Convergence of Finite -Dimensional Conjugate Direction and Quasi-Newton Methods for Singular Problems
 B. D. Cheng and W. F. Powers, University of Michigan, Ann Arbor, Mich.

AIAA/AAS ASTRODYNAMICS CONFERENCE

San Diego, California/August 18-20, 1976

[^0]$$
M 76-15372
$$

CONVERGENCE OF CONJUGATE DIRECTION AND QUASI-NEWTON METHODS ON SINGULAR PROBLEMS: THE FINITE-DIMENSIONAL CASE*

Bang-Dar Cheng ${ }^{+}$and Williami F. Powers ${ }^{++}$ University of Michigan Ann Arbor, Michigan

Abstract

The convergence properties of the gradient, conjugate gradient, Davidon-Fletcher~Powell, and Powell's method for the singular, finitedimensional quadratic minimization problem are developed. It is shown that for all of the methods, except the gradient method, that the minimum is obtained in at most m iterates, where m is the dimension of the range of the Hessian matrix, as opposed to $n>m$ iterates for nonsingular prob~ lems. A class of associated nonsingular quadratic problems is defined to show that the gradient method has slower convergence on singular problems than on correspponding nonsingular approximations to the singular problems while the conjugate direction methods have more rapid conver. gence. This implies that slow convergence attributed to singular problerns is actually a property of the gradient method as opposed to the singularity of the problem.

1. Introduction

There is widespread belief that singular optimal control problems are more difficult to compute than nonsingular problems ${ }^{1}$. There is good reason for this since many researchers have experienced the slow convergence of the gradient method on a singular problem and/or the special preparations necessary to apply a Newton-type method (both shooting and function space types) to a singular problem. In fact, Johansen ${ }^{2}$ studied the rate of convergence of the gradient method on the singular problem and verified theoretically the poor convergence characteristics noted in practice.

In Ref. 3 a recently developed class of accelerated function-space gradient methods, known as function-space quasi-Newton methods, was shown to converge certain singular optimal control problems much more accurately than the standard gradient method. Defects in the methods with re. gard to storage were also eliminated and a relatively large, realistic Space Shuttle trajectory optimization problem was solved with the methods. Thus the major remaining problems associated with the methods involve theoretical questions of convergence and rate of convergence, especialiy on singular problems. For example, was the improved convergence reported in Ref. 3 problem dependent or applicable to more general classes of problems?

The goal of this paper is to present the results of the first part of such a theoretical study, namely the convergence of a number of algorithms on the finite-dimensional singular problem. In addition to the se results being useful in their own right, they also indicate an approach to the in -finite-dimensional (or optimal control) problem which will be reported in a subsequent paper.

The convergence of the: gradient, conjugate gradient (C G),5,6 and Davidon-FletcherPowell (DFP), 7, 8 and Powell's ${ }^{9}$ methods will be analyzed herein. For nonsingular quadratic optimization problems, convergence questions have been investigated by many authors with the following results: (i) Linear convergence for the gradient method in both finite-dimensional and furction spaces 10 , (ii) Finite-step convergence for both the C G and the DFP methods in finite-dimensional space 6,8 , (iii) A rate of convergence for the $C G$ method 10,11 and a conver gence proof for the function-space DFP meth$\mathrm{od}^{12,13}$.

To date few papers have been concerned with the case of singular quadratic optimization problems. A convergence proof for a general system of m linear algebraic equations in m unknowns is implicit in Ref. 14, and as shown in Ref. 15 the necessary and sufficient condition for a very general class of iterative schemes to converge is that the linear system be positive semidefinite. Nashed and Kammerer $16,17,18$ present convergence proofs for gradient and conjugate gradient methods applied to singular linear operator equations, but no such results exist for the application of CuasinNewton methods ${ }^{19}$ to the singular case.

In Section 2 the singular quadratic optimiza tion problem and algorithms are presented along with the existence conditions for the problem. The main convergence theorem is presented in Section 3 along with examples to illustrate its properties. In Section 4 an example is thoroughly analyzed to demonstrate that defects attributed to the singular problem are actually due to a defect in the gradient method, and that conjugate direction methods actually have improved convergence properties on singular problems.

2. Problem Formulation and Algorithms

[^1]Consider the problem of deternining a minimum of an unconstrained function f, where f has continuous partial derivative of, at least, second order. Convergence and rate of convergence analyses are restricted to the neighborhood of the minimum, and thus are actually terminal convergence properties. Thus, a quadratic approximation of the problem is employed for such analyses, and thus we shall consider the problem of determining an element $x \in R^{n}$ which minimizes the quadratic function

$$
\begin{equation*}
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle x, w\rangle+f_{0} \tag{2.1}
\end{equation*}
$$

where $x, w \in R^{n}, f \in R,\langle x, w\rangle=x^{T} w$ denotes the inner produce in R^{n} and Q can be assumed, without lost of generality, to be an $n \times n$ symmet ~ ric matrix. The gradient of $f(x)$ at the element x, denoted by $g(x) \in R^{n}$, is

$$
\begin{equation*}
g(x) \equiv \frac{d f(x)}{d x}=Q x+w \tag{2,2}
\end{equation*}
$$

If Q is positive definite, then the minimum solution always exists, i.e., $x^{* *}=-Q^{-1} w$. For a general quadratic function f, we need the following property.
Property 2.1: Problem (2.1) has a minimum solution \bar{x} if and only if
(i) Q is positive semidefinite (denoted by $Q \geq 0$)
(ii) w belongs to the range of Q, (denoted by $w \in R(D)$)
(2. 4)

Proof: Since f is twice differentiable, if $\overline{\mathrm{x}}$ is a minimum element, then $g(\bar{x})=Q \bar{x}+w=0$ and $\left\langle x, \frac{d^{2} f(\bar{x})}{d x^{2}} \quad x>\geq 0, x \in R^{n}\right.$. But $Q \bar{x} \in R(Q)$ $g(\bar{x})=0$ implies that $w=-0 \bar{x} \in R(Q)$. Also, since $\frac{d^{2} f}{d x^{2}}=Q,\left\langle x, \frac{d^{2} f(x)}{d x^{2}} x>\geq 0\right.$ implies that $\langle x, Q x\rangle \geq 0$, that is, Q is positive semidefinite. Now, suppose $w \in R(O)$, there exist an element $\overline{\mathrm{x}}$ such that $Q \overline{\mathrm{x}}+\mathrm{w}=0$ and $\mathrm{f}(\overrightarrow{\mathrm{x}})=\frac{1}{2}\langle\overline{\mathrm{x}}, w\rangle+\mathrm{f}_{0}$. Let x be any element in R^{n}, then $x^{2}=\bar{x}+y$ wher \dot{e} $y=x-\vec{x} \in R^{n}$. After some calculations, $f(x)=$ $f(\bar{x}+y)=\frac{1}{2}<y, Q y>+f(\bar{x})$, or $f(x)-f(\bar{x})=$ $\frac{1}{2}<y, Q y>$. Since Q is positive semidefinite, we 2 obtain $f(x) \geq f(\bar{x})$, i. e., \bar{x} is a minimum solution of Problem (2.1).
Remark 2.1 If $Q=Q^{T} \geq 0$ and $w \in R(Q)$, there exist infinitel ${ }_{y}$ many minimum solutions of $f(x)$. Actually, if x is a minimum solution of $f(x)$, then $\bar{x}=x+X_{N}$, for any $X_{N} \in N(\Omega)$ (the null space of Q), are also minimitm solutions of $f(x)$, that is, $f(\mathbb{x})=f\left(x^{* *}\right)$.

Remark 2.2. In the process of proving Property 2.1, we see that once an element \bar{x} such that $g(\bar{x})=$ $0 \bar{x}+w=0$ is determined, then \bar{x} is a minimum solution of $f(x)$.

The four iterative methods of interest here: the gradient, CG, DFP, and Powell's methods, will now be summarized. In general, the first three iterative schemes mentioned above attempt to generate a sequence $\left\{x_{i}\right\}$ which eventually converges to a minimizing element x^{*}, they all involve the iteration rule

$$
\begin{equation*}
x_{i+1}=x_{i}+\alpha_{i} S_{i} \tag{2.5}
\end{equation*}
$$

An initial element $x_{0} \in R^{n}$ is chosen arbitrarily. At each step a direction S is schoen (the way this is done will define the method used) and a step size is determined such that

$$
f\left(x_{i}+\alpha_{i} S_{i}\right) \leq f\left(x_{i}+\lambda S_{i}\right) \text { for all } \lambda
$$

This leads to the condition.

$$
\begin{equation*}
\left\langle g_{i+1}, S_{i}>=0, \quad\left(g_{i+1} \equiv g\left(x_{i+1}\right)\right)\right. \tag{2.6}
\end{equation*}
$$

which, for the quadratic function in (2.1) gives

$$
\begin{equation*}
\alpha_{i}=-\frac{\left\langle S_{i}, g_{i}\right\rangle}{\left\langle S_{i}, Q S_{i}\right\rangle} \tag{2.7}
\end{equation*}
$$

