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Abst rac t  

The convergence propert ies  of the gradient ,  
conjugate gradient.  Davidon -Fletcher-Powell ,  
and Powel l ' s  method for  the s ingular ,  f ini te-  
dimensional quadrat ic  minimization problem a r e  
developed. 
except the gradient  method, that  the minimum is  
obtained in a t  mos t  RI i t e ra tes ,  where  m is the 
dimension of the range of the Hessian ma t r ix ,  a s  
opposed t o n  > m i te ra tes  for  nonsingular prob-  
l e m s .  A c lass  of associated nonsingular quad- 
ra t ic  problems i s  defined t o  shcw that the gradient 
method h a s  slower convergence on s ingular  prob- 
l ems  than on correspponding nonsingular approxi-  
mat ions t o  the s ingular  problems while the con-  
jugate direction methods have m o r e  rapid conver-  
pence. This  implies  that slow convergence a t t r ib -  
uted to s ingular  problems i s  actually a property 
of the gradient method a s  opposed to the singu- 
l a r i t y  of the problem. 

It is shown that for  all of the methods,  

1. Introduction 

There  is widespread belief that  s ingular  
optimal control  problems a r e  m o r e  difficult to 
compute than nonsingular problems'. The re  is good 

V .. reason ' for  this  s ince many r e s e a r c h e r s  have ex-  
per ienced the slow convergence of the gradient 
method on a s ingular  problem and lo r  the spec ia l  
preparat ions necessary  t o  apply a Newtoh-type 
method (both shooting and function space typas)  to 
a s ingular  problem. 
the ra te  of convergence of the gradient  method on 
the singular problem and verified theoret ical ly  the 
poor convergence charac te r i s t ics  noted in pract ice .  

In Ref. 3 a recently developed class of a c c e l -  
e r a t ed  function-space gradisnt  methods,  known as  
function-space quasi-Newton methods,  was shown 
to converge cer ta in  singular opt imal  control  prob-  
l ems  much m o r e  accura te ly  than the s tandard 
gradient  method. Defects in the methods with rc- 
gard  to s ta ragc  were  a l s o  eliminated and a r e l a -  

4 
t ively l a r g e ,  rea l i s t ic  Space Shuttle t ra jec tory  
optimization problem was solved with the methods.  
Thus the ma jo r  remaining probzems associated 
with the methods involve theoret ical  questions of 
Convergence and r a t e  of convcrgence, especiai iy  
on singular problems.  
proved convergence repor ted  in Ref.  3 problem 
depcndent or applicable t o  more  g e r e r a l  c l a s s e s  of 
prohlems ? 

In fac t ,  Johansen' studied 

F o r  example ,  was the i m -  

The goal of this  paper i s  to present  the resu l t s  
of the f i r s t  pa r t  of such a theore t ica l  study, 
namely the convergence of a number of a lgori thms 
on the finite-dimensional s ingular  problem. In 
addition to these r e s u l t s  being useful  in t h e i r  own 
r ight ,  they a l so  indicate a n  approach t o  the in- 
finite-dimensional ( o r  opt imal  control)  problem 
which wil l  be reported in a subsequent paper .  

The convergence of the: gradient ,  conjugate 
gradient  ( C  G),  5 *  ' 
Powell  ( D F P ) ,  ' *  8 
be analyzed here in .  
optimization problems,  convergence questions 
have becn investigated by mai.y au thors  with the 
following results: ( i )  Linear  convergence f o r  the 
gradient  method in both f ini te-dimensional  and 
fuzction spaces  10 , ( i i )  F in i t s - s tep  conver-  
gence for  both the C G 
finite-dimensional opace6s8, 
vergence f o r  the C G methodld:I1 and a conver-  
gence 

and Davidon-Fletcher-  

For nonsingular quadrat ic  
and Powell' s9 methods will  

and the D F P  methods in 
111)  A r a t e  of con- 

roof f o r  the function-space D F P  meth-  
Od 12, lY, 

To date  few papers  have been concerned with 
the case  of s ingular  quadrat ic  optimization prob-  
l e m s .  A convergence proof f o r  a genera l  sys tem 
of m l inear  a lgebra ic  equations in m unknowns i s  
implicit  in Ref. 14, and a s  shown in Ref,  15 the 
necessa ry  and sufficient condition f o r  a very  
genera l  c l a s s  of i terat ive schemes  to converge is 
that  the l inear  sys tem be positive semidefini te .  
Nashed and Kammere r  1 6 * 1 7 9 1 8  p resent  con- 
vergence proofs  f o r  gradient  and conjugate g r a -  
dient methods applied to s ingular  l inear  opera tor  
equations,  but n o  such  r e s u l t s  ex is t  i o r  the appl i -  
cation of  Ouasi-Newton methodsl9 to the s ingular  
c a s e .  

In Section 2 the s ingular  quadrat ic  opt imiza-  
t ion problem and a lgor i thms are presented along 
with the exis tence conditions f o r  the problem. 
The main  convergence theorem is  presented in 
Section 3 along with examples  t o  i l lustrate  i ts  
propert ies .  
analyzed to demonst ra te  that  defects  a t t r ibuted 
to the s ingular  problem a r e  actually due t o  a de-  
fect  in the  gradicnt  method, and that conjugate 
direct ion methods actual ly  have improved con-  
vergence propertieti an s ingular  problems.  

In Section 4 an  example is thoroughly 

2 .  Problem Forrculat ion and Algor- 
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Consider the problem of detecn!ining a mini- 
m u m  of an unconstraincd function f ,  where f has 
continuous par t ia l  derivative of, a t  least ,  second 
order .  
analyses arc r e s t r i c t ed  to  the neighborhood of the 
minimum, and thus a r e  actually te rmina l  conver -  
gence proper t ies .  Thus,  a quadratic approxima- 
tior. of the problem is employed for  such ana lyses ,  
and thus we shal l  cons idc i  thc problem of d e t e r -  
mining an element  x'"c 
quadratic function 

Convergence and r a t e  of convergence .- 
Rn which minimizes  the 

f ( x )  =-  < x . Q x > + < x ,  w > t f  (2.1) 2 

n T where x ,  w f R , fo < R ,  < x , w >  = x 
the inner produce in R" and Q can be a s sumed ,  
without lost  of generali ty,  to be an n x n symmet-  
r i c  mat r ix .  The gradient of f (x )  a t  the e lement  L, 
denoted by g (x)  c Rn, is 

w denotes 

( 2 . 2 )  

If Q is positive definite,  then the minimum solu- 
tion always ex i s t s ,  i . e . ,  x = -0 -1  w. F O ~  a 
gene ra l  quadra t ic  function f ,  we need the followi-g 
property.  

