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CONVERGENCE OF CONJUGATE DIRECTION AND QUASI-NEWTON METHODS
ON SINGULAR PROBLEMS: THE FINITE-DIMENSIONAL CASE ™
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Abstract

The convergence properties of the gradient,
conjugate gradient, Davidon-Fletcher~Powell,
and Powell's method for the singular, finite-
dimensional quadratic minimization problem are
developed. It is shown that for all of the methods,
except the gradient method, that the minimum is
obtained in at most m iterates, where m is the
dimension of the range of the Hessian matrix, as
opposed ton > m iterates for nonsingular prob-
lems, A class of associated nonsingular quad-
ratic problems is defined to show that the gradient
method has slower convergence on singular prob-
lems than on correspponding nonsingular approxi-
mations to the singular problems while the con-
Jugate direction methods have more rapid conver-
gence. This implies that slow convergence attrib-
uted to singular problerns is actually a property
of the gradient method as opposed to the singu-
larity of the problem,

1. Introduction

There is widespread belief that singular
optimal control problems are more difficult to
compute than nonsingular problems®, There is good
reason for this since many researchers have ex-
perienced the slow convergence of the gradient
method on a singular problem and/or the special
preparations necessary to apply a Newtoh-type
method (both shooting and function space typos) to
a singular problem. In fact, Johansen® studied
the rate of convergence of the gradient method on
the singular problem and verified theoretically the
poor convergence characteristics noted in practice.

In Hef. 3 a recently developed class of accel-
erated function-space gradient methods, known as
function-space quasi-Newton methods, was shown
to converge certain singular optimal control preb-
lems much more accurately than the standard
gradient method. Defects in the methods with re-
gard to storage were also eliminated and a rela-
tively large, realistic Space Shuttle trajectory
optimization problem was solved with the methods .
Thus the major remaining problems associated
with the methods involve thearetical questions of
convergence and rate of convergence, especially
on singular problems. For example, was the i -
proved convergence reported in Ref, 3 problem
dependent or applicable to more general classes of
problems ?

The goal of this paper is to present the results
of the first part of such a theoretical study,
namely the convergence 0f a number of algorithms
on the finite -dimensional singular problem. In
addition to these results being useful in their own
right, they also indicate an approach to the in-
finite -dimensional {or optimal control) problem
which will be reported in & subsequent paper,

The convergence of the: gradient, conjugate
gradient (C G}, 5, and Davidon-Fletcher-
Powell (DFP), 78  and Powell's’ methods will
be analyzed herein. For nonsingular quadratic
optimization problems, convergence questions
have been investigated by many authors with the
following results: (i) l.inear convergence for the
gradient method in both finite-dimensional and
furiction spaces 10 | (11} Finite-step conver-
gence for both the C G- and the DFF methods in
finite -dimensional space®: 8, éiii) A rate of con-
vergence for the C G method! and a conver-
gence yroof for the function-space DF P meth-
od1?

To date few papers have been concerned with
the case of singular quadratic optimization prob-
lems, A convergence proof for a general system
of m linear algebraic equations in m unknowns is
implicit in Ref. 14, and as shown in Ref. 15 the
necessary and sufficient condition for a very
general class of iterative schemes to converge is
that the linear system be positive semidefinite.
Nashed and Kammerer *7r 11 present con-
vergence proofs for gradient and conjugate gra-
dient methods applied to singular linear operator
equations, but no such results exist for the appli-
cation of Quasi~Newton methodsl? to the singular
case,

In Section 2 the singular quadratic optimiza~
tion problem and algorithms are presented aleng
with the existence conditions for the problem.
The main convergence theorem is presented in
Section 3 along with examples to illustrate its
properties. In Section 4 an example isthoroughly
analyzed to demonstrate that defects attributed
to the singular problem are actually due to a de-
fect in the gradient method, and that conjugate
direction methods actually have improved con-
vergence properties on singular problems,

2. Problem Formulation and Algorithms
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Consider the problem of determining a mini-
mum of an unconstrained function £, where f has
continuous partial derivative of, at least, second
order. Convergence and rate of convergence
analyses are restricted to the neighborhood of the
minimum, and thus are actually terminal conver-
gence properties. Thus, a quadratic approxima-
tior. of the problem is employed for such analyses,
and thus we shall consider the problem of deter-
mining an element x ¢ R which minimizes the
quadratic function

f(x)=%<x,Qx>+<x,w>+fo (2.1}

where x, w € R" f € R, <x,w> = xTw denotes
the inner produce in Rn and Q can be assumed,
without lost of generality, to be an n x n syminet-
ric matrix, . The gradient of f{x) at the element x,
denoted by g (x)« R", is

(\:)..-m-:Qerw 2.2)

If O is positive definite, then the minimum solu-
tion always exists, i.e., x = -0 Fora
general quadratic function f, we need the followirg
property.

Property 2.1: Problem (2.1) has a minimum solu-
tion x if and only if

(i) Q is positive semidefinite {denoted by Q> 0)
(z.3)

(ii) w belongs to the range of Q,{denoted by
we R{O)) (2.4)

Proof: Since f is twice differentiable, if % is a

minin%um element, then g(x) =@ X +w = 0 and

<x,£——£—gﬂ- x> > 0,xe¢ R®. ButQxe R{O)
dx

g(x) 0 1mphe=: that w =2-Ox e R (D), Also,
2

gince i-f- =0, ?__ﬂ?_ x > > 0 implies that
dx dx
<x, Ox> > 0, that is, O is positive semidefinite
Now, suppose we R {0), there exist an element
Xsuchthat QX +w=0and £ (X) = & <%, w> +f .
Let x be any element in R®, then x"=% +vy wher®
y =% -xe¢ RP, After some calculations, f (x) =
f®+vy)= 5 <Y, Qy>+f{&), orf(x)-£(¥x)=
1. v, Ry > Since Q is positive semidefinite, we
2 obtain f(x) » f(X), i.e., ¥ is a minimum solu-
tion of Problem (2, 1}.

