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In this paper we consider the optimum maneuvers 
for the fastest turning and the turning with the smallest 
radius in nearly horizontal flight. It is shown that by 
retaining the thrust component along the direction of the 
lift force, the optimum angle-of-attack for the maneuvers is 
beyond the usual stall angle-of-attack where the lift 
coefficient reaches its maximum before decreasing drastic- 
ally. For very high thriist-to-weight ratio, optimum turn is 
performed at low speed and at the maximum angle-of-attack 
allowed. For fastest turn subject to prescribed end-points 
Mach numbers, the optimum technique in bank and thrust- 
control depends on the limitation on the load factor, 
aerodynamic and propulsive capabilities. Explicit control 
laws for the bank angle and for the thrust are derived and 
numerical examples for optimum turning are presented. 

For high-performance fighter aircraft, the thrust-to- 
weight ratio is high, especially at low altitude, and the 
turning performance depends heavily on the aerodynamic 
and the physiological-structural constraints and the 
discussion of the optimum maneuvers is rather subtle. 

In this paper we consider the optimum maneuvers 
for the fastest turning and the turning with the smallest 
radius in nearly horizontal flight. In the analysis we have 
removed the simplifying assumptions used in the standard 
texts1s2 to include all the non-linear forces in the dynamicd 
system. In this respect, the following steps are taken : 

(a) We retain the thrust component Tsina in the direction 
of the lift force. 

(b) We allow the angle-of-attack to get beyond the stall 
angle-of-attack at which the lift coefficient passes 
through a maximum and starts to decrease drastically. 
Then, instead of using the standard parabolic drag 
polar, the non-linear variations of the lift coefficient 
and the drag coefficient up to a very high angle-of- 
attack r~,,,~~=70' are considered. We have 
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with enough data points on the Mach number M and 
the angle-of-attack Q for a smooth spline approxim- 
ation. 

(c) The maximum thrust, generally used for fastest 
turning, strongly depends on the altitude and the Mach 
number. Then we represent 

with enough data points to cover the domain of 
interest. Since the optimum maneuver depends on 
this maximum thrust magnitude, we consider two jet 
engines with respectively high and moderate thmst-to- 
weight ratio in the analysis. 

(d) We consider both steady turn and non-steady turn. For 
non-steady turn, optimal control theory is the tool for 
the analysis. 

For nearly horizontal flight, the flight path angle 
is negligibly small. This is to say that, for all practical 
purposes, we can consider the flight at constant altitude. 
The equations for the motion of the center of mass are 

*= v sin y 
dt 

dV- ( T C O S Q - D )  
d t w  

* = g ( ~ s i n a + ~ )  sin+ 
dt v w  

where x and y are the Cartesian coordinates in the horizond 
plane, V is the speed and y is the heading measured from 
the x-axis. The angle-of-attack is measured from the thrust 
line and the bank angle + is defined as the angle which 
measures the rotation of the lift force out of the vertical 
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plane (Fig. 1). For the short duration of the flight, the 
weight W is practically constant. 

We use the standard assumption for the lift and the 
drag force 

L = q S c L  (4a) 

where qJpv2 is the dynamic pressure, s is the reference 

area and, at any flight altitude, the atmospheric mass 
density p is a well specified constant. We also have the 
speed of sound at the flight altitude. Thus, at any flight 
a1 titude, the aerodynamic characteristics and the maximum 
thrust produced depend on the cui~ent flight speed, through 
the Mach number. 

2 

For a coordinated turn at constant altitude, the 
vertical component of the combined lift and propulsive 
force is used to balance Uie weight. Hence, we have the 
constraining relation 

(T sin a + L) cos Cp = W ( 5 )  

Fig. 1 Force diagram in a coordinated turn 

The turning is conlrolled by the thrust magnitude T, the 
angle-of-attack a and the bank angle Cp. Because of the 
constraining relation (3, only two components of the 
contxol, out of the three, are independent. 