* 

Prope r ty  2.1: Problem ( 2 . 1 )  has a minimum solu- 
tion X i f  and only if 

( i )  Q is positive semidcfinite (denoted by 0 2 0 )  

. ( 2 . 3 )  

w 6 R ( 0 )  1 (2.4) 

V .  
( i i )  w belongs to  the range of Q,(denoted by 

Proof: Since f is  twice differentiable,  if is a 
minimum e lement ,  then g ( z )  = Q ? t w = 0 and 

<X, &!-@- x >  2 0 , x s  R .  h t @ ; 6  R(Q)  n 

dx2 - - 
g(x )  = 0 implies that  w = - O x  L R (Q).  Also, 

aince - = Q ,  < x. 
d2f x _a x > 2 0 implies that  2 

dzf 

dx2 dx 
<x,  0 x > 2 
Now. suppose w z R (0) , t he re  exis t  an  e lement  
? i s u c h t h a t Q Z t w = O a n d f ( j ; ) :  L < n , w >  t f .  
k t  x be any element  in Rn, then x2= X t y where 
y = x - x r  
(j; t y )  = - < y, Q y >. 

2 obtain f ( x )  2 f (X), i. e . ,  x LS a minimum s o h -  
tion of Problem 12.1). 

0,  that  i s ,  Q is positive semidef in i te  

0 

. After some calculations,  f (x) = 
< y ,  0 y > t f (Z), o r  f (x) - f (3 = 
Since Q is positive semidef in i te ,  we 

P" 
- .  

Remark  2 . 2 .  
2.1, w e  see that  once an element  Z such that g(x)= 
0 x t w = 0 is de termined ,  then x :s a minimum 
eolution o f f  (x). 

In the  process  of proving Proper ty  .-.. - .  

. .  
T Remark  2 . 1  If Q = C > 0 and w 6 R (a), t h e r e  

exis t  infinitelx many niinimum solutions of f(x).  
Actually, if x is  a minimum solution of f (x), 
then X = x t X for any  X L N (0) (the null " N space  of Q),  a r e  a p o  minimsm solutions of f ( x ) ,  
that  is, f 6)  = f (x ). 

h 

~ 

2 

The fou r  i terat ive methods of i n t e re s t  he re :  the 
grad ien t ,  CG, DFP ,  and Powel l ' s  methods,  wil l  
riow bc summar ized ,  In genera l ,  the f i r s t  three 
i terat ive schemes  mentioned above attempt to  
genera te  a sequence (x . )  which eventually con- 
verges  to a minimizing'element x , they all  in-  
volve the i teration r u l e  

x i  

x. = x. t 0 ,  s. ( 2 .  5) , t1  L I 1 

An init ial  e lement  x L Rn is chosen a r b i t r a r i l y .  
At each  s t ep  a dirccyion S. is schoen (the way this 
is done wiil define the mckbod used )  and a s tep  
s ize  is determined such that 

f (x .  t a i s . ) <  f ( x i  t X S i ) f o r a l l A  
1 .  1 -  

This lead? to the condition. 

< gitl. S, > = 0. (g i t l -g  ( x i t l ) )  ( 2 . 6 )  
1 

which. f o r  the quadratic function in ( 2 . 1 )  gives 

<Si. gi  > 
L ( 2 . 7 )  

(1. = - <S., Q Si > 

In the gradient method 

S. = -g i  f o r  all i 
I 

In both the CG and the D F P  methods,  the members 
of the sequence (S.) a r e  chosen to  be Q - con- 
jugate, i . e . ,  they sat isfy 1 

< Si, Q S. > = 0 i z j  J 

In the CG method, S. is taken a s  
1 

h the D F P  method 

S. = -H. g i  

n 
Thc dyadic notation (><) i s  defined a s  (on R ) 

a > < b a  a b '  

and the following proper ty  is  then eas i ly  verified 

n ( a > < b ) c  = a < b , c >  a , b , c e  R 

The init ial  m a t r i k  Ho is chosen to be any positive 



definite symmet r i c  ma t r ix ,  

In Powel l ' s  method, the direct ions of s ea rch  
a r e  generated by the following four  s teps :  Dcnote 
t h e  s ta r t ing  point by x 

0 

v ( i )  h i t i a i l y  choose d 1, d2,  . . . , d in the d i r -  
ection of n coordmates ,  that  is d ,  = e :  
where  e .  110, .  . . , 0 , 1 , 0 , .  . . ,O)T' 

' 
n 

* 
( i i )  Given dl,.d2.. . . , find t ,  so that f dn,. (xi-l t t:d. ] is minimized! Define x. = 

x. t t i  di  i = 1 ,  . . . ,  n * I  L .  

t-1 

( i i i )  Generate  a new direct ion d by d = x -x 
n o  and replace dl, . . . , d n  by d 2 , .  . . ,d .  

name the l a t t e r  as d 
R e -  

d Z ,  . . . ,  dn 

( iv)  Minim2ze f (x t t d ] and replace x by 
x t t d whe"re t" ?s the minimizing t .  
Take this  point as x of the next i terat ion,  
and go to (i i) .  

0 

n n 
0 

It can be shown that the s e a r c h  direct ions gene r -  
a ted in Powel l ' s  method at eve ry  i teration a r e  
mutual ly  Q-conjugate for  a quadrat ic  function ( s e e ,  
f o r  instance,  Ref. 20. p. 158). This  property 
holds for Q positive semidefini te  a l s o  as long as 
d # 0. We will  show l a t e r  thAt if d = 0 during 
s o m e  i terat ion,  then the initial e lement  x f o r  
tha t  i terat ion is  indeed a minimum solution. 0 

We sha l l  now investigatc the behavior of thcsc  
a lgor i thms on the singular quadrat ic  problem 

v (2 .1)  subject to (2 .  3 ) ,  ( 2 .  4 ) .  

3. The Main Convergence Theorem 

Before proving the genera l  convergence theo- 
rem, the following proper t ies  a r e  required.  

P rope r ty  3 . 1 :  
semidefinite m a t r i x  ( i . e . ,  Q T =  Q 2 O ) ,  l e t  R ( a ) ,  
N (Q) be the range of C and the null  space of Q, 
respect ively,  and m be the rank  of Q. Then,  

Le t  Q be a n x n symmet r i c  positive 

(il R (Q)  = [ N (Q)  ]I, Rn = R ( Q l  O N  (0) 

(ii) < x, Q x > = O  xe N [ Q )  

Proof:  
m a t r i x  book, so we need only prove ( i i ) .  If 
x e N (Q),  c l e a r  Q x = 0 and < x, Q x > = 0. Now, 
s ince Q 1. 0, 0')' exis t s  and Q112 > 0. Then 
< x, 0 x > z 0 can he wri t ten as < all2 x Q1I2 x >  
= 0, which inlplioa Q J f 2  x s 0.  Therr Q1./' (@1/2,j 
= Q x = 0, and x e N (Q)  as d c s i r c d .  

P rope r ty  3.2: 
d 
the range of 0.  If Yminimizes  problems (2.1), 
subject  to (2. 4) f o r  all x c R (0), then g (X) = 0. 
i. e .  , j7 is a minimum solution of f (x). 