In the gradient method

$$
S_{i}=-g_{i} \quad \text { for all } i
$$

In both the CG and the DFP methods, the members of the sequence $\left\{S_{i}\right\}$ are chosen to be Q - conjugate, i.e., they satisfy

$$
\left\langle S_{i}, Q S_{j}\right\rangle=0 \quad i \neq j
$$

In the CG method, S_{i} is taken as

$$
s_{i}=-g_{i}+\frac{\left\langle g_{i}, g_{i}\right\rangle}{\left\langle g_{i-1}, g_{i-1}\right\rangle} \quad s_{i-1} \text { with } s_{o}=-g_{o}
$$

In the DFP method

$$
\begin{gathered}
S_{i}=-H_{i} g_{i} \\
\text { where } H_{i}=H_{i-1}+\frac{P_{i-1}><P_{i-1}}{\left\langle P_{i-1}, y_{i-1}>\right.}-\frac{H_{i-1} y_{i-1}><H_{i-1} y_{i-1}}{H_{i-1} y_{i-1}, y_{i-1}>} \\
P_{i-1}=x_{i}-x_{i-1}=\alpha_{i-1} S_{i-1} \\
y_{i-1}=g_{i}-g_{i-1}=\alpha_{i-1} Q S_{i-1}
\end{gathered}
$$

The dyadic notation ($><$) is defined as (on R^{n})

$$
a><b \equiv a b^{T}
$$

and the following property is then easily verified

$$
(a\rangle<b) c=a<b, c\rangle a, b, c \in R^{n}
$$

The initial matrix H_{O} is chosen to be any positive
definite symmetric matrix.
In Powell's method, the directions of search are generated by the following four steps: Denote the starting point by x_{0}
(i) Initially choose $d_{1}, d_{2}, \ldots, d_{n}$ in the direction of n coordinates, that is ${ }^{n} \frac{d}{T} i=e_{i}$ where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{T^{i}-e_{i}}$
(ii) Given $d_{1}, d_{2}, \ldots, d_{n}$, find t_{i}^{*} so that f ($x_{i-1}+{ }^{t} d_{i}^{*}$) is minimized. Define $x_{i}=$ $x_{i-1}^{i-1}+t_{i}^{*} d_{i}^{i} i=1, \ldots, n$
(iii) Generate a new direction d by $d=x_{n}-x_{0}$ and replace d_{1}, \ldots, d_{n} by d_{2}, \ldots, d^{n} Re name the latter as $d_{1}, d_{2}, \ldots, d_{n}$
(iv) Minimize $f\left(x_{n}+t d_{n}\right)$ and replace x_{0} by $x_{n}+t^{*} d_{n}$ where $t^{*} n_{i s}^{n}$ the minimizing t. Take this point as x_{0} of the next iteration, and go to (ii).

It can be shown that the search directions generated in Powell's method at every iteration are mutually Q-conjugate for a quadratic function (see, for instance, Ref. 20, p. 158). This property holds for Q positive semidefinite also as long as $d \neq 0$. We will show later that if $d=0$ during some iteration, then the initial element x_{o} for that iteration is indeed a minimum solution.

We shall now investigate the behavior of these algorithms on the singular quadratic problem (2.1) subject to (2.3), (2.4).

3. The Main Convergence Theorem

Before proving the general convergence theorem, the following properties are required.
Property 3.1: Let Q be a $n \times n$ symmetric positive semidefinite matrix (i.e., $Q^{T}=0 \geq 0$), let $R(O)$, $N(Q)$ be the range of Q and the nuli space of Q, respectively, and m be the rank of Q. Then,

$$
\begin{aligned}
& \text { (i) } R(Q)=[N(Q)]^{\perp}, R^{n}=R(Q) \oplus N(Q) \\
& \text { (ii) }<x, Q x>=0 \quad x \in N(Q)
\end{aligned}
$$

Proof: Part (i) can be found in any elementary matrix book, so we need only prove (ii). If $x \in N(Q)$, clearly $Q x=0$ and $\langle x, Q x>=0$. Now, since $Q \geq 0, Q^{1 / 2}$ exists and $Q^{1 / 2} \geq 0$. Then $\left\langle x, Q x^{-}>=0\right.$ can be written as $\left\langle Q^{1 / 2} \times, Q^{1 / 2} x\right\rangle$ $=0$, which implies $Q^{1 / 2} x=0$. Then $Q^{1 / 2}\left(0^{1 / 2} x\right)$ $=Q x=0$, and $x \in N(Q)$ as desired.
Property 3.2: Let $Q=Q^{T} \geq 0$, and $\left\{d_{1}, d_{2}, \ldots\right.$, d be a nonzero Q-conjugate set of elements in the range of O. If \bar{x} minimizes problems (2.1), subject to (2. 4) for all $x \in R(0)$, then $g(\bar{x})=0$. i. e., \bar{x} is a minimum solution of $f(x)$.

Proof: First note that this property is trivial if $R(O)=R^{n}$, but requires proof when Rank ($0 i<n$. Since $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ are Q-conjugate and
nonzero, they are also independent. Then, since Rank $(Q)=m,\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ form a basis for $R(Q)$. For any $x^{2} \in R(Q), \exists c_{1}, c_{2}, \ldots$, $c_{m} \ngtr x=\sum_{i=1}^{m} c_{i} d_{i}$, and implies
$\left.\frac{d f(x)}{d c_{i}}\right|_{x=x}=\left.\frac{d f}{d x}{ }^{T} \frac{d x}{d c}\right|_{x=\bar{x}}=<g(x), d_{i}>\left.\right|_{x=\bar{x}}=0$,

$$
\begin{equation*}
i=1, \ldots, m \tag{3.1}
\end{equation*}
$$

or, $\left\langle g(\bar{x}), d_{i}\right\rangle=0 \quad i=1,2, \ldots, m$
It implies that, $\langle g(\bar{x}), x>=0 \quad \forall x \in R(Q)$ Therefore,

$$
\begin{equation*}
g(\bar{x}) \in[R(O)]^{\dot{L}}=N(Q) \tag{3.2}
\end{equation*}
$$

By (2.4), w $\in R(Q)$ and $Q \bar{x} \in R(Q)$, which imply

$$
\begin{equation*}
g(\bar{x})=Q \bar{x}+w \in R(Q) \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3)

$$
g(\bar{x}) \in R(Q) \cap N(Q)=\{0\}
$$

i.e., $g(\bar{x})=0$, which completes the proof.

Theorem 1: Consider the problem (2.1) subject to (2.3) and (2.4). Let $\left\{x_{i}\right\}$ be a sequence of vectors in R^{n} generated by either the $C G$, DFP or Powell's method. Then, the sequence converges to a minimum vector \bar{x}_{0} in at most m iterates, where \bar{x}_{0} depends on the initial guess x_{0} and m is the rank of Q.

Proof: The details of the proof a re presented in Appendix A. It is shown the re that condition (ii) of property 3.1 guarantees that all iterates of the algorithms are well-defined, and property 3.2 leads to the finite m-step convergence result.
Remark 3.l: From the proof of the above theorem, the finite m-step convergence result holds for any algorithms which generates conjugate directions and employs an exact linear search. For example, all of Broyden's Quasi-Newton ${ }^{19}$ and Huang's ${ }^{21}$ methods possess this property.
Remark 3.2: Usually the minimum solution \bar{x}_{0} depends on the initial estimate x_{0}. Actually, if we let $S=\{x \mid x$ is a minimum solution of $f(x)\}$, then S is a non-empty closed convex set, hence there exists $x^{*} \in S$ such that $\left\|x^{*}\right\| \leq\|x\|$ for all $x \in S$, where $||\cdot||$ denotes the Fuclidean norm in R^{n}. Nashed 16 showed that the sequence $\left\{x_{0}, x_{1}, \ldots, x_{i}, \ldots\right\}$ gene rated by thic gradient method converges to $\bar{x}_{0}=x^{*}+(I-P) x_{0}$ where P is the projection matrix from R^{n} to $R(Q)$. That is, if $x_{0}=x^{R}+x^{N}$ where $x^{R} \in R(Q)$ and $x_{0} N^{N} N(Q)$, ${ }^{\circ}$ then ${ }^{\circ} \bar{x}_{O_{0}}={ }^{\circ} x+x^{N}{ }^{0}$. Now, if $H=I$ in the DFP method the search directions S_{i} in both the DFP and CG methods are linear combination of $\mathrm{g}_{o}, \mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{i}}$. By the same procedures as stated in Ref. 16 we can prove that the sequence $\left\{x_{0}\right.$, $\left.x_{1}, \ldots\right\}$ generated by the DFP and CG methods
(with $H_{0}=I$) converges to $\mathbb{x}_{0}=x^{*}+(I-P) x_{0}$ where ${ }^{\circ} x^{*}$ is the unique minimum norm solution. Therefore, if we are interested in obtaining the minimum norm solution x by DFP or CG methods, the simplest way is to choose $x_{0}=0$ as the initial estimate.

Remark 3. 3: For a nonsingular quadratic function $f(x)=\frac{1}{2}<x, A x>+\langle x, w>+f$ i.e., $A=$ $\mathrm{A}^{\mathrm{T}}>0$, the ${ }^{2} \mathrm{DFP}$ method guarantees $\mathrm{O}_{\mathrm{H}}>0$ for $0 \leq k \leq n$ and $H_{n}=A^{-1}$ if the sequence $\left\{x_{i}\right\}$ converges in exactly n iterations. For the singular case, $Q=Q^{T} \geq 0$ and Q^{-1} does not exist, but it is of interest to characterize the behavior of H_{k} in this case. The results are as follows:
Property 3. 3: If $\left\{x_{i}\right\}$ converges at the $\ell^{\text {th }}$ iterate ($\ell \leq m$) for the DFP mothod applied to a singular problem, then
(i) $\mathrm{H}_{\mathrm{k}}>0 \quad 0<\mathrm{k} \leq \ell$
(ii) $H_{k} \circ p_{i}=p_{i} 0 \leq i<k \leq \ell$
(iii) If $\ell=m, H_{m} \Omega x=x$ for $x \in R(Q)$.