If we rewrite Eq. ( 5 )  

T s i n a + L = n W  (6)  

we ca i  use this relation as the definition of the load factor 
n. There exists a physiological-struclur~l constraint on this 
load factor which is easily cncountered at low altitude and 

for turn at high bank angle. By comparing the last two 
equations, we see that 

n=- 1 
cos 4, 

(7) 

Therefore, if the load factor constraint is set at ns=6, the 
bank angle is limited at Cpma,=8O.41". 

The two parameters of interest in turning flight are 
the turning rate \I, whicli is given by Eq. (3d) and the 
turning radius R. For the general case of non-steady turn, 
the turning radius of curvature is given by 

1 = 
R V2W 

(Tsin a + L) sin Cp 

In point perfoitnance, at any instant of time, we 
want to use the control, subject to physical constraints to 
have the maximum turning rate Wmax or the minimum 
turning radius of curvature RInin. If those optimum 
quantities can be maintained constant, the tui-ning is steady. 
If the thrust is not sufficiently high, the optimum 
perfoiinance is time vLuying. 

In integral performance we may consider the 
problem of the fastest turn which consists of bringing the 
vehicle from an initial Mach number Mo, from an initial 
direction yro=O", to a final Mach number Mf with a specified 
final heading yf in minimum time, The search for the 
optimum control requires the variational analysis. 

By using Eq. (6) for the load factor, we rewrite Eq. 
(3d) for the turning rate 

where a is the speed of sound at the flight altitude. 
Therefore, at any current Mach number the highest 
instantaneous turning rate is obtained by using the maxi- 
mum load factor. From Eq. (6),  we maximize 

n = -T sin a + - L I nS 
W W 

We write explicitly the expression for n as function of the 
Mach number and the angle-of-attack 
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where q E [0, 11 is the thrust control. It is obvious that 
for any M and a, we should use q=1 for inaximuin of 11. 
At any current Mach number, we consider the equation 

For this equation to have a solution, it is necessary that 
aCLlaa<O. Since dCdda=O at the stall angle-of attack, 
the maximum load factor for fastest instantaneous turning 
rate occurs beyond the stall angle-of-attack. 

By rewriting Eq. (8) for the turning radius as 

we can see that the optimum angle-of-attack, solution of 
Eq. (12) also provides the minimum instantaneous turning 
radius. We should notice that if tlie corresponding value of 
the instantaneous maximin n=n,,(M) exceeds the value 11, 
which is arbitrarily imposed, then the fastest turn is 
conducted at n=n,. 

We now search for the optiinuin value of the Mach 
number for a maximum of 11. It is obtained, at any value 
for a, by solving tlie equation 

4 s acL 2 sin a + - (- + - CL) = 0 (14) an - q aTmax 
dM W aM W aM M 

For realistic values of T,,/W, Uie optiinuin angle-of-attack 
for maximum load factor is slightly beyond the stall angle- 
of-attack. Therefore, an approximate solution to Eq. (14) is 
obtained with a=astall and CL=CL~~,(M). Since in general 
T,,, increases with the Mach number, the solution occurs 
at high subsonic speed when has a sharp decrease. 

If we remove the constraint n,, then using the 
solution (12) for a in Eq,( l l ) ,  we should obtain the 
maximized load factor as function of the Mach number, that 
is 

A typical plot of this function is shown in Fig. 2. Then, it 
appears that, there exists a Mach number M, for inaxiinurn 
11, the solution of which is obtained by solving the two 
cquations (12) and (14) for a, and M,. By using Eq. (15) 
in Eq. (9) for the turning rate and Eq. (13) for the turning 
radius, it is now seen that they are functions of the Mach 
number. It has been shown in Ref. 2 that there exist an 
optimum value M=Mopt($) which maximizes the turning 
rate and an optimum value M=M,,,(R) which minimizes 
the tuiiiing radius and that 

With the new definition of the load factor, the same proof 
can now be applied to the present case where the thrust 
component Tsina is included in the lift direction. 

In the case where nma,>ns, optimum turn has to be 
conducted at n=n,. Then from Eqs. (9) and (13) the fastest 
turn and the turn with the smallest radius is conducted with 
the smallest possible Mach number. With the component 
Tsina included, this so-called coiner Mach number, and the 
associated angle-of-attack, are obtained by solving Eq. (1 1) 
with n=ns and Eq. (12). 

