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This paper applies previous research on the solutions of two-point boundary value prob-
lems to spacecraft formation dynamics and design. The underlying idea is to model the
motion of a spacecraft formation as a Hamiltonian dynamical system in the vicinity of a
reference solution. Then we can analytically describe the nonlinear phase flow using gener-
ating functions found by solving the Hamilton-Jacobi equation. Such an approach is very
powerful and allows one to study any Hamiltonian dynamical systems independent of the
complexity of its vector field, and to solve any two-point boundary value problem using
only simple function evaluations. We present the details of our approach through the study
of a non-trivial example, the design of a formation in Earth orbit. For our analysis the
effect of the J2 and J3 gravity coefficients are taken into account and the reference trajec-
tory is chosen to be an orbit with high inclination (i = π/3) and eccentricity (e = 0.3). Two
missions are considered. First, given several tasks over a one month period modeled as
configurations at given times, we find the optimal sequence of reconfigurations to achieve
these tasks with minimum fuel expenditure. Next we use our theory to find stable config-
urations such that the spacecraft stay close to each other for an arbitrary but finite period
of time. Both of these tasks are extremely difficult using conventional approaches, yet are
simple to solve in our approach.

I. Introduction

Several missions and mission statements have identified formation flying as a means for reducing cost and
adding flexibility to space-based programs. However, such missions raise a number of technical challenges
as they require accurate dynamic models of the relative motion and control techniques to achieve formation
reconfiguration and formation maintenance. There is a large literature on spacecraft formation flight that
we will not attempt to survey in a systematic manner. On one hand we find articles that focus on analytical
studies of the relative motion, and on the other hand there are a large class of articles that develop numerical
algorithms that solve specific reconfiguration and formation keeping problems. Theoretical studies require a
dynamical model for the relative motion that is accurate and tractable. For that reason the Clohessy-Wilshire
(CW) equations, Hill’s equations or Gauss variational equations have often been used as a starting point.
Using the CW equations, Hope and Trask1 study hover type formation flying about the Earth, Vadali, Vaddi
and Alfriend2 look at periodic relative motion about the Earth, Gurfin and Kasdin,3 and Scheeres, Hsiao and
Vinh4 focus on formation keeping, Howell and Marchand,5 and Vadali, Bae and Alfriend6 analyze relative
motion in the vicinity of the libration points and Vaddi, Alfriend and Vadali7 study the reconfiguration
problem using impulsive thrusts. However, for a large class of orbits these approximations do not hold -
J2 effects as well as non-circular reference trajectory should be taken into account for low Earth orbits and
an elliptic orbit for the primary should be considered to study the dynamics at the Libration points. As
a result, past researchers have modified the CW equations in order to take the J2 gravity coefficient into
consideration. These improved equations have been widely used; Alfriend and Schaub8 study periodic relative
motion and Lovell, Horneman, Tollefson and Tragesser9 analyze formation reconfiguration with impulsive
thrusts. The non-impulsive thrust problem is usually solved using optimal control theory (although there are
some exceptions, for instance F.Y. Hsiao and D.J. Scheeres10 and I. Hussein, D.J. Scheeres and D. Hyland11),
and if the dynamical model is tractable then analytical solutions for the feedback control law may be found
(see Mishne12). These analytical approaches allow one to perform qualitative analysis and provide insight
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into the dynamics of the relative motion. However they cannot be used for actual mission design (although
there are some exceptions13). Indeed, they have inherent drawbacks: they neglect higher order terms in the
dynamics and their domain of validity in phase space is very restricted and difficult to quantify. In addition,
methods based on the state transition matrix tend to be valid only over short time spans. On the other
hand, numerical algorithms have been developed to design spacecraft formations using the true dynamics.
Koon, Marsden, Masdemont and Murray14 use Routh reduction to reduce the dimensionality of the system
and then develop an algorithm based on the use of the Poincaré map to find pseudo-periodic relative motion
in the gravitational field of the Earth (including the J2 gravity coefficient only), Xu and Fitz-Coy15 and
Avanzini, Biamonti and Minisci16 study formation maintenance as a solution to an optimal control problem
that they solve using a genetic algorithm and a multi-objective optimization algorithm respectively. Even
though these methods use the exact dynamics and therefore can be used to solve a specific reconfiguration
or formation maintenance problem, they fail (except14) to give insight on the dynamics. In addition, as
noticed by Wang and Hadaegh,17 formation reconfiguration design is a combinatorial problem. As a result
the algorithms mentioned above are not appropriate for reconfiguration design as they require excessive
computation (to reconfigure a formation of N spacecraft, there are N ! possibilities in general).

