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Abstract 

Dynamic systems can often be separated into fast and 
slow subsystems. The speed and accuracy of a simulation of 
such systems can frequently be improved by using a frame rate 
for numerical integration of the fast system which is an integer 
multiple of the frame rate used for the slow system. The 
technique of multiple frame-rate integration can be especially 
important in real-time simulation. In this paper the multiple 
frame-rate method is introduced, including techniques for 
converting slow data sequence outputs from slow subsystems to 
fast data sequence inputs for fast systems. The suitability of 
various integration algorithms for multiple framing is discussed. 
The implementation of multiple frame-rate integration using the 
simulation language ADSIM for the AD 100 computer is  
described, including software which allows, without program 
recompiling, choice of multiple-frame ratios and choice of 
different interpolation or extrapolation algorithms for slow-to- 
fast system interfacing. The paper concludes with an example of 
multiple framing applied to the simulation of a combined air 
frame and flight control system in order to improve both the 
accuracy and stability of the simulation. 

Dynamic systems can often be separated into fast and 
slow subsystems. One example is a combined air frame and 
flight control system, where the rigid airframe represents a slow 
subsystem, and both elastic structural modes and the flight- 
control system, including control-surface actuators, represent 
fast subsystems. Another example is a helicopter when modeled 
by the blade element method, where the rigid airframe again is 
the slow subsystem and the rotors are fast subsystems. 

Multiple frame rate integration refers to the technique of 
making an integer multiple of integration passes through one or 

more fast subsystems for each pass through the slow sub- 
system. This reduces the integration step size for the fast 
subsystem. Since the dynamic errors in a digital simulation will 
be dominated by the integration truncation errors associated with 
the fast subsystem, the use of multiple framing can improve 
significantly the simulation accuracy for a given real-time 
processor. The accuracy improvement when using multiframing 
is much more substantial when the fast subsystem is  
considerably less complex and therefore requires much less 
processor time than the slow subsystem. 

The overall concept of multiple frame rate integration is 
described in Section 2, along with the requirement to use 
extrapolation or interpolation to interface slow subsystems to 
fast subsystems. The section also introduces dynamic error 
measures, following which the compatibility of specific 
integration methods with multiple framing is discussed. Section 
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3 presents various interpolation and extrapolation algorithms for 
slow to fast data sequence conversion, as well as the dynamic 
errors associated with this conversion process. 

Often it may not be clear exactly how a dynamic system 
should be partitioned into fast and slow subsystems in order to 
make most effective use of multiple framing. It may also be 
difficult to predetermine the optimal frame rate multiple for 
dynamic accuracy improvement. Analytic methods based on 
both time and frequency domain considerations, as introduced in 
Section 2, help in making these choices. However, in Section 4 
an interactive software system is described which permits the 
user to experiment with different problem partitioning, frame 
rates, and interface extrapolation and interpolation methods. In 
Section 5 a combined air frame and flight-control system is used 
to illustrate the multiple framing analysis and synthesis 
techniques described in the earlier sections. Section 6 contains 
the concluding remarks. 

2. Descriwtion of Multide Frame Rate Intenation 

The separation of a dynamic system into slow and fast 
subsystems is illustrated in Figure 1. The slow system utilizes 
an integration step size denoted by T ,  whereas the fast system 
employs a step size denoted by h, where h = TIN and N is an 
integer. Hereafter we will refer to N as the frame ratio. In 
Figure 1 the output data sequence { r , )  with sample period T 
from the slow subsystem is converted to a fast data sequence 
{fk) with sample period h by means of an interpolator (or 
extrapolator). This is necessary to provide the fast subsystem 
with inputs having a sample period h equal to the fast subsystem 
integration step size. Examples of the generation of a fast 
sequence from a slow sequence are shown in Figure 2 for a 
frame ratio N = 4. In Figure 2a first-order interpolation is 
illustrated; in Figure 2b first-order extrapolation is used. Clearly 
the interpolation gives a more accurate result than extrapolation. 
In Section 3 we will see how we can quantify the dynamic 
accuracy of these and other interpolation and extrapolation 
algorithms in terms of equivalent gain and phase shift for 
sinusoidal data sequences. 

Slow data 
Fast data sequence from 
sequence Fast Subsystem fast subsystem 

Integration - 
{ f k )  step-size =h = T/N ( u ,  

I Slow 

Interpolator Integration 
(Extrapolator) 

Figure 1. Multiple framing applied to a dynamic system. 
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The output data sequence with sample period h generated 
by the fast subsystem in Figure 1 will need to be converted to a 
slow data sequence (u,) with sample period T in order to 
provide inputs for the slow subsystem integration algorithm. 
This conversion is easily accomplished by utilizing every Nth 
member of the fast data sequence output, although some 
multiple-pass integration methods may also require intermediate 
data points over the sample-period T. 