Fig. 2 
Mach number at any flight altitude 

Maximum load factor as function of the 

Steady Turn 

In the previous section, we have displayed the 
existence of the absolute maximum turning rate and the 
absolute minimum radius of curvature. Each of them 
occurs at any given flight altitude at a certain poststall 
angle-of-attack and an optimum Mach number which can be 
computed once the physical characteristics of the aircraft are 
given. In general, we are dealing with high angle-of-attack, 
high subsonic speed, and high load factor. Hence the 
resulting drag force is high and this will require a high 
thrust-to-weight ratio to maintain the optimum turning 
condition. More specifically, by writing the condition 
dV/dt=O, we have 

and for high drag, this condition may not hold. For steady 
turn, the controls q, a, and n must be such that the two 
equations (1 1) and (17) are constantly satisfied. Assume 
that we have selected a throttle setting value q, Then for 
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any 'angle-of-attack a used for tuning, the constant speed is 
obtained from Eq. (17), and the load factor n is deduced from 
Eq. ( l l ) ,  with the corresponding bank angle from Eq. (7). 
The tuining rate is given by Eq. (9) and the constant 
turning radius is given by Eq. (13). 

By using Eq. (11) in Eq. (9) we obtain 

With CL=CL(M, a), qapa2M2> T,,,=Tmax(M, h) for any q, 

this is a function of a and M, subject to the constraint 
(17). We can routinely search for the maximum turning 
rate. 

2 

Similarly, we can write the constant tuiiiing radius 
as 

and minimize this quantity subject to the same constraint 
(17) 

Numerical Application 

We first consider the case of steady tum with a 
prescribed thrust at its maximum value. Then, by using 
Eq. (17) for qS in Eq. (1 l), we have 

(20) C n = z (J cos a + sin a)  
CD 

where 

is the thrust-to-weight ratio. 

To display the poststall turning which occurs at 
low speed, we assume that z, CL 'and CD are independent of 
Mach number. Then n is a function of the angle-of-attack. 
We can also express the dimensionless turning rate and the 
dimensionless turning radius at any flight altitude as 

and 

By using as a varying parameter, we have plotted 
the load factor, the dimensionless tuiiiing rate and the 
dimensionless turning radius using the aerodynamic 
characteristic CL(a) and C D ( ~ )  of the aircraft in Ref. 3 as 
functions of the angle-of-attack in Figs. 3 , 4  and 5 .  

Let E=CL/CD be the lift-to-drag ratio. We can 
prove the following assessments. 

Consider the equation 

~ = z [ ( ~ + l ) c o s a - E s i n a l = O  (24) 
d a  d a  

When a=O, dnlda>O. For a typical drag polar, at high 
angle-of-attack, cosa is small and sina is large, while 
dElda becomes negative. Then dnlda<O. Therefore, n 
passes through a maximum at a value a, independent of z. 
If small angle approximation is used in Eq. (20), we can see 
that a, is slightly larger than the optimum value for 
maximum lift-to-drag ratio. Furthermore, it is seen in the 
same equation that, for very large value of a, n tends 
asymptotically to z. 

From Eq. (22), at any altitude and thrust-to-weight 
ratio, the angle-of-attack which maximizes tlie turning rate 
is the one giving the maximum of the function 

CD (n2 - 1) F =  cos a 

we consider the derivative 

Notice that for turning n>l and we always have dCDlda>O. 
Therefore, if a relative maximum of the tuining rate exists, 
it must occur beyond tlie angle-of-attack for maximum load 
factor since it would require dn/da<0 for dFlda to vanish. 

From Eq.(23), we see that to minimize the turning 
radius, we maximize the function 

Then, we consider the derivative 

For this derivative to vanish, it requires that dF/da<O. The 
angle-of-attack for a relative minimum of Uie tuining radius 
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is beyond the angle-of-attack for maximum turning rate. In 
summary, we have 

From Fig. 4, we see that although there exists a value 
aopt(@) which depends on z for a relative maximum of the 
turning rate, for very high values of 7, the highest poststall 
turning rate may occur at the highest angle-of-attack 
amx=70". This is also true for the case of minimum 
tuiiiing radius as can be clearly seen in Fig. 5. 