The method we expose in this paper directly tackles these issues and should be viewed as a semi-analytic
approach, since it consists of a numerical algorithm whose output is a polynomial approximation of the
dynamics. As a consequence, we are able to use a very accurate dynamical model and to obtain tractable
expressions describing the relative motion. A fundamental difference with previous studies is that we describe
the relative motion, i.e., the phase space in the vicinity of a reference trajectory, as two-point boundary value
problems whereas it is usually described as an initial value problem. Such a description of the phase space is
very natural and convenient, for instance the reconfiguration problem and the search for periodic formations
can be naturally formulated as two-point boundary value problems.

In the present paper, to showcase the strength of our method, we have chosen to study two challenging
mission designs.

1. We first consider a spacecraft formation about an oblate Earth (the J2 and J3 gravity coefficients
are taken into account) that must achieve 5 missions over a one month period. For each mission the
formation must be in a given configuration Ci that has been specified beforehand, and we wish to
minimize the overall fuel expenditure. The configurations Ci are specified as relative positions of the
spacecraft with respect to a specified reference trajectory (figure 1(a)). The Ci’s may be fully defined
or have one degree of freedom. In our example we require the spacecraft to be equally spaced on a
circle centered on the reference trajectory at several epochs over the time period. The design of such
a mission has several challenges:

• The dynamics are non-trivial and non-integrable,

• the reference trajectory has high eccentricity, high inclination and is not periodic,

• missions are planned a month in advance,

• in our specific example discussed here, 4 spacecraft must achieve 5 missions, if one assumes that
the Ci are fully defined there are 7, 962, 624 ways of satisfying the missions,

• the Ci may be defined by holonomic constraints and have an additional degree of freedom.

2. Next we consider two problems, the initial deployment of a formation and the redesign of an already
deployed formation. For both problems, given a reference trajectory we wish to place the spacecraft
in its vicinity and ensure that they remain “close” to each other over an extended period of time (see
figure 1(b)). This design is also very challenging because:

• the dynamics and the reference trajectory are non-trivial (as before),

• trajectories must not collide (except at the initial time for the deployment problem),

• high accuracy in the initial conditions is required for long-term integration.

In the following, we first introduce the dynamical model as well as the reference trajectory. We then
briefly recall the theory developed in18 for the solution of these problems. Finally, we study the missions
discussed above.
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Figure 1. Representations of the two designs we study: The multi-task mission and the search for stable

configurations.

II. Problem settings

The motion of a satellite under the influence of the Earth modeled by an oblate sphere (J2 and J3 gravity
coefficients are taken into account) in the fixed coordinate system (x, y, z) whose origin is the Earth center
of mass is described by the following Hamiltonian:
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,

where
GM = 398600.4405 km3s−2 , R = 6378.137 km ,

J2 = 1.082626675 · 10−3 , J3 = 2.532436 · 10−6 ,
(2)

and all the variables are normalized (r0 is the radius of the trajectory at the initial time):

x → xr0 , y → yr0 , z → zr0 ,
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√
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√
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√
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(3)

In the following, we consider a “reference” trajectory whose state is designated by (q0, p0) and study the
relative motion of spacecraft with respect to it. The reference trajectory is chosen to be highly eccentric and
inclined, but any other choice could have been considered. At the initial time its state is:

q0
x = rp , q0

y = 0 km , q0
z = 0 km ,

p0
x = 0 kms−1 , p0

y =
√

GM
1
2
(ra+rp)

√

ra

rp
cos(α) kms−1 , p0

z =
√

GM
1
2
(ra+rp)

√

ra

rp
sin(α) kms−1 ,

α = π
3 rad , rp = 7, 000 km , ra = 13, 000 km .