From Figure 2 it is evident that interpolation of the data 
sequence (r,] over the nth sample period requires both r, and 
r,+l. Clearly r,+l will only be available if the nth integration 
step in the slow subsystem has already been executed. On the 
other hand, extrapolation of the data sequence (r,) over the nth 
sample period requires r, and m.1, both of which are available 
without prior execution of the nth integration frame in the slow 
subsystem. In this case, therefore, there is the option of 

performing the N fast subsystem integrations first with step size 
h, followed by the slow subsystem integration with step size T. 

0 
Slow data sequence points 

II Fast data sequence points 

I I I I I I I 
T 2T 3T 4T 5T 6T 7T 8T 

a. First-order interpolation 

T 2T 3T 4T 5T 6T 7T 8T 
b. First-order extrapolation 

Figure 2. Generation of a fast data sequence from a slow data 
sequence. N = 4. 

Before discussing the suitability of various numerical 
integration algorithms for multiple framing, we review briefly 
the formulas and attributes of several of the candidate integration 
methods for real-time simulation. We will also describe 
dynamic error measures and stability considerations which will 
be important in understanding the benefits to be derived from 
multiple framing. 

One of the most commonly used algorithms for real-time 
integration is the second-order Adams-Bashforth predictor 

method. The AB-2 formula for integrating the state equation 
dxldt =flx,u(t)] is given by 

Here x, = x(nh) and u, = u(nh), where h is the integration step 
size, n is an integer, x is the state variable, and u(t) is the input, 
which is considered to be an explicit function of time t. The AB- 
2 formula is derived from the area under a linear extrapolation of 
the derivative f from r = nh to t = (n+l)h based on f, and f,.l. It 
is a second-order integration method, with dynamic errors 
proportional to h2. When AB-2 integration is used to solve 
linear differential equations, it can be shown from z transform 
theory that the fractional error, ex, in any characteristic root is 
given approximately by the formula(1) 

Here A* is the equivalent characteristic root of the digital system. 
To  estimate the dynamic errors in using AB-2 integration for 
nonlinear differential equations, we can linearize the equation 
with respect to any reference or steady-state solution and then 
apply Eq. (3). For a given step size h the largest error will result 
from the characteristic root A of largest magnitude. Thus Eq. (3) 
can be used to estimate the characteristic root errors in any 
simulation with known roots or eigenvalues A. Or, if we have a 
given accuracy requirement on the roots, Eq. (3) permits us to 
establish the maximum allowable step size h when using AB-2 
integration for that simulation. 

Since Eq. (3) applies equally well for complex roots , it 
can also be used in this case to derive the following approximate 
formulas for the fractional error in root frequency, em, and the 
damping ratio error, ebl) :  

Here w, ( and w, represent the frequency, damping ratio and 
undamped natural frequency, respectively, associated with the 
complex root A, while w+ and (* are the frequency and damping 
ratio, respectively, associated with the equivalent root A* of the 
digital system. Again, for any complex root pair Eqs. (4) and 
(5) can be used to estimate the frequency and damping ratio 
errors. Alternatively, for required accuracy in root frequency 
and damping ratio, Eqs. (4) and (5) can be used to establish the 
maximum allowable step size h when using AB-2 integration for 
the simulation. Eqs. (3), (4) and (5) will be useful in establish- 
ing the optimal frame ratio N when using multiple framing. 

AB-3 and AB-4 predictor algorithms, based on second 
and third-order extrapolation, respectively, of the state-variable 
derivatives, can also be used as real-time integration methods. 
They produce dynamic errors proportional to h3 and h4, and 
formulas equivalent to Eqs. (3), (4) and (5) for characteristic 
root errors can be derived(l). 



In addition to characteristic root errors it is important to 
consider the stability of integration algorithms, especially when 
using predictor methods. This is because the extrapolations 
based on past state-variable derivatives introduce extraneous 
states and hence extraneous roots into the simulation. If the step 
size h becomes too large, these roots can cause instability, even 
though the principal roots are accurately represented. In Figure 
3 the stability boundaries for the AB predictor methods are 
shown in the Ah plane. For any combination of step size h and 
eigenvalue A outside these boundaries the simulation will be 
unstable. This can also become a very important reason for 
considering the use of multiple Framing, as we shall see later in 
the example in Section 5. 

Figure 3. Stability boundaries for AB-2 integration. 