To prepare for next section in which we use 
optimum control theory to obtain the fastest turn with 
boundary conditions for the cun'ent generation of fighter 
aircraft with constraints on load factor and maximum thrust 
output we search for the absolute maximum turning rate. 
Quite frequently, in problems of practical interest, the end- 
points Mach numbers are high and as such the angles-of- 
attack involved are small, Therefore in the computation, 
we neglect the component Tsina aud as a cousequcnce the 
load factor is simply the lift-to-weight ratio. We use the 
physical characteristics of the example aircraft in Ref. 4, 
with some specifications reported in the Appendix. The 
atmosphere used for p(h) and a(h) is the Standard 
atmosphere. 

Since the physical constraints on tlie problem are 
imposed on the load factor and the maximum thrust 
produced, we consider the plot oii the (M, 11) space. By 
using the relation 

2 - k P  a -- 
P 

where p is tlie pressure and k is the ratio of the specific 
heats with k 1 . 4  for air, we can write Ecl. (1 1) with the 
term Tsincl neglected as 

k p S  2 n = (-) M C L ( ~ ,  M) 
2 w  

By spccifyiug two flight altitudes at 5 kft and 14 
kft with the coil-esponding values for p, we plot in Figs. 6 
and 7 the maximum of n versus the Mach number by using 
a=ClstaIl. and hence CLZCL~,~~(M) iu Ey. (31). We first refer 
to Fig. 6 for the discussion. Coucerning pure aerodynamic 
limit with CL=CLmax, the load factor passes through a 
maximum n,,,=8.405 at M=0.725, xid theu decreases and 
passes through a minimum and finally iucreases at high 
Mach number. This is represented by the curve 1 in the 
(M,n) space. As has been discussed in the section Point 
Performance, with ffie maximized n obtained as functiou of 
M, we can plot the turning rate as given in Eq. (9) as a 
function of M and it is shown in the curve 5 in this figure. 
But if we enforce the structural limit at n,=G, the (M, n) 
space is restricted to be below this line CF. The 
maximized turning rate is computed with n=6 whenever 

nmax(M)>n,, and the turning rate is reduced with this 
constraint to the curve 6,  with a maximum at the corner 
Mach number, at point C 011 the (M, 11) space. 

In summary, at any Mach number, for maximum 
turning rate, we use the maximum value of n on the 
boundary, with the overall absolute maximum turning rate 
at the point C. Ideally, we should quickly bring the speed 
to this optimum Mach number and use the thrust to 
inaimin this speed for the fastest rate. We now, introduce 
the maximum thrust for steady tuiii at the selected load 
factor. For this purpose, we use a parabolic drag polar of 
the form 

to plot the equation 

By using C,, from Eq. (32) and theu CL from Eq. (31), it is 
seen that Eq. (33) represents a curve in the (M, n) space. 
This theory is also valid for any arbitrary drag polar. We 
have used two jet engines which lead to the curves 3 and 4 
in the figure. Steady turn can be maintained below the 
curves where T,,,>D and hence at an inteimediate value of 
the thrust. As seen in this figure, both the engine thrusts 
are riot sufficiently high to maintain the peak tuining rate at 
the point C and ffie turning technique is to intercalate the 
maximum thrust with the null thrust at a varyiiig and 
slower rate as to satisfy the end-conditions. This will be 
discussed in the next section. 

In Fig. 7, we have use the same example aircraft 
with the same two engines but with the analysis at a higher 
altitude h=14 kft. 