(4)

Without the J2 and J3 gravity coefficients the reference trajectory would be an elliptic orbit with
eccentricity e = 0.3, inclination i = π/3 rad, argument of perigee ω = 0, longitude of the ascend-
ing node Ω = 0, semi-minor axis rp = 7, 000 km, semi-major axis ra = 13, 000 km and of period

tp = 2π
√

1
23

(ra+rp)3

r3
p

sec ≈ 2 hours 45 min. The Earth oblateness perturbation causes (see Chobotov19
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for more details) secular drifts in the eccentricity (due to J3), in the argument of perigee (due to J2 and J3)
and in the longitude of the ascending node (due to J2 and J3). In addition, all the orbit elements are subject
to short and long period oscillations. In figure 2 and 3, we plot the orbital elements for this trajectory as
a function of time during a day (about 10 revolutions about the Earth) and over a month period. The
symplectic implicit Runge-Kutta integrator built in Mathematica c© is used for integration of Hamilton’s
equations.

(a) (b) (c)

(d) (e)

Figure 2. Time history of the orbital elements of the reference trajectory during a day
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Figure 3. Time history of the orbital elements of the reference trajectory over a month period

III. The algorithm

To study relative motion about the above reference trajectory we use an algorithm whose output is an
analytical description of the phase flow for the relative motion. It is based on previous studies by Guibout and
Scheeres20,21 on the Hamilton-Jacobi theory and essentially consists of solving the Hamilton-Jacobi partial
differential equation for an approximation of the generating functions for the phase flow transformation
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describing the relative motion.

A. Relative motion

The relative motion of a spacecraft whose state is (q, p) moving in the Hamiltonian field defined by H (Eq.
(2)) with respect to the reference trajectory (q0(t), p0(t)) is described by the Hamiltonian function20 Hh:

Hh(Xh, t) =

∞
∑

p=2

p
∑

i1,··· ,i2n=0
i1+···+i2n=p

1

i1! · · · i2n!

∂pH

∂qi1
1 · · · ∂qin

n ∂p
in+1

1 · · · ∂pi2n
n

(q0, p0, t)Xh
1

i1
. . . Xh

2n

i2n
, (5)

where Xh = (∆q,∆p), ∆q = q−q0, ∆p = p−p0 and where we assume Xh is small enough for the convergence
of the series. Let us truncate the series in Eq. (5) in order to keep terms of order at most N . Then we
say that the relative motion is described using an approximation of order N . Most past studies in the
literature (CW, improved CWa and Hill’s equations) consider an approximation of order 2, that is, a linear
approximation of the dynamics. Although such an approximation is useful to obtain a first picture of the
dynamical environment as well as qualitative results, it cannot be used for designing an actual formation for
several reasons. First, nonlinear effects are usually not negligible, especially over a long time span. Second,
linear effects may not be dominant over a short time span even though the Taylor seriesb converges (see22

for a discussion on this issue). The algorithm we have developed tackles these issues, N must be finite but
can be as large as we want. There is no limit to the accuracy of the solution we obtain other than computer

memory (as we will see in the next section, if a solution up to order N − 1 is known, we need to solve (N+5)!
N !5!

ordinary differential equations to obtain the Nth order).

B. Solving boundary value problems

The design of spacecraft formations can often be reduced to solving boundary value problems. Indeed,
the reconfiguration problem is a position to position boundary value problem,20 the search for periodic
configurations, that is spacecraft configurations that repeat themselves over time, may also be treated as a
two-point boundary value problem23 and we will see in this paper how one may find stable formations, i.e.,
formations for which spacecraft naturally stay close to each other for a long time, as a solution to boundary
value problems. Finally, if a maneuver is set up as an optimal control problem, the necessary conditions for
optimality can in many cases be reduced to a Hamiltonian system with known boundary values, that is, a
two-point boundary value problem.18,24

Traditionally used to analytically solve the equations of motion,25,26 the generating functions for the
phase flow canonical transformation also allows one to solve two-point boundary value problems.21 Let us
first consider a position q0 to position q boundary value problem and recall the generating function of the
first kind F1(q, q0, t):

pi =
∂F1

∂qi

(q, q0, t) , (6)

p0i
= −

∂F1

∂q0i

(q, q0, t) , (7)

0 = H

(

q,
∂F1

∂q
, t

)

+
∂F1

∂t
. (8)

Equation (8) is known as the Hamilton-Jacobi equation and allows us to solve for the generating function
F1, whereas equations (6) and (7) solve the boundary value problem that consists in going from q0 to q in t
units of time.