Remark 2.1 U Q = Q > 0 and we R {Q), there
exist mfmlteh{k many minimum solutions of £(x).
Actually, :Lf x is a minimum solution of f [x),
then X =x + X __, for any X__ ¢ N {2} (the null
space of Q}, are also minimum solutions of f{x),
that is, f(')af x)

Remark 2.2, In the process of proving Property
2.1, we 3ee that once an element X such that g(g)z
© % +w = 0 is determined, then ¥ iz a minimum
golution of f (x).

The four iterative methods of interest here: the
gradient, CG, D¥P, and Powell' s methods, will

now be summarized. In general, the first three

iterative schemes mentioned above attempt to
generate a sequence {x ) which eventually con-
verges to a minimizing element x , they all in-
volve the iteration rule

Xt te s (2.5

An initial element x_e R" is chosen arbitrarily.
At each step a direction S, is schoen (the way this
is done will define the mc%hod used) and a step
size is determined such that

fix, + ¢, S )< f(x. +A 8 )forallk
i, 1 — i i
This leadg to the condition.

<g S >=0,
i

e (8,158 (x,, )} (2.6)

which, for the quadratic function in (2.1) gives

) <Si' gi >
i~ <85.,08. >
L 1

(2.7}

In the gradient method

S = -8, for all i

1

.In both the CG and the DFP methods, the members

of the sequence {S,} are chosen to be Q - con-
jogate, i.e., they satisfy

<S_1,QSJ.>=0 1#]

In the CG method, Si. is taken as

Si with So = -8,

In the DFP method

S, =-H g

i i~i

P .><P, H ><H.

where Hi = H._1 + <1l3—1 ! >1—H1-1 i-1 > i-1
h i-1* Yi-l i-lyi—l’yi—l

P =X - X
i

i-1 i1 " %5a1 S

‘—‘gi-g. =a, OS5

Yia1 i-1 - %17 Y

The dyadic notation (><) is defined as (on an
a><hbh=a bT

and the following property is then easily verified

(fa><b)c=a<h,c> a,b,ce Rn

The initial matrix Hg is chosen to be any positive



definite symmetric matrix.

In Powell's method, the directions of search

are generated by the following four steps: Denote
the starting point by x
(i} Initiaily choose d,, d_, ..., d in the dir-
ection of n coordinate’s, that is d1 ;
wheree ={0,..., 0,,,0,,..,0 )T
&
(il) Given dl’ yeeo,d , find t,| so that £
(<. , + 't d ) is m{]rumr.zed Define x, =
i-1 %1 i
. 4+t d, =1,..., n
i-1 i

(iii) Generate a new direction dby d = x_-x
and replace d_, ,d byd ,...,d.n Re-
name the lattér as d ,nd . 2' S |

12 n

{iv) Minimjize f {x_ +t d } and replace X, by
x_+t dn whé're t¥ 15 the mm1m1z1ng t.
Take this point as x_ of the next iteration,
and go to (ii}. °

It can be shown that the search directions gener-
ated in Powell's method at every iteration are
mutually Q-conjugate for a quadratic function (see,
for instance, Ref, 20, p. 158). This property
holds for O positive semidefinite also as long as

d £ 0. We will show later that if 4 = 0 during
some iteration, then the initial element x for
that iteration is indeed a minimum solution,

We shall now investigate the behavior of these
algorithms on the singular quadratic problem

{2.1) subject to (2. 3), (2.4),

3. The Main Convergence Theorem

Before proving the general convergence theo-
rem, the following properties are required.

Property 3.1: Let Q be a n x n symmetric positive
semidefinite matrix (i.e., QT =0 > 0), let R (D),
N (Q) be the range of & and the null space of Q,
respectively, and m be the rank of ., Then,

£ n
(N R

(i} R (Q) = =R (Q) BN (

(ii)<x%, Qx>=0 xeN(Q)

Proof: Part (i) can be found in any elementary
matrix book, $6 we need only prove (ii). If

xe N (Q), clear} Qx:Oand<x,Qx>=0.Now,
since Q > 0, Q exists and Ql > (, Then
< x, O:m> = 0 can be written as < Q 1/2 Qljzx‘:

= (, which implies Q 1/2 %x = 0. Then Q] 2 (01/2 %3
=Qx=0, and x e N () as desired,

Property 3.2: Let O = QT > 0, and {d_,d_,...,
d } be a nonzero O- con_]ugate set of elempnts in
tHa range of 0. If ¥ minimizes problems (2. 1),
subject to (2.4} for all x ¢ R (D), then g (X) =

i.e., ¥ is 2 minimum sclution of £ (x).

Proof: First note that this property is trivial if
R {0) = R®, but requires proof when Rank (Q)<n.
Since { dy, d3, ...,d ;n } are O-conjugate and

nonzero, they are alse independent. Then,
since Rank (Q) =m, {d.,,d_, ..., } form a
basis for R (Q). For any x'¢ R (Q), C,C e,
m 1" 2
c > X = E ¢, d,, and implies
m . ii
i=1
df(x) _odi dx _
dC. l - dx dc l ‘<g(x)’ d > l _._.‘Ol
i x=x x=x ]
i=1...,m (3.1)
or, ¢ (x),d,>=0 _i=12,.,.,m
It implies that, < g{X), x> =0 ¥ xe¢ R (Q}
Therefore,
g e [R{O)T =N (@) (3.2)
By (2.4), w ¢ R(Q)andQ x¢ R (Q), which
imply
g(x)=Qx+we R(Q) (3.3)
Combining (3.2} and (3. 3)
g()e R(Q)N N@)={0},

ie., g (;) = 0, which completes the proof.

