
MULTIPLE FRAME RATE INTEGRATION

A. Haraldsdottir
Applied Dynamics International, Ann Arbor, Michigan

and

R. M. Howe*
The University of Michigan, Ann Arbor, Michigan

Abstract

Dynamic systems can often be separated into fast and
slow subsystems. The speed and accuracy of a simulation of
such systems can frequently be improved by using a frame rate
for numerical integration of the fast system which is an integer
multiple of the frame rate used for the slow system. The
technique of multiple frame-rate integration can be especially
important in real-time simulation. In this paper the multiple
frame-rate method is introduced, including techniques for
converting slow data sequence outputs from slow subsystems to
fast data sequence inputs for fast systems. The suitability of
various integration algorithms for multiple framing is discussed.
The implementation of multiple frame-rate integration using the
simulation language ADSIM for the AD 100 computer is
described, including software which allows, without program
recompiling, choice of multiple-frame ratios and choice of
different interpolation or extrapolation algorithms for slow-to-
fast system interfacing. The paper concludes with an example of
multiple framing applied to the simulation of a combined air
frame and flight control system in order to improve both the
accuracy and stability of the simulation.

Dynamic systems can often be separated into fast and
slow subsystems. One example is a combined air frame and
flight control system, where the rigid airframe represents a slow
subsystem, and both elastic structural modes and the flight-
control system, including control-surface actuators, represent
fast subsystems. Another example is a helicopter when modeled
by the blade element method, where the rigid airframe again is
the slow subsystem and the rotors are fast subsystems.

Multiple frame rate integration refers to the technique of
making an integer multiple of integration passes through one or

more fast subsystems for each pass through the slow sub-
system. This reduces the integration step size for the fast
subsystem. Since the dynamic errors in a digital simulation will
be dominated by the integration truncation errors associated with
the fast subsystem, the use of multiple framing can improve
significantly the simulation accuracy for a given real-time
processor. The accuracy improvement when using multiframing
is much more substantial when the fast subsystem is
considerably less complex and therefore requires much less
processor time than the slow subsystem.

The overall concept of multiple frame rate integration is
described in Section 2, along with the requirement to use
extrapolation or interpolation to interface slow subsystems to
fast subsystems. The section also introduces dynamic error
measures, following which the compatibility of specific
integration methods with multiple framing is discussed. Section

*Professor, Department of Aerospace Engineering
Member AIAA

3 presents various interpolation and extrapolation algorithms for
slow to fast data sequence conversion, as well as the dynamic
errors associated with this conversion process.

Often it may not be clear exactly how a dynamic system
should be partitioned into fast and slow subsystems in order to
make most effective use of multiple framing. It may also be
difficult to predetermine the optimal frame rate multiple for
dynamic accuracy improvement. Analytic methods based on
both time and frequency domain considerations, as introduced in
Section 2, help in making these choices. However, in Section 4
an interactive software system is described which permits the
user to experiment with different problem partitioning, frame
rates, and interface extrapolation and interpolation methods. In
Section 5 a combined air frame and flight-control system is used
to illustrate the multiple framing analysis and synthesis
techniques described in the earlier sections. Section 6 contains
the concluding remarks.

2. Descriwtion of Multide Frame Rate Intenation

The separation of a dynamic system into slow and fast
subsystems is illustrated in Figure 1. The slow system utilizes
an integration step size denoted by T , whereas the fast system
employs a step size denoted by h, where h = TIN and N is an
integer. Hereafter we will refer to N as the frame ratio. In
Figure 1 the output data sequence { r ,) with sample period T
from the slow subsystem is converted to a fast data sequence
{fk) with sample period h by means of an interpolator (or
extrapolator). This is necessary to provide the fast subsystem
with inputs having a sample period h equal to the fast subsystem
integration step size. Examples of the generation of a fast
sequence from a slow sequence are shown in Figure 2 for a
frame ratio N = 4. In Figure 2a first-order interpolation is
illustrated; in Figure 2b first-order extrapolation is used. Clearly
the interpolation gives a more accurate result than extrapolation.
In Section 3 we will see how we can quantify the dynamic
accuracy of these and other interpolation and extrapolation
algorithms in terms of equivalent gain and phase shift for
sinusoidal data sequences.

Slow data
Fast data sequence from
sequence Fast Subsystem fast subsystem

Integration -
{ f k) step-size =h = T/N (u ,

I Slow

Interpolator Integration
(Extrapolator)

Figure 1. Multiple framing applied to a dynamic system.
Copyright 01988 by the American Institute of Aeronautics and Astronautics Inc. All rights reserved.