In addition to the single-pass predictor-corrector 
algorithms considered above, real-time simulations can employ 
mutiple-pass integration algorithms such as Runge-Kutta 
methods. An example is the following RK-2 algorithm: 

Euler (rectangular) integration is used for the firstfass in Eq. (6) 
with a step size of h/2 to compute an estimate, xn+l/2, for the 
state halfway through the integration step. This estimate is then 
used in the second pass, along with the input u,+ln, to compute 
the derivative halfway through the step. In Eq. (7) this 
derivative is used to computex,+l. Both the AB-2 algorithm in 
Eqs. (1) and (2), and the RK-2 algorithm in Eqs. (6) and (7), 
are compatible with real-time inputs, since in both cases the 
input u is not required for algorithm execution prior to its 
availability in real time. For this reason the above version of 
Runge-Kutta integration is often designated by RTRK-2. The 
more commonly used version of RK-2, frequently called Heun's 
method, employs Euler integratio; with a step size of h for the 
first step. The resulting estimate, x,+l, is then employed in the 
second pass, along with un+l. to compute x,+l using trapezoidal 
integration. Since u,+l is not yet available in real time at the 
start of the second pass, standard RK-2 is not compatible with 
real time inputs. 

The RTRK-2 formula for e2, the fractional eror in 
characteristic root, is identical with that in Eq.(3) for AB-2 
except that the coefficient 5/12 is replaced by the coefficient 
116. For complex roots the RTRK-2 formulas for em and eg, the 
damping ratio error, are identical with those in Eqs. (4) and (5) 
for AB-2 except that the coefficients 5/12 and 516 are replaced 
by 116 and 113, respectively(l). Thus the characteristic root 
errors associated with RTRK-2 integration for a given step size 
h are 40 percent of the AB-2 root errors. However, RTRK-2 is 
a two-pass method and will therefore take roughly twice as long 
to execute per integration step as AB-2. Since the dynamic 
errors vary as h2, doubling the step size will quadrupal the 
errors. This more than offsets the error coefficient advantage of 
RTRK-2 over AB-2. 

Another two-pass method is AM-2, the Adams-Moulton 
predictor-corrector algorithm. Here the first Rass uses AB-2 
integration to compute the predicted state, x,+l, which is 
employed along with u,+l to calculate the derivative estimate 
?,,+I. The second pass then uses trapezoidal integration to 
compute the final x,+l. For AM-2 integration the approximate 
formulas for the charcateristic root errors are exactly -115th those 
shown in Eqs. (4), (5) and (6) for AB-2 integration. AM-2 is 
not compatible with real-time inputs because, as in standard RK- 
2, it requires u,+l at the start of the s e c ~ n d  pass. However, a 
modified AM-2 method which computes xn+l/2 in the first pass 
can be used with real-time inpud2). 

There are two-pass predictor-corrector methods of higher 
order, e.g., AM-3 and AM-4, as well as three and four-pass 
Runge-Kutta methods (RK-3 and RK-4), any of which can be 
useful method for simulating dynamic systems. However, as 
noted below, the multiple-pass methods can complicate con- 
siderably the effective use of multiple framing. 

From discussion thus far it is apparent that single-pass 
AB predictor algorithms are completely compatible with the 
multiple framing concepts described at the beginning of this 
section and illustrated in Figures 1 and 2. When we consider 
multiple-pass algorithms, however, the compatiblity is not so 
clear. For example, in the two-pass RTRK-2 method the first 
pass in Eq. (6) consists of a half-step Euler integration. When 
this is executed in the slow system, the second pass for the slow 
subsystem will require an input u,+ln from the fast subsystem, 
as evident from Figure 1 and Eq. (7). How is this obtained,with 
multiple framing from the fast subsystem? Does the fast 
subsystem execute N/2 two-pass RTRK-2 steps? If it does, the 
necessary fast subsystem inputs, if derived by interpolation from 
the slow subsystem, will y e d  to be based on the rather 
inaccurate first Euler estimate rn+1/2. The other choice is to use 
extrapolation based on r ,  and rn-1, but this also may have 
accuracy problems. A question also arises regarding the second 
N / 2  steps for the fast subsystem. Are these initiated from 
halfway through the slow frame, or from the beginning of the 
slow frame? Actually, it is probably more appropriate to use a 
single-pass method such as AB-2 for the fast subsystem, even 
though RTRK-2 is used for the slow subsystem. However, 
many choices and questions still arise. When a four-pass 
method such as RK-4 is used, the choices for the fast subsystem 
integration methods become even more numerous, although high 
order methods have been successfully employed with multiple 
framing(3). Nevertheless, it is the opinion of the authors that 
single- pass methods are in general the algorithms best suited to 
multiple framing and lead to straightforward, easily understood 
mechanizations. 