Theorem 1: Consider the -problern {2.1) subject to
(2.3)and (2. 4), Let {x } be a sequence of vectors
in R™ generated by eithér the C G, DFPor
Powell's method. Then, the secquence converges
to a minimum vector X _ in at most m iterates,
where X X, depends on the initial guess x_ and m is
o
the rank of G.

Proof: The details of the prosf are presented in
Appendix A. It is shown there that condition (ii) of
property 3.1 guarantees that all iterates of the
algorithms are well-defined, and property 3,2
leads to the finite m-step convergence result.

Remark 3.1: From the praof of the above theorem,
the finite m-step convergence result holds for any
algorithms which generates conjugate directions
and employs an exact linear search. For example,
all of Broyden's Quasi-Newton™’ and Huang’ $2t
methods possess this property,

Remark 3.2: Usually the minimum solution X, de -
pends on the initial estimate x ., Actually, if we
let S = { x | x i§ a minimum solution of f (x) },
then S is a non-empty closed convex set, hence
there exists x¥¢ S such that H x* o< =}
for all x € §, where J] - || denotes the Euclidean
norm in R®, Nashed!® showed that the sequence
cen Xy } gene rated by the gradient
mc‘aioclf converge< to® =x" +{I-P)x_ where P is

the projection matrix from R to R (@). That is,
ifx =xR +x where <R ¢ R (Q) and xNeN(Q),
then x = %y X Now, if H = I%n the

DFP method the search %1rectlon-, S in both the
DFP and CG methods arc linear combination of
8, By A By the same procedures as stated
in Re% 16 we can prove that the sequence { x ,
X . } generated by the DFP and CG methods



(with H = 1) converges to x“ =% 4 1-F) %,
where ®x™ is the unique minimum porm solution.
Therefore, if we are interested in obtaining the
minimum norm solution x~ by DFP or CG methods,
the simplest way is to choose x, 8 D as the initial
estimate,

Remark 3,3: For a nonsingular quadratic func-
tion f (x} = -l-:x, Axs>tc<x, w>+f i.e,, A=
AT > 0, the "DF P meathod guaranteesol-ik > 0 for
0< k < nand H = = AL if the sequcnce {x. 1}
converges in ex%ctly n iteration For the s"ingu—
lar case, O =Q" > 0and Q" does not exist, but
it is of interest to characterize the behavior of

Hk in this case. The results are as follows:

Property 3.3 If { x, } converges at the g th
iterate{t < m} for the DFP mathod applied to a
singular problem then

@) H >0

(if) H, O p, =P, 0< i<k« #

0<k< 2

(Lii) If 2 = m, Hm(')x=xforxa R (Q).

Proof: If x, = ; , the minimum solution of { {x),
then g, * 0 for i= O 1,..., £ -1, and hence pi;tC,
¥y # 0, i=90,1, , I 1 whlch irnply Propearties
(1) and {ii) carry over directly from the nonsingu-
lar case {e.g., Ref, 20, pp. 134-138). To prove
(iii}), observe from (ii) that

HmQp =p, i301L..., m-l
But { p P e e P } are nonzero Q-con-
jugate v%ctors hende they form a basis for R{Q)
Therefore, for any x e R (Q), therenfxist con -

stants ¢ ,¢_,...,cC 1sucht‘na'x-2cp,and,
as desired, m- i=0
m-l m -
H Qx=z c. H Q-p.zz c.p. =X
m g ¢ m ooy MU

This means that H_Q plays the role of an identity
matrix in the range of Q, or, P =H_(Q is a pro-
jection matrix from R™ to R (Q). Therefore, as
explamed in Remark 3,2, 3:'0 =x +(I-P}x_, or,
% =x 4+{I-H O}x ifthe DFP mathod con-
vgrges at the 'mth sfep with H =L

Remark 3.4: The sequence {x.} generated by the
gradient method for the singular problem con-
verges linearly to ¥ (by employing the results in
Ref. 16).

t

Remark 3,5 'Niyerszz showed that, for nonsingu
lar quadratic problems in R, the search diree-
tions generated by the DFP method and the CG
method are scalar multipies of each other, pro-
vided the initial step 1s in the direction of steep-
est descent, This is true also for the singular
quadratic prablem. In fact, Hestenes and Stiefel
showed that the search dlrectmn S of the CG
meaethod can be formead as g

e (3.4

S, =s-<g., g >
i i 8 3=0 <8 gj>

and Horwitz and Sarachikl? showed that the search
direction 5; of the DFP mothod can be written as

g
S,=- <Hg, He, >i) o) (3.5)
i <g ,H g>
j=0 i’ 0%

Equations (3.4) and (3. 5) are true for the singular
gquadratic case as longas g, #0, j=0,1,2, ,i.
Therefore, from (3.4) and J(3.5), we see that the
CG and tHc DFPF meathods generate the same search
directions S for the singular quadratic problems
(provided H' = I and the same initial x_is em -
ployed), Exgmple consider the minimization of:

1 1 01
f(x)f:i- ? ]qu‘)+<x B>+:E xBeR fD
101
real. First note that Q30 1 0 = Q7 with eigen-
1 01

values 0,1,2, which implies Q = o7 > 0 with Rank
(Q)Y =2, and

L6 %] [tascd

R(O) =4y e Roy=0xd010x2|c xz |
10 1Ix3] jxleac3)

By Property 2.1, B must belong to R (Q) to insure
a minimum exists, i.e.,, B must be of the form
faba]T, For simplicity, let B=[000]7,and