26

The output data sequence with sample period h generated
by the fast subsystem in Figure 1 will need to be converted to a
slow data sequence (u,) with sample period T in order to
provide inputs for the slow subsystem integration algorithm.
This conversion is easily accomplished by utilizing every Nth
member of the fast data sequence output, although some
multiple-pass integration methods may also require intermediate
data points over the sample-period T.

From Figure 2 it is evident that interpolation of the data
sequence (r,] over the nth sample period requires both r, and
r,+l. Clearly r,+l will only be available if the nth integration
step in the slow subsystem has already been executed. On the
other hand, extrapolation of the data sequence (r,) over the nth
sample period requires r, and m.1, both of which are available
without prior execution of the nth integration frame in the slow
subsystem. In this case, therefore, there is the option of

performing the N fast subsystem integrations first with step size
h, followed by the slow subsystem integration with step size T.

0
Slow data sequence points

II Fast data sequence points

I I I I I I I
T 2T 3T 4T 5T 6T 7T 8T

a. First-order interpolation

T 2T 3T 4T 5T 6T 7T 8T
b. First-order extrapolation

Figure 2. Generation of a fast data sequence from a slow data
sequence. N = 4.

Before discussing the suitability of various numerical
integration algorithms for multiple framing, we review briefly
the formulas and attributes of several of the candidate integration
methods for real-time simulation. We will also describe
dynamic error measures and stability considerations which will
be important in understanding the benefits to be derived from
multiple framing.

One of the most commonly used algorithms for real-time
integration is the second-order Adams-Bashforth predictor

method. The AB-2 formula for integrating the state equation
dxldt =flx,u(t)] is given by

Here x, = x(nh) and u, = u(nh), where h is the integration step
size, n is an integer, x is the state variable, and u(t) is the input,
which is considered to be an explicit function of time t. The AB-
2 formula is derived from the area under a linear extrapolation of
the derivative f from r = nh to t = (n+l)h based on f, and f,.l. It
is a second-order integration method, with dynamic errors
proportional to h2. When AB-2 integration is used to solve
linear differential equations, it can be shown from z transform
theory that the fractional error, ex, in any characteristic root is
given approximately by the formula(1)

Here A* is the equivalent characteristic root of the digital system.
To estimate the dynamic errors in using AB-2 integration for
nonlinear differential equations, we can linearize the equation
with respect to any reference or steady-state solution and then
apply Eq. (3). For a given step size h the largest error will result
from the characteristic root A of largest magnitude. Thus Eq. (3)
can be used to estimate the characteristic root errors in any
simulation with known roots or eigenvalues A. Or, if we have a
given accuracy requirement on the roots, Eq. (3) permits us to
establish the maximum allowable step size h when using AB-2
integration for that simulation.

Since Eq. (3) applies equally well for complex roots , it
can also be used in this case to derive the following approximate
formulas for the fractional error in root frequency, em, and the
damping ratio error, ebl) :

Here w, (and w, represent the frequency, damping ratio and
undamped natural frequency, respectively, associated with the
complex root A, while w+ and (* are the frequency and damping
ratio, respectively, associated with the equivalent root A* of the
digital system. Again, for any complex root pair Eqs. (4) and
(5) can be used to estimate the frequency and damping ratio
errors. Alternatively, for required accuracy in root frequency
and damping ratio, Eqs. (4) and (5) can be used to establish the
maximum allowable step size h when using AB-2 integration for
the simulation. Eqs. (3), (4) and (5) will be useful in establish-
ing the optimal frame ratio N when using multiple framing.

AB-3 and AB-4 predictor algorithms, based on second
and third-order extrapolation, respectively, of the state-variable
derivatives, can also be used as real-time integration methods.
They produce dynamic errors proportional to h3 and h4, and
formulas equivalent to Eqs. (3), (4) and (5) for characteristic
root errors can be derived(l).

In addition to characteristic root errors it is important to
consider the stability of integration algorithms, especially when
using predictor methods. This is because the extrapolations
based on past state-variable derivatives introduce extraneous
states and hence extraneous roots into the simulation. If the step
size h becomes too large, these roots can cause instability, even
though the principal roots are accurately represented. In Figure
3 the stability boundaries for the AB predictor methods are
shown in the Ah plane. For any combination of step size h and
eigenvalue A outside these boundaries the simulation will be
unstable. This can also become a very important reason for
considering the use of multiple Framing, as we shall see later in
the example in Section 5.

Figure 3. Stability boundaries for AB-2 integration.