3. Extra~olation and Interpolation 

In this section we consider interpolation and extrapola- 
tion algorithms as utililized in multiple framing to generate a fast 
data sequence from a slow data sequence. We first consider 
extraploation of a slow data sequence ( r , )  based on rn and rn-1. 
Let the extrapolation interval be denoted by the dimensionless 
parameter a. The corresponding extrapolation time interval is 
aT, where T is the sample period of the slow data sequence. 
The for rn+,, the representation of r(nT+ur) based on linear 
extrapolation, is given by 

In the example of linear extrapolation shown in Figure 2b, N = 4 
and a = 114, 112 and 314 to generate the intermediate fast data 
sequence points from the current and past slow data-sequence 
points. To  analyze the dynamic errors associated with Eq. (8) 
we consider the extrapolator transfer function for sinusoidal 
input data sequences and compare it with the ideal extrapolator 
transfer function. This is easily accomplished by using z 
transforms(4). The z transform of Eq. (8) is 

R: (z) = [ l  + a ( 1  - z-I)] R*(z) 

from which the extrapolator z transform, He*(z), is given by 

The extrapolator transfer function for sinusoidal input data 
sequences is given by H , * ( ~ J ~ ~ ) .  After dividing this by the 
ideal extrapolator transfer function, Hum) = dmT, we obtain the 
following formula for the fractional error in the extrapolator 
transfer function: 

If the step size T is sufficiently small, the fractional transfer 
function error represented by the right side of Eq. (1 1) will be a 
complex number small in magnitude compared with unity. In 
this case it can be shown that the real part of the complex 
number is approximately equal to the fractional error in transfer 
function gain, and the imaginary part is approximately equal to 
the transfer function phase error(5). When the exponential 
functions are expanded in power series with higher order terms 
neglected, the following approximate formulas are obtained for 
the first-order extrapolator transfer function gain and phase 
errors: 

Fractional - a ( l +  a )  
gain error - e~ - 2 

(wT) ' ,  ~ T < < I  (12) 

Phase - 
- e, E o . ( ~ T ? ,  WT<<I  

Although Eqs. (12) and (13) are approximate, based on the 
dimensionless frequency COT being small compared with unity, 
the formulas are surprisingly accurate up to wT = 0.5 for 
extrapolation intervals a over the range 0 < a < 1. For the first 
order extrapolator it is clear that gain errors predominate over 
phase errors and are proportional to 7'2. 

Next we consider first-order interpolation based on r,  
and rn+l.  Here the formula for r,,, is given by 

Following the same procedure used for first-order extrapolation, 
we obtain the following formulas for the interpolator transfer 
function gain error: 

Fractional - a ( a -  1) 
gain error - e~ - 2 ( w T ) ~  , wT << 1 (15) 

As in the case of extrapolation, the interpolation transfer function 
phase errors are zero to order ~ 2 ,  i.e., the gain errors 
predominate. Over the range O<ac  1, the interpolator gain error 
of Eq. (15) is significantly less than the extrapolator gain error 
of Eq. (12). This is also apparent in comparing Figures 2a and 
2b. 

Second-order interpolation and extrapolation formulas 
can also be derived and analyzed in terms of transfer function 
errors using the above methodology(5). When this is done, it is 
found that the approximate gain errors are zero to order T3; the 
phase errors are proportional to ( o n 3  and predominate. 

The overall dynamic errors generated by the fast data 
sequence using interpolation or extrapolation can be analyzed in 
the frequency domain by considering a slow data sequence (r,) 
that is sinusoidal with frequency w. This analysis shows that 
the fast data sequence consists of a component at the input 
frequency w, as well as components at 2(N-1) additional 
frequencies. If wo is the sample frequency for the slow data 
sequence (m = 2n/T), these additional frequencies will occur at 
wo k w, 2wo + w, ... , ( N - l ) ~  + w. Fortunately the influence 
of the additional freqencies will in general be small. This is 
because their amplitude relative to the input sinusoid will be of 
the same order as the fractional gain or phase error of the 
interpolator (or extrapolator) transfer function(5). Thus the 
principal component in the fast data sequence will be at the input 
frequency w. Compared with the ideal interpolator (or 
extrapolator) output, this component will represent a gain or  
phase error which is the simple average of the N gain or phase 
errors associated with the transfer functions for the N 
interpolation (or extrapolation) intervals a. 

In Table 1 the gain or phase error coefficients for slow- 
to-fast data sequence conversion when using first and second- 
order interpolation, and zero, first and second-order extrapola- 
tion are tabulated for frame ratios N = 2,3,4,5, and -. Note that 
zero-order extrapolation is equivalent to no extrapolation, i.e., 
the fast data sequence consists of the slow data sequence value 
r,  repeated N times, then rn+l repeated N times, etc. In this 
case the phase error predominates and is proportional to wT. 
For large N the phase error for zero-order extrapolation 
approaches -wT/2. This is equivalent to inserting a time delay 
between the slow and fast subsystems equal to one half of the 
slow subsystem integration step size T. It is apparent that failure 
to use extrapolation or interpolation in multiple framing has the 
potential of introducing substantial dynamic errors. 