Proof: If $x_{f}=\bar{x}_{0}$, the minimum solution of $f(x)$, then $g_{i} \neq 0$ for $i \stackrel{\circ}{=} 0,1, \ldots, \ell-1$, and hence $p_{i} \neq C$, $y_{i} \neq 0, i=0,1, \ldots, \ell-1$, which imply Properties (i) and (ii) carry over directly from the nonsingular case (e.g., Ref. 20, pp. 134-138). To prove (iii), observe from (ii) that

$$
H m Q p_{i}=p_{i} \quad i=0,1, \ldots, m-1
$$

But $\left\{P_{0}, P_{1}, \ldots, P_{m-1}\right\}$ are nonzero 0 -conjugate vectors, hence m^{-1} they form a basis for $\mathrm{R}(\mathrm{Q})$ The refore, for any $x \in R(Q)$, there exist constants $c_{o,}, c_{1}, \ldots, c_{m-1}$
as desired, such that $x=\sum_{i=0}^{m-1} c_{i} p_{i}$, and,

$$
H_{m} Q x=\sum_{i=0}^{m} c_{i}^{-1} H_{m} Q \cdot p_{i}=\sum_{i=0}^{m-1} c_{i} p_{i}=x
$$

This means that $H_{m} Q$ plays the role of an identity matrix in the range of Q, or, $P=H$ is a projection matrix from R^{n} to $R(Q)$. Therefore, as explained in Remark 3.2, $\bar{x}_{0}=x^{*}+(I-P) x_{o}$, or, $\bar{x}_{0}=x^{*}+\left(I-H_{m} Q\right) x$ if the $D F P$ method converges at the $\mathrm{m}_{\mathrm{m}}^{\mathrm{th}}$ step with $\mathrm{H}_{\mathrm{o}}=1$.
Remark 3.4: The sequence $\left\{x_{i}\right\}$ generated by the gradient method for the singular problem converges linearly to \bar{x}_{0} (by employing the results in Ref. 16).
Remark 3.5: Myers ${ }^{22}$ showed tinat, forinonsingular quadratic problems in R^{n}, the search directions generated by the DFP method and the CG method are scalar multipies of each other, provided the initial step is in the direction of steepest descent. This is true also for the singular quadratic problem. In fact, Hestenes and Stiefel ${ }^{6}$ showed that the search direction S_{i} of the $C G$

$$
\begin{align*}
& \text { method can be formed as } \\
& \qquad s_{i}=-\left\langle g_{i}, g_{i}\right\rangle \sum_{j=0}^{i} \frac{g_{j}}{\left\langle g_{j}, g_{j}\right\rangle}, \tag{3.4}
\end{align*}
$$

and Horwitz and Sarachik ${ }^{12}$ showed that the search direction S_{i} of the DFP method can be written as

$$
\begin{equation*}
S_{i}=-\left\langle H_{i} g_{i}, H_{i} g_{i}\right\rangle \sum_{j=0}^{i} \frac{H_{o} g_{j}}{\left\langle g_{j}, H_{o} g_{j}\right\rangle} \tag{3.5}
\end{equation*}
$$

Equations (3.4) and (3.5) a re true for the singular quadratic case as long as $\mathrm{g}_{\mathrm{j}} \neq 0, \mathrm{j}=0,1,2, \ldots, \mathrm{i}$. Therefore, from (3.4) and ${ }^{j}(3.5)$, we see that the CG and the DFP methods generate the same search directions S_{i} for the singular quadratic problems (provided $\mathrm{H}_{0}^{\mathrm{i}}=\mathrm{I}$ and the same initial x_{o} is em ployed). Example: consider the minimization of: $f(x)=\frac{1}{2}\left\langle x,\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 9 \\ 1 & 0 & 1\end{array}\right] x\right\rangle+\langle x, B\rangle+f_{0} x, B \in R^{3}, f$ o real. First note that $Q=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]=Q^{T}$ with eigenvalues $0,1,2$, which implies $Q=Q^{T} \geq 0$ with Rank $(Q)=2$, and
$R(O)=\left\{y \in R^{3} \left\lvert\, y=Q x=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x^{1} \\ x^{2} \\ x^{3}\end{array}\right]=\left[\begin{array}{c}x^{1}+x^{3} \\ x^{2} \\ x^{2}+x^{3}\end{array}\right]=\left[\begin{array}{l}a \\ b \\ a\end{array}\right]\right., a, b \in R\right\}$
By Property 2.1, B must belong to $R(Q)$ to insure a minimum exists, i.e., B must be of the form $\left[\begin{array}{ll}\mathrm{a} & \mathrm{ba}\end{array}\right] \mathrm{T}$. For simplicity, let $\mathrm{B}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$, and $\xi_{0}=0$. Then

$$
\begin{gathered}
f(x)=\frac{1}{2}<x,\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] x>=\frac{1}{2}\left(x^{1}+x^{3}\right)^{2}+\frac{1}{2}\left(x^{2}\right)^{2} \\
g(x)=Q x=\left[\begin{array}{c}
x^{1}+x^{3} \\
x^{2} \\
x^{1}+x^{3}
\end{array}\right]
\end{gathered}
$$

By inspection, the set S of minima is given by

$$
S=\left\{x \left\lvert\, x=\left[\begin{array}{r}
a \\
0 \\
-a
\end{array}\right]\right., a \in R\right\}
$$

Clearly, the minimum norm solution $x^{*} \in S$ is $x^{*}=$ $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ T. Now, consider the application of the gradient, CG, DFP and Powell methods, with the same initial guess $x_{0}=\left[\begin{array}{lll}1 & 1\end{array}\right]^{\mathrm{T}}$, to this problem.
(i) Gradient Method: after straightforward calculations:

$$
\begin{align*}
& x_{0}=\left[\begin{array}{l}
1 \\
1 \\
I
\end{array}\right], \quad x_{1}=\frac{1}{17}\left[\begin{array}{r}
-1 \\
8 \\
-1
\end{array}\right] \\
& g_{0}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right], \quad g_{1}=\frac{1}{17}\left[\begin{array}{r}
-2 \\
8 \\
-2
\end{array}\right] \tag{3.6}
\end{align*}
$$

and $x_{2 n}=\left(\frac{4}{85}\right)^{n} x_{0}, x_{2 n+1}=\left(\frac{4}{85}\right)^{n} x_{1}$

$$
\begin{equation*}
g_{2 n}=\left(\frac{4}{85}\right)^{n} g_{0}, g_{2 n+1}=\left(\frac{4}{85}\right)^{n} g_{1} \tag{3.7}
\end{equation*}
$$

Thus, $x_{k} \rightarrow x^{*}$ and $g_{k} \rightarrow 0$ as $k \rightarrow \infty$, but $g_{n} \neq 0$ for any finite number n . k
(ii) CG Method: Since the first iteration is a gradient step, the same $x_{0}, x_{1}, g_{0}, g_{1}$ as stated in (3.6) result and thus the search directions are

$$
S_{0}=-g_{0}=\left[\begin{array}{l}
-2 \tag{3.8}\\
-2 \\
-2
\end{array}\right], S_{1}=\frac{18}{(17)^{2}}\left[\begin{array}{r}
-1 \\
8 \\
-1
\end{array}\right],
$$

which implies

$$
x_{2}=0, g_{2}=0
$$

the CG method converges in 2 iterations. (Note again that $\operatorname{Rank}(Q)=2$.)
(iii) DFP method: with $\mathrm{H}_{0}=I_{3}$, it follows that $x_{0}, x_{1}, g_{0}, g_{1}$ are the same as in (3.6) and the search directions are

$$
S_{0}=\frac{-9}{17}\left[\begin{array}{l}
2 \tag{3.9}\\
1 \\
2
\end{array}\right], S_{1}=\frac{2}{33}\left[\begin{array}{c}
-1 \\
8 \\
-1
\end{array}\right],
$$

which implies

$$
x_{2}=0, \quad g_{2}=0
$$

Since the DFP method converges in 2 iterations, it is of interest to display the properties of H_{2}, where

$$
\mathrm{H}_{2}=\left[\begin{array}{rrr}
\frac{3}{4} & 0 & -\frac{1}{4} \\
0 & 1 & 0 \\
-\frac{1}{4} & 0 & \frac{3}{4}
\end{array}\right]
$$