Now let us consider more general generating functions. Let (i1, · · · , ip)(ip+1, · · · , in) and (k1, · · · , kr)
(kr+1, · · · , kn) be two partitions of the set (1, · · · , n) into two non-intersecting parts such that i1 < · · · < ip,

aas mentioned in the introduction the improved CW equations are the CW equations that take into account the J2 gravity
coefficient.

bConsider for instance the converging Taylor series of (1 − t)x with respect to x. As t goes to 1, first terms are no more
dominant.
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ip+1 < · · · < in, k1 < · · · < kr and kr+1 < · · · < kn and define Ip = (i1, · · · , ip), Īp = (ip+1, · · · , in),
Kr = (k1, · · · , kr) and K̄r = (kr+1, · · · , kn). The generating function

FIp,Kr
(qIp

, pĪp
, q0Kr

, p0K̄r
, t) = F (qi1 , · · · , qip

, pip+1
, · · · , pin

, q0k1
, · · · , q0kr

, p0kr+1
, · · · , p0kn

, t) (9)

verifies:

pIp
=

∂FIp,Kr

∂qIp

(qIp
, pĪp

, q0Kr
, p0K̄r

, t) , (10)

qĪp
= −
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∂qĪp
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, pĪp

, q0Kr
, p0K̄r

, t) , (11)

p0Kr
= −

∂FIp,Kr

∂q0Kr
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, pĪp

, q0Kr
, p0K̄r

, t) , (12)

q0K̄r
=

∂FIp,Kr
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, pĪp

, q0Kr
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, t) , (13)

0 = H

(

qIp
,−

∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t

)

+
∂FIp,Kr

∂t
. (14)

Equation (14) is the general form of the Hamilton-Jacobi equation and allows one to solve for the
generating function FIp,Kr

. On the other hand, Eqs. (10), (11), (12) and (13) solve the boundary value
problem that consists in going from (qIp

, pĪp
) to (q0Kr

, p0K̄r
) in t units of time. Among the 4n generating

functions defined above, we can recover the 4 classical kinds of generating functions discussed by Goldstein;26

if the partitions are (1, · · · , n)() and ()(1, · · · , n) (i.e., p = n and r = 0) we recover the generating function
F2. The case p = 0 and r = n corresponds to the generating function F3 and if p = 0 and r = 0 we obtain
F4.

If the Hamiltonian in Eq. (14) is Hh, as defined by Eq. (5), then the generating functions are associated
with the phase flow that describes the relative motion and they solve relative boundary value problems. In
terms of notation, (q0, p0, q, p) becomes (∆q0,∆p0,∆q,∆p).

C. The numerics of the algorithm

There are two methods for finding the generating functions, one can either solve the Hamilton-Jacobi equation
(Eq. (14)) or use an indirect approach based on the initial value problem. These methods are detailed in22

and in the following we briefly review their characteristics. They both have their advantages and drawbacks
and one usually needs to combine both of them. We will discuss this issue at the end of this section.

1. Solving the Hamilton-Jacobi equation

We assume the generating functions can be expressed as a Taylor series about the reference trajectory in its
spatial variables.

FIp,Kr
(y, t) =

∞
∑

q=2

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

i1,··· ,i2n
(t)yi1

1 · · · yi2n

2n , (15)

where y = (∆qIp
,∆pĪp

,∆q0Kr
,∆p0K̄r

). We substitute this expression in Eq. (14), where H is the Hamilto-
nian for the relative motion (Eq. 5). The resulting equation is an ordinary differential equation that has the
following structure:

P (y, fp,r
i1,··· ,i2n

(t), ḟp,r
i1,··· ,i2n

(t)) = 0 , (16)

where P is a series in y with time dependent coefficients that are functions of fp,r
i1,··· ,i2n

