giving a stiffness of 11.3 kN/m.  The correlation between the 
experimental results and analytic model was excellent; with the analytic predictions within 7.6% or less of the 
experimental results; with the larger discrepancies observed at higher driving potentials because of the limitations of 
linear piezoelectric theory.  Aside from this effect, discrepancies can also be attributed to slight variations in the 
actuator’s thickness and graded region along its length because of the inaccuracy of powder pressing fabrication 
methods.  In light of these discrepancies, the model is fairly robust and predicts very well the force-displacement 
behavior. 

It is interesting to note though that the analytic model consistently under-predicted the actuator performance; 
thus, two numeric models were constructed for this actuator to asses the effects of the linear model assumptions and 
simplifications.  One model was composed of just two materials (100% and 80% PZT) and the other included four 
additional material compositions to more accurately model the 0.464 mm graded region in the middle of the beam’s 
thickness (Fig. 5).  The modeling results from these two numeric simulations were virtually identical (Fig. 10), with 
the results given as a single value where appropriate (Table 1).  The numeric models consistently predicted slightly 
larger performance values than the analytic results because they are fully three-dimensional, and account for all 
piezoelectric effects and stress 
components as well as including the 
full effects of the mounting 
conditions.  Essentially, the 
simplifications of the of analytic 
model result in slightly less predicted 
deflection, which directly translates to 
lower blocked forces.  However, 
these factors only contribute barely a 
one percent improvement in 
performance prediction, so the 
assumptions are reasonable. 

The differences between the 
analytic and numeric models are 
readily apparent in the predicted 
stress profiles in Fig. 11.  Stress 
levels are generally higher in the 
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Table 1.  High displacement FGP experimental and modeling results. 

Free Deflection Blocked Force Stiffness
(µm) (mN) (kN/m)

Experimental 43.5 481 11.3
Analytic (Error) 40.2 (7.6%) 453 (5.8%) 11.3 (0.0%)

Numeric (Error) 40.7 (6.4%) 459 (4.6%) 11.3 (0.0%)

Experimental 27.4 312 11.6
Analytic (Error) 25.8 (5.8%) 292 (6.4%) 11.3 (2.6%)

Numeric (Error) 26.2 (4.5%) 295 (5.4%) 11.3 (2.6%)

Experimental 11.7 133 11.7
Analytic (Error) 11.5 (1.7%) 130 (2.3%) 11.3 (3.4%)

Numeric (Error) 11.6 (0.9%) 131 (1.5%) 11.3 (3.4%)
200 V

Applied Potential

700 V

450 V
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numeric predictions, a maximum of 4.95 MPa for 
the two layer model and 4.19 MPa for the six layer 
model as opposed to 2.71 MPa for the analytic 
under free deflection conditions.  This is due to the 
out-of-plane components that the analytic model 
neglects.  The added complexity of the numeric 
model does not directly translate into improved 
accuracy in behavioral predictions because of the 
necessary layered construction of the models.  The 
continuous material gradient measured in Fig. 5 
will not produce the discontinuous stress profile of 
Fig. 11 and driving electric field in Fig. 12, but 
rather the smooth curves predicted by the analytic 
model.  The results of Table 1 indicate that layered 
modeling can effectively predict the behavior of 
FGP actuators like the high displacement prototype 
where the bulk of the material is either one 
composition or another, but Figs. 11 and 12 indicate that there are some characteristics that layered models cannot 
accurately capture that can become more pronounced as the material gradient becomes more complex. 

D. Specimen Graded for Low Internal Stresses 
A good example of where the numerical model breaks down is the linearly graded prototype.  The force-

deflection curves and predictions for this prototype at 200 and 100 V are given in Fig. 13.  Table 2 gives the 
experimental and modeling results for the low stress actuator which produced a maximum deflection at 200 V of 
34.8 µm with a blocking force of 52.1 
mN and a stiffness of 1.51 kN/m.  The 
analytic model captures the behavior of 
the actuator extremely well, with 
discrepancies never rising above 4.4%.  
This slight amount of error is due to 
some mild warping in the actuator that 
occurred during burnout that does affect 
the force-deflection behavior of the low 
stress prototype, but can be eliminated 
through refinement of the fabrication 
process. 