Again, the curve 1 is the plot of the maximum 
load factor as a function of the Mach number and it passes 
through a relative maximum at the point C1. With this 
function n=nmax(M), we plot the tuiiiing rate $ as function 
of the Mach number in curve 5 ,  and, as the Ihcory has 
predicted, there exists a local maximum turning rate at 
point SI at the optimum Mach number Mopt(y) less than 
the value M, at point C1. If we enforce the constraint n56 
the usable domain for M and 11, which we refer to as the 
domain of maneuverability, is restricted to the space 
bounded by both the aerodynamic limit and the structural 
limit. Then there appears another local peak tuining at 
point S2 for the corner Mach number from point C2, 
intersection of the aerodynamic limit and the constraint 
n=n,. 111 summary, at this altitude with the constraint 1121i, 
enforced, at any current Mach number regardless of the 
engine thrust, by taking the instantaneous maximum load 
factor, we benefit of the instautarieous maximum turiiing 
rate along the curve 6 which is a modification of the curve 
5 with the constraint 11,. 

372 



We have used the same two jet engines to plot the 
thrust limit in curves 3 and 4. It now appears that with the 
high thrust engine, in curve 4, although wc cannot hold the 
maximum rate at point S1, steady turn at the local 
maximum rate at point S2 using the corner Mach number at 
point C2 can be maintained. 

As has been discussed in the previous section, the load 
factor used as the control is subject to the constraint 

(39) 1 2 n 5 m(M) = min[n,, nmaX(M)] 

where 

It is assumed that a(h), p(h) are known as functions of the 
altitude, CDo(M), K(M) and CLmax(M) are given as 
functions of the Mach number and diat T,,,(M,h) are 
prescribed in tabulated foiin for two jet engines. We notice 
that this is also applicable to other types of thrust 
producing engines such as the rocket or the turbofan. 

It is proposed to bring the system from Mo, ya=Oo 
to Mf and yf in minimum time, subject to the prescribed 
aerodynamic, tliiust a id  load factor constraints. 

It is proposed to change the heading by a certain 
angle Aw=yf-yo, say of 180°, and at the same time bring 
the Mach number from Mo to Mf , in minimum h e .  

The dynamical system is governed by Eqs. (3), 
with the constraint (5). Since we do not specify the final 
position and by the fact that x and y are ignorable 
coordinates, we have the reduced system 

&I- (T -D)  
dt a W  For this minimum time problem, we inlroduce the 

adjoints PM and P,+, to form the I-Iamiltonian 

1-1 = PM ~ s [q Tmax - q S (CDO + w2 K)] 
a W  y2 s2 We have transformcd the speed into the Mach number, in 

line with the dependence of the aerodynamic and engine 
characteristics on this parameter. The influence of the 
thrust angle-of-attack has been ignored at high speed range. 
The load factor is simply Concerning the thrust control, we consider the switching 

function P,. Then in maximizing the Hamiltonian 

(35) If P, > 0, use q = 1 for T,,, 

with the relation with the bank angle expressed as If PM< 0, use q = 0 for T =  0 

If PM = 0, use inteiinediate q for T = variable 

The optimum trajectory is a sequence of subarcs from the 
boost, coast and sustained thrust control. For the load 
factor, or bank angle control, it is either at the maximum 
limit, or at an interior point such that aI-I/dn=O. 
Explicitly, we have 

We shall use the thiust magnitude and the load factor as the 
control for turning. Then with a parabolic drag polar as 
given in Ey. (32) we write the system (34) using the 
definition (35) 

*G?-T==(-)(-) k p S  
4 W  K P M  

(43) 

It has been shown in Ref. 1 that while this interior load 
factor can be optimally used with the boost arc, the coast 
arc and the sustained arc are always conducted with n, or 
nmax(M). 

where 
Therefore, the thrust and bank controls are 

goveiiied by the adjoints P, and P,. Fkst for the adjoint 
P, it is seen that it is a constant. 

q = l k p M  2 

2 

3 7 3  



P, = c1 (44) 

On the other hand, it is not necessary to integrate the 
equation for PM since we have the Hkniltonian- integral 
available We consider the case of a 180" turn at the altitude 

of 14 kft with a starting Mach number Mo=1.2. With the 
2 

q 2  s2 
low thrust engine, there are no sustained arc and tlie 
optimum trajectory is a combination of boost arc (B) and 
coast arc (C). The switching occurs whenever PM=O. From 

PM - s [q Tmax - q S (CDO + 'I2 

_+ P w - - g _ v K T = C o  (45) the Hamiltonian integral, we see that 

K)l 
a W  

a M  
- a + - @ - T -  aCo - c  
s M g Ci By using the optimum relation (43) for the interior load 

factor, and setting *-=tan$, we have the equation 

2 k p s  M2 tan @ - 2 c M  tan $ + (-)- 
2 W  K 

. [Tmax - (-1 k p S  M 2 CDO - (-1 2 W  7 1  K = 0 (46) 
2 w  k p S  M 

where 

(47) 

is an arbitrary constant to be selected so that the end 
conditions are identically satisfied. Of course T ~ , ~ ~  is the 
maximum thrust-to-weight ratio since this bank control 
implies that q=l. 