(t), ḟp,r
i1,··· ,i2n

(t).
Equation (16) holds for all y if and only if all the coefficients of P are zero. In this manner, we transform
the ordinary differential equation (16) into a set of ordinary differential equations whose solutions are the
coefficients of the generating function FIp,Kr

. Now suppose that we have knowledge of the generating

functions up to order N − 1, then from Eq. (15) we deduce that we need to solve (N+5)!
N !5! additional ordinary

differential equations to find order N .
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This approach provides us with a closed form approximation of the generating functions. However, there
are inherent difficulties as generating functions may develop singularities which prevent the integration from
going further (see18,27,28 for more details on singularities). Techniques have been developed22 to bypass
this problem but have a cost in terms of computation. Typically, this method should only be used to solve
generating functions over a short period of time.

2. The indirect approach

By definition, generating functions implicitly define the canonical transformation they are associated with.
Hence, we may compute the generating functions from the canonical transformation, that is, compute the
generating functions for the phase flow transformation from knowledge of the phase flow. In this section, we
develop an algorithm based on these ideas (more details may be gleaned in22).

Recall Hamilton’s equations of motion for the relative motion:

(

∆̇q

∆̇p

)

=

(

0 In

−In 0

)

∇Hh(∆q,∆p, t) . (17)

We suppose that ∆q(∆q0,∆p0, t) and ∆p(∆q0,∆p0, t) can be expressed as series in the initial conditions
(∆q0,∆p0) with time dependent coefficients. We truncate the series to order N and insert these into Eq.
(17). Hamilton’s equations reduce to a series in (∆q0,∆p0) whose coefficients depend on the time dependent
coefficients and the derivatives of the series ∆q(∆q0,∆p0, t) and ∆p(∆q0,∆p0, t). As in the previous section,
we balance terms of the same order and transform Hamilton’s equations into a set of ordinary differential
equations whose variables are the time dependent coefficients defining ∆q and ∆p as a series in ∆q0 and
∆p0. Using ∆q(∆q0,∆p0, t0) = ∆q0 and ∆p(∆q0,∆p0, t0) = ∆p0 as initial conditions for the integration, we
are able to compute an approximation of order N for the phase flow. At linear order, this approach recovers
the state transition matrix. Then, a series inversion of the phase flow provides us with the gradient of the
generating functions that can be integrated to find the generating functions.

The main advantage of this approach is that the phase flow is never singular, therefore the system of
ordinary differential equations are always well-defined. However, this method requires us to solve more
equations than the previous methodc and provides us with the expression of the generating function at a
given time only (the time at which we perform the series inversion). In addition a symplectic algorithm should
be used to integrate the ordinary differential equations, otherwise we obtain an inconsistent expression of the
gradient of the generating functions that cannot be integrated (some exactness conditions are not satisfied29).

In this paper, we combine both methods, we first solve the initial value problem over a long time span using
the symplectic implicit Runge-Kutta integrator built in Mathematica c©. Then we compute the generating
functions at a time of interest, say t1, and solve the Hamilton-Jacobi equation about t1, with initial conditions
equal to the values of the generating functions at t1 found using the indirect approach. For solving the
Hamilton-Jacobi equation, we use the Mathematica c© built in function NDSolve with its default attributesd.

IV. Formation design

In the previous sections we introduced a dynamical model, defined a reference trajectory and presented an
algorithm whose outputs are the generating functions associated with the phase flow describing the relative
motion. We have also explained how these generating functions may be used to solve two-point boundary
value problems. We now combine all the above and use it to design spacecraft formations. We first use the
“combined” algorithm to find the generating function F1 up to order 4, that is we need to solve 203 ordinary
differential equations (see appendix for computational times). Once the generating functions are known, we
can solve any position to position boundary value problem with only six polynomial evaluations (Eqs. (6)
and (7)).

cIf we want to find the generating function up to order N , then we need to solve 6
∑N−1

k=1
(k+5)!

k!5!
equations, which is always

greater than
∑N

k=2
(k+5)!

k!5!
, the number of equations that need to be solved using the direct approach.

dNDSolve switches between a non-stiff Adams method and a stiff Gear method and achieves a precision of 10−10.
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A. Multi-task mission