In addition to the single-pass predictor-corrector
algorithms considered above, real-time simulations can employ
mutiple-pass integration algorithms such as Runge-Kutta
methods. An example is the following RK-2 algorithm:

Euler (rectangular) integration is used for the firstfass in Eq. (6)
with a step size of h/2 to compute an estimate, xn+l/2, for the
state halfway through the integration step. This estimate is then
used in the second pass, along with the input u,+ln, to compute
the derivative halfway through the step. In Eq. (7) this
derivative is used to computex,+l. Both the AB-2 algorithm in
Eqs. (1) and (2), and the RK-2 algorithm in Eqs. (6) and (7),
are compatible with real-time inputs, since in both cases the
input u is not required for algorithm execution prior to its
availability in real time. For this reason the above version of
Runge-Kutta integration is often designated by RTRK-2. The
more commonly used version of RK-2, frequently called Heun's
method, employs Euler integratio; with a step size of h for the
first step. The resulting estimate, x,+l, is then employed in the
second pass, along with un+l. to compute x,+l using trapezoidal
integration. Since u,+l is not yet available in real time at the
start of the second pass, standard RK-2 is not compatible with
real time inputs.

The RTRK-2 formula for e2, the fractional eror in
characteristic root, is identical with that in Eq.(3) for AB-2
except that the coefficient 5/12 is replaced by the coefficient
116. For complex roots the RTRK-2 formulas for em and eg, the
damping ratio error, are identical with those in Eqs. (4) and (5)
for AB-2 except that the coefficients 5/12 and 516 are replaced
by 116 and 113, respectively(l). Thus the characteristic root
errors associated with RTRK-2 integration for a given step size
h are 40 percent of the AB-2 root errors. However, RTRK-2 is
a two-pass method and will therefore take roughly twice as long
to execute per integration step as AB-2. Since the dynamic
errors vary as h2, doubling the step size will quadrupal the
errors. This more than offsets the error coefficient advantage of
RTRK-2 over AB-2.

Another two-pass method is AM-2, the Adams-Moulton
predictor-corrector algorithm. Here the first Rass uses AB-2
integration to compute the predicted state, x,+l, which is
employed along with u,+l to calculate the derivative estimate
?,,+I. The second pass then uses trapezoidal integration to
compute the final x,+l. For AM-2 integration the approximate
formulas for the charcateristic root errors are exactly -115th those
shown in Eqs. (4), (5) and (6) for AB-2 integration. AM-2 is
not compatible with real-time inputs because, as in standard RK-
2, it requires u,+l at the start of the s e c ~ n d pass. However, a
modified AM-2 method which computes xn+l/2 in the first pass
can be used with real-time inpud2).

There are two-pass predictor-corrector methods of higher
order, e.g., AM-3 and AM-4, as well as three and four-pass
Runge-Kutta methods (RK-3 and RK-4), any of which can be
useful method for simulating dynamic systems. However, as
noted below, the multiple-pass methods can complicate con-
siderably the effective use of multiple framing.

From discussion thus far it is apparent that single-pass
AB predictor algorithms are completely compatible with the
multiple framing concepts described at the beginning of this
section and illustrated in Figures 1 and 2. When we consider
multiple-pass algorithms, however, the compatiblity is not so
clear. For example, in the two-pass RTRK-2 method the first
pass in Eq. (6) consists of a half-step Euler integration. When
this is executed in the slow system, the second pass for the slow
subsystem will require an input u,+ln from the fast subsystem,
as evident from Figure 1 and Eq. (7). How is this obtained,with
multiple framing from the fast subsystem? Does the fast
subsystem execute N/2 two-pass RTRK-2 steps? If it does, the
necessary fast subsystem inputs, if derived by interpolation from
the slow subsystem, will y e d to be based on the rather
inaccurate first Euler estimate rn+1/2. The other choice is to use
extrapolation based on r , and rn-1, but this also may have
accuracy problems. A question also arises regarding the second
N / 2 steps for the fast subsystem. Are these initiated from
halfway through the slow frame, or from the beginning of the
slow frame? Actually, it is probably more appropriate to use a
single-pass method such as AB-2 for the fast subsystem, even
though RTRK-2 is used for the slow subsystem. However,
many choices and questions still arise. When a four-pass
method such as RK-4 is used, the choices for the fast subsystem
integration methods become even more numerous, although high
order methods have been successfully employed with multiple
framing(3). Nevertheless, it is the opinion of the authors that
single- pass methods are in general the algorithms best suited to
multiple framing and lead to straightforward, easily understood
mechanizations.