{f =0. Then
o

a
bl ,a,be R
a

101
f(x)=il‘<x 010 x>"*— {xi—x} +'2}- (x2)2
1 01
x.."+)\:3
gix)=Qx = x2
: x+)\:3

By inspection, the set S of minima is given by
Sz={x[x=0{,2¢ R}

= - * 13 *
Clearly, the minimum norm solution x ¢ Sisx =

[000]1T. Now, consider the application of the
gradient, CG, DFI’ and Powell meothods, with the

same initial guess x = =[111] ~, to this problem,
(i) Gradient Metlod: after straightforward
calculations:
1 -1
1
x =4, x, == 18
o 1 17 1
> > {3.6)
g '[1 g =7 | 8
o '_2 N
4 n 4 n
and 2, FUg5 b Xy X TlES ) N
£ “’i)n (“i}n o7
an " '35 B Bann T8 7 OB
%*

Thus, x, - x andg —+Q0as k—~ o, butg =« 0 for
.k ;s 3 n
any finite number n. :

(i} CG Method: Since the first iteration is a
gradient step, the same x_,x.,g ,g as stated in
(3.6) result and thus the search directions are

-2 -1
18
8 =.g =}L11, 8 = —— 8y, (3.8)
o o -2 1 (1?)2 1



which implies

X, = 0, g, = 0.
the CG method converges in 2 iterations. (Note
again that Rank (Q) = 2.)

(iii) DFP method: withH =1_, it follows that
. [e) N
* ,%x,g .g, are the same as in (376} and the
s@arch “directions are

2 .1
=29 - 2
So‘ 17 ; + 5% 33 i ’ (3.9)

which implies

x, = 0, 8, = 0.
Since the DF P method converges in 2 iterations,
it is of interest to display the properties of HZ,

where 3 4 .1
. I Y
H2= o 1 ¢
1,3
4 4

Then, L o1

2 2

P=HZQ:]? 1 0} is the projection matrix
= 1
2 0 3

on R{Q}, i.e., Px =x, forallx ¢ R {Q) and

a
PY =0 forallye N(Q)={z]z=[g:|], ae R }

1 1
2 2
Note also that T = I3 -P= 0 0 0|is the projec-
: 1 1
2 02

tion matrix on N (Q),  In thisexample, the initial
guessx = [ 111]7T, Tx =0, and therefore,
x, = x % 0 in both the CG and DFP methods,
Again, this result agrees with Remark 3.2. For

a-
an arbitrary x, = [ abe] T,'I‘x =[c0a] ,the CGand

DFP method will converge in at most 2 steps to
a-c
’-‘f‘:‘-*-:{=°=-1~T:-:c‘=0+-21 [ 0] .
c-a
{iv) Powell's Method: withx =[111]7T,the
first iteration is (sce the descripcéion of the
algerithms in Section 2 for the notation definition}):

-1 [
1], x, = =<, =0
i I 2 37|,

Therefore, the first conjugate directionis d =x_-
x = [ -2-10] T, The second iteration results
in

’ T
xo-xl—xz—x3.-{~101]

Hence, the second conjugate direction is d = 0,
and Powell' s method converges at the second
iteration to x4 -1 01 T, Note that ¥e¢ N (Q)
and g {x) = 0. '

In the following we will consider the application
of conjugate direction methods to the least

gquares solutions of linear algebraic equations.‘
First we need the followhg definitions.

Definition 3.1: A vector u ¢ Rr1 is a least squares
solution of the linear algebraic equations

Ax=b {3.10)

where x ¢ Rn, be R™ and A is an m x n matrix
with rank {(A) = k, k < min {m,n} if

HAu -b ”5 ”Ax.~b HforallxeRn.

The vector x¥ is the least squares solution of
minimum norm of (3.10) if x* is a leaat squares
solution of {3.10)and | x" |] < !} u {] holds for
all least squares sclutions u of {3.10).

Definition 3.2: The generalized inverse At of A is
the linear extension of { A l N (A)J’} -1 5o that its
domain of definition D{A) is R(A)®R(A)Y = R® and
its null space is R(A)" = N{AT), where N{A) and
R(A) are the null space of A and Range of A, re-
spectively, N (A)L is the orthogonal complement
of N(A), and A|N (A) is the restriction of A to
N(a)t .

The following important results has been es-
tablished by many researchers ({see, e.g., [ 23] ).

Property 3.4: If A is a bounded linear transforma-
tion with closed range mapping X intoc Y then the
least squares solution of minimurm norm (LSSMN)
x* of the linear operator equation Ax =y, vy ¢ Y

is given by x*=2nt Y.

The linear operator A defined in (3.10} is clear-
1y a bounded linear transformation with R{A)
cl,.kosed. Property 3.4 implies that the LSSMN,
x", of (3.10}) is given by x™ = A*b.

There are many papers concerned with least
aquares solutions of linear algebraic equations,
Some of them present iterative methods to obtain
a least squares solution ¥ = AT b + (I-A*A) x ,
where x_ is the initial estimate24.25, Others de-
scribe iferative methods E)o compute the general-
ized inverse of a matrix® v 27 The conjugate
direction methods should be powerful methods for
determining least squares solutions of linear
algebraic equations because of the following
properties.

Property 3.5 Consider J (x) = 1 <Ax-b, Ax -
b> or, equivalently, J(x) = L <x, O x>+ <x, b>+
<b, b> where =AT A and “% = - AT b. Then,

(i) O = QT >0

(i{)be R(O)
Proof: The proof of (i) is straightforward. Te
prove (ii}, since [ R{(A&)]™ = N{A")and R™ =
R{A)®N (A”), be R™ implies thatb =b_+b ,
where b ¢ R{A)and bre N(AT), and

T

T-aTb=-aTm +b)=-(A% +A7b )=-ATh
r T T n T

But b_ ¢ R{A), which implies that there exists an
x suc‘:I{ that br = A x, and then

~

b= .ATby=-ATA x =0(-x)e R(Q).



Property 3.6: x is a solution of (3,10) if and only
if ¥is a least squares solution of {3.10) and J (X)=
Q.