We consider 4 imaging satellites flying in formation about the reference trajectory. We want to plan space-
craft maneuvers over the next month knowing that they must observe the Earth, i.e., must be in a given
configuration Ci at the following instants (chosen arbitrarily for our study):

t0 = 0 , t1 = 5 days 22 hours , t2 = 10 days 20 hours ,

t3 = 16 days 2 hours , t4 = 21 days 14 hours , t5 = 26 days 20 hours .
(18)

Define the local horizontal by the unit vectors (ê1, ê2) such that ê2 is along r0×v0 and ê1 is along ê2×r0.
At every ti, the configuration Ci is defined by the four following relative positions (or slots):

q1 = 700 m ê1 , q2 = −700 m ê1 , q3 = 700 m ê2 , q4 = −700 m ê2 . (19)

Note that at ti, q1 is in front of the reference state (in the local horizontal plane), q2 is behind, q3 is on the
left and q4 is on the right (see figure 1(a)). At each ti, there must be one spacecraft per slot and we want to
determine the sequence of reconfigurations that minimizes the total fuel expendituree (other cost functions
such as equal fuel consumption for each spacecraft may be considered as well). For the first mission, there
are 4! configurations (number of permutation of the set {1, 2, 3, 4}). For the second mission, for each of the
previous 4! configurations, there are again 4! configurations, that is a total of 4!2 possibilities. Thus for 5
missions there are 4!5 = 7, 962, 624 possible configurations.

In this paper, we focus on impulsive controls, but the method we develop can equivalently apply to
continuous thrust problems. Indeed, continuous thrust problems are usually solved using optimal control
theory and reduce to a set of necessary conditions that are formulated as a Hamiltonian two-point boundary
value problem. This boundary value problem can in turn be solved using the method we present in this
paper.24 Let us now design the above mission. We assume impulsive controls that consist of impulsive
thrusts applied at ti∈[0,5]. For each of the four spacecraft, we need to compute the velocity at ti so that the
spacecraft moves to its position specified at ti+1 under gravitational forces only. As a result, we must solve
5 · 4! = 120 position to position boundary value problems (given two positions at ti and ti+1, we need to
compute the associated velocity). Using the generating functions, this problem can be handled at the cost
of only 720 function evaluations (computation times are given in the appendix). Then, we need to evaluate
the fuel expenditure (sum of the norm of all the required impulses, assuming zero relative velocities at the
initial and final times) for all the permutations (there are 7, 962, 624 combinations) to find the sequence that
minimizes the cost function. Figure 4 represents the number of configurations as a function of the values
of the cost function. We notice that most of the configurations require at least three times more fuel than
the best configuration, and less than 6% yield values of the cost function that are less than twice the value
associated with the best configuration. The cost function for the optimal sequence of reconfigurations is
0.00644 km · s−1 whereas it is 0.0396 km · s−1 in the least optimal design. In the optimal case, the four
spacecraft have the following positions:

Spacecraft 1: (t0, q
1), (t1, q

2), (t2, q
2), (t3, q

2), (t4, q
2), (t5, q

2).
Spacecraft 2: (t0, q

2), (t1, q
1), (t2, q

1), (t3, q
1), (t4, q

1), (t5, q
1).

Spacecraft 3: (t0, q
3), (t1, q

4), (t2, q
4) (t3, q

4), (t4, q
3), (t5, q

4).
Spacecraft 4: (t0, q

4), (t1, q
3), (t2, q

3) (t3, q
3), (t4, q

4), (t5, q
3).

whereas the worst scenario corresponds to:

Spacecraft 1: (t0, q
1), (t1, q

1), (t2, q
2), (t3, q

2), (t4, q
1), (t5, q

2).
Spacecraft 2: (t0, q

2), (t1, q
2), (t2, q

3), (t3, q
4), (t4, q

4), (t5, q
3).

Spacecraft 3: (t0, q
3), (t1, q

3), (t2, q
1) (t3, q

3), (t4, q
3), (t5, q

4).
Spacecraft 4: (t0, q

4), (t1, q
4), (t2, q

4) (t3, q
1), (t4, q

2), (t5, q
1).

