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Abstract

A local preconditioning matrix for the multi-
dimensional Euler equations is derived that
reduces the spread of the characteristic
speeds from a factor (M +1)/ min(M, |M—1|)
to a factor 1/\/1 — min(M?, M-2?), where M
is the Mach number. It is shown that the
latter value is the lowest attainable. Nu-
merical experiments with this precondition-
ing, applied to an explicit upwind discretiza-
tion of the two-dimensional Euler equations,
show that it significantly increases the rate
of convergence to a steady solution, as pre-
dicted theoretically. Other benefits expected
from the use of the new preconditioning are
discussed.
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1 Introduction

When marching in time with an explicit Euler
code, there are three distinct choices for the
time-step.

1. Global time-step: in all computational
cells the same value of At is used. This
yields time-accuracy of the numerical so-
lution.

2. Local time-step: each cell gets its own
Atijk, scaling with the maximum time-
step that ensures local stability. This
yields a uniform Courant number for all
cells. Time-accuracy is lost, but march-
ing to a steady state is accelerated, and
the Euler schemes can be designed such
that the steady solution is not affected.

Using a local time-step is equivalent to
preconditioning the residual by a scalar;
the preconditioning removes the stiffness
due to spatial variations in the largest
characteristic speed and in cell size.
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3. Characteristic time-step: each char-
acteristic variable is updated with its
own Atg)k This is equivalent to precon-
ditioning by a local matriz; it takes away
the stiffness due to the variation among
the local characteristic speeds, while the
effect of cell aspect-ratio can also be neu-
tralized. Time-accuracy is even further
lost, but convergence to the steady state,
especially to subsonic and transonic so-
lutions, may be accelerated dramatically.

Characteristic time-stepping may be
used in tandem with local time-stepping
for the maximum effect.

For the one-dimensional Euler equations,
the construction of an effective matrix pre-
conditioner is relatively simple, because
the characteristic speeds and directions are
known without ambiguity. For the multi-
dimensional equations the situation is much
complicated by the omni-directional propa-
gation of acoustic information: there is no
unique decomposition of the flow field in
terms of discrete waves.

In this paper a new result for the 2-D and
3-D Euler equations is presented, in the form
of a local preconditioning matrix that reduces
the condition number of the characteristic
speeds from (M + 1)/ min(M,|M - 1]) to
1/\/1 — min(M?2, M-?), where M is the Mach
number; this can be shown to be the lowest
condition number attainable. Numerical re-
sults for 2-D subsonic, transonic and super-
sonic flow over an airfoil are presented that
fully confirm the expectation of accelerated
convergence to the steady solution.

Other potential benefits of the use of the
preconditioning matrix relate to its ability
to make the system of the Euler equations
- and discrete approximations thereof - be-
have more as a scalar equation; these are also
briefly discussed.

2 Preconditioning the
one-dimensional Euler
equations

2.1 Analysis

The quasi-one-dimensional Euler equations
for flow in a channel of variable cross-section
can be written as

U
%}tj— = —A(U)%—-I-+S(U,x) = Res(U); (1)
for the present analysis the conservation form
is not required. Using a local time-step for
these equations is equivalent to using a global
time-step for the Euler equations precondi-
tioned by a scalar:

& - @)
ot
here r(A) is the spectral radius of A. Fur-
thermore, using characteristic time-steps is
equivalent to using a global time-step for the
Euler equations preconditioned by a matrix:
%Itj— = r(A)|A| ' Res;
here |A| is the matrix with the same eigenvec-
tors as A but with the absolute eigenvalues
of the latter. In practice each of these eigen-
values may locally vanish, or be very small,
making the inversion of |A| impossible or un-
desirable. Therefore, Equation (1) will actu-
ally be preconditioned according to

o o #(A)(JAF)™ Res,

t @
where the eigenvalues of |A|* are bounded
away from zero. The lower bound of the
eigenvalues of |A|* must be chosen in ac-
cordance with the magnitude of the local
source term, for reasons of numerical stabil-
ity. The replacement of the matrix |A| by
a non-singular matrix |A|* arises also in the

[maxr(A)] [r(A)]"" Res;

3)
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numerical implementation of the so-called en-
tropy condition for first-order hyperbolic sys-
tems. This technique is discussed in detail by
the present authors in [1].

Ignoring the effect of the modification (4),
the above preconditioning achieves a local
condition number = 1, independent of the lo-
cal value of the Mach number: all character-
istic speeds are made equal in absolute value.

It is important to realize that precondition-
ing by (|A[*)~! does not change the signs
of the characteristic speeds, and thus does
not interfere with the imposition of bound-
ary conditions at either end of the channel.
In consequence, it does not alter the steady
solution admitted by such boundary condi-
tions.