Proof: It is well known that Ax = b has solutions
if and only if b e R (A). In general, Xis a least
squares solutionf of Ax = b if and only if

ax+8 = 0,0r, ATAT -ATb, =0, since AT =0,
which implies

ATiax-

e R{A), Ax -b_# 0 implies that

L )=0,
r
Now, AX-b

AT(AX b)g DhenceA?c‘—]Ev = 0.
That is, ?r—x +¥ where X is the minimum
norm solution’of Ax - b = 0 ‘and xne N{A}. With
this ¥, we have r
J(§)=;<x,ox>+<x b>F<h,b>

=-]2'—<E,Q;c'+€>+<;€, B> + <b,b>

= -< A(x +x }, b> + <b,b>

=-¢(AX -b)-b,b +b>=<b ,bo>

T r n n n

Therefore J(X) = 0 if and only ifbn=0, orb :br

¢ R(A).

Property 3.5 along with Theorem 1 and Remark
3.2 guarantee that the sequence {x _,x.,...}
generated by either the CG or DF F'method applied
to the least squares problem of (3.10) converges
in at most k = Rank(A)steps to a least squares
solutions xo =AY 4+ (1~ ATA) X, provided the
initial step each takes is in the direction of steep-
est descent, If % = 0, clea.rly the LSSMN x =
at. I also J{x ) = 0, then x" is the minimum
norm solution of A x = b by Property [ 3.4] .

4. Comparison of Conjugate Direction and
Gradient Methods

Consider the singular problem {2.1) subject to
(2.3} and (2. 4), i.e.,
f(x):% <%, x>+, wr+ f
o
. ot R
withQ =0Q > 0, we R (Q)

where X ¢ Rn, i

{8QP)

Define the associated nonsingular quadratic
problems (ANSQP) as

1
{x} =5 <X,an> + <, w> + fo

(ANSQP) where Qn =0Q + -rlg I forn >0

and x € Rn, foe R (O}

The reason for introducing the ANSQOP is to study
the behavior of algorithms as a problem tends to
singularity. There is widespread belief that
singular problems are more difficult because
Newton' s method is not applicable and the grad-
ient method typically exhibits very slow conver-
gence, The goal of this section is to quantify
such ideas, and to study the rate of convergence

. of the gradient and conjugate direction methods as

a function of the degree of singtilarity. The follow-
ing property is straightforward and presented
without proof.

Property 4.1
(i} (ANSQP) approaches {SQPJas n —~

(ii) Any eigenvector Z. of O in (SQP) with
corresponding eigénvalue o> 0,1 =1,2,
., n, is also an eigenvecéor of Q@ in
{ANSOQP) with corresponding eigenvalue
B. = N + i
i i o
The suitability of conjugate direction methods
for singular problems is verified by the following

property.

Property 4.2: If the sequence {x, }, generated by
any one of conjugate direction methods applied to
the- (ANSQP), converges in k < n steps, then the
sequence {x }, generated by the same method
applied to the {SQP) with the same initial estimate

x converges in at most k steps,

Proof: See Appendix B. (It is interesting to note
that the proof in Appendix B involves a lemma
which states that all conjugate direction methods
will converge in at most k steps for quadratic
problems if the Hessian matrix (Q > 0} has k
distinct nonzero eigenvalues; this result is inter-
esting in its own right).

Property 4.2 shows that the convergence of any
conjugate direction method applied to the {SQP)
is never slower (worse) than the result of the same
method applied to the (ANSQP). However, the
gradient method behaves in exactly the opposite
way. Indeed, it has been shown? that the rate of
convergence of the residual error for the gradient
method will be slow whenever the spread of eigen-
values for the second-variation operator is large,
Furthe rmore, when the second-variation operator
is singular, the asymptotic rate of convergence of
the residual error will be zero. This result holds
for the gradient rethod in finite -dimensional space,

also. Let us consider again the example presented
in Section 3 to illustrate the above results,
101
Exariple: Minimize: f(x) =y <X, 010x> {(4.1)
101 ‘
Withxo=[ i, 1, l}T
1 T
= 8 -
x =g U8 Al
and, forn = 1,2,
., 4 .m _ ., 4 0
“Ugs) %o Bner”lig ) X
clearly x, x*=0ask~ w®
The ratio of linear convergence, 8, is defined as
[ ]x -x *{]
0 = lim Sup. i S (4.2}
ko0 ¥ o *

It is straightforward to determine 8 , the ratio of

linear convergence of the gradient method applied
to the (SQP),

and




8 =0.2762 ' (4.3) and,

oo (ANSQP) of (4.1} is given by ﬁl—t.n;’ 8tn) 93 (4.12)
{x) = 1 <X, 8 x> (4.4) The results in (4.12) show that, as 1 > 0 increases
1 2 n to infinity, i.e., the (ANSQP) approaches the
101 . 1 0 0 {SQP). the ratio of linear convergence 0{n) of the
whereQ =010+ =10 1 of,n >0 gradient method applied to the (ANSQP)} strictly
01 M 0 0 I increases to § , the ratio of linear convergence of

the method applied to the (SQP). In nonmathemati-
cal terms, this implies that as the problem be -
comes more singular, the performance of the

«ith the same x_ = [111 ]T, the gradient msthed
z;mhed to the (A?\ISQP) {2.4) generates the se-

i ence {x {(n)} with gradient method deteriorates, whereas the per-
1 ‘ 2 formance of conjugate direction methods improves.
tlf'!) = 7 3+27‘r12+15'r] +3[’(71 +1)2, 2(2n +1),-(n +1)7] This indicates that difficulties attributed to singu-
n

lar problems are actually due to defects in the two
adforn=1,2,... main classical methods: the gradient method (as

) n _ n the above analysis shows) and Newton's method,
"zn(n) =[F(n}] Xy xzn“(n} =[Fin] ¥ (4.3) which is not applicable to the SQP in its standard
form.