We may verify, a posteriori, if the solutions found meet the mission goals, i.e., if the order 4 approximation
of the dynamics is sufficient to simulate the true dynamics. Explicitly comparing the analytical solution
with numerically integrated results shows that the spacecraft are at the desired positions at every ti with a
maximum error of 1.5 · 10−8 km.

eEach impulses instantaneously change the velocity vector. The norm of this change quantifies the fuel expenditure
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Figure 4. Number of configurations as a function of the value of the cost function

1. Considerations on collision management

Our algorithm does not consider the risk of collision in the design. However, it provides a simple way to
check afterwards if there is collision. Recall the indirect method, it is based on the initial value problem
and essentially consists in solving Hamilton’s equations for an approximation of the flow. Once such a
solution is found, we can generate any trajectory at the cost of a function evaluation, there is no need to
integrate Hamilton’s equations again. Checking for collisions is again a combinatorial problem and therefore
our approach is particularly adapted to this. As an example let us verify if the design we proposed for the
multi-task mission yields collisions. In figure 5 we plot the distance between each of the spacecraft. We
remark that only spacecraft 1 and 2, and spacecraft 3 and 4 may collide (relative distance less than 100 m).
A detail of the figure shows that spacecraft 1 and 2 get as close as 40 meters after about 80 hours and
spacecraft 3 and 4 may eventually collide.

(m)

(hours)

(a) Distance between Spacecraft 1 and
2

(m)

(hours)

(b) Distance between Spacecraft 1 and
3

(m)

(hours)

(c) Distance between Spacecraft 1 and
4

(hours)

(m)

(d) Distance between Spacecraft 2 and
3

(hours)

(m)

(e) Distance between Spacecraft 2 and
3

(hours)

(m)

(f) Distance between Spacecraft 3 and
4

Figure 5. Distance between the spacecraft as a function of time

It can be proven that for this specific mission, there is no design that prevents the relative motion of the
spacecraft to be less than 100 m. In the best scenario, the smallest relative distance between the spacecraft
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is about 15 m, and is achieved in 3, 360 different designs. Among these 3, 360 possibilities, we represent in
figure 6 the time history of the relative distance between the spacecraft for the design that achieves minimum
fuel expenditure (the total fuel expenditure is 60 % larger than in the best case). This scenario corresponds
to:

Spacecraft 1: (t0, q
1), (t1, q

2), (t2, q
3), (t3, q

3), (t4, q
4), (t5, q

3).
Spacecraft 2: (t0, q

2), (t1, q
3), (t2, q

4), (t3, q
4), (t4, q

3), (t5, q
4).

Spacecraft 3: (t0, q
3), (t1, q

4), (t2, q
1) (t3, q

2), (t4, q
1), (t5, q

2).
Spacecraft 4: (t0, q

4), (t1, q
1), (t2, q

2) (t3, q
1), (t4, q

2), (t5, q
1).

(m)

(hours)

(a) Distance between Spacecraft 1 and
2

(m)

(hours)

(b) Distance between Spacecraft 1 and
3

(m)

(hours)

(c) Distance between Spacecraft 1 and
4

(m)

(hours)

(d) Distance between Spacecraft 2 and
3

(m)

(hours)

(e) Distance between Spacecraft 2 and
3

(m)

(hours)

(f) Distance between Spacecraft 3 and
4

Figure 6. Distance between the spacecraft as a function of time

For times at which the spacecraft are close to each other, we may use some local control laws to perform
small maneuvers to ensure appropriate separation.

Another option consists of changing the configurations at ti so that there exists a sequence of reconfig-
urations such that the relative distance between the spacecraft stay larger than 100 m. This can easily be
done using our approach since F1 is already known. Solving a new design would only require 720 function
evaluations.

In the above example we take advantage of our algorithm to perform the required design, that is, we are
able to plan missions involving several spacecraft over a month using non-trivial dynamics while minimizing
a given cost function. Such a design is possible because we focus directly on specifying the problem as a
series of boundary value problems. Solution of this problem using a more traditional approach to solving
boundary value problems would have required direct integration of the equations of motion for each of the
720 boundary value problems.

However, we have not taken full advantage of our algorithm yet, as the above example does not provide
insight on the dynamics. We now consider a different mission to remedy this and show how our algorithm
may be used for analytical studies.