It remains the case where the sustained arc at 
intermediate thrust is used. For this case we constantly 
have 

for a finite time interval. Its time derivative also vanishes 
identically, and we have 

It is not necessary to carry out the derivation, since by 
referring to Eq. (9), we see immediately that the condition 
(49) for sustained arc is the same as the condition for a local 
maximum of the tuining rate. The optimum Mach number 
is constant and the existence of the sustained x c  depends on 
the magnitude of the thrust produced at the flight altitude. 
For example, in the case of Fig. 7 for turning at 14 kft, 
sustained arc is only possible at the corner Mach number 
with the high thrust engine. 

Therefore, if more than one switching occurs, all the 
switchings are made at the sanie tuiiiing rate. 

We Iiave shown in Fig. 8 the time varying 
optimum turning rate leading to various final Mach 
numbers. The results are summarized in Table 1. The 
trajectories 1 and 2 are accelerating tuiii, with a B-arc and 
interior load factor. At tlie flight altitude, as specified by 
the dimensionless wing loading value 2W/kpS, a value for 
the constant c is selected to calculate the optimum interior 
bank angle from Eq. (46). The equations of motion are 
integrated until y ~ ~ 1 8 0 "  and the resulting value Mf is 
checked with the prescribed value for iteration. The 
trajectories 3, 4, and 5 are decelerating turns. For the 
discussion, we refer to Fig. 7. For the trajectory 3 since 
Mo and Mf are near of the corner Mach number where a 
local maximum for the tuining rate occurs, the trajectory 
starts with a C-arc to quickly move to near of the corner 
Mach number. But since the thrust for the example jet 
engine is not sufficiently high to maintain tlie constant 
peak turning rate, a switch to B-arc has tlie sole pu ip se  to 
hold the speed near of the optimum speed. Finally a switch 
to C-arc near of tlie end is designed to match the prescribed 
Mach number. In this program, since the thrust control, 
either q=O or q = l ,  is well defined and the boundary load 
factor, n=ns before the point C2 and D.=~,,,(M) after the 
point, is known explicitly, the arbitrary constant c selected 
is used to iterate on the switching time to satisfy the end 
condition. We notice an interesting case when Mr=0.8, in 
the curve 4. In Fig. 7, by drawing a horizontal line 
slightly below the peak turning rate S2, we see that this 
line intersect the curve for \i, in 3 points between Mo=l .2  
and M ~ 0 . 8 .  We have adjusted this rate for matching and it 
results in 3 switches leading to the sequence C-B-C-B. The 
optimum control strategy is clear. Since it is a decelerating 
trajectory and a peak tuiiiing rate is at C2, the decelerating 
trajectory starts with a C-arc, with the instantaneous 
maximized turning rate increasing with the time. In this 
duration PM<O. When PM=O, we reach the tuiiiing rate for 
switching which is $s=Cg/a<@max. The thrust control 
changes to T,,, while \ir continues to increase, passes 
through wmax and retuims to \irs where the B-arc changes to 
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C-arc. After this switch \i, tends to its minimum before 
increasing again and a C-are is appropriate to speed up the 
passage through the period of low turning rate. After 
passing through its minimum, \ir increases and when i t  
attains Gs tlie control changes to 13-arc until Mf. 