Then,

$$
P=\mathrm{H}_{2} \mathrm{Q}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right] \text { is the projection matrix }
$$

on $R(Q)$, i.e., $P x=x$, for all $x \in R(Q)$ and $P y=0$ for all $y \in N(Q)=\left\{z \left\lvert\, z=\left[\begin{array}{c}a \\ 0 \\ -a\end{array}\right]\right., a \in R\right\}$
Note also that $T=I_{3}-P=\left[\begin{array}{rrr}\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2}\end{array}\right]$ is the projec-
tion matrix on $N(Q)$. In this example, the initial guess $\underset{x_{0}}{x_{0}}=[111]^{\mathrm{T}}, \mathrm{Tx}{ }_{0}=0$, and therefore, $x_{2} \approx x^{\xi 0}=0$ in both the CG and DFP methods. Again, this result agrees with Remark 3.2. For an arbitrary $x_{0}=\left[\begin{array}{lll}a & b & c\end{array}{ }^{T}, T x=\left[\begin{array}{cc}a & -c \\ 0 & -a\end{array}\right]\right.$, the CGand DFP method will converge in at most 2 steps to
$\bar{x}_{0}=\mathrm{X}^{*}+\mathrm{T} \mathrm{X}_{0}=0+\frac{1}{2}\left[\begin{array}{c}a-c \\ 0 \\ c-a\end{array}\right]$.
(iv) Powell's Method: with $\mathrm{x}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}}$, the first iteration is (see the description of the algorithms in Section 2 for the notation definition):

$$
x_{1}=\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right], x_{2}=x_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

The refore, the first conjugate direction is $d=x_{3}$ -$x_{0}=\left[\begin{array}{lll}-2 & -1 & 0\end{array}\right]^{2}$. The second iteration results in

$$
x_{0}=x_{1}=x_{2}=x_{3}=\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right]
$$

Hence, the second conjugate direction is $d=0$, and Powell's method converges at the second iteration to $\bar{x}=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]{ }^{T}$. Note that $\bar{x} \in N(Q)$ and $g(\bar{x})=0$.

In the following we will consider the application of conjugate direction methods to the least
squares solutions of linear algebraic equations. First we need the following definitions.
Definition 3.1: A vector $u \in R^{n}$ is a least squares solution of the linear algebraic equations

$$
\begin{equation*}
\mathrm{A} x=\mathrm{b} \tag{3.10}
\end{equation*}
$$

where $x \in R^{n}, b \in R^{m}$ and A is an $m x n$ matrix with $\operatorname{rank}(A)=k, k \leq \min \{m, n\}$ if

$$
\|A u-b\| \leq\|A x-b\| \text { for } a l l x \in R^{n}
$$

The vector x^{*} is the least squares solution of minimum norm of (3.10) if x^{*} is a least squares solution of (3.10) and $\| x x^{*}| | \leq||u||$ holds for all least squares solutions of (3.10).
Definition 3. 2: The generalized inverse A^{+}of A is the linear extension of $\left\{A \mid N(A)^{\perp}\right\}^{-1}$ so that its domain of definition $D(A)$ is $R(A) \oplus R(A)^{\perp}=R^{n}$ and its null space is $R(A)^{\perp}=N\left(A^{T}\right)$, where $N(A)$ and $R(A)$ are the null space of A and Range of A, respectively, $N(A)^{\perp}$ is the orthogonal complement of $N(A)$, and $A \mid N(A)^{\perp}$ is the restriction of A to $\mathrm{N}(\mathrm{A})^{\perp}$.

The following important results has been es tablished by many researchers (see, e.g., [23]).

Property 3. 4: If A is a bounded linear transformation with closed range mapping X into Y then the least squares solution of minimum norm (LSSMN) \mathbf{x}^{*} of the linear operator equation $A x=y, y \in Y$ is given by $x^{*}=A^{+} y$.

The linear operator A defined in (3.10) is clearly a bounded linear transformation with $R(A)$ closed. Property 3.4 implies that the LSSMN, x^{*}, of (3.10) is given by $x^{*}=A^{+} b$.

There are many papers concerned with least squares solutions of linear algebraic equations. Some of them present iterative methods to abtain a least squares solution $\bar{x}=A^{+} b+\left(I-A^{+} A\right) x_{0}$, where x_{0} is the initial estimate ${ }^{24,25}$. Others describe iterative methods to compute the generalized inverse of matrix 26,27 . The conjugate direction methods should be powerful methods for determining least squares solutions of linear algebraic equations because of the following properties.
Property 3. 5: Consider $J(x)=\frac{1}{2}<A x-b, A x-$ $b\rangle$ or, equivalently, $J(x)=\frac{1}{2}\langle x, 0 x\rangle+\langle x, \bar{b}\rangle+$ $\langle b, b\rangle$ where $Q=A^{T} A$ and $\bar{\Sigma}_{\widetilde{b}}=-A^{T}$. Then,
(i) $Q=Q^{T} \geq 0$
(ii) $\tilde{b} \in R(Q)$

Proof: The proof of (i) is straightforward. To prove (ii), since $[R(A)]^{\mathrm{t}}=N\left(A^{T}\right)$ and $R^{m}=$ $R(A) \oplus N\left(A^{T}\right), b \in R^{m}$ implies that $b=b_{r}+b_{n}$, where $b \in R(A)$ and $b_{r} \in N\left(A^{T}\right)$, and

$$
\tilde{b}=-A^{T} b=-A^{T}\left(b_{r}+b_{r}\right)=-\left(A^{T} b_{r}+A^{T} b_{n}\right)=-A^{T} b_{r}
$$

But $b_{r} \in R(A)$, which implies that there exists an x such that $b_{r}=A x$, and then
$\tilde{b}=-A^{T} b_{r}=-A^{T} A x=Q(-x) \in R(Q)$.

Property 3.6: \bar{x} is a solution of (3.10) if and only if \bar{x} is a least squares solution of (3.10) and $J(\bar{x})=$ 0.

Proof: It is well known that $A x=b$ has solutions if and only if $b \in R(A)$. In general, \bar{x} is a least squares solutionf of $A x=b$ if and only if
$Q \bar{x}+\tilde{b}=0$, or, $A^{T} A \bar{x}-A^{T} b_{r}=0$, since $A^{T} b_{n}=0$, which implies

$$
A^{T}\left(A \bar{x}-b_{r}\right)=0 .
$$

Now, $A \vec{x}-b \in R(A)$, $A x-b \neq 0$ implies that $A^{T}\left(A x-b_{r}\right){ }^{\prime} 0$ hence $A \bar{x}-F_{r}=0$.
That is, $\bar{x}^{x}=\vec{x}_{r}+\bar{x}_{n}$ where $\bar{x}_{r}{ }^{r}$ is the minimum norm solution ${ }^{r}$ of $A X^{n}-b_{r}=0{ }^{r}$ and $X_{n} \in N(A)$. With this \bar{x}, we have

$$
\begin{aligned}
J(\bar{x}) & =\frac{1}{2}\langle\bar{x}, Q \bar{x}\rangle+\langle\bar{x}, \tilde{b}\rangle+\langle b, b\rangle \\
& =\frac{1}{2}\langle\bar{x}, Q \bar{x}+\bar{b}\rangle+\langle\bar{x}, \tilde{b}\rangle+\langle b, b\rangle \\
& =-\left\langle A\left(\bar{x}_{r}+\bar{x}_{n}\right), b\right\rangle+\langle b, b\rangle \\
& =-\left\langle\left(A \bar{x}_{r}-b_{r}\right)-b_{n}, b_{r}+b_{n}\right\rangle=\left\langle b_{n}, b_{n}\right\rangle
\end{aligned}
$$

Therefore $J(\bar{x})=0$ if and only if $b_{n}=0$, or $b=b_{r}$ e $R(A)$.

Property 3.5 along with Theorem 1 and Remark 3.2 guarantee that the sequence $\left\{x_{0}, x_{1}, \ldots\right\}$ generated by either the CG or DFP method applied to the least squares problem of (3.10) converges in at most $k=\operatorname{Rank}(A)$ steps to a least squares solutions $\bar{x}_{0}=A^{+} b+\left(I-A^{+} A\right) x$, provided the initial step ${ }^{\circ}$ each takes is in the direction of steepest descent. If $x=0$, clearly the LSSMN $x=$ $A^{+} b$. If also $J\left(x^{* 0}\right)=0$, then x^{*} is the minimum norm solution of $A x=b$ by Property [3.6].

4. Comparison of Conjugate Direction and Gradient Methods

Consider the singular problem (2.1) subject to (2. 3) and (2.4), i. e.,

$$
\begin{aligned}
& f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle x, w\rangle+f_{0} \\
& \text { where } x \in R^{n}, f_{0} \in R \\
& \text { with } Q=Q^{T} \geq 0, w \in R(Q)
\end{aligned}
$$

(SQP)

Define the associated nonsingular quadratic problems (ANSQP) as

$$
f_{\eta}(x)=\frac{1}{2}\left\langle x, Q_{\eta} x\right\rangle+\langle x, w\rangle+f_{0}
$$

(ANSOP) where $Q_{\eta}=Q+\frac{1}{\eta} I$ for $\eta>0$

$$
\text { and } x \in R^{n}, f_{0} \in R(O)
$$

The reason for introducing the ANSOP is to study the behavior of algorithms as a problem tends to singularity. There is widespread belief that singular problems are more difficult because Newton's method is not applicable and the gradient method typically exhibits very slow convergence. The goal of this section is to quantify such ideas, and to study the rate of convergence of the gradient and conjugate direction methods as
a function of the degree of singularity. The following property is straightforward and presented without proof.
Property 4.1:
(i) (ANSQP) approaches (SQP) as $\eta \rightarrow \infty$.
(ii) Any eigenvector Z_{i} of O in (SQP) with corresponding eigenvalue $\lambda_{i} \geq 0, i=1,2$, \ldots, n, is also an eigenvector of Q in (ANSQP) with corresponding eigenvalue $\beta_{i}=\lambda_{i}+\frac{1}{\eta}$.