3. Extra~olation and Interpolation

In this section we consider interpolation and extrapola-
tion algorithms as utililized in multiple framing to generate a fast
data sequence from a slow data sequence. We first consider
extraploation of a slow data sequence (r ,) based on rn and rn-1.
Let the extrapolation interval be denoted by the dimensionless
parameter a. The corresponding extrapolation time interval is
aT, where T is the sample period of the slow data sequence.
The for rn+,, the representation of r(nT+ur) based on linear
extrapolation, is given by

In the example of linear extrapolation shown in Figure 2b, N = 4
and a = 114, 112 and 314 to generate the intermediate fast data
sequence points from the current and past slow data-sequence
points. To analyze the dynamic errors associated with Eq. (8)
we consider the extrapolator transfer function for sinusoidal
input data sequences and compare it with the ideal extrapolator
transfer function. This is easily accomplished by using z
transforms(4). The z transform of Eq. (8) is

R: (z) = [l + a (1 - z-I)] R*(z)

from which the extrapolator z transform, He*(z), is given by

The extrapolator transfer function for sinusoidal input data
sequences is given by H , * (~ J ~ ~) . After dividing this by the
ideal extrapolator transfer function, Hum) = dmT, we obtain the
following formula for the fractional error in the extrapolator
transfer function:

If the step size T is sufficiently small, the fractional transfer
function error represented by the right side of Eq. (1 1) will be a
complex number small in magnitude compared with unity. In
this case it can be shown that the real part of the complex
number is approximately equal to the fractional error in transfer
function gain, and the imaginary part is approximately equal to
the transfer function phase error(5). When the exponential
functions are expanded in power series with higher order terms
neglected, the following approximate formulas are obtained for
the first-order extrapolator transfer function gain and phase
errors:

Fractional - a (l + a)
gain error - e~ - 2

(wT) ' , ~ T < < I (12)

Phase -
- e, E o . (~ T ? , WT<<I

Although Eqs. (12) and (13) are approximate, based on the
dimensionless frequency COT being small compared with unity,
the formulas are surprisingly accurate up to wT = 0.5 for
extrapolation intervals a over the range 0 < a < 1. For the first
order extrapolator it is clear that gain errors predominate over
phase errors and are proportional to 7'2.

Next we consider first-order interpolation based on r,
and rn+l. Here the formula for r,,, is given by

Following the same procedure used for first-order extrapolation,
we obtain the following formulas for the interpolator transfer
function gain error:

Fractional - a (a - 1)
gain error - e~ - 2 (w T) ~ , wT << 1 (15)

As in the case of extrapolation, the interpolation transfer function
phase errors are zero to order ~ 2 , i.e., the gain errors
predominate. Over the range O<ac 1, the interpolator gain error
of Eq. (15) is significantly less than the extrapolator gain error
of Eq. (12). This is also apparent in comparing Figures 2a and
2b.

Second-order interpolation and extrapolation formulas
can also be derived and analyzed in terms of transfer function
errors using the above methodology(5). When this is done, it is
found that the approximate gain errors are zero to order T3; the
phase errors are proportional to (o n 3 and predominate.

The overall dynamic errors generated by the fast data
sequence using interpolation or extrapolation can be analyzed in
the frequency domain by considering a slow data sequence (r,)
that is sinusoidal with frequency w. This analysis shows that
the fast data sequence consists of a component at the input
frequency w, as well as components at 2(N-1) additional
frequencies. If wo is the sample frequency for the slow data
sequence (m = 2n/T), these additional frequencies will occur at
wo k w, 2wo + w, ... , (N - l) ~ + w. Fortunately the influence
of the additional freqencies will in general be small. This is
because their amplitude relative to the input sinusoid will be of
the same order as the fractional gain or phase error of the
interpolator (or extrapolator) transfer function(5). Thus the
principal component in the fast data sequence will be at the input
frequency w. Compared with the ideal interpolator (or
extrapolator) output, this component will represent a gain or
phase error which is the simple average of the N gain or phase
errors associated with the transfer functions for the N
interpolation (or extrapolation) intervals a.

In Table 1 the gain or phase error coefficients for slow-
to-fast data sequence conversion when using first and second-
order interpolation, and zero, first and second-order extrapola-
tion are tabulated for frame ratios N = 2,3,4,5, and -. Note that
zero-order extrapolation is equivalent to no extrapolation, i.e.,
the fast data sequence consists of the slow data sequence value
r, repeated N times, then rn+l repeated N times, etc. In this
case the phase error predominates and is proportional to wT.
For large N the phase error for zero-order extrapolation
approaches -wT/2. This is equivalent to inserting a time delay
between the slow and fast subsystems equal to one half of the
slow subsystem integration step size T. It is apparent that failure
to use extrapolation or interpolation in multiple framing has the
potential of introducing substantial dynamic errors.

4. Implementation in the Simulation Language ADSIM

The simulation language ADSIM is a high level software
system designed for the AD 100 simulation computer. The form
of the ADSIM language is very similar to other continuous
system simulation languages such as ACSL, CSSL, and CSMP.