Proof:  
R (0) = Rn, brit requi res  proof when Rank (0i< n. 
Sinc.e { d 1 ,  d 2, . . . , d 

Part ( i )  can be found in any e lementary  

T Let  O = Q 2 0 ,  and { d l,d 2 , ,  : ,  , 
} be a nonzero.Q-canjugate se: of demer i t s  i n  n 

First note that th i s  propcr ty  is t r iv ia l  if 

] a r e  Q-conjugate and 

- 

nonzero,  they are  a l s o  independent. Then, 
since Rink  (Ql = m ,  
bas is  for  R (a). 

d l ,  d 2 ,  . . . , d } fo rm a m 
F o r  any x f R ( a ) ,  2 cl, c 2 , .  , . , - m - 

C 3 x = 2; c d and implies  m i i' i =1 

i =I .  ..., m (3.1) - 
o r , < g ( x ) , d . > = O  i = l , 2  ,..., m 
It implies  thai .  < g ( y ] .  x > = 0 
Therefore .  

x t R (Q) 

g(;)c [ R ( @ ) ? = N ( Q )  ( 3 . 2 )  

By (2.41, w f R ( Q )  and Q f R (a), which 
imply 

- - 
g ( x ) = Q x t w e  R ( Q )  ( 3 .  3 )  

Combining ( 3 . 2 )  and (3.  3 )  

g ( x ) 6  R ( Q l / l  N ( Q I = { O } ,  
- 

i. e . ,  p (x) = 0. which completes  the proof. 

Tneorem I: 
( 2 .  3 )  and ( 2 .  4). 
in R" generated by e i ther  the C C, 
Powel l ' s  method.  Then,  the scquencc converges 
to a minimum i 'ector  X 
where  Z depends on th% init ial  guess x and m is 
the rank'of Q .  

Proof:  
Appendix A .  
property 3.1 guarantees  that all i t e ra tes  of the 
algori thms a r e  well-defincd, and property 3. 2 
l eads  to the finite m - s t e p  convergence resul t .  

Remark  3.1: 
the finitc n i - s tep  convergence resu l t  holds f o r  any 
algori thms which genera tes  conjugate direct ions 
and employs an  exact  l inear  s ea rch .  
all of Broyden 's  Q u a s i - h ' e ~ t o n ' ~  and Hnangl s2' 
methods possess  this property.  

Remark  3.2:  Usually the minimum solution de-  
pends on thc init ial  estim.2te x . Actually. i f  we 
l e t  s = { x I x i i  a minimum solution o f f  (x) } ,  
then S is a non-empty d o s e d  convex s e t ,  hence 
there  ex is t s  x * z  S such  that  1 1  x* 1 1  
f o r  all x c S, where  . 
norm in Rn. Nashed showed that tnc scqucncc 
{ x  
mc&oA converges t o  'Z = x i '  t ( I - P )  x where  P is 
the projection m a t r i x  P ro r  Rn to R. (a",. 

Consider the problem (2 .1)  subject t o  
Lct  {x.} be a sequence of vectors  

1 
D F P  o r  

in a t  mi)st m i t e r a t e s ,  

0 

The detai ls  of the progf a r e  presented in 
It  is shown there  that condition ( i i )  of 

F r o m  the proof of the above theorem,  

F a r  example,  

0 

0 

1 I x 1 1  I I denotes t h e  Euclidean 

x , . . . .  Xi , . . .  ) generated by thc grad ien t  

That  is, 
if x = xR t xN where  x K  e R (Q)  and x N 2 N ( Q ) ,  

0 0- 0 ::: 
then x = x t xN .' Now, if II = I In thc 

0 D F P  mi:thod the search?l i rect ions S. i% both the 
D F P  and CG mcthods a r c  l inear  codbinat ion of 

!?'Re$: id ive :an prove that thc scquence [ x 
5, ... . } genera ted  by t h e  D F P  and CG mnthood; 

g , g . .  By thc same procedures  a s  s ta ta l  

3 



(with H 
where x 1s the unique minimum norm solution. 
Tnerefore ,  if we a r e  interested in obtaining the 
minimum norm :solution x"' by D F P  or  CG mcthods, 
the s implest  way is  t o  choose x 
est imate .  

Remark  3. 3: F o r  a nonsingular quadratic func- 
tion f ( x ) = L < x ,  ~ x > t < x ,  w > i . f  i . e . ,  A =  2 0 
AT > 0 ,  the D F P  method guarantees  H k  > 0 for 
0 5 k 5 n and H, = 
converges in ex ctly n i terat ions.  
lar  c a s e ,  0 = Q' 2 0 and Q - l  does not ex i s t ,  hut 
it is of in t e re s t  to cha rac t c r i ze  the behavior of 
H in this case. The resul ts  a r e  a s  follows: 

P rope r ty  3. 3: If { x. ) converges a t  the P 
i t e r a t e l l  c m )  for  thk D F P  mcthod applied to a 
s ingular  problem, then 

= I) converges t o  R = x* t (I - P) x 
0 :: . 0. 0. 

0 as the init ial  
0 

v 

i f  the sequence ( x. } 
F o r  the i ingu-  

th k 

(i) Hk > 0 O < k c  1 

(ii) H k O p i = P i  0 5  i < k <  1 

(iii) If 1 = m ,  H fi x = x f o r  x L R (a )  m - 
Proof :  If x I x the mi.nimum solution of f ( x ) ,  
then g. -i 0 fo r  i = 0, 1.. , . , P -1, and hence P i#C,  
y. * 0,  L = 0.1,. , , , 1  -1, which imply P rope r t i e s  
(1 )  and ( i i )  c a r r y  o v e r  direct ly  f rom the nonsingu- 
lar case ( e . g . ,  Ref. 2 0 ,  pp. 134-138). To provc 
( i i i ) ,  observe from ( i i )  that  

0' 

L .  

1 

H m Q  p i = p i  i = @ , l ,  ..., m - 1  

But ( P,, P1,. . . , Pm-l  } are nonzero O-con- 
jugate vectors ,  hence 
The re fo re ,  f o r  any x f 

they f o r m  a bas i s  for  R(Q) 
R (Q),  there  exis t  con - 

m -1 

v 

stants  c , c l , .  . , , c  
a s  des i r ed ,  

such that x = 'c. pi, and,  
0 m - 1  i:o ' 

m;l m -1 

i=O ' i=o 
HmQ x = ,?, ci Hm Q.p. = c . p .  = x. 

1 1  

This mcans  that H 
mdt r ix  in the range of Q ,  or, P = H U is  a p ro -  
jection ma t r ix  f rom R" t o  R (Q).,,, S c r e f o r e .  a s  
explained in Remark 3 . 2 ,  T - ii; 0 
x = x t ( I  - H Q )  x i f  the D F P  method con- 
verges  at  the ?kth *Pep with. H = I .  

Remark  3.4:  
gradient  method f o r  the s ingula ' r  prohlcm con- 
verges l i nea r ly  to F ( by employing thc r e su l t s  in 
Ref. 16). 