The suitability of conjugate direction methods for singular problems is verified by the following property.
Property 4.2: If the sequence $\left\{\bar{x}_{i}\right\}$, gene rated by any one of conjugate direction methods applied to the-(ANSQP), converges in $k \leq n$ steps, then the sequence $\left\{x_{i}\right\}$, generated by the same method applied to the ($S Q P$) with the same initial estimate X_{o}, converges in at most k steps.
Proof: See Appendix B. (It is interesting to note that the proof in Appendix B involves a lemma which states that all conjugate direction methods will converge in at most k steps for quadratic problems if the Hessian matrix ($Q \geq 0$) has k distinct nonzero eigenvalues; this result is interesting in its own right).

Property 4.2 shows that the convergence of any conjugate direction method applied to the ($S Q P$) is never slower (worse) than the result of the same method applied to the (ANSQP). However, the gradient method behaves in exactly the opposite way. Indeed, it has been shown ${ }^{2}$ that the rate of convergence of the residual error for the gradient method will be slow whenever the spread of eigenvalues for the second-variation operator is large. Furthermore, when the second-variation operator is singular, the asymptotic rate of convergence of the residual error will be zero. This result holds for the gradient method in finite-dimensional space, also. Let us consider again the example presented in Section 3 to illustrate the above results.
Example: Minimize: $f(x)=\frac{1}{2}<x,\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right] x>$
with $x_{0}=[1,1,1]^{T}$

$$
x_{1}=\frac{1}{17}[-1,8,-1] \mathrm{T}
$$

and, for $n=1,2, \ldots$.

$$
x_{2 n}=\left(\frac{4}{85}\right)^{n} \quad x_{0}, \quad x_{2 n+1}=\left(\frac{4}{85}\right)^{n} x_{1}
$$

clearly $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{x}^{\psi^{*}}=0$ as $\mathrm{k} \rightarrow \infty$
The ratio of linear convergence, θ, is defined as

$$
\begin{equation*}
\theta=\lim _{k \rightarrow \infty} \sup . \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|} \tag{4.2}
\end{equation*}
$$

It is straightforward to determine θ_{s}, the ratio of linear convergence of the gradient method applied to the (SQP), and

$$
\begin{equation*}
\theta_{s}=0.2762 \tag{4.3}
\end{equation*}
$$

(ANSQP) of (4.1) is given by

$$
\begin{gather*}
f_{\eta}(x)=\frac{1}{2}\left\langle x, \theta_{\eta} x\right\rangle \tag{4.4}\\
\text { where } Q_{\eta}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]+\frac{1}{\eta}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \eta>0
\end{gather*}
$$

$x: h$ the same $x=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$, the gradient method spplied to the (ANSQP) (4.4) generates the se\&ience $\left\{x_{i}(\eta)\right\}$ with

$$
x_{l}(\eta)=\frac{\eta}{17 \eta^{3}+27 \eta^{2}+15 \eta+3}\left[-(\eta+1)^{2}, 2(2 \eta+1)^{2}-(\eta+1)^{2}\right]^{\mathrm{T}}
$$

and for $n=1,2, \ldots$

$$
\begin{equation*}
x_{2 n}(\eta)=[F(\eta)]^{n} x_{0}, x_{2 n+1}(\eta)=[F(\eta)]^{n} x_{1} \tag{4.5}
\end{equation*}
$$

where $F(\eta)=\frac{2 \eta^{2}\left(\eta+1 \frac{1}{2} 2 \eta+1\right)}{\left(17 \eta^{3}+27 \eta^{2}+15 \eta+3\right)(5 \eta+3)}$
Since $\frac{c F(\eta)}{d \eta}=\frac{234 \eta^{6}+808 \eta^{5}+1284 \eta^{4}+864 \eta^{3}+282 \eta^{2}+36 \eta}{\left(85 \eta^{4}+186 \eta^{3}+156 \eta^{2}+60 \eta+9\right)^{2}}$,

$$
\frac{d F(\eta)}{d \eta}>0 \text { for } \eta>0
$$

That is, $F(\eta)$ is a strictly increasing function of positive η, or,
$0<F\left(\eta_{1}\right)<F\left(\eta_{2}\right)<1$ for $0<\eta_{1}<\eta_{2}$
Clearly, $\lim _{\eta \rightarrow \infty} F(\eta)=\frac{4}{85}$
and

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} x_{k}(\eta)=x^{*}(\eta)=0 \text { for any } \eta>0 \tag{4.8}
\end{equation*}
$$

Now, define $h(\eta)$ as

$$
h^{2}(\eta)=\frac{F^{2}(\eta)}{\left|\left|x_{1}(\eta)\right|\right|^{2}}
$$

It can be shown, by the same procedure for $F(\eta)$, that for $0<\eta_{1}<\eta_{2}$,

$$
\begin{align*}
& 0<\left|\left|x_{1}\left(\eta_{1}\right)\right|\right|<\left|\left|x_{1}\left(\eta_{2}\right)\right|\right| \tag{4.9}\\
& 0<\left|\left|h\left(\eta_{1}\right)\right|\right|<\left|\left|h\left(\eta_{2}\right)\right|\right| \tag{4.10}\\
& \text { and } \lim _{\eta \rightarrow \infty}| | x_{1}(\eta)| |^{2}=\frac{66}{289}=\|\left. x_{1}\right|^{2} \tag{4.11}
\end{align*}
$$

Define $\theta(\eta)$, the ratio of linear convergence of the gradient method applied to the (ANSQP) (4.4)

$$
\theta(\eta)=\lim _{k \rightarrow \infty} \operatorname{Sup} \cdot \frac{\| x_{k+1}(\eta)-x^{*}(\eta)| |}{\| x_{k}(\eta)-x^{*}(\eta)| |}
$$

Straightforward application of conditions (4.5) to (4. 11) imply that, for $0<\eta_{1}<\eta_{2}$,

$$
0<\theta\left(\eta_{1}\right)<\theta\left(\eta_{2}\right)
$$

and,

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \theta(\eta)=\theta_{s} \tag{4,12}
\end{equation*}
$$

The results in (4.12) show that, as $\eta>0$ increases to infinity, i.e., the (ANSQP) approaches the (SQP), the ratio of linear convergence $\theta(\eta)$ of the gradient method applied to the (ANSQP) strictly increases to θ, the ratio of linear convergence of the method applied to the (SQP). In nonmathematical terms, this implies that as the problem becomes more singular, the performance of the gradient method deteriorates, whereas the performance of conjugate direction methods improves. This indicates that difficulties attributed to singular problems are actually due to defects in the two main classical methods: the gradient method (as the above analysis shows) and Newton's method, which is not applicable to the $S Q P$ in its standard form.

5. Concluding Remarks

In finite-dimensional space conjugate direction methods determine the inherent lower-dimensionality of the $S Q P$, and converge in at most m steps, where m is the rarik of the $n \times n$ Hessian matrix Q. Furthermore, the rate of convergence on the SQP is better than or equal to the rate of the same conjugate direction method applied to associated nonsingular quadratic problems. The gradientmethod has exactly opposite properties. This shows explicitly that the slow convergence of the gradient algorithm applied to a singular quadratic problem is due to the method and not the problem.

Similar properties hold for the conjugate gradient and quasi-Newton methods applied to singular quadratic optimal control problems, and these results are in preparation.

Appendix A. Proof of Theorem 1

First consider the $C G$ and the DFP methods. Given x_{0}, if $g\left(x_{0}\right)=0, x_{0}$ is a minimum. Thus, assume $g\left(x_{0}\right) \neq 0$, since $g\left(x_{0}\right) \in R(Q)$ (by Property 3.1 (ii)), $\left\langle\mathrm{g}_{\rho}^{\circ}, Q g_{0} \gg 0\right.$. In the $C G$ method, $S_{0}=$ $-g_{0}$, so we have $\left\langle S_{0}, Q S_{0} \gg 0\right.$. In the DFP ${ }^{\circ}$ me'thod, $S_{0}=-H_{0} g_{0}$, where H_{0} is any positive definite matrix, and thus $<S^{\circ}{ }^{\circ} Q S_{0}>=<H_{o} g_{0}$,
$0 \mathrm{O} ~$ $Q H_{o} g_{o}>\geq$. If $<H_{o} g_{0} Q^{\circ} H_{o} g_{o}^{o}=0$, then o^{\prime} $H_{0} g^{\circ} N(\bar{Q})$, i. e. $\left\langle\mathrm{H}^{\circ}{ }^{\circ} g_{o}, x>^{\circ}=0\right.$ for all $x \in R(Q)$. But, with $x=g_{0}, H_{o}>0$ implies $g_{0}=0$, contradicting the assumption $g_{0} \neq 0$. Hence we conclude that in both the CG and the DFP methods

$$
\left\langle S_{0}, Q S_{0} \gg 0 \quad \text { if } g_{0} \neq 0\right.
$$

This condition insures that the algorithms are well-defined from one iterate to another, i.e., the linear search requires

$$
\left\langle g_{1}, S_{0}\right\rangle=0 \text { and } \alpha_{0}=-\frac{\left\langle S_{0}, g_{0}\right\rangle}{\left\langle S_{0}, Q S_{0}\right\rangle}>0
$$