When characteristic time-stepping is com-
bined with the use of local time-steps, this
equivalent to using a global time-step for the
preconditioned system

ou

ot = [maxr(A) (1AF) " Res.  (5)

2.2 Numerical
studies

convergence

To illustrate the power of local precondition-
ing, some numerical results are displayed in
Figures 1 through 12. The odd-numbered
figures show exact and discrete Euler so-
lutions (Mach number) of steady flow in
a converging-diverging nozzle with cosine-
shaped area-function (50% constriction), for
various in- and outflow conditions. The dis-
crete solutions are obtained with a first-order
upwind scheme that becomes second-order-
accurate in the steady state, owing to char-
acteristic decomposition of the source-term
vector [2]. The odd-numbered figures show
the corresponding convergence histories for
all three different time-stepping strategies:

® constant time-step for the entire grid;

Euler Equations for Channel Flow
Mach Number in Channel
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Figure 1: Subsonic solution of the Euler equa-
tions for flow in a converging-diverging chan-
nel; shown are Mach-number distributions

® local time-stepping (constant Courant
number for the entire grid);

e characteristic time-stepping (precondi-
tioning by local matrix) combined with
local time-stepping.

The savings in number of iterations with
characteristic time-stepping, compared to lo-
cal time-stepping, run from a factor 3 (tran-
sonic shocked flow) to 10 (supersonic, almost
sonic flow). The actual savings in comput-
ing time are somewhat less, as the precondi-
tioning technique requires the computation of
(A]*)™" and multiplication of the residual by
this matrix.

Figures 13 and 14 illustrate an application
of the preconditioning technique to a problem
of viscous flow, namely, the self-similar hyper-
sonic (Mach 7.95) flow over a cone also used
as a test case in (3] and [4]. The terms de-
scribing the effects of viscosity and heat con-
duction are regarded as source terms, and de-
termine the threshold level of the eigenvalues
of the matrix |A[*. The discrete distribution
of normalized temperature with angle coor-
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Euler Equations for Channel Flow
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Figure 2: Convergence histories for the com- Figure 4: Convergence histories for the com-
putation of Figure 1, for three different time- putation of Figure 3, for three different time-
stepping techniques
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Figure 3: Subsonic, nearly sonic solution of Figure 5: Supersonic, near sonic solution of
the Euler equations for flow in a converging- the Euler equations for flow in a converging-
diverging channel; shown are Mach-number diverging channel; shown are Mach-number
distributions

distributions
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Figure 6: Convergence histories for the com-
putation of Figure 5, for three different time-
stepping techniques

Euler Equations for Channel Flow
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Figure 8: Convergence histories for the com-
putation of Figure 7, for three different time-
stepping techniques
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Figure 7: Supersonic solution of the Euler
equations for flow in a converging-diverging
channel; shown are Mach-number distribu-
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Figure 9: Transonic solution of the Euler
equations for flow in a converging-diverging
channel; shown are Mach-number distribu-
tions



Euler Equations for Channel Flow
Convergence History
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Figure 10: Convergence histories for the com-
putation of Figure 9, for three different time-
stepping techniques
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Figure 11: Transonic, discontinuous solu-
tion of the Euler equations for flow in
a converging-diverging channel; shown are
Mach-number distributions
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Figure 12: Convergence histories for the com-
putation of Figure 11, for three different time-
stepping techniques

dinate is shown in Figure 13; convergence
histories are shown in Figure 14. The sav-
ings through preconditioning are substantial,
in spite of the crudeness of the choice of pre-
conditioning matrix. It is expected that the
technique for viscous flows can still be refined.

3 Two-Dimensional Pre-
conditioning

3.1 General features

The two-dimensional Euler equations can be
written as

au ou ou

(6)
There is no obvious way to precondition the
residual with a local matrix, as the matrices
A(U) and B(U) do not have the same eigen-
vectors, and therefore can not be diagonalized
simultaneously. This means Equation (6) can

— Char. At
-..- Global At



Navier Stoke Equations for Hypersonic Cone Flow

Temperature vs. Angle
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Figure 13: Numerical solution of the Navier-
Stokes equations for self-similar hypersonic
flow (M, = 7.95) over a cone; shown is the
non-dimensional temperature distribution.

Navier Stoke Equations for Hypersonic Cone Flow
Convergence History
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Figure 14: Convergence histories for the com-
putation of Figure 13, for three different time-
stepping techniques

not be written as a system of coupled scalar
convection equations.

The derivation of a local preconditioning
matrix that narrows the range of characteris-
tic speeds for this system of equations there-
fore is not trivial; it is most easily under-
stood in the case of supersonic flow. Regard-
less of the flow type, the analysis starts out
with writing the Euler equations in a coor-
dinate system aligned with the local flow ve-
locity. For simplicity of notation we shall as-
sume that this is the positive z-direction, and
that the state vector U includes as its compo-
nents pressure, two velocity components and
entropy:

(7)

= 3k

dp — a%dp

Here p and @ denote density and sound speed,
respectively. In the streamline coordinate
system the matrices A and B both are sym-
metric:

,B=

oo a
coR e
o8 oo
f OO O
O R OO
OO OO
O O OR
OO C o

(8)
Note that v vanishes and u equals the full
flow velocity, q.
Preconditioning is now carried out in two
steps:

1. Streamwise preconditioning, which
equalizes the characteristic speeds in the
streamwise direction; this is the equiva-
lent of the 1-D preconditioning described
in Section 2.1.

Its ‘undesirable effect is to exaggerate the
speeds of the acoustic waves travelling
normal to the flow direction; this makes
the second step necessary.
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2. Normal preconditioning, which slows
down the acoustic waves travelling nor-
mal to the flow.