2 .
2371 {1 +1}{3‘1 +1) 5. Concluding Remarks
(177 24271 % 4150 43) (5n +3)

where F(n) =
In finite -dimensional space conjugate direction

6 methods determine the inherent lower-dimeaen-
Since d“gm") 234 ;8081'] +1284'r1 +864n +282n +361 s sionality of the SQP, and converge in at mostm
{85 +186n {'156"! +607 +9) steps, where m is the rank of the n x n Hessian
matrix Q. Furthermare, the rate of convergence
ii%.{-]l) >0 forn >0, on the SQP is better than or equal to the rate of
the same conjugate direction method applied to
That is, F(n)is a strictly increasing function of associated nonzingular quadratic problems. The
positive n, or, gradientmethod has exactly opposite properties  This
0 < F(n,) < F(n.)<l for 0 <n.<n (4.6) shows explicitly that the slow convergence of the
1 2 1772 ’ gradient algorithm applied to a singular quadratic
Clearly, lim F(n) = é‘ls_ (4.7) problem is due to the mathod and not the problem,
n= o Similar properties hold for the conjugate gradi-
and . ent and quasi-Newton methods applied to singular
lim x (‘r} )= x ('q} ¢ for anyn>0 (4, 8) quadratic optimal control problems, and these
n—~w results are in preparation,
Now, define h (n) ;s _ Appendix A, Proof of Theorem 1
hZ(’]? = ._F__(ﬂ)__.a.. First consider the CG and the DFP msthods.
, lxl(ﬂ)l ! Givenx , if g (x ) = 0, x_is a minimum_  Thus,
assume g(x )# 0, since go(x }e R{Q) {(by Property
It can be shown, by the same procedure for F(n), 3.1 (i), <g, Qg >> 0. Inthe CG method, S =
that for 0 <my <, -g , sowe have <5 , Q § > > 0. Inthe DFF
o) o o
mathod, 5 = -H g, where H is any positive
0 < ” "1("1)” < ||x1(r]2)” (4.9) definite mgtrlx %nd thus <S QS »>»=<H g ,
QHg >> 0. I.f<Hg ) QHg £=0, thén®
0< [ ampl] <l h(ﬂz)ll (4.10)  H g% N@). ie., <B g, x =% foralixe r(Q).
But, with x=g | M >0 1mp11es g =0, contradicting the
and lim l lx () | I - =] x ' [2 (4.11) assumption g, * Hence weoconclude that in
289 1 both the CG and the DFP meathods

=

Define @(n), the ratio of linear convergence of < 2o’ Q So >> 0 it go * 0

the gradient method lied to the (A Py (4.
gradient method applied to the (ANSQP) (4. 4) This condition insures that the algorithms are

[ ! x n) - x¥(n } | ! well-defined from one iterate to anocther, i.e.,
. k+l . .
8{n) = lim Sup. m the linear search requires
' k—+co -
| [l (n)-x(n) S g >
l <¢.,S>=0anda =.—>— > 0
Straightforward application of conditions (4. 5) to 81" o <5 ,05 > )
. o o
{4.11} imply that, for 0 « 'r]l < 1']2
. Now, consider g = gix }; if g = 0 we are done, so
0<8 (111) <8 (nz} assume g, + 0. “In the CG method:
7



Cgl,gl >

<g , > [+
gO gO

Sl'-'—gl-l-

In the DFP method:’
<p0, g1> Po

<p0,Yo>

} <H0Yo’ g1> Hoyo )

-8, =H
Hy,y >
OYO yO

p = HpEH gt
By the construction of the CG and the DFPmeth-
ods, we have
<5 .08 >»>=0
o 1

Note that in the €G method, S_ is the linear com-
bination of g ,g. with g, * 0, £ #0,g ,g. ¢ R{O)
and <g_,g, >°= 0. Thisimplies that 'S, '# 0 and

belongg to R(Q), hence
<Sl, c;)s1 > > 0

In the DFP methad, it has been proved that {Hk}
is a sequence of positive definite symmaetric
matrices if H = HY > 0 for the nonsingular case.
This result can be carried over directly to the
singular case as long as g, #+9, i.e., the sequence
{H ,H.,...,H } of matricés is a finite sequence
of oosr':ltiv definite symmeatric matrics if H_ =

Hl »0andg, #0for i =0,1,2,...,k Noxcx‘r, with
H1°> 0and g Yo R{Q}, by condition {ii} of
Property 3.1 we obtain <Sl,Q S1 =< ngl' QOH
g > > 0,

.

1

We now proceed by introduction. Suppese after
k iterations with g * 0, we have following prop-
erties

<S,1,Qsj>=0 i, 0<i,je<k, (A.1)
<S5, QS.1>>O i<k (A.2)

= i< A3
<gk,5i> 0 i<k ( )

The condition (A.2) allows the k+l iteration to be
well-defined. Assume ;S9N + 0; we shall show
that {A.1} - (A.3) hold for K+l Note that (A1) 1s
true by the construction of the CG and DFP meth-
ods, and {(A.3) has been proved in Ref. 20 and can
be carried over to the singular case as long as

g # 0. Therefore, we need only prove {A.2).
T%tlQ~conjugate dirvection S of the CG method
is

k+1

s s LB B 7
ki ” Ben’ e, > x

It is easy to show that

By Bra

S .
o B o8> i

kil T Bl ‘i '
i.e., S s is a linear combination of {go, gpseves
gk{-l}'It is well known that (see, e, g., Ref, 20)

<g; g;> =0 i+, 0<i,jg k+1

Again, these results are true for the singular
case as.long as 8% 0,i=90,1,..., k#l. There-
fore, 8 # O0and 8. . ¢ R (G} This imyplies