Now, consider $g_{1}=g\left(x_{1}\right)$; if $g_{1}=0$ we are done, so assume $g_{1} \neq 0$. In the $C G$ method:

$$
S_{1}=-g_{1}+\frac{\left\langle g_{1}, g_{1}\right\rangle}{\left\langle g_{0}, g_{0}\right\rangle} S_{0}
$$

In the DFP method:

$$
-S_{1}=H_{1} g_{1}=H_{0} g_{0}+\frac{\left\langle\mathrm{P}_{0}, g_{1}\right\rangle P_{0}}{\left\langle P_{0}, y_{0}\right\rangle}-\frac{\left\langle\mathrm{H}_{0} y_{0}, g_{1}\right\rangle \mathrm{H}_{0} y_{0}}{\left\langle\mathrm{H}_{0} y_{0}, y_{0}\right\rangle}
$$

By the construction of the CG and the DFPmethods, we have

$$
\left\langle S_{0}, Q S_{1}\right\rangle=0
$$

Note that in the CG method, S is the linear combination of g_{0}, g_{1} with $g_{0} \neq 0, g_{1} \neq 0, g_{0}, g_{i} \in R(Q)$ and $\left\langle g_{0}, g_{1}\right\rangle^{\circ}=0$. This implies that ${ }^{\circ} S_{1} \neq 0$ and belongs to $R(Q)$, hence

$$
\left\langle S_{1}, Q S_{1}^{\dagger}\right\rangle>0
$$

In the DFP method, it has been proved that $\left\{\mathrm{HI}_{\mathrm{k}}\right\}$. is a sequence of positive definite symmetric matrices if $H_{o}=H_{o}^{T}>0$ for the nonsingular case. This result can be carried over directly to the singular case as long as $g_{k} \neq 0$, i. e., the sequence $\left\{\mathrm{H}_{\mathrm{o}}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{k}}\right.$ \} of matrices is a finite sequence of positive definite symmetric matrics if $H_{0}=$ $\mathrm{H}^{\mathrm{T}}>0$ and $\mathrm{g}_{\mathrm{i}} \neq 0$ for $\mathrm{i}=0,1,2, \ldots, k$. Now, with $\mathrm{H}_{1}^{\circ}>0$ and $\mathrm{g}_{1} \neq 0 \in \mathrm{R}(\mathrm{Q})$, by condition (ii) 0^{f} Property 3.1 we obtain $\left\langle S_{1}, Q S_{1}\right\rangle=\left\langle H_{1} g_{1}, Q H_{1}\right.$ $g_{1} \gg 0$.

We now proceed by introduction. Suppose after k iterations with $g_{k} \neq 0$, we have following properties

$$
\begin{array}{ll}
\left\langle S_{i}, Q S_{j}>=0\right. & i \neq j, 0 \leq i, j<k . \\
\left\langle S_{i}, Q S_{i} \gg 0\right. & i \leq k \\
<g_{k}, S_{i}>=0 & i<k \tag{A,3}
\end{array}
$$

The condition (A.2) allows the $k+1$ iteration to be well-defined. Assume $g_{k+1} \neq 0$; we shall show that (A.1) - (A. 3) hold for $k+1$.' Note that (A.1) is true by the construction of the CG and DFP methods, and (A. 3) has been proved in Ref. 20 and can be carried over to the singular case as long as $g_{k+1} \neq 0$. Therefore, we need only prove (A.2). ${ }^{1}+1+Q$-conjugate direction S_{k+1} of the $C G$ method is

$$
s_{k+1}=-g_{k+1}+\frac{\left\langle g_{k+1}, g_{k+1}\right\rangle}{\left\langle g_{k}, g_{k}\right\rangle} S_{k}
$$

It is easy to show that

$$
s_{k+1}=-g_{k+1}-\sum_{i=0}^{k} \frac{\left\langle g_{k+1}, g_{k+1}\right\rangle}{\left\langle g_{i}, g_{i}\right\rangle} g_{i}
$$

i.e., S_{k+1} is a linear combination of $\left\{g_{0}, g_{1}, \ldots\right.$,
$\left.g_{k+1}\right\}$. It is well known that (see, e.g., Ref, 20) $\left.\mathrm{g}_{\mathrm{k}+1}\right\}$.It is well known that (see, e, g., Ref. 20)

$$
\left\langle g_{i}, g_{j}\right\rangle=0 \quad i \neq j, 0 \leq i, j \leq k+1
$$

Again, these results are true for the singular case as long as $g_{i} \neq 0, i=0,1, \ldots, k+1$. Therefore, $S_{k+1} \neq 0$ and $S_{k+1} \in R(0)$. This implies (by Property $3.1(\mathrm{ii}){ }^{\mathrm{k}+1}$ that, for the CG method,

$$
\left\langle S_{k+1}, Q S_{k+1}\right\rangle>0
$$

In the DFP method $-S_{k+1}=H_{k+1} g_{k+1}$, and we
 then $S_{k+1}=H_{k+1} g_{k+1} \in N(Q)$, i. e., $\left\langle H_{k+1} g_{k+1}, x\right\rangle=$ O fur all $x \in R(Q)$, For the necessary contradiction, again pick $x=g_{k+1} \in R(Q)$. Then, $\left\langle H_{k+1} g_{k+1}\right.$, $g_{k+1}>=0$, or $g_{k+1}=0$, which contradicts the as ${ }^{k+1}$ sumption $g_{k+1} \neq 0$. Therefore, (A.2) is true for $\mathrm{k}+1$.

Consider the iteration number $k=m-1$, where m is the rank of Q. If $g_{\mathrm{m}}=0$, we are done; if $\mathrm{g}_{\mathrm{m}} \neq$ 0 , from (A. 3) we have $\left\langle\mathrm{g}_{\mathrm{m}}, S_{i}\right\rangle=0(i=0,1, \ldots$, $m-1)$. This means that x_{m}^{m} mimizes $f(x)$ over the subspace spaned by $\left\{S_{0},{ }^{m_{S}}, \ldots, S_{m_{-1}}\right\}$, a basis of $R(Q)$. Let $x_{m}=\bar{x}_{m}+z^{0}$ where $\bar{x}_{m} \in{ }^{m_{R}-1}(Q)$ Since $f\left(x_{m}\right)=f\left(\bar{x}_{m}^{m}+z\right)^{m} f\left(\bar{x}_{m}\right)$, it ${ }^{m}$ follows that \bar{x}_{m} $\in R^{m}(Q)$ minmizes $f(x)$ for all $x \in R(Q)$. From property 3.2 we conclude that $g_{m}=g\left(x_{m}\right)=$ $g\left(\bar{x}_{m}+z\right)=g\left(\bar{x}_{m}\right)=0$, i.e., the CG and the DFP methods converge in at most m steps.

For Powell's method, the proof is as follows. Given x_{0}, the method generates a Q-conjugate direction $d=x_{n}-x_{0}$; the directions d_{1}, \ldots, d_{n} are replaced by d_{2}, \ldots, d_{n}, d, and then defined as d_{1}, \ldots, d_{n}. Suppose after k iterations that the last ${ }^{\prime}$ k directions of $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ are nonzero Q conjugate vectors, i. e., $d_{n-k+1}, d_{n-k+2}, \cdots, d_{n}$. The starting point x for the $(k+1)^{\text {th }}$ iteration is the minimum of $f(x)$ in the subspace spanned by these 0 -conjugate directions. If, on the ($k+1$)th iteration the new direction $d=x_{n}-x_{0}=0$, then (as will be shown) the starting point x_{0}° at this iteration is a minimum of $f(x)$, i. e., $g\left(x_{0}^{\circ}\right)=0$.

First note that x_{i} is determined by $x_{i}=x_{i-1+}$ $t_{i}{ }^{*} d_{i}$ where t_{i}^{*} is chosen such that $f\left(x_{i-1}+t_{i} d_{i}\right)=$ $\left.\min ^{i} \mathrm{f}^{\left(x_{i-1}\right.}+\mathrm{td}_{i}^{i}\right)$, $t \in R$. Therefore $t^{*} \stackrel{i}{=}-10$, i^{i}. e^{i}, $x_{i}=x_{i+1}$, can happen if and only if $\left\langle g\left(x_{i-1}\right), d_{i}>=0\right.$ This implies that
(i) $g\left(x_{i-1}\right)=0$, (ii) $d_{i} \in N(Q)$, (iii) $d_{i} \in R(Q)$ and $d_{i} \perp g\left(x_{i-1}\right)$.