R e m a r k  3.  5: Myers" ahowed That, -Io+ i~oiisinngn- 
lar quadrat ic  problems in R", the s e a r c h  d i r e c -  
t ions generated by the D F P  msthod and the  CG 
method a r e  s c a l a r  nlultipies of each  o the r ,  p r o -  
vided the init ial  s t ep  is in the direct ion 'of  s t eep -  
e s t  descent.  
quadrat ic  problem. In f ac t ,  Hestenes and Stiefcl  
showed that  the s e a r c h  direction S. of the CG 
method can be formed a5 

Q plays the role of an  identity m 

= x"' t ( I - P !  xo. or, 

0 

0 

The sequence (x.) generated by the 

0 

This i s  t r u e  a l s o  f o r  the singular 

1 

and Horwitz and Sarazhikl'  showed that the s e a r c h  
direct ion Si of the D F P  mnthod-can he writ ten as 

Eqiiations ( 3 . 4 )  and ( 3 .  5 )  are t rue  f o r  the singular 
quadrat ic  casc  as long a s  g. # 0 ,  j = 0,1,2,. . . , i. 
The re fo re ,  f r o m  ( 3 . 4 )  and ' ( 3 .  5 ) ,  we see  that the 
CC and the D F P  methods generate  the s a m e  s e a r c h  
directions S.  for  the s ingular  quadratic prohlcms 
(provided H' = I and the s a m e  init ial  x 
ployed). ExaTple:  cons ide r  the minimization of: 

is e m  - 
0 0. 

3 f(x)  7- 2 < x, 1 ~ ] x > t < x , B > t f o x , B e R ,  I O  1 
*O 

r ea l .  F i r s t  note that  Q/O 1 01 = QT with eigen. 

11 0 11 T values 0 ,1 ,2 ,  which implies  Q = Q 
(Q) = 2 ,  and 

2 0 with Rank 

By Prope r ty  2.1, B m o s t  belong t o  R (Q) t o  in su re  
a minimum ex i s t s ,  i. e . ,  B m'.ist be of the fo rm 
[ a  b a  ] T. 
f = 0. Then 

F o r  s implici ty ,  le t  B = [ 0 0 0 ] T , a n d  

0 

1 3 2  1 2 2  
(X t X  ) t-  ( x  ) 

2 

By inspection, the se t  S of minima is given by 

s :  { x  I x = [ i ] ,  a 6  R )  

* * 
Clearly,  the minimum norm solution x E S is x = 
[ 0 0 0 ] T. Now, consider  the application of the 
gradient,  CC, D F P  and Powell  mothods,  with the 
s a m e  init ial  guess x 

( i )  Gradient Methood: a f t e r  s t ra ightforward 
= [ 1 1  1 ] ', to this problem. 

* - x and g - 0 as k -* m ,  but g t 0 f o r  k n Thus,  x 
any finite nurn'5er n .  

( i i )  CG Method: Since the f i r s t  i teration is a 
gradient s tep,  thc s a m e  x x g g a s  s ta ted in 
( 3 . 6 )  resul t  and thus the s e a r c h  d i rec t ions  a r e  0' 1' 0'. 1 . 

4 



which implies  
x2 = 0,  g2 = 0 

the  CG method converges i,n 2 i t e ra t ions .  
again that  Rank ( Q )  = 2.  ) 

(Note 

( i i i )  D F P  method: with H = 1 it follows that 
0 3' ~ ~ , x ~ , g ~ , g ~  a r e  the s a m e  a s  In ( 3 . 6 b a n d t h e  

s e a r c h  direct ions a r e  

( 3 . 9 )  
-1 o 17 

which implies  
x2 = 0. g2 = 0. 

Since the D F P  method converees  in 2 i terat ions - 
2' 

i t  is of in te res t  to display the proper t ies  of H 
where  

H = [ !  2 __ 0 -  . 
4 4 

on R(Q). i . e . ,  p x  = x. fo r  a l l  x € R ( Q ]  and 

p y  = o fo r  a l l y '  N ( Q I  = {ale= 

Note a l s o  that T = 

. 
Lion matrix on N (Q). In th i sexample ,  the init ial  
guess  x = [ 1 1  1 ] T, T x  = 0, and therefore ,  
x = xro= 0 in both the CG and D F P  methods. 
Agarn, th i s  resu l t  ag rees  with Remark  3.2. 2 .  F o r  

a n  a r b i t r a r y  x = [ a b  c] T .Tx =E;:] , t h e  CGand 

D F P  method will  converge in at mos t  2 s teps  t o  
0 

z x * + T x  E O  +J [".'I . 
2 c -a  0 0 
. -  

(iv) Powell '  s Method: with x = [ 1 1 I ] ',the 
f i r s t  i terat ion is ( s e e  the descripgion of the 
a lgor i thms in Section 2 for  the notation definition): 

Therefore ,  the f i r s t  conjugate direct ion i s  d = x - 
3 

x -2 -1  0 ] ', The second i terat ion resu l t s  
in  

z [ 0 

T 
x = x  = x  = x 3 = [ - 1 C 1 I  

0 1 2  

Hence,  the second conjugate direct ion i s  d 2 0 ,  
and Powel l ' s  method converges a t  the second 
i te ra t ion  to  F=f -1 0 1 ] '. N ( Q ]  
and g (j;) = 0. 

of conjugate direct ion methods to  the l ea s t  

Note that  

In the  following we wil l  consider  the application 

squa res  solutione of l i nea r  a lgebra ic  equations 
F i r s t  we need the followhg definitions. 

Definition 3 1: A vector u f R LS a l eas t  squares  -- solution of the l inear  a lgebra ic  equations 

n 

A x = b  (3. IO) 
n m where  x € R , b c R and A is an m x n m a t r i x  

with rank (A]  = k, k 5 min ( m , n )  if 

/IAu - b 1 1  2 1 I A x  - b I I f o r  a l lxr  Rn. 

t Definition 3.2:  The general ized inverse  A of A i s  
the l inear  extension of ( A I N (A)') -1 so  that i ts  
domain of definition D(A) is R(A) @R(A)L = Rn and 
its  null space  i s  R(A)L = N(AT),  where  N(A) and 
R ( A )  a r e  the null space  of A and Range of A, re- 
spect ively,  N ( A ) I  i s  the  orthogonal complement  
of N(A), and AIN (A)L i s  the  r e s t r i c t ion  of A to  

The following important r e su l t s  h a s  been e s -  

N ( A ) ~ .  

tablished by many r e s e a r c h e r s  (see, e .  g., [ 231 ). 

Prope r ty  3.4: If A is  a bounded l inear  t ransforma-  
tion with closed range mapping X into Y then the 
l ea s t  squa res  solution of minimum norm (LSSMN) 
x *  of the l inear  opera tor  equation Ax = y. y 6 Y 
is given by x = A y. I 

The l inear  opera tor  A d e f h e d  in (3.10) i s  c lear-  
ly  a bounded l inear  t ransformat ion  with R(A] 
closed. P rope r ty  3. 4 implies  that  the LSSMN, 
x , of (3.10) i s  given by x* = A%. 