3.2 Supersonic case

For supersonic flow the first precondition-
ing is accomplished by the matrix A~! (=
|A|™1), just as in the 1-D case. The once-
preconditioned equations read

U _  , _,(,0U _8uU
5 = -A (Aax+Bay) 9)
U . _,.0U
= —(Ia—z+A Ba—y-). (10)

This system - unlike the original Euler equa-
tions (6) - does allow representation by four
pure convection equations; these can be ob-
tained by a change of state quantities. The
z-components of the convection velocities all
equal unity, while the y-components are the
eigenvalues of A~'B, which for supersonic
flow are known to be real. The effect of the
first preconditioning on the wave-propagation
properties of the Euler equations is illustrated
in Figures 15 and 16. Note, in particular,
that the acoustic wave front collapses onto
two point disturbances moving at angles u
and —pu, where

1
H = a.rcta.n—ME (11)

is the Mach angle. We shall introduce the
notation
B=vVM?-1. (12)

The full propagation speed of the acous-
tic disturbances equals M/B, which increases
beyond any limit as M approaches unity.
The second preconditioning takes care of this
problem: it reduces the acoustic wave speeds
by a factor 1,

WAVE SPEEDS AND FRONT, 2-D EULER
M = 1.1, no preconditioning

Figure 15: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
1.1, for the original Euler equations. The
speeds of plane waves (s in legend) mov-
ing at an angle § are the eigenvalues of
A cos 8 + Bsin §; the envelopes represent the
wave fronts (f in legend) produced by a point
disturbance. Waves #1 and #4 are sound
waves, #2 is an entropy wave, and #4 is a
shear wave.
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WAVE SPEEDS AND FRONT, 2-D EULER

M = 1.1, stream-wise preconditioning

2.50

WAVE SPEEDS AND FRONT, 2-D EULER
M = 1.1, full preconditioning
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Figure 16: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
1.1, for the Euler equations after streamwise
preconditioning. For further details see the
caption to Figure 15.

T =

& _viow,

without affecting the other convection speeds.
The effect of the second preconditioning on
the wave-propagation properties is seen in
Figure 17.

The full preconditioning matrix, product of
the two factors discussed above, becomes

(13)

LM —5M 0 0

M Z+1 0 0
P,p=| 7Y & . (14
b 0 070’()

0 0 01

note that it is symmetric. The normalization
is such that all characteristic speeds equal the
flow speed q.

From Figures 15 and 17 it can be seen that
the region of influence of a point source of
waves for the preconditioned Euler equations
is contained in the region of influence for the
original equations. Thus, the preconditioning
does not interfere with any prescribed bound-
ary conditions, and will not alter the steady

L] u LS L] L ¥
-1.00 -0.50 0.00x 0.50 1.00 1.50

Figure 17: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
1.1, for the Euler equations after full precon-
ditioning. For further details see the caption
to Figure 15.

solution admitted by such boundary condi-
tions.

3.3 Subsonic case

The optimal preconditioning for the subsonic
case is not a straightforward extension of
the corresponding 1-D technique discussed in
Section 2.1. Specifically, the matrix |A|™
is not the right choice for the streamwise-
preconditioning step. This is not so evident
for M close to unity, but clearly shows when
M goes to zero: the second precondition-
ing can not prevent the condition number for
the characteristic speeds from deteriorating
to 1/vVM.

An analysis of symmetric preconditioning
matrices with the same sparsity as P;p in
Equation (14) leads to a surprising result:

The matriz Pop is also the optimum local
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WAVE SPEEDS AND FRONT, 2-D EULER
M = 1, no preconditioning

2.50 _ 1st waves WAVE SPEEDS AND FRONT, 2-D EULER
o o olst wave f M=1, full precond.it.ionins
—_2nd waves 1.25 —_1st wave s
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Figure 18: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
1, for the original Euler equations. For fur-
ther details see the caption to Figure 15.

preconditioning matriz in the subsonic case,
provided that the definitions of B and T are
extended in the following way:

g = V1-M? M<1, (15)
- vM? -1, M2>1;

; o= vV1i-M?, M <1, (16)
Tl VI=-M1?, M>1.

The effect of this matrix on the wave-
propagation properties of the Euler equations
is illustrated by the sequence of Figures 18-
27. Special attention should be given to Fig-
ure 19, which shows the wave fronts after full
preconditioning in the limit of M | 1. The
acoustic disturbances in this case are emitted
at right angles to the flow direction, indicat-
ing the limit of the Mach angle. For M <1
the Mach angle becomes complex, meaning
that there no longer exists a pair of real prop-
agation directions for the acoustic informa-
tion. Instead, an omni-directional acoustic
wave front must be invoked, even for the pre-
conditioned equations.

How the transition occurs is seen in Figure

T \ L] R ] L g LS
-1.00 -0.50 O.OOX 0.50

Figure 19: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
1, for the Euler equations after full precondi-
tioning. For further details see the caption to
Figure 15.

WAVE SPEEDS AND FRONT, 2-D EULER
M = 0.99 , no preconditioning
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Figure 20: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.99, for the original Euler equations. For
further details see the caption to Figure 15.
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WAVE SPEEDS AND FRONT, 2-D EULER

M = 0.99, full preconditioning
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WAVE SPEEDS AND FRONT, 2-D EULER
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Figure 21: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.99, for the Euler equations after full precon-
ditioning. For further details see the caption
to Figure 15.