4. Implementation in the Simulation Language ADSIM 

The simulation language ADSIM is a high level software 
system designed for the AD 100 simulation computer. The form 
of the ADSIM language is very similar to other continuous 
system simulation languages such as ACSL, CSSL, and CSMP. 



Table 1. Multiple Frame Interpolator and Extrapolator Gain and 
Phase Errors 

Note: N = frame ratio. Gain and phase errors based on oT<< 1 

Phase error coefficient, e ~ l ( o T )  

InDuts N = 2  N = 3  N = 4  N = 5  N = m  

rn (zero-order) -.2500 -.3333 -.3750 -.4000 -.SO00 

Gain error coefficient, eM/(CO~)2 

N = 2  N = 3  N = 4  N = 5  N = m  

.I875 .2593 .2969 ,3200 .4167 

-.0625 -.0741 -.0781 -.0800 -.0833 

Phase error coefficient, e d ( w ~ ) 3  

N = 2  N = 3  N = 4  N = 5  N = . o  

rn, rn-i, rn-2 .I563 .2222 .2578 ,2800 .3750 

r n + r n r n  -.0313 -.0370 -.0391 -.0400 -.0417 

rn+ 1,  rn, rn -.0104 -.0123 -.0130 -.0133 -.0139 

Since ADSIM and the AD 100 have been designed to be 
especially effective for high-speed real-time simulation, 
integration with ADSIM is performed using fixed-step 
algorithms. The standard integration methods provided in the 
language are Euler, Adams-Bashforth 2,3 and 4, two-pass 
Adams-Moulton 2,3 and 4, Runge-Kutta 2 and 4, and real-time 
Runge-Kutte 2 and 3, as introduced in Eqs. (6) and (7). The 
default integration method used in ADSIM is AB-2. At run time 
the user can, without recompiling, interactively select any of the 
other integration methods for any or all of the state variables. 
Hefshe can also program his own integration algorithms as 
difference equations. In ADSIM the user writes differential 
equations in first-order state-variable form. The equations are 
solved in a segment of code termed a DYNAMIC BLOCK. The 
user code in the DYNAMIC BLOCK is invoked by a routine 
called SIMEXEC, which executes on the AD 100 computer and 
performs execution control and integration. 

To implement multiple frame rate integration on the AD 
100 and make it as easy to use as possible, the routine 
SIMEXEC has been modified to handle the additional execution 
control needed. Since initialization and integration in ADSIM is 
performed on an entire DYNAMIC BLOCK, the modified 
routine SIMEXEC expects the differential equations to be 
divided into two blocks, one corresponding to the slow sub- 
system and the other to the fast subsystem. During each 
simulation frame the right hand sides of all equations in the slow 
DYNAMIC BLOCK are evaluated and integrated once, while 
equations in the fast DYNAMIC BLOCK are evaluated and 
integrated N times, where N is the frame ratio. The user can 
interactively control N at run time. Figure 4 illustrates the 
execution flow of the modified SIMEXEC routine. The code 
segments "syncl" through "sync7", "initial" and "terminal" 
represent optional code to allow the user to perform special 
calculations before and after the simulation is performed. The 
routine $DER evaluates the state-variable derivatives in the 
dynamic equations, and $INT and $INC perform integration of 
continuous equations and updating of discrete-time (i.e., 

SIMEXEC continuous-mf 

$DER fast 

$DER slow 

Graphic Output 

or end-run 

$INT slow 

End SIMEXEC ,-~q ?---I 

$DER fast 
over? 

I YES 

Figure 4. SIMEXEC for multiple frame rate integration. 

In the dynamic block containing the fast subsystem the - 
user needs to invoke a subprogram to perform interpolation on 
each of the slow variables used as inputs to the fast subsystem. 
Five subprograms for interpolation are supplied as standard 
functions with the ADSIM software package. Figure 5 illus- 
trates the ADSIM code required to simulate a fourth-order 
system with multiframing. 

To summarize, the user wishing to simulate a dynamic 
system using multiple frame rate integration needs only supply: 

The dynamic equations separated into slow and fast 
subsets. 

A subprogram invocation for each slow state variable to 
be interpolated. 

The number of fast integration steps for each slow step, 
i.e., the frame ratio N. difference) equations. 



TITLE Two time scale model with multiframing 

! 