There  a r e  many papers  concerned with l ea s t  
squa res  solutions of l inear  a lgebra ic  equations. 
Some of them present  i terat ive methods to  obtain 
a l ea s t  squares  solution r = A t  b t (I-AtA) x 
where  x is the init ial  e ~ t i m a t e * ~ , 2 ~ .  Gther2 'de-  
s c r ibe  i?erative methods o compute the genera l -  

direct ion methods should be powerful methods f u r  
determining leas t  squa res  solutions of l inear  
a lgebra ic  equations because of the following 
proper t ies .  

P rope r ty  3. 5:  
b> o r ,  equivalently, J ( x )  = 
< b , b >  where Q =AT A and 'g = - AT b. 

T 

I 

ized inverse  of a matrix' t ' 27.  The conjugate 

1 
Consider J ( x )  = - < A  x - b. _Ax - 2 1 < x ,  0 x > t a , b > t  

Then, 

(i) o = Q  2 0 

( i i ) g c  R ( Q 1  

Proof :  The proof of ( i )  is s t ra ightforward.  To 
prove ( i i ) .  s ince [ R(A) ]I = N(A ) and Rm = 
R(A)  O N  (AT),  b 6 Rm implies  that  b = br  t bn,  
where b c R ( A )  and br  c N(AT),  and 
c T T b = -AT b = -AT ( b r  t br] = - ( A %  t A  bn)=-A b r  

But b 6 R(A), which impl ies  that t he re  ex i s t s  an 
x s u c i  that h, = A x,  and then 

b = -AT b, = -ATA x = Q ( - x )  f R ( Q ) .  

T 

+ 



N 

p r o p e r t ?  3.6: j; i s  a solution of (3.10) if and only 
ifxis a least squa res  solution of (3.10) and J F)= 
0 .  

P r o o f  
if and only i f  b P R (A).  
squa res  solutionf of Ax = b if and only if 

". T -  T T Q F  t b = 0 , o r .  A Ax -A br=O, s ince A b 10. 

which impl ies  

It i s  wel l  known that Ax i b has  solutions 
In genera l ,  jT i s  a l e a s t  

n 

AT(, K - b ) = 0. 

Now. A Z - b c R(A), Ax -b f 0 implies  that  
A T ( A x - b  ) f  O h e n c e A T - b  = O .  
Tha t  i s ,  $= ? tY where  X 5s  the minimum 
norm solutionroI A Z -  b = 0 'and x P N(A). With 
this F, we have 

J(x)= r < x ,  Q x > t < x ,  b > t < b , b >  

r n 
- _  - 1 , -  - 

_ -  - _ -  < ; , Q x t b > t < x .  b > t f b , b >  
- 2  

= - < A(: t G n  ), b > t < b , b >  r 

=_ <(A Zr - b r )  - bn, b t b > <bnsbn> r n  

The re fo re  J(?) = 0 if and only if b 
s R(A). 

= 0, or b = b n r 

Prope r ty  3.  5 along with Theorem 1 and Remark 
3.2 guarantee that the sequence {x ,x l . ,  . . I  
genera ted  by e i ther  the CG or  D F P  method applied 
to the l ea s t  squares  problem of (3 .10)  converges 
in a t  m o s t  k E Rank(A)steps to a leas t  squares  
solutions Zo = Atb t (I - AtA) x , provided the 
initial s tep  each takes  i s  in the a i rec t ion  of s t eep -  
e s t  descent .  If x = 0. c lear ly  the LSSMN x". = 
A%. If a l so  J(xw) = 0,  then xi' is the  minimum 
norm solution of A x = b by  P rope r ty  [ 3.61 . 
4. 

0 

COmpatkOn of Conjugate Direction and 
Gradient  Methods 

Consider the s ingular  problem (2 .1 )  subject t o  
(2. 3) and (2 .  4), i. e . ,  

1 f ( x ) = z  < x . Q x > t C x , w > t f  

where  X B  R", fo 6 R 
w i t h Q  = Q  2 0, w e  R (a) 

0 

(SUP) 
T 

Define the associated nonsingular quadrat ic  
problems (ANSOP) a s  

1 
9 2 1 

f (x) z- =,a x> t o( .w> t fo 

1 
1 1 (ANSOP) where  Q = Q t - I for  q > 0 

n 
atid x f R , fo f R (0 )  

The reason  for introducing the ANSOP i s  to study 
the behavior  of a lgori thms as a problem tends to  
s ingular i ty .  
s ingular  problems a r e  more  difiicuit because 
Newton's method is not applicable and the g rad -  
ien t  method typically exhibits v e r y  slow conver-  
gence,  
such  ideas ,  and to  study the rate  of convergence 
of the gradient  and conjugate direct ion methods a s  

The re  is widespread belief that 

The goal  of th i s  section is to quantify 

Y 

6 

a function of the degree  of s ing i la r i ty .  
ing property i s  s t ra ight forward  and presented 
without proof. 

P rope r ty  4.1: 

The follow. 

( i )  (ANSQP) approaches  (SQP) a s  9 - m .  . 
( i i )  Any eigenvector Zi of Q in (SQP) with 

corresponding eigenvalue X. > 0 ,  i = 1,2, 
. . . , n, is a l so  an eigenveckG of Q in 
(ANSQP) with corresponding eigenvalue p i  = h i + - - .  1 

'I 

The suitability of conjugate direct ion methods 
for  s ingular  problems i.s verified by the following 
property.  

P rope r ty  4.2: If the sequence (2. ] , generated by 
any one of conjugate direct ion mbtbods applied to 
the.(ANSQT), converges in k 5 n s teps ,  then the 
sequence (x. 1 ,  genera ted  by the same  method 
applied to  the (SQP) with the  s a m e  init ial  es t imate  
x 

Proof: See  Appendix 5. [It is interest ing to note 
that  the proof in  Appendix 5 involves a l emma 
which s t a t e s  that a l I  conjugate direct ion methods 
wil l  converge in at mos t  k s teps  f o r  quadrat ic  
problems if the Hessian m a t r i x  (Q 2 0 )  has  k 
dis t inct  nonzero eigenvalues: th i s  resu l t  is i n t e r -  
es t ing in its own right) .  

I 

converges in a t  m o s t  k steps.  
0' 

Prope r ty  4 . 2  shows that the convergence of any 
conjugate direct ion method applied to the (SQP) 
i s  never  s lower  (worse)  than the resul t  of the same 
method applied to the (ANSQP). 
gradient  method behaves in exact ly  the opposite 
way,  
convergence of the res idua l  e r r o r  for  the gradient  
method will be slow whenever the sp read  of e igen-  
values f o r  the second-variat ion opera tor  i s  l a rge .  
Fur the  rmoTe, when the second-variat ion opera tor  
i s  s ingular ,  the asymptot ic  ra te  of convergence of 
the residual  e r r o r  wil l  be z e r o .  This resu l t  holds 
for  the gradient  method in f ini te-dimensional  space. 
a l so .  Let us cons ider  again the example presented 
in Section 3 to i l lustrate  the above resu l t s .  