Table 1. Multiple Frame Interpolator and Extrapolator Gain and
Phase Errors

Note: N = frame ratio. Gain and phase errors based on oT<< 1

Phase error coefficient, e ~ l (o T)

InDuts N = 2 N = 3 N = 4 N = 5 N = m

rn (zero-order) -.2500 -.3333 -.3750 -.4000 -.SO00

Gain error coefficient, eM/(CO~)2

N = 2 N = 3 N = 4 N = 5 N = m

.I875 .2593 .2969 ,3200 .4167

-.0625 -.0741 -.0781 -.0800 -.0833

Phase error coefficient, e d (w ~) 3

N = 2 N = 3 N = 4 N = 5 N = . o

rn, rn-i, rn-2 .I563 .2222 .2578 ,2800 .3750

r n + r n r n -.0313 -.0370 -.0391 -.0400 -.0417

rn+ 1, rn, rn -.0104 -.0123 -.0130 -.0133 -.0139

Since ADSIM and the AD 100 have been designed to be
especially effective for high-speed real-time simulation,
integration with ADSIM is performed using fixed-step
algorithms. The standard integration methods provided in the
language are Euler, Adams-Bashforth 2,3 and 4, two-pass
Adams-Moulton 2,3 and 4, Runge-Kutta 2 and 4, and real-time
Runge-Kutte 2 and 3, as introduced in Eqs. (6) and (7). The
default integration method used in ADSIM is AB-2. At run time
the user can, without recompiling, interactively select any of the
other integration methods for any or all of the state variables.
Hefshe can also program his own integration algorithms as
difference equations. In ADSIM the user writes differential
equations in first-order state-variable form. The equations are
solved in a segment of code termed a DYNAMIC BLOCK. The
user code in the DYNAMIC BLOCK is invoked by a routine
called SIMEXEC, which executes on the AD 100 computer and
performs execution control and integration.

To implement multiple frame rate integration on the AD
100 and make it as easy to use as possible, the routine
SIMEXEC has been modified to handle the additional execution
control needed. Since initialization and integration in ADSIM is
performed on an entire DYNAMIC BLOCK, the modified
routine SIMEXEC expects the differential equations to be
divided into two blocks, one corresponding to the slow sub-
system and the other to the fast subsystem. During each
simulation frame the right hand sides of all equations in the slow
DYNAMIC BLOCK are evaluated and integrated once, while
equations in the fast DYNAMIC BLOCK are evaluated and
integrated N times, where N is the frame ratio. The user can
interactively control N at run time. Figure 4 illustrates the
execution flow of the modified SIMEXEC routine. The code
segments "syncl" through "sync7", "initial" and "terminal"
represent optional code to allow the user to perform special
calculations before and after the simulation is performed. The
routine $DER evaluates the state-variable derivatives in the
dynamic equations, and $INT and $INC perform integration of
continuous equations and updating of discrete-time (i.e.,

SIMEXEC continuous-mf

$DER fast

$DER slow

Graphic Output

or end-run

$INT slow

End SIMEXEC ,-~q ?---I

$DER fast
over?

I YES

Figure 4. SIMEXEC for multiple frame rate integration.

In the dynamic block containing the fast subsystem the -
user needs to invoke a subprogram to perform interpolation on
each of the slow variables used as inputs to the fast subsystem.
Five subprograms for interpolation are supplied as standard
functions with the ADSIM software package. Figure 5 illus-
trates the ADSIM code required to simulate a fourth-order
system with multiframing.

To summarize, the user wishing to simulate a dynamic
system using multiple frame rate integration needs only supply:

The dynamic equations separated into slow and fast
subsets.

A subprogram invocation for each slow state variable to
be interpolated.

The number of fast integration steps for each slow step,
i.e., the frame ratio N. difference) equations.

TITLE Two time scale model with multiframing

!

REGION initial
frame-ratio-inv = l./frame-ratio

END REGION
I

DYNAMIC fast
x3-inter = INTNlN(frame-ratio-inv, %

slow-sample,x3,initialize)
e = r - kf*x3_inter
xl' = x2
x 2 ' = -2.*zl*wl*x2 - wl*wl*xl + kl*e
END DYNAMIC

!
DYNAMIC slow

x3' = x4
x4' = -2.*z2*w2*x4 - w2*w2*x3 + k2*x1
END DYNAMIC
!

DATA zl = .3
w 1 = 35.
kl = 1000

22 = . 9
w 2 = .3
k2 = 1.
kf = 1 .
r = 1.