REGION initial 
frame-ratio-inv = l./frame-ratio 

END REGION 
I 

DYNAMIC fast 
x3-inter = INTNlN(frame-ratio-inv, % 

slow-sample,x3,initialize) 
e = r - kf*x3_inter 
xl' = x2 
x 2 '  = -2.*zl*wl*x2 - wl*wl*xl + kl*e 
END DYNAMIC 

! 
DYNAMIC slow 

x3' = x4 
x4' = -2.*z2*w2*x4 - w2*w2*x3 + k2*x1 
END DYNAMIC 
! 

DATA zl = .3 
w 1 = 35. 
kl = 1000 

22 = . 9  
w 2 = .3 
k2 = 1. 
kf = 1 .  
r = 1. 

I 

EXECUTE continuous-mf 

Even though the overall aidramelflight-control system 
equations are nonlinear, it is useful to know the eigenvalues of 
the linearized equations in order to apply the stability and 
characteristic root error analysis discussed in Section 2. The 
eigenvalue computation is accomplished as follows: With the 
overall simulation frozen at any time, each state variable is 
perturbed by a small increment. From the resulting change in 
the state variable time derivatives, the partial of all state 
derivatives with respect to all state variables is computed numer- 
ically. From the Jacobian thus obtained the eigenvalues of the 
system are calculated. For a test flight condition of Mach 0.72 at 
40,000 feet altitude the following eigenvalues were obtained: 

Airframe + 

Figure 6. Pitch control loop. 

Figure 5. ADSIM code to simulate a fourth-order system using 
multiframing. 

The interactive real-time simulation features of ADSIM are 
preserved in the multifrarning code. The variable "frameratio" 
can be changed interactively, and the actual computer execution 
time for one simulation frame is automatically measured and 
displayed after each change. The integration step size T divided 
by the frame execution time represents the execution speed with 
respect to real time (i.e., speedup over real time). This ratio is 
also calculated automatically after each change in multiframing 
parameters. When the ratio exceeds unity, the user knows the 
problem can be run in real time. 

5. Multiframing Example 

The use of multiple frame rate integration will be 
illustrated here with a reasonably large model that contains a 
small subsystem with fast dynamics. The model represents a 
typical business jet aircraft and includes a large data base 
associated with a number of multivariable aerodynamic 
functions, as well as a simplified flight control system. The 
aircraft is modeled as a rigid body with six degrees of freedom, 
three translational and three rotational. For the purpose of our 
multiframing example, only the aircraft pitch control loop will be 
considered. Figure 6 shows a block diagram of this control 
loop,. where the inner feedback loop with the state variables 6es 
and Ses is associated with the elevator control surface actuator. 

In the elevator actuator loop Cdedot = 0.033 and Kde = 1000. 
This makes the actuator natural frequency equal to 31.62 r a d s  
and the damping ratio 0.522. When the pitch-control loop is  
closed, this is the origin of hl,2 pair shown above. The other 
roots, which originate from the airframe poles and the 
quaternion stabilization loop, are substantially lower i n  
magnitude. Clearly the pitch control loop is the fast subsystem 
which should benefit from multiple framing. Thus the 
partitioning of the overall model into fast and slow subsystems 
is straightforward in this example. In Figure 6 the airframe 
block represents the slow subsystem with the rest of the diagram 
representing the fast subsystem. The pitch loop equations are 
incorporated in the fast DYNAMIC BLOCK along with the 
subprogram invocations for  the slow state variable 
interpolations, as shown in Figure 7. Here the state variables 
are dedo t  and d e s ,  and the fast subsystem inputs fo r  
interpolation are the pitch rate, q, and the four quaternions, e l ,  
e2 ,  e3 ,  and e4. The quaternions are used to calculate the 
direction cosines aI3,  a23, and a33, from which the pitch angle 
theta (i.e., 8), is  computed. If Euler angles rather than 
quaternions had been used in the simulation, then only q and 
theta would need to have been interpolated. 



- ~ 

DYNAMIC fast 
! 

! Elevator actuator : 
! 

! Pitch control system: 
! 

deicom = Ktheta* (thetai-theta-Cq*q-int) 
dei = Deilim*SAT(deicom*Ideilim) 

el-int = INTNlN(frame~ratio~inv,slow~sample,~ 
el ,initialize) 

e2-int = INTNlN(frame-ratio-inv,slow-sample,% 
e2,initialize) 

e3-int = INTNlN(frame-ratio-inv,slow-sample,% 
e3, initialize) 

e4-int = INTNlN(frame~ratio~inv,slow~sample,% 
e4, initialize) 

el el 
e2e2 
e3e3 
e4e4 
a13 
a23 
a33 
theta 
q-int 

udec 

el-int*el-int 
e2_int*e2_int 
e3_int*e3_int 
e4-int*e4-int 

2.*(e2-int*e4-int-el-int*e3-int) 

2. * (e2-int*e3-int+el-int*e4-int) 
elel+e2e2-e3e3-e4e4 
ATAN2(-a13,SQRT(a23*a23+a33*a33)) 

INTNlN(frame-ratio-inv,slow-sample,% 

q, initialize) 
Kde*(dei-des-Cdedot*dedot) 

dedot' = ~delim*SAT(udec*Iudelim) 

desJ = dedot 

END DYNAMIC 

Figure 7. The fast DYNAMIC BLOCK in the multiframe 
simulation. 