(by P‘rop'grty 3. 1(ii)) kﬂthat, for the CG method,

<Sk,+1’ Qs kel > 7 a
In the DFP method -S =Hp 8, and we
know that H =HT >01fHé.nd <5 LSH'O 5 . »=
M g Qk- Tkl > U <S k+1Q s k;l
k+17k+1, ’ k+l
then Sk i Hi<4—1gk+1
0 for all x e R(Q). For the necessary contradic-
tion, again pick x = g ac R(Q). Ther.x, <Hk+1gk+1,
gk+1> =Q, or gk 1 =0, which contradicts the as -
sumption g # 3 Therefore, (A.2)is true for
K4l k+l

)

0,

k+1 Bl kel

e N{Q), i.e., <Hk+lgk+l'x >=

Censider the iteration number k = m-1, where
m i3 the rank of Q. g =0, we are done; ifpg 2
0, from (A, 3)we have <g ,8.>=01{ =0,1,..
m-1). This means that x minimizes {{x) over the

subspace spaned by {§ ,mS PRI }, a basis of
] nh-l

R{Q). Letx =X +zwherfeXx =« {02) Since
fx 1260 T 2)TOE ), it Tiollows that §_
€ R {Q) minimizes f{x) for all x ¢ R(Q). From
property 3.2 we conclude that ¢ =g (x )=

g(®_+z)=g(X_)=0, i.e., the CG and the DFP
methods converge in at most m steps.

For Powell' s mathod, the proof is as follows,
Given o the method generates a Q-conjugate
direction d = X X5 .the directions d.,... ’dn are
replaced by d_,...,d , d, and then dleﬁned as d4.,
ve.s d_» Suppose after k iterations that the last

. .,

k directions of {4 prdpsees dn} are nonzero Q-
onjugat ctor i é,, , -
conjugate vectors, i dn-k+l dn~k+2

The starting point x_ for the (k+l)  iteration is the
minimum of £{x) in the subspace spanned by these
O -conjugate directions. If, on the (k+l}th iteration
the new direction d = x -x_ = 0, then (as will be
shown) the starting poi.rﬁ x at this iteration is a
minimum of f(x}, i.e., g(xo) = 0,

cer d -
Il

First note that x, is determined by x. = x i_1+
t. " d, where t* is chosen such that fx, ll +tEd) =
rrlxin,lfix_ IH‘.d}), te R. Therefore tl 7%, il.ef,
X, =%, ;. can happen if and only if <g (xidl}, di.>:0

This implies that

{1y glx, ) =0, {ii} d e N[Q), {iil) d.¢ R{Q) and
i-1 i ) i
diJ. g (xi_l)-

If (i) is true, then x | is 2 minimum. Thus, as-
sume g(x, ) # 0. I\‘[S%e that (ii) and (iii) are mu-
tually exilisive. Equation (ii) shows that the re-
named directions {3 ,,d.,...,4 ) for the next
iteration at least span the range 0of Q. {Recall that
the initial d,,d_,...,d form a basis for R"). On
the other hand” if (iii)’ts true, we have glx) i d.
for j > i-1 but the renamed directions {d_, °d_,. ~ .
d 1 for the next iteration may or may nml. 5p§n the
ringe of 0. Now, let {e.,e_,...,e } be a basis
of R{Q), such that e = d.f". 2’.[‘[’1en, gm(x_).]_ d for
j > i-1and the renamed Yirections {a J, . _.1d }
for the next iteration span the same sulgspace as
spammed by {e_,2.,...,e_} . I follows that if at
the (k+l)th iteration the new direction d =x -x is
a zero vector, then the nth vector x minimizes
f(x) over the space spanned by {d_, gt neea d 3,
which either contains the range otlQ 6r contains



s o, e

Bx, )

e Tzt - 3 Yhe PADRE of Q, 58y { €., eej_i_l' '.' ,:!T}}
with gon ca e forlgi< j (where ]t,h zft" t’ n
form. a tae.e §:r the range of Q). Both situa l?ns
lead t, e e garme condition that g (xn) £ ng)’ ;}.}e, 5
Bix 14 H.L.n, Swnce glx )= Qx +we Pf( ), then
4 e ardiwx X i3 tainimum solutions ‘of
tf e, we have proved that ifd = x X% =0

at the g5 o1 steration, K +1 <™, f:hen the x, of
that ;tppat.on 1 a minimum solution,

New suppote that after m iterations m Q - con-
: -

1:ons have been generated, i.e., d

jug.\!e Arr! .
" ....d are nonzerc (Q-conjugate
dfe i as " ﬁ:%, the starting point x  for the

{m+1ah teration is the minimum of f(x) in the
subapace spanned by the m Q-conjugate vectors,
Now, for each d i there e;cist unique p; and z;
withp ¢ RIQ) and z, ¢ N(Q) such that

1

di=pi¢zi for i =n-m+l,...,n
and,

= .y tz.) >
<d., de > = <p.+2, Q(pJ J)

> + <z, Dp.>=<p,, Qp.>.
<pi,QpJ z; PJ P; PJ

since <4 ,,Q dj>=0 igj,n-mtl<i,j< n
and cdj,Q dj:v > 0

wehaw:(p.l.ij>=0

nim+l < 35 n

i#j, n-m+l<i,j< n

and<pj,ij>>0 n-mitl <j<n

That is, (p , P ++++,P_) are nonzero
Q—czor\_iuga'cg:1 'ﬁ}zlctio%émlgz R{Q). n'5'.‘here£c're, the
starting point x_ for the (m+ljth iteration is 2
minimum of f(x] on the subspace spanned by
{d , .. » 4} which contains {
10 LR P
p ) Q-conjugate Birections in R(Q). THIS Hidans
that, by Property 3.2, g{x ) =0, and x is a

P vty

' minimum solutien of f(x)in R™.