However, the 

Indeed. i t  hau been shownZ that the ra te  of 

Example: Minimize: f(x) 

T with x r [ 1, 1, 1 ] 
0 

T x = -  [ -1, a, -I] 
1 17 

and, for n = 1 ,2 , .  . . 

* = O a s k . -  m k - *  c lear ly  x 

The rat io  of l inear  convercence.  8 .  is defined a s  

(4 .2)  

[t i s  s t ra ieh t forward  to de te rmine  0 , the ra t io  of - 
linear convergence of the grad ien t  m'ethod applied 
to the (SQP),  and 



and 

l im e ( ? )  = e (4.12) 
q - m  

md f o r  n = 1 , 2 , .  . . 
(q 1 = [ F ( q  11 xo. ~ ~ ~ ~ ~ ( q  ) = [  F(x1 i] nxl 

2 tl)!?? il) 
31 ~ 

(4 .5)  2n 

*-here F ( ~ I  = 
(171 t27q 1151 t 3 )  (51 t 3 )  

?m= 234q6+808q 5t1284q4t864;+282$t3h~~ Since 4 3 2 2 dl (851 t186q t156q t 6 0 q t 9 )  

4E-W > o  f o r q > O .  
dq 

That i s ,  F(q ) i s  a s t r ic t ly  increasing function of 
positive q ,  o r ,  

0 < F ( q l )  < F(q2)<1  f o r  0 < q 1 2  <q ( 4 . 6 )  
4 

Clearly, lim F ( q )  = - (4.7 I 85 q -  m 

i 
and 

l im  x (q)= x ( 7 )  = 0 f o r  a n y q > 0  (4.  8 )  
q - m  k 

Now, define h (q ) as 

It can be shown, by the same  procedure for  F(q ), 
t h a t f o r  n < q  < q  

1 2’  

Define e ( q  1, the  ratio of l i n e a r  convergence of 
the gradient  method applied to the (ANSQP) (4 .  4)  

* I I X k t l h  1 - x (7) I I 
* e ( ?  ) = l im  Sup. 

k - m  l l x k b l ) - x r q ) l l  

Straightforward application of conditions (4.  5) t o  
(4.11) imply that,  f o r  0 < q < q 

v 1 2’ 

0 < e  i q l )  < e i q 2 )  

The resul ts  in (4. 12) show that .  as 1 > 0 i nc reases  
to infinity, i . e . ,  the (ANSaP)  approaches the 
(SQP) .  the rat io  of l inear  convergence O(q ) of  the 
gradient  method applied to the (ANSQP) s t r ic t ly  
increases  to e - ,  the ratio of l inear  convergencc of 
the method applied to the (SQP) .  In nanmathemati-  
ca l  t e rms .  this implies  that as the problem b c -  
comes  m o r e  s ingular ,  the performance of the 
gradient  method d e t e r i o r a t e s ,  whereas  the pe r -  
formance  of conjugate direction methods improves .  
This indicates that difficult ies a t t r ibuted to s ingu-  
lar problems are actually due to defects  in the two 
main c lass ica l  methods: the gradient  method (as  
the above analysis  shows) and Newton’s  method,  
which i s  not applicable to the SQP in i ts  s tandard 
f o r m .  

5. Concluding Ramarks  

Ip- finite-dimensional space conjugate direct ion 
methods de te rmine  the inherent lower-d imcn-  
sionali ty of the SQP,  and converge in at mos t  m 
s teps ,  where  m is the rank of.thc n x n Hessian 
m a t r i x  Q .  Fur therm.>re ,  the rate of convergence 
on the SQP is be t te r  than o r  equal  t o  the ra te  of 
the same  conjugate direct ion method applied to  
associated nonringular quadrat ic  problems.  The 
gradientmethod has  exactlyopposite propert ies  .This 
shows explicit ly that the slow convergence of the 
gradient  a lgori thm applied to a s ingular  quadrat ic  
problem is due to the mcthod and not the problym. 

ent  and quasi-Newton methods applied t o  s ingular  
quadrat ic  op t imi l  control problems,  and these  
r e s u l t s  a r e  in preparation. 

S imi la r  proper t ies  hold f o r  the conjugate gra.di- 

-ndix A. 

First consider  the CG and the D F P  methods.  
Given x0. if g (a ) II 0,  x Thus,  
a s sume  g(x ) #  0: since i (xo)  e R(Q) (by P rope r ty  
3.1 ( i i ) ) ,  <g Qgo> > 0. In the CG msthod,  S = 
-go, so we g i v e  <so, Q So> > 0. In the DFPo 
m,?thod, S = -H g where H is  any positive 
definite matrix, and thus <S 

Proof of Theorem I 

i s  a minimum.  

0 

0 0 0 ’  
OQ S > = <H g Q €iogo > 2 0. If < H go, Q 0’ Hogo> 0 = 0, th& ” 

H g e N(Q!. i . e . ,  < ffogo, x > = o f o r a l l x s  R(Q) .  
Rut.wilh x = g  , H  > O  implies  g =O,contradicting the 
assumption g? #%. 
both the CG &d the D F P  methods 

0 0 .  

Hence we’conclude that in 

< S  O S o > >  0 i f g  # O  
0’ 0 

This  condition insures  that the algori thms a r e  
well-defined from one i te ra te  t o  another ,  i .  e . ,  
the l inear  s e a r c h  requi res  

<so. go> 
<g , S  > = 0 and 0 = - > o  

l o  o <So,QSo> 

Now, consider  g = g(x ); if g = 0 we are done, so 
assume g1 + 0 . ‘In the CG method: 1 1 

7 



<Sk+l. Q s ktl > 7 0 

In the D F P  method -5 = Hktl  gkcl, and we 
0 Skt17 = k t l '  

know that €I 

< K k t l g k t l ? k ~ k t l  g k t l  '' If "ktl ' 

= HTktl >$t!ind < S  

'ktl > = 
then Sktl = H ' g N(Q),  i . e . ,  < H k + l g k e l , ~  >= 

0 f u r  all x e R(Q). F o r  the n e c e s s a r y  contradic-  
tion, again pick x = g e R(Q) .  Then,  (Hkt1gktl, 

which contradicts  the a s  - 
sumption g # 6. The re fo re ,  ( A . 2 )  i s  t rue  f o r  
k t l .  

k t l  k t l  

k.tl 
20, k l  gktl> 0 .  or 6 

k f l  

Ccnsider  the i terat ion number k = m-1, where  

m 
m is the rank of Q. If g ~ 0 ,  we a r e  done; if g + 
0 .  f rom (A. 3 )  we have <Fm, S.> = 0 (i = 0,1,. . . , 
m-1). This  means  that x mtnimiaes  f (x)  over  the m subspace spaned by ( S  
R(Q). Le t  xm = x m t  z wheje  c%-'(Q) Since 

m 
f (xmj  = f (F m 
e R (Q)  min%izes f (x )  f a r  a l l  x e 
property 3 . 2  we conclude that  g 
g ( F  t z ) = g ( F  I = O ,  i . e . ,  t g C G a n T t h e D F P  
met rods  converge in a t  mos t  m s t eps .  

