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Taking into account Eq. (15), one determines the integra-
tion constants C/( /= l',...,4) as

+a(b2 + k2)s\ - (4co2 -k2-b2 )sls2

C,=

-2uk ls ls3 -2uas2s3 + a(b2 + k2)s% + (4oj2-k2

- =

lsls3 - (4co2 - k2

klb(a2 + b2)s3

With the notation 7,. = «/(w1)* + 0/(w2)*. Eq. (15) becomes

(17)

(18)

with the unknowns e°T, e~a7, sin£r, and cosfrr. Performing the
calculations, we obtain the analytical expression of the pursuit
time on the optimal trajectory

03 =
(g2 + 62) [Z?2(4co2 -k2 - b2 + 1) + 2a2(4oj2 - A:2 + ̂ ?2)]

2a)a2^2 [4co2 (A:2 - a2) + 2a2 (b2 + A:2

:2 - a2 ) + 2a2 (b2 + £2) + Z?4 - k\ ]
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+a(b2 + k2

-(4u2-k2-b2)Sls2] (19)

An analysis of the motion for the entire time devoted to the
pursuit is made by taking into account the expressions for the
control functions. For the analyzed motion, the values of the
physical coordinates xz (/=!,..., 4) have to fulfill condition
x{x2 + x3x4 <0. After the determination of the domain Z), the
set of the admissible states for the pursuit problem coincides
with the domain of the states for the auxiliary problem. A par-
ticular case of the analyzed problem is obtained when the two
vehicles meet on the terminal surface for s{ =s3 =0. The do-
main of the admissible states for this case is analogous to the
one above.

Appendix
Expressions for the terms of Eq. (15) are as follows:

b2(4u2-k2-b2)-a2(a2 + b2)

(a2 + b2)(4u2/b -k2 + a2)(4co2 -k2-b2-l)

b2(a2-k2)

02 = { (a2 + b2) [2a2 (b2 + fc2)(4co2 - k2 + a2)

[4o>2 (k2 -a2) +2a2 (b2 -k2
2]

[4w2 (A:2 - a2) + 2«2 (Z?2 + k2) + b4-k2
2]

Comparison of Local Pole
Assignment Methods
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I. Introduction

;
ONSIDER the following standard time-invariant,
minimal linear dynamical system

x=Ax+Bu

y = Cx

(1)

(2)

where x€ \R" is the state vector, w€ \Rm is the input vector;
y \Rr is the output vector; A, B, and C are matrices of ap-
propriate dimensions. System (1,2) could be controlled by
state feedback of the form u=Fx, but such a control would be
unfeasible if the state vector is not accessible. This difficulty
can be circumvented by including an estimator in the con-
troller and feeding back the state vector estimate, but this
would require a possibly cumbersome controller. It has been
suggested to control system (1,2) by direct output feedback of
the form u = Py, in which case the closed loop satisfies

x=(A+BPC)x (3)

The dynamical behavior of Eq. (3) will depend on the location
of the eigenvalues of A +BPC. The problem of pole assign-
ment by direct-output feedback has received substantial
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contributions.1"13 However, a simple criterion for complete
pole assignability is still to be discovered.

Most necessary or sufficient conditions available in the
literature are global in nature. In contrast, this paper focuses
on local methods for pole assignment. Such methods are based
on an idea similar to that of continuation methods,15'16 and
can be understood as follows: Let N>n, $:CN-+Cn:
£ — f = f ( £ ) be differentiate, and suppose we want to solve
the equation f ( £ ) = 0 . Starting from an arbitrary guess £0,
solve the linear (differential) equation df = (df/d£) rd£ for d£.
If f is locally assignable (see definition below), an increment
d£ can be computed to cause a given increment df. The
numerical solution is thus obtained iteratively by successive in-
crement of £ until the value f=0 is attained. If N>n, the dif-
ferential equation has many solutions, indicating that the final
solution is not unique. If along the integration path f fails to
be locally assignable, Sard's theorem15'16 can be used to step
away from the singularity.

This paper presents three local methods for pole assign-
ment. One is based on assigning the eigenvalues of A +BPC
directly; the second on assigning the coefficients of the
characteristic polynomial of A +#PC; and the third on assign-
ing the traces of successive powers of A +BPC. Sec. II gives
gradient formulas and local assignability criteria for the three
methods. The numerical merits of these equivalent methods
are compared in Sec. III. It is found that in general, the
method based on eigenvalue assignment is more recommen-
dable. An example is presented in Sec. IV.