The benefit of multiple frame rate integration on both generated for pitch flight control response with an integration 
solution accuracy and numerical stability will be demonstrated step size Ti = 0.000050s. The pitch angle input ei was a step at 
here. Several interpolation algorithms were used for generating t = 0 with a magnitude of 0.15 radian. AB-2 integration was 
the fast data sequences, ranging from zero-order (no used. Figure 8 shows the time history of the pitch angle 
interpolation) to second order formulas. To  study the accuracy response, 0, and the elevator actuator output, a,,. 
improvement with multiframing, a reference solution was 
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Figure 8. Reference step response solution for the pitch control system. 
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Time histories for a step size T 2  = 0.01s were then 
generated for frame ratios N ranging from 1 (no multiple 
framing) to 7. The error measure was computed as the mean 
absolu~e error in the elevator actuator output, 6,,. Table 2 shows 
the solution error for different frame ratios. It is clear from this 
data that multiple frame rate integration improves the solution 
accuracy substantially for frame ratios N up to 4. Beyond N = 4 
there is little improvement. 

Table 2. Solution Error for Different Frame Ratios with AB-2 
Integration; Interpolation Based on rn+l and r,. 

Frame Ratio Mean absolute error in lies 

1 (no framing) 0.0004725 rad 
2 0.0001461 
3 0.0000952 
4 0.000082 1 
5 0.0000794 
6 0.0000792 
7 0.0000791 

The results in Table 2 can be understood by applying Eqs. 
(4) and (5) for the AB-2 characteristic root errors to the system 
eigenvalues listed earlier in this section. When this is done for 
L1,2 = -15.92 + j 26.37 with a step size h = 0.01, the predicted 
fractional error in frequency e m  = -0.00273 and the damping 
ratio error ec = 0.0300. For A3,4 = -1.274 + j4.674 and h = 

0.01, e ,  = 0.00071 and e c  = 0.00048. Thus when no 
multiframing is used, the errors for eigenvalues A1,2 associated 
with the pitch control loop are much larger than the errors for the 
eigenvalues 13,4 associated with the airframe. 

On the other hand when N = 5, the pitch control loop has a 
step size given by 0.01/5 = 0.002. Applying Eqs. (4) and (5) 
to L1,2 with h = 0.002 gives e ,  = -0.00011 and ec = 0.0012. 
The larger of these, ec, is now roughly comparable with the e, 
(= 0.00071) and ey (= 0.00048) as obtained above for the roots 
A3,4 associated with the airframe system, which still utilizes the 
step size 0.01. For N greater than 5 the airframe roots will 
actually predominate and nothing is gained by multiframing the 
pitch control loop to reduce its step size. 

To  examine the effect of multiple frame rate integration on 
the numerical stability, the aircraft simulation was executed 
using AB-2 integration with five different interpolation 
algorithms and various frame ratios. In ADSIM the variables 
"frametime, "steptime" and "speedup" are used to show the 
relationship between integration step size and real-time 
execution. "Frametime" is the actual time in seconds required 
for the AD 100 to execute a single pass through the dynamic 
equations, i.e., one pass through the slow subsystem and N 
passes through the fast subsystem. "Steptime" is the 
mathematical step size used for the integration step Tin  the slow 
subsystem. "Speedup" is therefore defined as 

speedup = steptimelframetime 

and represents the speedup factor over real time in the AD 100 
solution for the stepsize T being used. 
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Figure 9. Marginally stable solution. 



In the numerical stability experiment, marginal stability 
was determined by observing a graphical output of the pitch angle 
0 in response to the step input Bi = 0.15 radian. Figure 9 shows 
a typical time history for a marginally stable solution with the 
frame ratio N = 1, i.e., no multiple framing. Table 3 lists the 
integration step size T and corresponding speedup factor at which 
the solution becomes marginally stable for frame ratios ranging 
from 1 to 7 and for five different interpolation algorithms. Note 

Comparison of the performance in Table 3 for various 
interpolation algorithms shows that first-order interpolation 
based on r,+l and r, gives the best perfomlance. The improved 
dynamics of the higher-order interpolation algorithms is more 
than offset by their increased execution time. It is also clear that 
zero-order interpolation based on r,, i.e., non interpolation, 
produces inferior results. This is because of the additional time 
delay, Tl2, introduced between the slow and fast subsystems by 

that interpolation based on r, is zero-order and hence represent no zero-order interpolation, as noted in Section 3 
interpolation. 