If (i) is true, then $x_{\text {, }}$ is a minimum. Thus, as sume $g\left(x_{i-1}\right) \neq 0$. Note that (ii) and (iii) a re mutually exclusive. Equation (ii) shows that the renamed directions $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ for the next iteration at least span the range of Q. (Recall that the initial $d_{1}, d_{2}, \ldots, d_{n}$ form a basis for R^{11}). On the other hand, if (iii) ${ }^{n}$ is true, we have $g\left(x_{j}\right) \perp d_{i}$ for $j \geq i-1$ but the renamed directions $\left\{d_{1}, j_{d}, \ldots\right.$, d \} for the next iteration may or may not span the range of O. Now, let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a basis of $R(Q)$, such that $e_{i}=d$. Then, $g^{m}\left(x_{j}\right) \perp d$ for $j>i-1$ and the renamed directions $\left\{d_{j}^{j}, \ldots{ }^{i} d_{n}\right\}$ for the next iteration span the same subspace as spanned by $\left\{e_{2}, e_{3}, \ldots, e_{m}\right\}$. It follows that if at the ($k+1$) th iteration the new direction $d=x_{n}-x_{0}$ is a zero vector, then the nth vector x_{n} minimizes $f(x)$ over the space spanned by $\left\{d_{1},{ }_{d}, \ldots, d_{n}\right\}$, which either contains the range of Q or contains
wn: no: : Mre mine of Q, say $\left\{e_{j}, e_{i+1}, \ldots, e_{m}\right\}$ lorm. A A A i, ir the range of Q). Both situations leat t. \because. . ater condition that $g\left(x_{n}\right) \perp R(Q)$, i. e. $R i x, 4, \therefore$ Since $g\left(x_{n}\right)=Q x_{n}+w \in R(Q)$, then f(x^{f} an x is a minimum solutions of at the a 1 : :teration, $k+1 \leq m$, then the ${ }^{n} x^{\circ}{ }^{\circ}=$ that :tetat:an is a minimum solution

Now wipoute that after m iterations $m Q-$ con justie tirntwhy have been generated, i.e., d $d_{n, r: 1}{ }^{d}=-2+2, \ldots$ d are nonzero Q-conjugate difrinn: "inen, the starting point x for the $(\mathrm{m} \cdot \mathrm{I}$ xh steration is the minimum of $\mathrm{f}(\mathrm{x})$ in the ubnowce panned by the $m Q$-conjugate vectors. Now. for each d_{i}, there exist unique P_{i} and z_{i} with $p_{1} \in R(O)$ and $z_{i} \in N(Q)$ such that
$d_{i}=p_{i}+z_{i} \quad$ for $i=n-m+1, \ldots, n$
and.

$$
\begin{aligned}
\left\langle d_{i}, Q d_{j}\right\rangle & =\left\langle p_{i}+z_{i}, Q\left(p_{j}+z_{j}\right)\right\rangle \\
& =\left\langle p_{i}, Q p_{j}\right\rangle+\left\langle z_{i}, O p_{j}\right\rangle=\left\langle p_{i}, Q p_{j}\right\rangle
\end{aligned}
$$

since $<d_{i}, Q_{d_{j}}>=0 \quad i \neq j, n-m+1 \leq i, j \leq n$ and $\left\langle\mathrm{d}_{\mathrm{j}}, \mathrm{O}_{\mathrm{d}}^{\mathrm{j}}\right\rangle>0 \quad \mathrm{n}+\mathrm{m}+1 \leq \mathrm{j} \leq \mathrm{n}$ we have $\left\langle p_{i}, Q p_{j}>=0 \quad i \neq j, n-m+1 \leq i, j \leq n\right.$
and $\left\langle p_{j}, Q p_{j} \gg 0 \quad n-m+1 \leq j \leq n\right.$
That is, $\left\{p_{n-m+1}, p_{n-m+2}, \ldots, p_{n}\right\}$ are nonzero 0 -conjugate directions in $R(Q)$. Therefore, the starting point x for the ($m+1$) th iteration is a minimum of $f(x)$ on the subspace spanned by $\left\{d_{n-m+1}, \ldots, d_{n}\right\}$ which contains $\left\{p_{n-m+1}, \ldots\right.$, $p^{n} \mathrm{Q}-\mathrm{conjugate}$ tirections in $\mathrm{R}(\mathrm{Q})$. This means that, by Property 3.2, $g\left(x_{0}\right)=0$, and x_{0} is a minimum solution of $f(x)$ in R^{n}.

Appendix B Proof of Property 4.2

From Theorem 1 in Section 3, there is nothing to prove if $k \geq m$, where m is the rank of Q. Hence, assume $\mathrm{k}<\mathrm{m}$. It was shown in Ref. 28 that for the DFP method applied to non-singular quadratic problems, or, in our case, to the (ANSQP), the gradient at $\overline{\mathrm{x}}_{\mathrm{i}+1}$, denoted by $\overline{\mathrm{g}}_{\mathrm{i}+1}=$ $\bar{g}\left(\bar{x}_{i+1}\right)=Q_{n} \bar{x}_{i+1}+\infty$, is the orthogonal projection of $\vec{g}_{0}^{i+1}=g\left(\bar{x}_{c}\right)^{i+1} Q \bar{x}^{2}+w$ onto the orthogonal complement of the ${ }^{\eta}$ span of $Q_{\eta} \bar{S}_{o}, Q_{\eta} \bar{S}_{1}, \ldots, Q_{\eta} \bar{S}_{i}$ and the vectors $Q_{\eta} \bar{S}_{0}, Q_{\eta} \bar{S}_{i} \eta_{\text {span }}$ the same subspace as the vectors $Q{ }_{\eta} \bar{g}_{0}, Q{ }^{2} \bar{g}_{0}, \ldots$, $Q_{n} \bar{g}_{Q}$. These properties are also true for the DFP method applied to the (SQP) as long as $g_{i} \neq 0$, that is, the gra dient of the ($S Q P$) at x_{i+1}, denoted by $g_{i \not 1}=g\left(x_{i+1}\right)=Q x_{i+1}+w$, is the orthogonal direction projection of ${ }_{g}^{1+1}=g\left(x_{0}\right)=Q x_{0}+w$ onto the orthogonal complement of the span of $Q S$, $Q S_{1}, \ldots, Q S_{\text {, which has the same span as by the }}$ vectors $Q g_{0}, Q^{2} g_{0}, \ldots, Q^{i+1} g_{0}$.

Lemma B.l: For a nonsingular quadratic min-
imization problem $f(x)=\frac{1}{2}\langle x, A x\rangle+\langle x, w\rangle+f_{0}$ $x \in R^{n}$ with $A=A^{T}>0$, if $^{2} A$ has k distinct posi-
tive eigenvalues $\lambda_{1}, \lambda, \ldots, \lambda$ with multiplicities $r_{1}, r_{2}, \ldots, r_{k}$, respectively, and $\sum_{i=1}^{k} r_{i}=n$, then the DFP method converges in at most k steps.
Proof: Let $z_{1}{ }^{(i)}, z_{2}^{(i)}, \ldots, z_{r_{i}}^{(i)}$ be eigenvectors of A corresponding to the same eigenvalue $\lambda_{i(i)}$ for $i=1,2, \ldots, k$. Then clearly $\left\{z_{i}^{\prime} \sum_{2}^{(i)}, \ldots, z_{z_{i}}^{(i)}\right\}_{i=1}^{k}$ formabasisin R^{n}. Given $x_{0}, g_{o}=A x_{o}+w$, and there exist unique $c_{j}{ }^{\text {(i) }}$ such that

$$
\begin{equation*}
g_{o}=\sum_{i=1}^{k} \sum_{j=1}^{r_{i}} c_{j}^{(i)} z_{j}^{(i)} \equiv \sum_{i=1}^{k} y^{(i)} \tag{B.I}
\end{equation*}
$$

Note that: $A y_{i}=\lambda_{i} y_{i}(i=1, \ldots, k),\left\langle y_{i}, y_{j}\right\rangle=0(i \neq j)(B .2)$
Now, if $c_{1}^{(i)}=c_{2}^{\text {(i) }}=\ldots=c^{(i)}=0$ for some i, then we have, from ${ }^{2}(B .1), y^{(i)} \stackrel{1}{=} 0$ for that index i. Therefore, g is the sum of $y^{(1)}, y^{(2)}, \ldots, y^{(k)}$ and some of the $y{ }^{(i)}$ may be zero-vectors. Assume that g is the sum of ℓ nonzero vectors and rename them as w(1), w(2) ..., ${ }^{(l)}$ where $\ell \leq k$. Recall that $A w^{(i)}=\zeta_{i}{ }{ }^{(i)}(i=1, \ldots, \ell)$ where ζ_{1}, ζ_{2}, \ldots, ζ, are distinct eigenvalues of A selected from $\lambda_{1}, \lambda_{2}^{\ell}, \ldots, \lambda_{k}$. Clearly $\left\langle w^{(i)}, w^{(j)}>=0\right.$ for $\mathrm{i} \neq \mathrm{j} .{ }_{j}$ From the above, for any finite integer $j>0, A^{j} g_{o}=\left(\zeta_{1}\right)_{w}(1)+\left(\zeta_{2}\right)^{j}{ }_{w}(2)+\ldots+\left(\zeta_{\ell}\right)^{j}$ ${ }_{w}(\ell)$ since $\zeta_{1}, \zeta 2, \ldots, \zeta$, a re distinct positive ℓ real numbers, the matrix $B=\left\lceil b_{i j}\right\}$, defined by $b_{i j}=(\zeta)^{i} \quad(1 \leq i, j \leq \ell)$, is a norisingular Vanderthonde matrix. This leads to the results that $g_{0}, \mathrm{Ag}_{0}, \ldots, \mathrm{~A}^{(\ell-1)} \mathrm{g}_{\mathrm{o}}$ are nonzero linear independent vectors, and span $\left\{g_{0}, \mathrm{Ag}_{\mathrm{o}}, \ldots \mathrm{A}^{(l-1)}\right.$ $\left.g_{o}\right\}=\operatorname{span}\left\{w^{(1)}, w^{(2)}, \ldots, w^{(l)}\right\}^{\prime} \operatorname{since}^{\prime}\left\{w^{(1)}, \ldots\right.$, $w^{\circ}(l)$ are linearly independent and $g_{o}=\sum_{i=1}^{f}{ }^{(i)}$. Since $A^{\ell} g_{o}=\sum_{i=1}^{\ell}\left(\zeta_{i}\right)^{\ell}{ }^{(i)}$ is contained in the span of $\left\{w^{(1)}, \ldots, w^{(l)}\right\}$, then it is also contained in the span of $\left\{g_{0}, A_{0_{0}}, \ldots, A^{(l-1)} g_{0}\right\}$, i.e. e.,

$$
\begin{equation*}
A^{\ell} g_{o}=\sum_{i=0}^{n} \alpha_{i} A^{i} g_{o} \tag{B.3}
\end{equation*}
$$