I

EXECUTE continuous-mf

Even though the overall aidramelflight-control system
equations are nonlinear, it is useful to know the eigenvalues of
the linearized equations in order to apply the stability and
characteristic root error analysis discussed in Section 2. The
eigenvalue computation is accomplished as follows: With the
overall simulation frozen at any time, each state variable is
perturbed by a small increment. From the resulting change in
the state variable time derivatives, the partial of all state
derivatives with respect to all state variables is computed numer-
ically. From the Jacobian thus obtained the eigenvalues of the
system are calculated. For a test flight condition of Mach 0.72 at
40,000 feet altitude the following eigenvalues were obtained:

Airframe +

Figure 6. Pitch control loop.

Figure 5. ADSIM code to simulate a fourth-order system using
multiframing.

The interactive real-time simulation features of ADSIM are
preserved in the multifrarning code. The variable "frameratio"
can be changed interactively, and the actual computer execution
time for one simulation frame is automatically measured and
displayed after each change. The integration step size T divided
by the frame execution time represents the execution speed with
respect to real time (i.e., speedup over real time). This ratio is
also calculated automatically after each change in multiframing
parameters. When the ratio exceeds unity, the user knows the
problem can be run in real time.

5. Multiframing Example

The use of multiple frame rate integration will be
illustrated here with a reasonably large model that contains a
small subsystem with fast dynamics. The model represents a
typical business jet aircraft and includes a large data base
associated with a number of multivariable aerodynamic
functions, as well as a simplified flight control system. The
aircraft is modeled as a rigid body with six degrees of freedom,
three translational and three rotational. For the purpose of our
multiframing example, only the aircraft pitch control loop will be
considered. Figure 6 shows a block diagram of this control
loop,. where the inner feedback loop with the state variables 6es
and Ses is associated with the elevator control surface actuator.

In the elevator actuator loop Cdedot = 0.033 and Kde = 1000.
This makes the actuator natural frequency equal to 31.62 r a d s
and the damping ratio 0.522. When the pitch-control loop is
closed, this is the origin of hl,2 pair shown above. The other
roots, which originate from the airframe poles and the
quaternion stabilization loop, are substantially lower i n
magnitude. Clearly the pitch control loop is the fast subsystem
which should benefit from multiple framing. Thus the
partitioning of the overall model into fast and slow subsystems
is straightforward in this example. In Figure 6 the airframe
block represents the slow subsystem with the rest of the diagram
representing the fast subsystem. The pitch loop equations are
incorporated in the fast DYNAMIC BLOCK along with the
subprogram invocations for the slow state variable
interpolations, as shown in Figure 7. Here the state variables
are dedo t and d e s , and the fast subsystem inputs fo r
interpolation are the pitch rate, q, and the four quaternions, e l ,
e2 , e3 , and e4. The quaternions are used to calculate the
direction cosines aI3, a23, and a33, from which the pitch angle
theta (i.e., 8), is computed. If Euler angles rather than
quaternions had been used in the simulation, then only q and
theta would need to have been interpolated.

- ~

DYNAMIC fast
!

! Elevator actuator :
!

! Pitch control system:
!

deicom = Ktheta* (thetai-theta-Cq*q-int)
dei = Deilim*SAT(deicom*Ideilim)

el-int = INTNlN(frame~ratio~inv,slow~sample,~
el ,initialize)

e2-int = INTNlN(frame-ratio-inv,slow-sample,%
e2,initialize)

e3-int = INTNlN(frame-ratio-inv,slow-sample,%
e3, initialize)

e4-int = INTNlN(frame~ratio~inv,slow~sample,%
e4, initialize)

el el
e2e2
e3e3
e4e4
a13
a23
a33
theta
q-int

udec

el-int*el-int
e2_int*e2_int
e3_int*e3_int
e4-int*e4-int

2.*(e2-int*e4-int-el-int*e3-int)

2. * (e2-int*e3-int+el-int*e4-int)
elel+e2e2-e3e3-e4e4
ATAN2(-a13,SQRT(a23*a23+a33*a33))

INTNlN(frame-ratio-inv,slow-sample,%

q, initialize)
Kde*(dei-des-Cdedot*dedot)

dedot' = ~delim*SAT(udec*Iudelim)

desJ = dedot

END DYNAMIC

Figure 7. The fast DYNAMIC BLOCK in the multiframe
simulation.

The benefit of multiple frame rate integration on both generated for pitch flight control response with an integration
solution accuracy and numerical stability will be demonstrated step size Ti = 0.000050s. The pitch angle input ei was a step at
here. Several interpolation algorithms were used for generating t = 0 with a magnitude of 0.15 radian. AB-2 integration was
the fast data sequences, ranging from zero-order (no used. Figure 8 shows the time history of the pitch angle
interpolation) to second order formulas. To study the accuracy response, 0, and the elevator actuator output, a,,.
improvement with multiframing, a reference solution was

A i r c r a f t Model - P i t c h Control Loop
R e f e r e n c e Solution, T = O . 0 0 0 0 5 0 s

0. 04

Figure 8. Reference step response solution for the pitch control system.