I Table 3. Integration Step Size and Speedup Factor for Marginally Stable Solution. 

Integration step size T (speedup over real time) 
Basis for 

interpolation Frame ratio N = 1 N = 2 N = 3  N = 4  N = 5  N = 6  N = 7  

For N = 1 (no multiple framing) the table shows that the 
system becomes marginally stable for T = h =0.02968. Here the 
instability is due to the eigenvalues A1,2 = -15.92 + j 26.37 , as 
listed earlier in this section and associated with the dynamics of 
the actuator. Thus Alh = -0.473 + j 0.783, which indeed lies on 
the AB-2 stability boundary in Figure 3. This confirms that the 
instability with no multiframing originates in the fast subsystem. 
From z transform theory it turns out that the predicted frequency 
of instability in this case is equal to 0.270lT or 9.10 hertz, which 
is precisely the frequency of the undamped transient in Figure 9. 
On the other hand, for N = 7 and interpolation based on rn+l and 
r,, the system becomes marginally stable for T = 0.1578. In this 
case the step size of the fast subsystem is given by h = TI7 = 
0.0225, which lies well within the AB-2 stability boundary for its 
roots i1,2. Thus the instability must result from the roots A3-4 = 

-1.274 f j 4.674 associated with the slow subsystem. In this 
case A3T = -0.201 + j 0.738, which indeed lies just within the 
AB-2 stability boundary in Figure 3 and confirms the expected 
instability based on the slow subsystem eigenvalues. 

When multiframing is used for the fast subsystem, the 
"frametime" will actually increase. This is because the time 
required for the input interpolations and N integration steps of 
the fast subsystem is added to the execution time for the single 
integration step of the slow subsystem. Even though the overall 
frame time has increased, however, the integration step h for the 
fast subsystem will be reduced as the frame ratio N is increased, 
since h = TIN. This accounts for the improved stability evident 
in Table 3 for frame ratios up to N = 5 ,  as reflected by the 
increased speedup over real time before the simulation becomes 
marginally stable. Beyond N = 5 the fast subsystem step size h 
has been reduced to the point where it is the slow system step 
s i x  T that causes the instability. This is why the overall stability 
deteriorates for N larger than 5, since as N is further increased, 
the overall frame time and hence T for the slow subsystem 
actually increases. 

In the example of mutiple frame rate integration described 
in this section, we have only considered interpolation for inter- 
facing the fast subsystem to the slow subsystem. Alternatively, 
extrapolation could have been used. However, reference to 
Table 2 shows that the dynamic performance of extrapolation is 
considerably poorer. It should probably be considered only 
when it is desirable to avoid the necessity of integrating the slow 
subsystem first. There would, however, have been one advan- 
tage in using extrapolation for our example here. If extrapola- 
tion had been used, it would only have been necessary to 
interface the pitch angle 0 and pitch rate q from the slow to the 
fast subsystem, rather than the four quaternions e l ,  e2, e3 and 
e4, as well as q. This would this have saved not only three 
interpolation calculations but also the additional calculation of 
direction cosines and 0 each fast frame. When the interface 
between slow and fast subsystem consists entirely of state 
variables, this advantage for extrapolation is of course no longer 
present. 

6. Conclusions 

In this paper we have seen how the use of multiple frame 
rate integration in the simulation of a dynamic system can 
improve both the accuracy and stability of the simulation. In 
many cases it can make the difference between whether or not a 
simulation on a given computer can be run in real time with 
satisfactory accuracy. Analytic methods based on linearization 
of the dynamic system being simulated can be used to estimate 
the dynamic performance and stability for given integration 
methods and step sizes. This can in turn be utilized to make 
preliminary assessments of the optimal separation into slow and 
fast subsystems, as well as the optimal ratio N of the fast 
compared with the slow subsystem. However, it is also 
important to have an interactive software system which permits 
the user to experiment with the simulation itself in order to 



determine optimal problem partitioning and frame ratios. The 
application of such a system, ADSIM for the AD 100 computer, 
to the simulation of a combined airframe, flight control system 
with the use of multiple framing has been described. An 
additional consideration of importance in mutiple framing is the 
type of interpolation or extrapolation algorithm used for the 
slow-to-fast system interfacing. Again, analytic techniqes have 
been described here for assessing the performance of various 
algorithms, although interactive experimentation with different 
interpolation or extrapolation methods at run time can also be 
extremely useful. 
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