We use the following notations and definitions: a£ \Rn is the
vector of coefficients of the characteristic polynomial, i.e.,
d ( s ) = sn+alsn~l +a2sn~2 +... + an'9 d ( s ) is the characteristic
polynomial, i.e., d ( s ) =det[s!n-A-BPC]; d ' ( s ) is the
derivative of d ( s ) ; H(s) is the closed loop transfer function
i.e., H(s)=C[sIn-A-BPC]-lBi Int\Rnxn is the unit
matrix; TV is the number of degrees of freedom, i.e., N-mr\
tr(M) denotes the trace of the square matrix M;
vec: \Rmxr^ \RN is the operator which transforms a matrix
into a vector containing the columns of the matrix ordered se-
quentially; p = vQc(P); \£Cn is the vector of eigenvalues of
A+BPC, i.e., d ( s ) = (s-\l)(s-\2)...(s-\n); rtlR",
Tk = tr [A + BPC]k = E?=!Af, 1 < k<n; \\M\\F is the Frobenius
norm of the complex matrix M, i.e., \\M\\F= (ir(MHM)YA\
superscripts T and H denote matrix transpose and complex
conjugate transpose respectively; M~ denotes the cofactor
matrix of the square matrix M, such that if det M^O,
M-'^M-Vdet M. If y:CaX^-+C:X-»y=y(X), then
dy/dxtC*** and (dy/dX)u = dy/dXij. lfy:Ca-C^: x^y(x),
then dy/dxtCaxe and (dy/dX)ij = dyj/dxi. If N>n and
£:CN-+Cn:%-+£=£(%) is differentiate, then f is locally
assignable at £0 if df/d£ has full rank at £0 [Ref. 14, Theorem
0.5]. If HjtC*^, !</<«, then /f, are linearly independent if
for any atC", Ef=1 //,-«,= 0 implies a = 0.

II. Local Assignability Criteria
Proposition 1: Suppose A/, !</<« are simple distinct

eigenvalues of A + BPC with right and left eigenvectors xt and
yt respectively, normalized so that yfx{ = 1. Then

(4)

The vector A is locally assignable if the matrices [Eq. (4)] are
linearly independent, !</<«.

Proof: Equation (4) is a straightforward extension of the
theory of Ref. 17, Sec. 2.9. The assignability criterion follows
from the definitions above.

Proposition 2. The matrices daf/dPt !</<« satisfy the
identity

= -HT(s)d(s), if d (5) 5*0 (6)

The vector a is locally assignable if any of the following
criteria is met:

1) For any choice of distinct complex numbers si9 1 </</?,
the matrices BT[SjIn-A-BPC] ~CT, !</<«, are linearly
independent.

2) For any choice of distinct complex numbers sif !</<«,
none of which is eigenvalue of A -{-BPC, the matrices H(SJ),
1 </<« are linearly independent.

Proof: For (M,X,U,Y,V)tCaX(XxC(xXaxCaX(3xCl3x'YxC'YXcx

and M=X+ UYV, we have

adetM
ay = UTM~ V7 (7)

which is easily obtained by using the development of a deter-
minant as function of minors of rows or columns. Apply Eq.
(7) with X=sln -A, U= -B, V=C, Y=P to obtain Eq. (5).
Furthermore, if d ( s ) ^0, then Eq. (5) implies Eq. (6). Apply
the operator vec( - ) to Eq. (5) taken at arbitrary distinct
points Si £ C, 1 < / < n to obtain

dp

•M

c«Sl

sT
55-

1 1 1

= D (8)

where DtCNxm, the /th column bf D being vec
[-BT(siIn-A-BPC)^CT}. Since the Vandermonde
matrix in Eq. (8) is nonsingular, da/dp has full rank if D has
full rank, which establishes criterion 1. Criterion 2 follows
after dividing by d(s/).

Proposition 39. The matrices dr//dP, !</<«, satisfy the
identity

— = iBT(A+BPC)^CT, (9)

= -BT[sIn -A -BPC] ~ Cr,V,s€C (5)

The vector r is locally assignable if the matrices (9) are
linearly independent, !</<«.

Remark 1. Equation (5) suggests using Faddeev's
algorithm18 for the computation of da/dp. This algorithm
computes simultaneously the af and the coefficients of the
polynomial matrix [sln — (A -\-BPC) ] ~ . However, Faddeev's
algorithm is notoriously ill-conditioned. We have therefore
preferred using Eq. (8) and computing da/dp by interpolation
at s1/, !</</?. We have chosen the s/ equally spaced on the
unit circle. In this case the Vandermonde matrix of Eq. (8)
becomes a well-conditioned scalar multiple of a unitary
matrix, as is easily shown.