I I I I 1

0.06

-0.0 O'O'+r I I1

0. 0 2.0 4.0 6. 0 8. 0 10.0

SYSTEM-TIME

-0.12
'li

I I I I 1
0 . n 2. 0 4.0 6. 0 8. 0 10.0

SYSTEM-TIME

Time histories for a step size T 2 = 0.01s were then
generated for frame ratios N ranging from 1 (no multiple
framing) to 7. The error measure was computed as the mean
absolu~e error in the elevator actuator output, 6,,. Table 2 shows
the solution error for different frame ratios. It is clear from this
data that multiple frame rate integration improves the solution
accuracy substantially for frame ratios N up to 4. Beyond N = 4
there is little improvement.

Table 2. Solution Error for Different Frame Ratios with AB-2
Integration; Interpolation Based on rn+l and r,.

Frame Ratio Mean absolute error in lies

1 (no framing) 0.0004725 rad
2 0.0001461
3 0.0000952
4 0.000082 1
5 0.0000794
6 0.0000792
7 0.0000791

The results in Table 2 can be understood by applying Eqs.
(4) and (5) for the AB-2 characteristic root errors to the system
eigenvalues listed earlier in this section. When this is done for
L1,2 = -15.92 + j 26.37 with a step size h = 0.01, the predicted
fractional error in frequency e m = -0.00273 and the damping
ratio error ec = 0.0300. For A3,4 = -1.274 + j4.674 and h =

0.01, e , = 0.00071 and e c = 0.00048. Thus when no
multiframing is used, the errors for eigenvalues A1,2 associated
with the pitch control loop are much larger than the errors for the
eigenvalues 13,4 associated with the airframe.

On the other hand when N = 5, the pitch control loop has a
step size given by 0.01/5 = 0.002. Applying Eqs. (4) and (5)
to L1,2 with h = 0.002 gives e , = -0.00011 and ec = 0.0012.
The larger of these, ec, is now roughly comparable with the e,
(= 0.00071) and ey (= 0.00048) as obtained above for the roots
A3,4 associated with the airframe system, which still utilizes the
step size 0.01. For N greater than 5 the airframe roots will
actually predominate and nothing is gained by multiframing the
pitch control loop to reduce its step size.

To examine the effect of multiple frame rate integration on
the numerical stability, the aircraft simulation was executed
using AB-2 integration with five different interpolation
algorithms and various frame ratios. In ADSIM the variables
"frametime, "steptime" and "speedup" are used to show the
relationship between integration step size and real-time
execution. "Frametime" is the actual time in seconds required
for the AD 100 to execute a single pass through the dynamic
equations, i.e., one pass through the slow subsystem and N
passes through the fast subsystem. "Steptime" is the
mathematical step size used for the integration step Tin the slow
subsystem. "Speedup" is therefore defined as

speedup = steptimelframetime

and represents the speedup factor over real time in the AD 100
solution for the stepsize T being used.

Aircraft Model - P i t c h Con t ro l Loop
N o M u l t i f raming, speedup= 180

0. 16 1

SYSTEM-TIME

Figure 9. Marginally stable solution.

In the numerical stability experiment, marginal stability
was determined by observing a graphical output of the pitch angle
0 in response to the step input Bi = 0.15 radian. Figure 9 shows
a typical time history for a marginally stable solution with the
frame ratio N = 1, i.e., no multiple framing. Table 3 lists the
integration step size T and corresponding speedup factor at which
the solution becomes marginally stable for frame ratios ranging
from 1 to 7 and for five different interpolation algorithms. Note

Comparison of the performance in Table 3 for various
interpolation algorithms shows that first-order interpolation
based on r,+l and r, gives the best perfomlance. The improved
dynamics of the higher-order interpolation algorithms is more
than offset by their increased execution time. It is also clear that
zero-order interpolation based on r,, i.e., non interpolation,
produces inferior results. This is because of the additional time
delay, Tl2, introduced between the slow and fast subsystems by

that interpolation based on r, is zero-order and hence represent no zero-order interpolation, as noted in Section 3
interpolation.

I Table 3. Integration Step Size and Speedup Factor for Marginally Stable Solution.