Appendix B Proof of Property 4.2

From Theorem | in Section 3, there is nothing
to prove if k> m, where m is the rank of Q.
Hence, assume k <m, It was shown in Ref, 28
that for the DFP method applied to non-singular
quadratic problems, or, in our case, to the
(ANSQP), the gradient at 3-':'1+ , denoted by T, -
Blx, )= Q_nii+1+w’.j's the or%hogonal projection
of g, ¢ (Ko) = Q0 x + w onto_the orthogonal
complement of the 5pan ofQ S , Q §,...,0 5,
and the vectors 9 § , Qn‘S_. nspgn the slame nt
subspace as the vgct%rs o] IE , Q2 T e
Qﬂ EQ- These properties are als-:;]trug for the
DFP method applied to the {SOP) as long as g, # 0,
that is, the gradient of the (SQP) at x. T denoted
b?’ Biop ™ 8 (x 1) == G tw, s the oéﬁ’xogonal
dzrectmn projection oflg =g(x y=Qx_ +wonto
the orthogonal complemé)nt of tBe spanof @ S ,
£25,..., Q5. which has the same span a5 by the
vectors Qg | bzg e, Qi+1g .

Q ’ v] o]

Lemma B.1: For a nonsingular quadratic min-
imization problem f{x) = Lo, A x> b oax,w> 4,
x€ RMwith A = AT & 0,if] A has k distinct posi-

tive eigenvalues Xl' ) N X \ﬁith multiplicities
EprFpne e T respectively, andi?::/; ri = n, then the
DFP method converges in at most k steps.

i :
zlf ) be eigenvectors

_ 1) ()
Proof,l Let S z2 ye ey

of A corresponding to the samé elgenvalue \_ for

of oy (250 i)y
i=1,2,...,k. Then clearly { plEs e zr.}irl
form abasis in Rn_ Givenx , g =Ax +w, an

there exist unique c,(}) such that

k Ti N
g, =E E c_{l} 2!1)52 yh) ,
is1 j=1 4 7 4
Note that: Ayi = kiyi(izl,... , k),(yi, yj>=0(iq&j) {B.2)
Now, if ch" = chj‘-‘ .. = cél) = 0 for some i, then
we have, ]l'rom 2(B.I), yfi) t 0 for that index i,
Therefore, g is H‘;)e sum of y(l), y(z) ., y(k)
and some of the y' " may be zero-vectors. Assume
that g is the sum of £ nonzero vectors and re-
name them as wil), w(z,) e ,wu ) where § < k.
Recall that Aw!!)= L ,W(l),(i =1,..., 2 )wher: ¢,
4 EEE 4 g are distinct eigenvalues of A selected
from Ao, ..., . Clearly <wlt) wli)s=0¢
for i # j. From the above, for an{ finite integer
iz0 Age = P e YWl Lo )
wu ) since ?;1, 14 ],' .., L, are distinct positive’e
real numbers, the matrid B=[b .1, defined by
b, =Y (1< i, j< £), isa no}gsingula.r
Vdnde rthonde matrix, This leads to the resalts
that g , Ag ,..., A'" "' g are nonzero linear
indepé)ndentovectOrs, and sgan {g .Ag ,... alt -1
g ) = span { wil), w(2), .. w1 Psin tw ()
w (£)} are linearly independent and g_ =

() a1

is contained in the

(B.1)

w(i)-
. ' '
Since A g, -1=1( Qi) w
span of {wit), ..., w () 1, then it is alsc con-
tained in the span of {go,Ago. N Y g, }.i.e.
e., 1 4
£

Ag0=

2 aiALgo (B. 3)

i=0

Since §.,8_,....¢

number]é, ;‘:?ilen ao,

nonzero numbers,

£ @, i

x & € " & A
0

g 2re distinct positive real
G, ..., in {B,3)are all
’}herefore, from (B. 3)
. te Fe sk (ma
g0 - i= d'o go _i:iﬁi. gO )
But, as previously mentioned

span {Ago,Azg s ,A! go} 1
AS-!}; which implies g = é viASi {f < k), and

o =

g b=0
/v, AS,-g =0 (£ < k). This

= span {ASQ'ASI’ .

then from (B.4) g, =

implies that the DFPlr:r?ethod converges in exactly
£ steps with ¢ < k.

With Lemmma B,1 it is easy to prove Property
4.2 Now, assume that the DFP method applied
to the (ANSQP) converges at k < m steps, whore
m is the rank of Q. From the arguments of
Lemma B.l, we can write Eo =3 W, where

i=1
wi is a nonzero eigenvector of Qy corresponding to



e I e e MR A,

the eigenvalue §.L with ;.L # ;'j for i # j. But,
- 1
g "Q x +w=Qx +wtTx =g $=x.,geR(Qand
Q%V_=K_‘8v_& =1, ..., 13 (wherg )\.{_): g_o.}:} > 0], we

1 T 1 X 1 1 n

conclude that go = E € W Also from the above
i

and the fact that § 1,_1?; ,..., 6 are distinct
positive real values, at most only one of the X, may
become zero and the rest of the A, are distinct
positive values. Ul =4, -5 =0 ' for a specific
index j, then Qw =0 #hd thi corresponding coeffi-
cient ¢. must be” zero, lLet us denote z, = c.w,,
collect’the nonzero vectorg LA and rename thé

index order to form g, =41 2, {r £ k], where z,

. i=l
are the eigenvectors of Q corresponding to the
distinct reordered eigenvalues k., Using the same
argurments a3, in Lemma B.1 and the fact that

¥
span {QgO,O IR 'fS go} = span {QSO’QSL’ vy

Qs_ _1} We get g =i=20

=l
g, = 53 aiQSi-go = 0, and, thus, the DFP method

a Q8. {r < k), or
A T

applilei?to the (SOP) converges in r steps, r < 'k,
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