We should realize that since tlie constants Co and 
C1 are the same throughout the entire trajectory from to to 
tf, the constant c is always the same. Therefore, while on a 
B-arc, there is always a possibility of interior load factor as 
given by Eq. (46), which can be constantly calculated and 
compared with n*(M), once a value of c has been selected. 
Finally, for the case where Mf=0.6, we have the C-B 
sequence as shown in trajectory 5. This is because the 
solution for c gives a high tuining rate near of the point S1 
at switching time. A C-arc is used to quickly bring the 
system to the condition of high turning rate followed by a 
B-arc to keep the system near of this absolute optimum 
rate. 

Table 1 .  Types of trajectory with various final Mach 
numbers. Case of Mo=1.2, y~,=180", h=14 kft 

NO Mf 

2.0 

1.6 

0.9 

0.8 

0.6 

C 

5.5349 

4.4242 

4.9305 

5.1381 

7.9519 

In the trajectories in Table 1, we have used the 
example jet engine in Ref. 4 and the thrust is not 
sufficiently high to keep the maximum rate G m a x  at the 
coiner Mach number, From Fig. 7, with a higher thrust 
limit passing above the point C,, as shown in tlie curve 4, 
we have recalculated the trajectory leading to Mf=0.9, and 
we have the type C-S-C with a slightly better time of 
tf=20.489 seconds. For this trajectory, a C-arc is used to 
quickly reduce the Mach number to the corner Mach 
number for maximum tuining rate \irmax. The load factor 
used is n=ns and the heading change is A w l .  The 
maximum thrust is then reduced to maintain this constant 
rate for a heading change A y S .  Finally a C-arc is used with 
nmax(M) to decrease the Mach number to MI with a heading 
change of A y 2 .  Since A y ~ 1  and Ayr2 are well defined, the 
time on the intermediate (or singular) S-arc is the time 

necessary to make up the change A y s  for a total of 180" 
heading change. 

Conclusions 

As a contribution to research literature in modem 
flight dynamics5-10, in this paper tlie tuining performance 
of modem fighter aircraft has been examined. In geneial, in 
the exact formulation of the dynamical system, the thrust 
vector has a small component Tsina in the direction of the 
lift force and the optimum angle-of-attack for maximum 
turning rate and the one for minimum turning r a d' ius are 
always larger than the stall angle-of-attack where the lift- 
coefficient reaches a maximum and starts to decrease drast- 
ically. With very high thrust, the instantaneous maximum 
turning rate, and the instantaneous minimum tuining radius 
are achieved at the maximum possible angle-of-attack. 

In optimum turning in a horizontal plane, in 
which the prescribed end-points Mach numbers are high for 
operational purpose, the strategy for minimum time 
maneuvers is to hold the turning rate near of the local 
maximum rate. For supersonic aircraft, there may exist 
two peL& turning rates at a certain range of altitude. With 
low or moderate maximum thrust output, the optimum 
control leads to switching between boost arcs and coast arcs 
such that the end-conditions are satisfied. Trajectories with 
one, two and even three switcliings have been calculated. 
With a high thrust engine, the optimum control usually 
leads to inserting an intermediate thrust arc to keep 
maximum constant turning rate in the middle portion of the 
turn. The formulation allows the consideration of a variety 
of thrust producing propulsion systems which include the 
rocket, the turbojet and the turbofan. 

In plotting Figs. 3 - 5 ,  we have used the functions 
CD(a) and C,(a) based on data points from Ref. 3 and 
extended to a=70". In the computation of the optimum 
maneuvers for Figs. 6 - 8, we have used tlie aerodynamic 
data CDo(M) and K(M) and the maximum tlirust T,,(M, 11) 
for the supersonic fighter considered in Ref. 4 with 
W=38000 lbs, S=500 ftz. The limitation for the stall lift 
coefficient CLmax(M) is based on the smooth spline 
approximation from the data point 

M 10 0.6 0.7 0.9 1 .o 

0.95 0.95 0.8344 0.3875 0.329 
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The example engine thrust is low as displayed in curves 3 
in Figs. 6 and 7. 

To include the sustained arc we have magnified 
this maximum thrust by the factor f(M) which gives an 
average increase of about 35%. This leads to a larger thrust 
limit as shown in curves 4 in Figs. 6 and 7. 

Part of this work was supported by the R.O.C. 
Aeronautical Industry Development Center. 
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