Integration step size T (speedup over real time)
Basis for

interpolation Frame ratio N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

For N = 1 (no multiple framing) the table shows that the
system becomes marginally stable for T = h =0.02968. Here the
instability is due to the eigenvalues A1,2 = -15.92 + j 26.37 , as
listed earlier in this section and associated with the dynamics of
the actuator. Thus Alh = -0.473 + j 0.783, which indeed lies on
the AB-2 stability boundary in Figure 3. This confirms that the
instability with no multiframing originates in the fast subsystem.
From z transform theory it turns out that the predicted frequency
of instability in this case is equal to 0.270lT or 9.10 hertz, which
is precisely the frequency of the undamped transient in Figure 9.
On the other hand, for N = 7 and interpolation based on rn+l and
r,, the system becomes marginally stable for T = 0.1578. In this
case the step size of the fast subsystem is given by h = TI7 =
0.0225, which lies well within the AB-2 stability boundary for its
roots i1,2. Thus the instability must result from the roots A3-4 =

-1.274 f j 4.674 associated with the slow subsystem. In this
case A3T = -0.201 + j 0.738, which indeed lies just within the
AB-2 stability boundary in Figure 3 and confirms the expected
instability based on the slow subsystem eigenvalues.

When multiframing is used for the fast subsystem, the
"frametime" will actually increase. This is because the time
required for the input interpolations and N integration steps of
the fast subsystem is added to the execution time for the single
integration step of the slow subsystem. Even though the overall
frame time has increased, however, the integration step h for the
fast subsystem will be reduced as the frame ratio N is increased,
since h = TIN. This accounts for the improved stability evident
in Table 3 for frame ratios up to N = 5 , as reflected by the
increased speedup over real time before the simulation becomes
marginally stable. Beyond N = 5 the fast subsystem step size h
has been reduced to the point where it is the slow system step
s i x T that causes the instability. This is why the overall stability
deteriorates for N larger than 5, since as N is further increased,
the overall frame time and hence T for the slow subsystem
actually increases.

In the example of mutiple frame rate integration described
in this section, we have only considered interpolation for inter-
facing the fast subsystem to the slow subsystem. Alternatively,
extrapolation could have been used. However, reference to
Table 2 shows that the dynamic performance of extrapolation is
considerably poorer. It should probably be considered only
when it is desirable to avoid the necessity of integrating the slow
subsystem first. There would, however, have been one advan-
tage in using extrapolation for our example here. If extrapola-
tion had been used, it would only have been necessary to
interface the pitch angle 0 and pitch rate q from the slow to the
fast subsystem, rather than the four quaternions e l , e2, e3 and
e4, as well as q. This would this have saved not only three
interpolation calculations but also the additional calculation of
direction cosines and 0 each fast frame. When the interface
between slow and fast subsystem consists entirely of state
variables, this advantage for extrapolation is of course no longer
present.

6. Conclusions

In this paper we have seen how the use of multiple frame
rate integration in the simulation of a dynamic system can
improve both the accuracy and stability of the simulation. In
many cases it can make the difference between whether or not a
simulation on a given computer can be run in real time with
satisfactory accuracy. Analytic methods based on linearization
of the dynamic system being simulated can be used to estimate
the dynamic performance and stability for given integration
methods and step sizes. This can in turn be utilized to make
preliminary assessments of the optimal separation into slow and
fast subsystems, as well as the optimal ratio N of the fast
compared with the slow subsystem. However, it is also
important to have an interactive software system which permits
the user to experiment with the simulation itself in order to

determine optimal problem partitioning and frame ratios. The
application of such a system, ADSIM for the AD 100 computer,
to the simulation of a combined airframe, flight control system
with the use of multiple framing has been described. An
additional consideration of importance in mutiple framing is the
type of interpolation or extrapolation algorithm used for the
slow-to-fast system interfacing. Again, analytic techniqes have
been described here for assessing the performance of various
algorithms, although interactive experimentation with different
interpolation or extrapolation methods at run time can also be
extremely useful.

7. References

1. Howe, R.M., "Transfer Function and Characteristic Root
Errors for Fixed-Step Integration Algotithms," Trans. of
the Society for Computer Simulation, Vo1.2, No. 4, Dec.,
1985, pp 293-320.

2. Howe, R.M., "The Role of Modified Euler Integration in
Real-time Simulation," Proceedings of the Conference on
Aerospace Simulation 111, San Diego, 1988; pp 277-285.
The Society for Computer Simulation, P.O. Box 17900,
San Diego, CA 921 17.

3. Palusinski, O.A., "Simulation of Dynamic Systems Using
Multirate Integration Techniques," Trans of the Society for
Computer Simulation, Vo1.2, No. 4, Dec., 1985, pp 293-
320.

4. Gilbert, E.G., "Dynamic Error Analysis of Digital and
Combined Digital-Analog Systems," Simulation, Vol. 6,
No. 4, April, 1966, pp 241-257.

5. Howe, R.M., "Dynamics of Digital Extrapolation and
Interpolation," Trans. of the Society for Computer
Simulation, Vo1.2, No. 1, Dec., 1985, pp 169-187.