21: the two acoustic point-disturbances from
Figure 19 have become the end points of the
major axis of a slender ellipse, of which the
half minor axis equals 7. This means that the
condition number of the characteristic speeds
for M < 1 equals 1/v/1 — M2, a result that
can not be improved upon, if we insist on con-
tinuity of the geometry of the acoustic wave-
front when the flow changes type. Fortu-
nately, this singularity of the condition num-
ber for M 1 1 is an inverse-square-root singu-
larity, which means a great improvement over
the behavior of (M +1)/(1 — M), the condi-
tion number for the usual Euler equations.

The validity of the preconditioning ma-
trix (14) in the limit of M | 0 is demon-
strated by Figure 27, which shows an es-
sentially circular acoustic wave-front travel-
ling at the flow speed rather than the sound
speed. This result improves upon the pre-
conditioning of Turkel [5] for almost incom-
pressible flow, which yields a condition num-

L L] L] L T
-2.00 -1.00 O.OOX 1.00

2.00

3.00

Figure 22: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.9, for the original Euler equations. For fur-
ther details see the caption to Figure 15.

WAVE SPEEDS AND WAVE FRONT, 2-D EULER
M = 0.9, full preconditioning
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Figure 23: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.9, for the Euler equations after full precon-
ditioning. For further details see the caption

to Figure 15.
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WAVE SPEEDS AND FRONT. 2-D EULER
M =0.5, no preconditioni%

WAVE SPEEDS AND FRONT, 2-D EULER
M=0.1,no preconditionin§
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Figure 24: Polar plot of plane-wave speeds Figure 26: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M = (lines) and their envelopes (symbols) for M =
0.5, for the original Euler equations. For fur- 0.1, for the original Euler equations. For fur-

ther details see the caption to Figure 15.

WAVE SPEEDS AND FRONT, 2-D EULER
M = 0.5, full preconditioning

ther details see the caption to Figure 15.

WAVE SPEEDS AND FRONT, 2-D EULER
M = 0.1, full preconditioning
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Figure 25: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.5, for the Euler equations after full precon-
ditioning. For further details see the caption
to Figure 15.
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-1.25 -0.75 —0.25x 0.25 0.75 1.25

Figure 27: Polar plot of plane-wave speeds
(lines) and their envelopes (symbols) for M =
0.1, for the Euler equations after full precon-
ditioning. For further details see the caption
to Figure 15.
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ber (v5 + 1)/(v/5 — 1). Turkel’s matrix is
sub-optimal because it has non-zero elements
only on the main diagonal. Later, Turkel
[6] explored the use of off-diagonal elements,
thereby achieving a condition number = 1 for
M | 0. The resulting preconditioning ma-
trix, though, lacks the general applicability
of Pg D-

3.4 Numerical implementation

Before it can be applied to the Euler equa-
tions under general flow conditions, the ma-
trix P;p must undergo two similarity trans-
formations: one for measuring momentum
in a Cartesian frame rather than a stream-
aligned frame, and one for the change from
the symmetrizing variables (7) to the con-
served variables. Furthermore, the unbound-
edness of the matrix at M = 1 must be pre-
vented by bounding § away from zero, as in
the one-dimensional case. Because of its nor-
malization the matrix remains bounded for
M | 0, but the local time-step value, needed
to reap the benefit of the preconditioning,
nominally increases as M~!, and obviously
must be capped at some finite value.

The next question to be addressed is: how
will the preconditioning, derived for the par-
tial differential equations, act upon the dis-
cretized equations, i.e. in the presence of a
numerical truncation error? This is not an is-
sue in one dimension, where the precondition-
ing matrix commutes with the flux Jacobian,
but very much so in two and three dimen-
sions, where the Jacobians commute neither
with each other nor with the preconditioner.

Initial numerical experiments, in which the
preconditioning was applied to a standard
first-order upwind-differencing Euler scheme
based on Roe’s [2] flux function, indicated a
severe stability restriction on the time-step.

Analysis showed that this restriction could be
lifted only through a modification of the nu-
merical flux function. The bottom line is that
the preconditioned scheme must have the form
of a first-order upwind-differencing scheme
for the preconditioned Euler equations. For
Roe’s flux function the modification amounts
to a subtle change in the artificial-dissipation
matrix.

For an illustration with formulas, assume
the grid locally is stream-aligned, as in Sec-
tion 3.1; the Euler equations can then be writ-
ten as

oW oF 0G
ot T "oz By an
oW A
= —Ac ax —Bc 6y y (18)

where W, F, G, A, and B, represent the
conserved state quantities, their fluxes, and
the flux Jacobians. The upwind-biased flux

in, say, the z-direction at the interface of cells
L (left) and R (right) reads

WL)’
(19)

where A, is the Roe-average of the Jacobian
for the pair (W, Wg). In case of precon-

ditioning, the artificial-viscosity matrix

1
Fupwind = §(FL + FR)

must be replaced by 135'5 |f)2DAc|, which is
different for M < 1, i.e., when the eigenval-
ues of A, have mixed signs. The modified
flux thus reads

Frod = —(FL+FR)——P;D |PapA.

upwind T

(20)
After multiplication of the discrete residual
by Pyp the dissipation matrix approximately
becomes |P2pA. I (exactly only for the lin-
earized Euler equations), which is the proper
matrix to use when formulating an upwind
scheme for the preconditioned equations

iAW oW A%

ot ~PBe

= —PA oz Jy

(21)
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The flux in the y-direction is treated similarly,
by replacing lﬁcl by P} ,ngﬁcl; these ma-
trices are different for all M, since the eigen-
values of B, always have mixed signs.