Given x 
direct ion d E X  -x . the  direct ions d , . . . , d  a r e  
replaced by d 2 , .  . . .d n. . . . , dn: 
k direct ions of {d 

d n - k t l '  d n - k t 2 ' " "  dn' conjugate vcctors ,  1. e . ,  

The s t a r t i q  point x fo r  the (k+l)th i terat ion is the 
minimum 3f f(x) in t%e subspace spanned by t hese  
0-conjugate  direct ions.  If, on the (kt1)th i terat ion 
the new direct ion d = x -x = 0 ,  then (as  wil l  he 
shown) the s ta r t ing  poin? x a t  th i s  i terat ion is a 
minimum of f (x) ,  i. e . ,  g(x ) = 0. 

F i r s t  note tha t  x. is determined  by x. = Y i.1t 
t. '" d. where t:' is ckosen such that f ( x .  ' t t ? d . )  = 
&in.'f(x. ttd!). te R.  The re fo re  t ?  ;-lo, i f e ! ,  
x. = x. canhappcn  if and only if 4;  (x. ), d.>=O 

1 L t l '  1-1 L 

This implies  that 

S , . . . . S  }, a bas is  of - 0' 

t a )  = f (Xm ) ,  i t  follows that j; 
R(Q). 
= g (x ) = 

From 

m: 

F o r  Poivell' s mzthod, the proof i s  a s  follows. 
the method genera tes  a Q-conjugate 

0' 
n 0'' 

d ,  and then hefined a: d 1' Suppose a f t e r  k i terat ions that  the l a s t  

n . . , d } a r e  nonzero Q -  

0 

0 

0 

, - I  

In the D F P  method:'  

By the construct ion of the CG and the D F P m e t h -  
ods,  we have 

CS , Q S  > - 0  

Note that  in the CG method, S i s  the l inear  com- 
bination of g . g  with go,# 0, g1 # O,go, gl t R ( Q )  
and <go.gl >O= d. This implies  that S # 0 and 
belongs to  R(Q) ,  hence 

<SI, Q SI'> > 0 

In the D F P  method,  it has  been proved that (Hk} 
is a sequence of positive definite symmet r i c  
ma t r i ces  it H = HT > o fo r  the nonsingular c a s e  
This  r e su l t  c2n be c a r r i e d  over d i rec t ly  to the 
s ingular  case a s  long as g f 0 ,  i. e. , the seqnence k .  {Ho,F$.,. . . I H } , of ma t r i ces  1s a finite sequence 
of os1 kve de mite sym,m?tr ic  ma t r i c s  if H = 
H? > 0 and g. # 0 fo r  i = 0,1,2,. . . , k. Now, with 
Hlo> 0 and g '# 0 f R(Q),  by  condition (ii) of 
Prope r ty  3 . 1  we obtain <S , Q S > = < H g , Q H 

0 1  

1 

1 

' 

0 

0 

1 1 1  1 1  g1 > > 0. 

We now proceed by introduction. 

k 

Suppose a f t e r  
k i te ra t ions  with g # 0, we have following prop-  
e r t i e s  
e., a 5.  > = 0 i # j ,  O s i , j < k .  (A. 1) 

Y <Si, Q Si 7 > 0 i 5  k (A.2)  

<gk' s. 7 = 0 i < k  (A. 31 

The condition ( A . 2 )  allows the lit1 i terat ion to be 
well-defined. Assume g # 0; we sha l l  show 
tha t  (A. l )  - (A .  3 )  hold f o r  k t l . '  Note tha t  ( A . l )  is 
t rue  by the construction of the CG and D F P  meth-  
ods,  and (A. 3 )  has been proved in Ref. 20  and can 
he c a r r i e d  over  to the s ingular  ca se  as long a s  

' I  

k t l  

# 0. Therefore ,  we need only prove ( A . 2 ) .  

k t l  
* 

e Q-conjugate direct ion S of the CG method 
is 

<gkt l '  g k t l  > 
' k t l  -gk+lt <Ek.  gk 7 'k 

It is easy  to show that  

i . e . ,  S 

'ktl 

is a l inear  combination of (g  . g  k f l  0 1""' 
].It is wel l  hown that  ( see ,  e ,  g . ,  Ref. 20)  

<g . ,g .> :O  i t  j, 0 5  i, j 5  k t 1  
1 1  

Again, these re su l t s  a r e  true for the singular 
c a s e  as long as g. # 0,i  = 0,1,. , . , k t l .  
f o r e ,  S 

T h e r e -  
# 0 a id  Sktl t R (0). This  implies  

k Cl - @y Prope r ty  3.1(ii))  that ,  for  the CG method, 

If ( i )  i s  t rue ,  then x. is a minimum. Thus, a s -  
sume g(xi_l) ,# 0. i+-i o e that ( i i )  and ( i i i )  a r e  m u -  
tually exclusive.  Equation ( i i )  shows that the r e -  
named direct ions {d 1, d 2 , .  . . ,d } f a r  the next 
iteration a t  l ea s t  span  thc  range  of Q .  
the initial d , d , . . . , d On 
the other  hand, 1 2 .  if ( ~ i i )  ._  n LS t rue ,  we h a w  ~ ( x .  I I d .  
fo r  j 2 i-1 but the renamed direct ions ( d  
d ) for the next i t e ra t ion  m a y  or m a y  not'spk; ihk' 
rznge of Q. Now, l e t  ( e  e . . . , e  } be  a bas i s  
of R(Q), such that e = d1: %hen, gm(x.) I d .  for 

dn ' j > 
fo r  the next  i terat ion span the s a m e  suT$,e;e as  

spannedby  { e  ;e , 3 , .  , . , e  It follows tha t  if a t  m the (kt1) th  i terat ion the new direct ion d I x -x i s  
n o  a zero vector ,  then the nth vcctor x minimizes  

f(x) over  the space spanned by {d g2, . . . , dn}, 
which ei ther  coptains the range  ohh or contains 

n (Reca l l  that 
fo rm a bas i s  for  R"). 

'd L 

1 1 i-l and the renamed'directions ( d  ' 
} . 

8 



L,  

. _  
starting point x fo r  the (mt i ) th  i terat ion i s  a 
minimum of f(x?on the subspace spanned by 
(d n-nH .... , d ] which contains ( P,-,+~, . . . , 
p 1 Q-conjugate a i rect ions in R ( 0 ) .  This  means  
&at, by Property 3 . 2 ,  g(x ) = 0, and x 
minimum solution of f (x)  in R“. 

is a 
0 0 

Appendix B Proof of Property 4 .2  

F r o m  Theorem 1 in  Section 3, there  is nothing 
to prove if k 2 m, where m is the  rank of @. 
Hence, assume k < m. It was  shown in Ref. 2 8  
that for  the D F P  method applied to  non-singular 
quadrat ic  problems, o r ,  in o u r  ca se ,  to the 
IANSQP), the grad ien t  at  Z, denoted by T. = 

. U s t l )  = Q F. tw,  is the o r  hogonal projectLon 
Of go = g (x 1 = Q ? t w onto-the orthogonal 
complementcof the’Sp%n of Q s 
and the vectors Q S 
subspace as the va&’rs Q 
Q, KO. T h e s e  propert ies  a r e  a l s o  t rue  fo r  the 
D F P  method applied to the (SOP) a s  long a s  gi # 0, 
that i s ,  the gradient of the (SQP) at xi denoted 
by gi = g (xit l) ,= Q x. tw. i s  the ortfiogonal 

1 tl direcf:on prOJeCtlon of g = g(r ) = Q x t w onto 
:he orthogonal complement of tfk span of Q So,  
0 s I . .  . , Q S. which has  the s a m e  span a s  by the 
VeCfors a g o ,  h2 go,. . . , 

imization problem r(x) = L <  x , ~  x > t e , ~ >  t i  

It$’ tl 
n i t 1  

- 
Q sl,. . . .Q S. ’ ‘ Q S “spgh th:! s a m e  1 i- Qq2Z0 ,.... 