The same type of numeric models 
were created for the low internal stress 
actuator as for the high displacement 
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Figure 11.  High displacement FGP internal stress profile 1.5 mm from mounted end. 
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Figure 13. Low stress FGP force-deflection curves. 
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specimen except the models included one with five material layers: 100, 95, 90, 85, and 80% PZT, and a second 
with nine material layers, the original five plus 97.5, 92.5, 87.5, and 82.5% PZT compositions in between them.  
Even though up to nine material layers were used, the inability of the layered numeric model to capture the behavior 
of an FGP with gentle grading is still evident in the over prediction of blocking force by as much as 22.8% for the 
five layer model and 13.6% for the nine layer model.  Figure 14 displays the analytic and numeric predicted stress 
profiles for this FGP with the analytic resulting in a smooth, continuous stress profile without any dramatic peaks 
(1.65 MPa for the five layer model and 1.09 MPa for the nine layer model) and a maximum stress of only 0.41 MPa 
in the free case.  Again, layered numeric models cannot capture this trend and predict a discontinuous stress profile 
for both free and blocked conditions with peak stresses over double those predicted by the analytic model during 

free deflection.  The numerically generated 
electric field profile for an applied 200 V is also 
inaccurate (Fig. 15), predicting a constant 
electric field within each material layer instead 
of the continuous field that would be 
experienced by a smoothly graded FGP.  
Basically, numeric and other models that 
represent continuous gradients with discrete 
layers are insufficient for prediction of the 
behavior of FGP actuators with complex 
gradients unless an excessive amount of 
elements and material compositions are included 
in the model. 

 

Table 2. Low stress FGP experimental and modeling results. 

Free Deflection Blocked Force Stiffness
(µm) (mN) (kN/m)

Experimental 34.8 52.1 1.51
Analytic (Error) 34.8 (0.0%) 53.2 (2.1%) 1.53 (1.3%)

Numeric-5 layer (Error) 41.4 (19.0%) 63.7 (22.3%) 1.54 (2.1%)
Numeric-10 layer (Error) 38.4 (10.3%) 59.2 (13.6%) 1.54 (2.1%)

Experimental 17.0 26.4 1.60
Analytic (Error) 17.4 (2.4%) 26.6 (0.8%) 1.53 (4.4%)

Numeric-5 layer (Error) 20.7 (21.8%) 31.7 (20.1%) 1.54 (2.1%)
Numeric-10 layer (Error) 19.2 (12.9%) 29.6 (12.1%) 1.54 (2.1%)
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Figure 14.  Low stress FGP internal stress profile 1.1 mm from mounted end. 
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VI. Conclusion 
This paper presents an energy based modeling methodology for a generic multi-dimensionally graded 

piezoceramic actuator.  A Hamiltonian approach was utilized that accounts for applied external mechanical loads 
and non-homogeneous material properties and the resulting complex electric field variation in all three spatial 
coordinates.  While this modeling process can be applied to any structural shape or material gradient, it was applied 
to FGP beams as means of demonstration of the process and validation with physical prototypes.  Two different 
prototypes were fabricated utilizing a DEPP gradient method.  A high displacement actuator with a two material 
compositions, pure PZT and an 80/20 vol% PZT/BT mixture, was fabricated with standard powder pressing 
techniques.  To reduce the internal stress within FGP beam actuators, a second style of actuator was fabricated with 
a linear gradient using a Micro-Fabrication by Co-eXtrusion (MFCX) process with material compositions ranging 
from 100 to 80 vol% PZT.  The force-displacement behavior of each prototype was experimentally characterized at 
several electric potentials and mechanical loads.  In addition, numerical models were constructed to gain insight into 
the error sources and ramifications of layered modeling techniques. 

The high displacement FGP actuator generated a maximum deflection of ±43.5 µm, a blocked force of 481 mN, 
and a stiffness of 11.3 kN/m.  These results agreed well with both the analytic (to within 7.6%) and numeric models 
(to within 6.4%), illustrating that the actuator performs in a predictable manner.  While the numerical model in this 
case has better correlation because it accounts for all of the out-of-plane piezoelectric deformations and stress 
components, it is less than a 2% difference.  An in depth study indicates the layered modeling approach has 
difficulty accurately capturing the continuous electric field and resulting stress profiles.  This is reflected more in the 
low internal stress actuator that has a linear material gradient.  This actuator deflected a maximum of ±34.8 µm with 
a blocking force of 52.1 mN and a stiffness of 1.51 kN/m with the analytic model correlating to experimental values 
to within 4.4%.  The numeric model performed much more poorly, with errors up to 22.3% because of the inability 
of discretely layered modeling techniques to accurately simulate a continuous material variation without including 
an excessive amount of elements in the model; thus, illustrating the usefulness of the analytic modeling 
methodology in this paper.  The modeling approach presented in this paper lays the foundation for the accurate 
predication and synthesis of FGP for real applications incorporating external loading conditions and paves the path 
for expansion of the derived models and DEPP grading technique to multi-dimensionally graded FGP, which 
promise to greatly enhance the capabilities of piezoceramic actuation.   
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