It turns out that the new matrix precon-
ditioning does not always necessitate a mod-
ification of the numerical flux function. It
was found, for instance, that no change was
needed in an upwind-biased flux based on
Van Leer’s [7] flux-vector splitting. The same
tolerance is expected of flux functions incor-
porating a scalar dissipation coefficient, such
as used in central-differencing schemes [8).

3.5 Numerical
studies

convergence

Numerical results illustrating the effect of lo-
cal preconditioning on computing steady two-
dimensional flows about a NACA 0012 airfoil
are displayed in Figures 28 through 43, or-
dered by decreasing free-stream Mach num-
ber. The computations were made with first-
order upwind differencing on a coarse O-grid
(32 x 16 cells), so the quality of the solutions
is poor; what matters, however, is how fast
these solutions were obtained. In most com-
putations Roe’s flux function, or its precondi-
tioned version, was used; only Figures 35 and
36 were based on Van Leer’s flux-vector split-
ting. Time-marching was done by a two-stage
scheme with strong high-frequency damping
(see Section 6), at a local time-step corre-
sponding to a sub-optimal Courant-number
value of 0.5.

The first pair of figures of the sequence
shows the solution (Mach contours) for
M, = 18 and a = 0° (zero angle of
attack), obtained with the preconditioned
scheme, and the residual-convergence histo-
ries for this computation (solid line) and a
computation of the same flow with the reg-

M=1.8, NACA 0012, 32x16, ROE
preconditioned, Mach contour

2.00
1
h 2
1.43+ 3
i 4
5
0.86 4 (]
J 7
8
Y0.29~ 9
- 10
—0.294
- 13 1.1800
—0.864
b 16 1.0250
—1.43+
b 19 0.8700
-2.00

1T v v T
~1.50-0.93-0.36 0.21x 0.79 1.36 1.93 2.50

Figure 28: Steady solution of the Euler
equations for flow over a NACA 0012 air-
foil at M, = 1.8, @ = 0° shown are
Mach-number contours. Matrix precondi-
tioning was applied in combination with local
time-stepping. Numerical flux function used:
Roe’s.

ular scheme (dashed line). The steady so-
lution in Figure 28, although crude, shows
the essential features of the flow at low res-
olution: a smeared bow shock and an at-
tempt to a tail shock. The free-stream char-
acteristic condition number at Mach 1.8 is
(1.8 + 1)/(1.8 — 1) = 3.5, although much
higher values are found near the normal sec-
tion of the bow shock, so a convergence ac-
celeration by preconditioning of factor 3.5 or
more might be anticipated. Such a prediction
would be based on the assumption that con-
vection of errors out of the computational do-
main is solely responsible for the convergence
process; in reality numerical dissipation plays
a role, as well as interaction of the error waves
with the domain boundaries. Figure 29 shows
a difference in convergence rate of a factor 3.2
after the initial transients are over, in reason-
able agreement with the prediction.
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M=1.8, NACA 0012, 32x16, ROE
0 Convergence history, 2-stage, CFL=0.5

precond
n local dt

-13.0

T ] L} L} T L] L) L T ¥ ) | ¥ L §
0. 429. 857. 1286. 1714. 2143, 2571. 3000.
Iterations

Figure 29: Residual-convergence histories for
the computation of the solution of Figure 28
(solid line) and the corresponding solution
without preconditioning (dashed line).

The next pair, Figures 30 and 31, shows
one solution and two residual histories for
M, = 1.2, a = 0°. Free-stream conditions
would suggest a possible speed up by precon-
ditioning of a factor 12; in reality the speed-
up is about a factor 6.

Figures 32 to 36 all concern the transonic
lifting flow defined by M., = 0.85, o = 1.0°,
a well-known AGARD test-case [9]. The first
trio shows both solutions, regular and after
preconditioning, with Roe’s flux, and the cor-
responding residual histories. The two solu-
tions are somewhat different, because of the
different dissipation matrices used in the two
discretizations. Both capture the transonic
regions terminated by normal shocks; the so-
lution by the preconditioned scheme shows
signs of a large entropy error at the airfoil
surface (bending of Mach contours). The
free-stream condition numbers are 12.3 be-
fore and 1/ \/il — 0.85%)=1.90 after precon-
ditioning, suggesting a possible convergence
acceleration of a factor 6.5; the actual con-