Remark 2. The local assignability criteria of Propositions
1-3 yield controllability and observability criteria as special
cases for C=In andB = In, respectively.9

III. Comparison of the Three Methods
The vectors A, a, and T being related by one-to-one maps,

we can choose to assign any one of them. We should, if possi-
ble, select among A, a, and r the most sensitive vector, for best
accuracy. We introduce the notion of relative sensitivity: If
f:Ca-C /3:?-f=f(J) is differentiate, the sensitivity of f
relative to £ is defined as S(f,£) = lldf/d£HF . The relative sen-
sitivity S(f,£) measures the average ratio of magnitudes of
differential increments of f and £. More precisely, if £
undergoes a random differential increment of zero-mean and
unit covariance, the expected magnitude of the increment of f
will be S(£,%). The sensitivities of A, a, and T relative to one
another will be used to assess the merit of choosing either one.
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Proposition 4. Suppose X/, !</<« are distinct. Then we
have

IV. Example

1
Xi

1
X2

1
xw

da

(11)

(-V-Vda/

-1 0 0

2a{ -2 0

(12)

Proof: Equation (10) is obtained from the definition of r.
Equation (11) is obtained by differentiating d ( s ) with respect
to ai9 !</<«, and letting s tend to Xy, l<y<«, yielding
Xj-t^-d'^dXj/dcii, thus Eq. (11). Equation (12) is ob-
tained from Newton's formulas19:

T3 + # 1 T2 = 0

(13)

Equation (10) shows that if all the X, are smaller than 1 in
magnitude, T will be insensitive to changes in X; therefore,
assigning X is preferrable to assigning T. If some X, are greater
than 1 in norm, r will be very sensitive to changes in X; but in
this case, r will often have numerically overflowing values, as
shown by its definition.

Equation (11) is difficult to interpret because of the factor
diag [d' ( X / ) ] ~ ! . However, Eq. (12) shows that t is in general
very sensitive to changes in a\ therefore, assigning r is prefer-
able to assigning a.

The overall suggestion of Eqs. (10-12) is that, in general, it
may be better to assign X directly rather than a or T, for
reasons of sensitivity and possible numerical overflow of r and
even a. This suggestion strongly corroborates our empirical
findings, based on the use of the three methods in various
examples.

Consider

A =

B =

C =

~ 1

2

2

-3

-5

0

-2
_ Q

1

5

9

4

-4

-2

2

_ -2

„ _ 8 / t ? — r _ 4

. 2 . 1. 3. 1. 4 1. 5. '

. -2. 1. 2. 3. 4. 5. 6.

.5 -3.5 4.5 5.5 6.5 0. 0. 0.

.3 -4.4 -2.2 -3.1 -2.1 -4.8 3. 1.

. -3. 21. 3. 2. 8. 3. 2.

3. 5. 1. -2. -3. -4.3 -3.2

.2 -9.9 10. 10. 3. 2. 2. 1.

. -2. -3. -4. -5. -6. 1. 1.

2. 3. 4. "

6. 7. 8.

1. 2. 3.

5. -2. -3.

2. 1. -4.

. -3. 4. -5.

. -2. 0. -5.

1. 2. 1.

" 2. 1. 1. 4. 5. -1. -2. 1."

2 1. 3. 4. 2. 5. 6. 2.

3. 4. -1. -2. -3, -4. -5. -1.

_ - 2 -3. -2. -3. 1. 3. 1. -2.

The open-loop eigenvalues are 11.8, 4.8±y3.8, 2.4, -2.2,
-4.5±y'7.3, - 10.1. Suppose we want the closed4oop eigen-
values -1., -2., -2. ±/2., -4=t/4., -5., - 10. Using direct
eigenvalue assignment and starting with P = 0, it takes 16 itera-
tions to obtain a direct-output feedback gain

-0.1819 0.03415 -0.01277 0.05046

-0.12121 0.02716 -0.06953 0.01293

-0.00101 -0.1144 -0.0739 0.02756

0.13625 -0.01556 -0.19773 -0.09637

which performs the pole assignment.
In this example of relatively small order, the magnitudes of

the initial and desired vectors X are of the order of 10, whereas
those of the vectors a and r are already larger than 105 and
lO9^ respectively. It is our experience that for n> 12, the vec-
tors a and X often have numerically overflowing values. This
situation is riot alleviated by scaling the matrices A,B and C,
because in that case, a and r become insensitive to changes in
X.