Since $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\ell}$ are distinct positive real numbers, then $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\ell-1}$ in (B.3) are all nonzero numbers, Therefore, from (B. 3)

$$
\begin{equation*}
g_{0}=\sum_{i=1}^{\ell-1} \frac{\alpha_{i}}{\alpha_{0}} A^{i} g_{0}-\alpha_{0} A^{\ell} g_{0}=\sum_{i=1}^{\ell} \beta A_{i} A_{0} \tag{B.4}
\end{equation*}
$$

But, as previously mentioned
$\operatorname{span}\left\{A g_{0}, A^{2} g, \ldots, A^{l} g_{0}\right\}_{\delta_{-1}}=\operatorname{span}\left\{A S_{0}, A S_{1}, \ldots\right.$, $\left.\mathrm{AS}_{\ell}\right\}$; which implies $\mathrm{g}_{\mathrm{o}}=\sum_{i=0}^{0} v_{i} A S_{i}(\ell \leq k)$, and then from (B. 4) $g_{\ell}=\sum_{i=0}^{\ell-1} v_{i} A S_{i}-g_{0}=0(\ell \leq k)$. This implies that the DFP ${ }^{i=0}$ method converges in exactly ℓ steps with $\ell \leq k$.

With Lemma R.l it is easy to prove Property
4.2 . Now, assume that the $D F P$ method applied to the (ANSQP) converges at $k<m$ steps, whore m is the rank of Q. From the arguments of Lemma B.1, we can write $\overline{\mathrm{g}}_{0}=\sum_{i=1}^{k} w_{i}$, where
w_{i} is a nonzero eigenvector of $Q \eta$ corresponding to
the eigenvalue ζ_{i} with $\zeta_{i} \neq \zeta_{j}$ for $i \neq j$. But, $\bar{g}_{0}=Q \eta x_{0}+w=Q x_{0}+w+\frac{1}{\eta} x_{0}=g_{0}+\frac{1}{\eta} x_{0}, g \in R(Q)$ and $Q w_{i}=\lambda \lambda_{i}^{\eta} q_{i}=1, \ldots, k$ (where $\lambda_{i}^{0}=\zeta_{i}^{0} \frac{-1}{\eta} \geq 0$, we conclude that $g_{0}=\sum_{i=1}^{k} c_{i} w_{i}$. Also from the above and the fact that $\zeta_{Y}{ }^{i}, 1_{\zeta}, \ldots, \zeta_{k}$ are distinct positive real values, at most only one of the λ may become zero and the rest of the λ_{i} are distinct positive values. If $\lambda_{i}=\zeta_{j}-\frac{1}{\eta}=0$ for a specific index j, then $Q w=0$ and the corresponding coefficient c_{j} must be zero. Let us denote $z_{i}=c_{i} w_{i}$, collect the nonzero vectors z_{i}, and rename the index order to form $g_{o}=\sum_{i=1}^{r} z_{i}(r \leq k)$, where z_{i} are the eigenvectors of Q corresponding to the distinct reordered eigenvalues λ_{i}. Using the same arguments as in Lemma B. 1 and the fact that $\operatorname{span}\left\{Q g_{0}, O^{2} g_{0}, \ldots Q^{r} g_{0}\right\}=\operatorname{span}\left\{Q S_{0}, Q S_{1}, \ldots\right.$, $\left.Q S_{r-1}\right\}$ we get $g_{0}=\sum_{i=0} \alpha_{i} Q S_{i}(x \leq k)$, or $g_{r}=\sum_{i=0}^{r-1} \alpha_{i} Q S_{i}-g_{o}=0$, and, thus, the DFP method applied to the ($S O P$) converges in r steps, $r \leq k$.

References

1. Bell, D.J., and Jacobson, D.H., Singular Optimal Control Problems. Academic Press, New York, 1975.
2. Johanson, D.E., "Convergence properties of the method of Gradients", Advances in Control Systems, (Ed. by C. T. Leondes), Academic Press, New York, Vol. 4, 1966, pp. 279-316.
3. Edge, E.R. and Powers, W.F., "Function space Quasi-Newton algorithms for optimal control problems with bounded controls and singular arcs', to appear in Journal of Optimization Theory and Applications, Nov. 1976.
4. Edge, E.R. and Powers, W.F., "Shuttle ascent trajectory optimization with function space Quasi-Newton techniques", AIAA paper No. 74-824, 1974. (To appear in AIAA Journal, 1976).
5. Fletcher, R. and Reeves; C.H., 'Function minimization by conjugate gradient', Comput. J. (1964), pp. 149-1.54.
6. Hestenes, M. R. and Stiefel, E., "Method of conjugate gradients for solving linear system', National Bureau of Standard Report No. 1659, 1952.
7. Davidon, W.C., "Variable metric method for Minimization", A.E.C. Kesearch and Development Report ANL-5990, 1959.
8. Fetcher, R. and Poweli, M.J.D., "A rapidly convergent descent method for minimization', Computer Journal, Vol. 6, 1963, pp. 163-168.
9. Powell, M.J.D., "An efficient method for finding the minimum of a function of several variables without calculating derivatives'", Computer Journa1, Vol. 7, No. 2, 1964 pp. 155-162.
10. Hayes, R.M., "Iterative methods of solving
linear problems on Hilbert space', National Bureau of Standard Report No. 1733, 1952.
11. Daniel, J. W., "The conjugate gradient method for linear and nonlinear operator equations", SIAM J. Numer. Anal., Vol. 4, No. 1, 1967, pp. 10-26.
12. Howitz, L. B. and Sarachik, P. E., "Davidon's method in Hilbert space", SIAM J. Appl. Math., Vol. 6, No. 4, pp. 676-695.
13. Tokumaru, H. and Adachi, N. and Gate, K., "Davidon's method for minimization problems in Hilbert space with an application to control problems", SIAM J. Control Vol. 8, No. 2, pp. 163-178.
14. Hestenes, M. R., "Iterative methods for solving linear equations", NAML Report No. 52-9, 1951.
15. Kellet, H. B., "On the solution of singular and semidefinite linear aystems by iteration", SLAM Numer. Anal. Vol. 2, No. 2, 1965.
16. Nashed, M. Z., "Steepest decent for singular linear operator equations", SIAM.J. Numer. Anal., Vol. 7, No. 3, 1970, pp. 358-362.
17. Kammerer, W. J. and Nashed, M. Z., "Steepest descent for singular linear operator with nonclosed range", Applicable Analysis, Vol. 1, 1971, pp. 143-159.
18. Kammerer, W.J. and Nashed, M. Z., "On the convergence of the conjugate gradient method for singular linear operator equations', SIAM J. Numer. Anal. , Vol. 9, No. 1, pp. 165-181.
19. Broyden, C.G., "Quasi-Newton methods and their application to function minimization", Mathematics of Computation, Vol. 21, 1967, pp. 368-381.
20. Aoki, M., Introduction to optimization techniques, Macmillian Co., New York, 1971.
21. Huang, H. Y., "Unified approach to quad. ratically convergent algorithms for function minimization", JOTA Vol. 5, No. 6, 1970, pp. 405-423.
22. Hyers, G. E., "Properties of the conjugategradient and Davidon methods", JOTA Vol. 2, No. 4, 1968, pp. 209-219.
23. Desoer, C.A. and Whalen, B.H., "A note on the Pseudoinverse", SLAM J., Il (1963), pp. 442-447.
24. Tewarson, R. P., "A least squares iterative rnethod for singular equations", Computer J. Vol. 12, No. 4, 1969 , p. 388.
25. Hanson, R.J. and Lawson, C. L., "Extensions and applications of the Householder algorithm for solving linear least squares problems", Mathematics of Computation, Vol. 23, No. 108, 1969, p. 787-812.
26. Israel, A. B. and Cohen, D., "On iterative computation of generalized inverse and associated projection algorithm", SIAM J. Numer. Anal. Vol. 3, No. 3, 1966, p. 410-419.
27. Noble, B., "A method for computing the generalized inverse of a matrix' , SIAM J. Numer. Ana1. Vol. 3, No. 4, 1966, p. 582-592.
28. Silber, R., "A characterization of Davidon's method", U. of Mich., Dept. Aero. Eng, 011482 .-T-1, Feb. 1973.

[^0]: For permission to copy or republlsh, contact the American Institute of Aeronautics and Astronautics, 1290 Avenue of the Americas, New York, N.Y. 10019.

[^1]: *This researah was supported by the National Science Foundation under Grant ENG 74-21618
 ${ }^{+}$Graduate Student, Department of Aerospace Engineering.

 + . Professor, Department of Aerospace Engineering.