M=1.2, NACA 0012, 32x16, ROE
preconditioned, Mach contour

2.00 1 1.4800
2 1.4397
1.434 3 1.3993
41.3590
h 5 1.3187
0.86- 6 1.2783
1 7 1.2380
8 1.1977
929 91.1573
i 10 1.1170
11 1.0767
—0.29 12 1.0363
4 13 0.9960
14 0.9557
—0.86+ 15 0.9153
§ 16 0.8750
17 0.8347
—1.431 18 0.7943
: 19 0.7540
-2.00 L R S SN, SN, AL AL A AL A 0N 20 0.7337
-1.50-0.93-0.36 0.21 079 136 1.93 2.50
Figure 30: Steady solution of the Euler
equations for flow over a NACA 0012 air-
foil at M = 1.2, a = 0° shown are
Mach-number contours. Matrix precondi-
tioning was applied in combination with local
time-stepping. Numerical flux function used:
Roe’s.
M=1.2, NACA 0012, 32X16, ROE
0 Convergence history, 2-stage, CFL=0.5
—precond.
——-local dt
~1.0-
—3.0-
~5.0-
Log(res) |
-7.04
-9.0+
-11.0+
-13.0

L 1 1 L] L T 1 L] T T T Li L|
0. 429. 857. 1286. 1714. 2143. 2571. 3000.
Iterations

Figure 31: Residual-convergence histories for
the computation of the solution of Figure 30
and the corresponding solution without pre-
conditioning.
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=0.85, NACA 0012, 32x16, ROE

local dt, 2-stage, CFL=0.5 M=0.85, NACA 0012. 32X16, ROE

112140 9090 preconditioned, Mach contour
21.1822 , 11.2140
31.1504 . 21.1822
41.1186 1434 31.1504
5 1.0868 41.1186
6 1.0550 b 5 1.0868
71.0232 0.864 6 1.0550
8 0.9914 . 71.0232
9 0.9596 8 0.9914
10 0.9278 0.29 9 0.9596
11 0.8960 i 10 0.9278
12 0.8642 11 0.8960
13 0.8324 —0-291 12 0.8642
14 0.8006 - 13 0.8324
150.7688 _ o | 14 0.8006
16 0.7370 ~ 15 0.7688
17 0.7052 - 16 0.7370
18 0.6734 _; 45| 17 0.7052
1906416 ~ 18 0.6734
20 0.6098 . 19 0.6416
—2.00 T rvrr1rr. . r .t rr 20 0.6098
~1.50-093-0.36 0.1 0.79 1.36 '1.53 2.50
Figure 32: Steady solution of the Euler equa- . )
8 y ot el Figure 33: Steady solution of the Euler
tions for flow over a NACA 0012 airfoil at ) .
o equations for flow over a NACA 0012 air-
M, = 0.85, a = 1.0° shown are Mach- o
. . foil at M, = 0.85, a = 1.0°; shown are
number contours. Local time-stepping was : .
. . . .. Mach-number contours. Matrix precondi-
applied. Numerical flux function used: Roe’s. . . . g N .
tioning was applied in combination with local
time-stepping. Numerical flux function used:
Roe’s.
vergence rates after initial transients differ a
factor 5.5.
F . th ¢ vair of fi M=0.85, NACA 0012, 32x16, ROE
or comparison € Ilf')X pair .0 gu.res Convergence history, 2-stage, CFL.=0.5
shows the steady solution obtained with 0 precond
T _local dt

Van Leer’s flux-vector splitting (the regular
and preconditioned schemes give identical re-
sults), and the two residual histories. The so-
lution differs from the previous ones obtained
with Roe’s flux, illustrating the spread among
first-order results on the present grid. The
speed-up by preconditioning for the flux-split
scheme is 5.0.

Figures 37 to 39 show solutions and resid-
ual histories for fully subsonic flow, My =
0.5, a = 0°. At this Mach number the free-
stream condition number reaches its mini-
mum for subsonic flow, namely, 3; for lower
Mach numbers the flow speed becomes the
lowest characteristic speed, causing the con-
dition number (= 1 + 1/M) to rise again.
The condition number after preconditioning
is 1.15, so a speed-up of a factor 2.6 is ex-

LS L] L L} LS L) L] L ¥ v L 4 L] L
0. 429. 857. 1286. 1714. 2143. 2571. 3000.
Iterations

Figure 34: Residual-convergence histories for
the computation of the solutions of Figures
32 and 33.
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M=0.85, NACA 0012, 32x16, FVS

M=0.5, NACA 0012, 32x16, ROE
local dt, Mach contour

local dt, Mach contour 2.00 1 0.5700
11.2140 2 0.5580
21.1822 3 0.5460
31.1504 1'43] 4 0.5340
41.1186 5 0.5220
51.0868 0.86+ 6 0.5100
6 1.0550 i 7 0.4880
71.0232 8 0.4860
80.9914 .29 9 0.4740
9 0.9596 i 10 0.4620
10 0.9278 11 0.4500
11 0.8960 —0.294 12 0.4380
12 0.8642 - 13 0.4260
13 0.8324 14 0.4140
14 0.8006 —0-861 15 0.4020
15 0.7688 4 16 0.3900
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Figure 35: Steady solution of the Euler equa-
tions for flow over a NACA 0012 airfoil at
M, = 085, a = 1.0°; shown are Mach-
number contours. Numerical flux function
used: Van Leer’s. The regular and precon-
ditioned schemes produce identical solutions.

M=0.85, NACA 0012, 32x16, FVS
Convergence history, 2-stages, CFL=0.5

.0
1 — precond

——- local dt
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0. 429. 857. 1286. 1714. 2143. 2571. 3000.
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Figure 36: Residual-convergence histories for
the computation of the solution of Figure
35 with the regular and preconditioned flux-
vector split schemes.