V. Conclusions
Three local methods for pole assignment by direct output

feedback have been presented. They are based on assigning the
eigenvalues, the coefficients of the characteristic polynomial,
and the traces of successive powers of the closed-loop state
matrix. Gradient formulas are given together with local
assignability criteria, allowing iterative solution of the pole
assignment problem. The three methods are compared by
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discussing the relative sensitivities of the eigenvalues, the
characteristic coefficients, and the traces. The method based
on assigning the eigenvalues is found the most worthy of
recommendation for reasons of sensitivity and possible
numerical overflow. This conclusion strongly corroborates
our experience based on using these methods on various
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Efficient Modal Analysis
of Damped Large Space Structures

Trevor Williams*
Kingston Polytechnic

Kingston upon Thames, England

Introduction
. jf JYUPJE ancj shape control of large space structures
V(LSS) is a problem made extremely difficult by the

dynamic properties typical of such vehicles. The most impor-
tant of these are the very low inherent damping of their flexi-
ble modes and the fact that they generally have a large number
of low, closely spaced natural frequencies.

A very attractive way of simplifying the overall control
problem somewhat is to initially increase the structural damp-
ing in some manner. This could be achieved passively, either
by means of dampers distributed over the structure or by
careful selection of the materials used in its construction1 (this
should allow2 damping up to about 10% of critical, as op-
posed to about 0.5% for "standard" LSS). Alternatively, ac-
tive damping could be introduced by applying feedback bet-
ween linear or angular velocity sensors and force or torque ac-
tuators (not necessarily colocated) positioned throughout the
structure. Similar application of position feedback can also be
very useful for raising the structure's natural frequencies.

The damped natural frequencies and damping ratios pro-
duced by any of these schemes are very expensive to compute,
being given from the eigenvalues of a matrix of large dimen-
sion. This has prompted various authors to consider the com-
paratively small amount of damping applied as a perturbation
to the original system dynamics: low-order approximations
should then give reasonably accurate estimates for the actual
damped eigenstructure. In particular, Refs. 3 and 4 implement
this for velocity feedback only, while Ref. 5 also allows cir-
culatory effects (a special case of position feedback) and Ref.
6 considers a general "low-authority controller" feedback
structure. These methods are far more efficient than a full
eigenstructure calculation: however, they were not in the main
specifically developed with the LSS case in mind, and tend to
suffer from accuracy problems when applied to such a struc-
ture with its closely spaced undamped natural frequencies.

This Note presents a new eigenstructure perturbation
technique valid for general feedback which minimizes such
numerical difficulties by making exclusive use of unitary
transformations7 throughout. Note that these complex mat-
rices (or their real subclass, the orthogonal matrices) are basic
to nearly all of the numerically reliable algorithms developed
in control theory in recent years.8'9 A further practical advan-
tage of the new method is that it gives directly the order of er-
ror anticipated in its eigenvalue and eigenvector estimates, as
opposed to the incomplete and/or somewhat complicated
results of Refs. 3-6.

Problem Formulation
Consider the tt-mode undamped model

Received April 11, 1985; revision received April 4, 1986. Copyright
© American Institute of Aeronautics and Astronautics, Inc., 1986.
All rights reserved.

* Senior Research Associate, School of Computing. Member AIAA.

(D

for the structural dynamics of an LSS, where q is the vector of
generalized coordinates, u the vector of generalized applied
forces, and M and K the system mass and stiffness matrices,
respectively. Let co, be the fth natural frequency of this struc-
ture and <t>i the corresponding natural mode: {<£,} can then be
normalized so that *= (^1,...,^ /J) satisfies $rM<i> = / and
$TK$ = diag(uJ). Defining the modal amplitude vector q by
q = $q and, similarly, ii = 3>Tii, Eq. (1), in modal form,
becomes

? + diag(a)?)tf = H (2)

Velocity plus position feedback corresponds to an applied
force

u=-Cq-Dq (3)

We consider general matrices C and D here: in the terminology
of Ref. 5, such a C corresponds to an arbitrary combination of
damping and gyroscopic terms, while D is the result of general
stiffness and circulatory contributions. Note that for the
special case of direct velocity feedback (DVFB), of great prac-
tical interest due to its guaranteed absence10 of "spillover" in-
stabilities, we must have C=Cr>0, D = Q, and colocated sen-
sors and actuators.