0 0 

Q i t l  
go. 

Lemma B . l :  

X 

F o r  a nonsingular quadra t ic  m i n -  

2 0’ Rn with A = AT > 0 , i t  A has  k dist inct  posi-  

t ivc eigen6alues AI, A , . . . , A 

rl, r 2 , ,  . . , r 

D F P  method converges in at mos t  k steps.  

Proof: Le t  z , z2 , . . . , z (i) be eigenvectors  

of A corresponding to the  s a m e  e;gc?value A .  f o r  
i = 1,2,, . . , k. Then c l ea r ly  (z (~)z( ‘ ) ,  , , . , a L(i)lk 

n form a b a s i s  in R . Given x , g 
the re  ex is t  unique ~ ~ ( ~ 1  sucg  th8 

Xith mult ipl ic i t ies  

r .  = n, then the  
7 

respect ivcly,  and 

(i) (i) 

k’ i=l 1 

r. 
1 

1’ 2 r. i:l 
= A x t w, an8 

0 

Note that: hy. = A.y.(i=l, ... , k),<y.,y.>=O(i#j) ( 8 . 2 )  
1 1 1  1 1  

Now, if  c ( i i  = =( i ) ,  , , . = y j : ’  = 0 fo r  some i ,  then 
we have,  f r o m  2(B.1), y ( l )  = 0 for that  index i 

and some of t%e y 
tha t  g i s  the sum of P nonzero vec tors  and re- 
nameghem a s  di). w ( ~ )  . . . ,w(! ) where  1 5 k. 
R e c a l l t h atA~(~)=&~w(~l(i = l ,  . . . ,  1 ) w h e r e  G , ,  
5 2 , .  . , , 5  a r e  dis t inct  eigenvalues of A selected 
f r o m  A ~ . , A ~ .  . . . , A ~ .  C lear ly  < Ji) , W ( J )  > = o 
f o r i  f 1.. F r o m  the above, fo r  an finite integer .  
j > 0,  A’g, = ( L 1 ) )  w ( l )  t (iZ)’ w(’) t . . . t ( 5 ,  )J 
w(‘ since 5 5 
r e a l  numbers ,  t&’ma;rix B = I b , .  ] , defined by 
b.. = ( 5  .)‘ (1 5 i ,  j 5 1 ), i s  a no2singular 
’8nderAonde ma t r ix .  
that g , Ago. . . . , A(‘ 
indepzndent vectors ,  and span ( g  , A g  
go) = span { ,(I), w(2) ,  . . . , w ( l  )}‘since (w 
w (1 ) } a r e  l inear ly  independent and g = fi 
Since A 

span of {w( l ) ,  . . . , w 
tained in the span of ( g  , Ag , . . . , ~ ( 1  -1) go }, i. e .  

e . ,  

’b) Therefore ,  g i s  j\s” sum of y( l ) ,  y(2). . . . , Y 
may be ze ro -vec to r s .  Assume 

I 

5 ,  a r e  dis t inct  positive 

This  leads  to the resu l t s  
g a r e  nonzero l inear  

0 A(P -1) 

, . , . , 
(i) .  

0 ’ .  . .d) 

O i,= 1 
wIi) is contained ~n the 

) ) ,  then it is a l so  con- 

0 . 0  

Since 5 . 5  5 a r e  dis t inct  positive r e a l  
number;, t%ei i’ a in (B. 3 )  a r e  a l l  
nonzero numberso’a’&e;e;ore. 1-1 f r o m  (B. 31 

But, as previously mentioned 
2 1 

ASI}; which implies  g = 

then from (B. 4 )  g 

implies  that the D F P  method converges in exact ly  
P s t eps  with P 5 k. 

1 ” ’ -  
“.AS. ( 1  5 k ) ,  and 

= 23 Y . AS. -g =O (1 5 k). This  

span [Ago,A g , . . . , A  go} = span (ASo,AS k? 
0 1 1  i = O  

1-1 

i=rl I L O  

With Lemma F..1 i t  is easy  to  prove Prope r ty  
4 .2  . Now, a s sume  that the D F P  methodaapl icd 

to the (ANSQP) converges a t  k < m s teps ,  whcrc 
m i s  the rank of Q .  
Lemma 8.1, we can wr i te  Eo = & wi , where  

w i  i s  a ’nonze ro  eigenvector  of Ql corresponding to 

F r o m  the a r  umcnts of 

i =I 



c 

the eigenvalue 5 .  with 5 .  # 5 .  for  i # j. But, 

go = Q x 
1 1 1  1 

t w t - x  =g +-xo,g E R(0)and 
- 

t w = Q x  
Qw. =A,%, fi =1, . . . , k? (where 1 A , -  O- 5. 011, -- - or ,  we 

1 
1 1  k I 1 1  - 

conclude that  g = c .  w . .  Also f rom the above 

and the fact  that  i 
positive real va lueqa t  mos t  only one of the X. m a y  
become a e r o  and the r e s t  of the A .  are distin2t 
positive values .  If A .  = 5 .  -7 =O f o r  a specif ic  
index j ,  then Qw.=O $ndthk corresponding coeffi-  
cient c .  must  be ' ze ro ,  Let  us denote z. c . W . ,  

collect'the nonzero vectors  z.  , and r enkmeihk  

index o r d e r  to fo rm g 

a r e  the eigenvectors  of Q correspooding to the 
dis t inct  r eo rde red  eigenvalues A . .  
arguments  a 
span  (Qgo,O go, .  . . *$ g 0 = span (Qso,QSl, .  , . , 
QS 

0 i,=ls 1 . 1  

2 , .  . , , L  a r e  distinct 

1 L  

r ,  =r z .  ( r  5 k), where  z. 
0 i = l  L I 

Using the same  
in Lemma B. 1 and'the fac t  that  5L 

} We get  g =E a.QS,  (r Lk), or 
0 1 i = O  r-1 

= 9' aiQSi-go = 0 ,  and,  thus ,  the D F P  method 
gr 
a p p l k ? t o  the (SOP) converges in r s teps ,  r 5 .k. 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

8. 

9. 

v 
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