Figure 37: Steady solution of the Euler equa-
tions for flow over a NACA 0012 airfoil at
M, = 0.5, a = 0°; shown are Mach-number
contours. Local time-stepping was applied.
Numerical flux function used: Roe’s.

pected. The actual speed-up in the later
stages of convergence is 2.7; the closeness of
agreement is probably accidental. The error
on the airfoil surface for the preconditioned
scheme has become quite prominent.

Figures 40 to 42, for M, = 0.1, a = 0°,
demonstrate the ability of the precondition-
ing to remove the stiffness of the Euler equa-
tions in the limit of incompressible flow. Pre-
conditioning reduces the condition number by
a factor 11; the convergence histories indicate
a factor 8.0 speed-up. The error at the surface
in the solution by the preconditioned scheme
is not worse than for M., = 0.5, but the ac-
curacy of the regular solution is now starting
to degrade.

Finally, Figure 43 shows the two conver-
gence histories for the case My, = 0.01, a =
0°. The kinetic energy of this flow is so small
in comparison to its internal energy, that
round-off errors in the computation of pres-
sure from total energy are significantly raising
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M=0.5, NACA 0012, 32x16, ROE
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Figure 38: Steady solution of the Euler
equations for flow over a NACA 0012 air-
foil at My, = 0.5, a = 0° shown are
Mach-number contours. Matrix precondi-
tioning was applied in combination with local
time-stepping. Numerical flux function used:
Roe’s.
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Convergence history, 2-stage, CFL=0.5
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Figure 39: Residual-convergence histories for
the computation of the solutions of Figures

37 and 38.
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Figure 40: Steady solution of the Euler equa-
tions for flow over a NACA 0012 airfoil at
M., = 0.1, a = 0°; shown are Mach-number
contours. Local time-stepping was applied.

Numerical flux function used: Roe’s.

M=0.1, NACA 0012, 32x16, ROE
preconditioned, Mach contour
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Figure 41: Steady solution of the Euler
equations for flow over a NACA 0012 air-
foil at M, = 0.1, a = 0° shown are
Mach-number contours. Matrix precondi-
tioning was applied in combination with local
time-stepping. Numerical flux function used:

Roe’s.
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0 Convergence history, 2-stage, CFL=0.5
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Figure 42: Residual-convergence histories for
the computation of the solutions of Figures
40 and 41.

the value of “machine-zero.” The precondi-

tioned scheme produces a solution hardly dif-
ferent from the one for My, = 0.1 (Figure 41),
and achieves convergence in the same number
of iterations; convergence without precondi-
tioning is even slower than before. We did
not pursue the regular solution until conver-
gence; the non-converged solution is far-off.
The theoretical speed-up by preconditioning,
a factor 101, is not realized, because of the
limiting of the time-step explained in Section
3.3.

The last examples are not intended for ad-
vocating the use of discretizations of the full
compressible Euler equations for low-speed ir-
rotational flows. The entropy and vorticity
disturbances, convected so swiftly owing to
the preconditioning, need not be there in the
first place. Still, it is remarkable that an ex-
plicit scheme can produce steady solutions of
the Euler equations on a given grid in a lim-
ited time for the entire range of flow speeds.

M=0.01, NACA 0012, 32x16, ROE
Convergence history, 2-stage, CFL=0.5
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Figure 43: Residual-convergence histories for
the computation of the steady flow about
a NACA 0012 airfoil at M, = 0.0l,a0 =
0°, without and with matrix preconditioning.
Numerical flux function used: Roe’s.

4 Three-dimensional pre-
conditioning

When stepping up from two to three dimen-
sions, some further deterioration of the con-
dition number has to be accepted. The rea-
son is that in three dimensions a new kind of
shear wave is possible, namely, one that ro-
tates the flow velocity; this wave mode can
not be separated from the acoustic waves
when manipulating the Euler equations. In
consequence, when the acoustic waves are
slowed down by a factor 7 in the supersonic
case, the 3-D shear wave is slowed down too.
The condition number therefore deteriorates

tol/v1—-M-2for M | 1.

The preconditioning matrix for the 3-D Eu-
ler equations in a streamline-aligned coordi-
nate system is similar to its two-dimensional
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version in Equation (14):

ZM* —EM 0 0 0
~HM EH+1 000
P3p = 0 0 700 ]-(22
0 0 070
0 0 001
5 One-dimensional pre-

conditioning revisited

It has been observed, in Section 2.2,
that streamwise preconditioning for two-
dimensional subsonic flow is not done with
an generalization of the matrix used for one-
dimensional flow. Inversely, though, the
matrix Pyp, can be reduced to a perfectly
valid one-dimensional preconditioner, by tak-
ing 7 = 1 and removing its third row and col-
umn. Further analysis of symmetric matrices
with the same sparsity brings to light that
there exists a one-parameter family of one-
dimensional preconditioning matrices, all ca-
pable of equalizing the characteristic speeds.
Only one of these commutes with A, and
therefore preserves the eigenvector decompo-
sition of the residual and the functional form
of the characteristic variables; this is the com-
mon choice |A|™! discussed in Section 2.1.
The other prominent member of the family
is the matrix derived from P,p; its special
feature is that it minimizes the first diagonal
element. This is essential for achieving op-
timal preconditioning for almost incompress-
ible flow in two and three dimensions.

6 Conclusions and future
developments
In the previous sections a local precondition-

ing matrix for the multi-dimensional Euler
equations has been derived that reduces the

spread of the characteristic speeds from a fac-
tor (M + 1)/ min(M,|M — 1]) to a factor
1/\/1 — min(M?, M~2), where M is the Mach
number. It has been shown that the latter
value is the lowest attainable. Numerical ex-
periments with this preconditioning, applied
an explicit upwind discretization of the two-
dimensional Euler equations, show that it sig-
nificantly increases the rate of convergence to
a steady solution, as predicted theoretically.

For a detailed account of the derivation,
properties, and application of the precondi-
tioning matrix the reader is referred to the
second author’s Ph.D. thesis [10].

At present the performance of the 2-D pre-
conditioning matrix presented above is being
tested in a variety of single-grid and multi-
grid Euler calculations, of first- and second-
order accuracy. The emphasis is on two prob-
lems: removing the singularities of the pre-
conditioning at M = 1 and M = 0 without
losing robustness, and modifying numerical
flux functions, if needed, for use with precon-
ditioning. These are no trivial matters and
may still require a considerable research ef-
fort.

The combination with multi-grid relax-
ation is particularly attractive, as the precon-
ditioning can help to build marching schemes
with better smoothing properties. Smooth-
ing properties of Euler schemes have tra-
ditionally been analyzed on the basis of a
scalar convection equation (see [11, 12, 13])
and are known to depend strongly on the
Courant number employed. The effect of the
preconditioning matrix on an Euler scheme
is to equalize the Courant numbers associ-
ated with the different waves, so that opti-
mal smoothing can be achieved simultane-
ously for all underlying characteristic convec-
tion schemes. Figures 44 and 45, taken from
Van Leer et al. [14], show how the “Fourier
footprint” of the two-dimensional first-order
upwind-differencing operator clears up after
preconditioning. The latter figure also con-
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Fourier Footprint of First-Order Roe Scheme
o local dt, M=0.5, flow angle = 0°, CFL=1
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Figure 44: Fourier footprint (symbols) of
the first-order upwind approximation of the
spatial Euler operator, for M = 0.5, and
flow speed aligned with the grid. The time-
step chosen corresponds to a Courant-number
value of 1.

tains level lines, up to the level 1, of the mod-
ulus of the polynomial 1 + z + 222, which is
the amplification factor of the two-stage time-
marching method

-~

U =
Un+1

U+ gAtRes(U"), (23)
U" + AtRes(U). (24)

Owing to the proper placement of the zeros of
the amplification factor in the complex plane,
and the proper choice of the time-step, strong
high-frequency damping results when com-
bining this marching method with the upwind
residual.

It is expected that other iterative methods
such as implicit marching meth-
ods, conjugate-gradient methods, and vari-
ous vector-sequence convergence acceleration
methods [15] will benefit from the clustering
of eigenvalues accomplished by local precon-
ditioning.

G=14z+ %22
Fourier Footprint of First-Order Roe Scheme
precond., M=0.5, flow angle = 0°, CFL=0.804

2.50

-
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-
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-1.07+4
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—2.50 T T T T T T T T3
—-5.00— .29-—-3.57—2.&6—2.14—1.43—0.71 0.00
(z)

Figure 45: Fourier footprint (symbols) of the
preconditioned first-order upwind approxi-
mation of the spatial Euler operator, for M =
0.5, and flow speed aligned with the grid.
Also shown are level lines, up to the level 1,
of the modulus of the polynomial 1+ z + 222,
associated with a particular two-stage time-
marching scheme (see text). The zeros of the
polynomial are placed in regions of the foot-
print where the high-high and high-low fre-
quency combinations are concentrated. This
coincidence requires the use of a special value
of the time-step, corresponding to a Courant
number of 0.804.
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Another benefit expected of local precon-
ditioning is that it will simplify convergence-

accelerating boundary procedures such as de-

veloped by Karni [16] for the far field, and
Roe and Mazaheri [17] for a solid wall. This
simplification again is due to the circum-
stance that all error components travel at the
same speed.

Presently under study is the inclusion of
the cell aspect-ratio in the preconditioning
matrix, in particular, in the value of 7. For
stretched grids it is logical to equalize cell
crossing-times rather than wave speeds; this
can be accomplished by putting information
about local cell geometry and flow angle into
an extended definition of .

Inclusion of the cell aspect-ratio paves the
way for local preconditioning of the Navier-
Stokes equations. The interaction of the Eu-
ler preconditioning matrix with the terms
representing physical dissipation so far has
only been studied in one dimension (see Sec-
tion 2.2).

Future directions of research may include
the development and numerical testing of an
optimal local preconditioning for other hy-
perbolic systems of equations, such as the
lowest-order shallow-water equations and the
equations of ideal magneto-hydrodynamics.
While the former extension is trivial, the
latter is complicated by the existence of an
additional communication speed, the Alfvén
speed, in the plasma.

It thus appears that the new analytic pre-
conditioning has many potential uses in the
development of Euler and Navier-Stokes al-
gorithms. The present paper only marks its
entrance into CFD.
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