B. A different multi-task mission

For simplicity, we assume that the spacecraft must achieve only one task, that is we constrain the geometry
of the formation at t0 and t1. However, instead of imposing absolute relative positions, we only require
the spacecraft to be equally spaced on a circle of a given radius in the local horizontal plane at t1. Such
a constraint is more realistic, especially for imaging satellites as rotations of the formation about the local
vertical should not influence performance. In this problem, combinatorics and smooth functional analysis
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are mixed together. Indeed, the positions of the four slots are given by a variable θ (θ indicates the position
of the first slot, the other slots are determined from the constraint that they should be equally spaced).
Then, we need to solve a combinatorial problem as in the previous case. To find the θ that minimizes the
cost function, we use the polynomial approximation of the generating functions provided by our algorithm to
express the cost function as a one dimensional polynomial in θ. Variations of the cost function are determined
analytically by computing the derivative of the cost function.

We choose the initial position to be as in the previous example and require the spacecraft to be equally
spaced at t1 on a circle of radius 700 meters in the local horizontal plane. In addition, we assume zero
relative velocities at the initial and final times and again choose the cost function to be the sum of the norm
of the required impulses. As before, (ê1, ê2) span the local horizontal plane and we define θ as the angle
between the relative position vector and ê1. Since θ is allowed to vary from 0 to 2π (i.e., slot 1 describes
the whole circle as θ goes from 0 to 2π), we may consider that spacecraft 1 always goes from slot 1 to slot
1. As a consequence, there are 3! free configurations. In figure 7, we plot the values of the cost function as a
function of θ for each of the configurations. The best design is the one for which θ = 3.118 rad, spacecraft
1 goes from slot 1 to slot 1, spacecraft 2 from 2 to 3, spacecraft 3 from 3 to 2 and spacecraft 4 from 4 to 4.
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0.0002

0.0004

0.0006

0.0008

0.001

Hkm�sL

(a) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 2, 3, 4)

1 2 3 4 5 6
Θ
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0.0008
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Hkm�sL

(b) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 2, 4, 3)

1 2 3 4 5 6
Θ

0.0002
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0.0006

0.0008

0.001

Hkm�sL

(c) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 3, 2, 4)

1 2 3 4 5 6
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0.0006

0.0008

0.001

Hkm�sL

(d) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 3, 4, 2)
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Θ

0.0002

0.0004

0.0006

0.0008

0.001

Hkm�sL

(e) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 4, 2, 3)

1 2 3 4 5 6
Θ

0.0002

0.0004

0.0006

0.0008

0.001

Hkm�sL

(f) Spacecraft goes from
slots (1, 2, 3, 4) to (1, 4, 3, 2)

Figure 7. Cost function as a function of θ for each configuration

If several missions need to be planned, then a new variable is introduced for each and a multi-variable
polynomial must be studied. As a result, minima of the cost function are found by evaluating as many
derivatives as there are missions.

Through this example, we have gained insight on the dynamics by using the analytical approximation
of the generating function and were able to solve the fuel optimal reconfiguration problem. The method we
use is very general and can be applied to solve any reconfiguration problem given that the constraints on
the configurations are holonomic.

C. Stable trajectories

Now we focus on another crucial, but difficult, design issue for spacecraft formations. We search for config-
urations, called “stable” configurations, such that the spacecraft stay close to the reference trajectory over
a long time span.

1. Definitions

Let us first define the notion of stable formation more precisely. Let T be a given instant and M a real
number.
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Definition IV.1 (Stable relative trajectory). A relative trajectory between two spacecraft is (M,T )-
stable if and only if their relative distance never exceeds M over the time span [0, T ].

Definition IV.2 (Stable formation). A formation of spacecraft is (M,T )-stable if and only if all the
spacecraft have (M,T )-stable relative trajectories with respect to the reference trajectory.

Periodic formations are instances of stable formations, they are (M,∞)-stable. We also point out that
our definition recovers the notion of Lyapunov stability: (M,∞)-stable relative trajectories are stable in the
sense of Lyapunov. In this paper, we focus on (M,T )-stable formations with T large but finite, the approach
we present is not appropriate to find (M,∞)-stable configurations. However, when the reference trajectory is
periodic Guibout and Scheeres23 developed a technique based on generating functions and Hamilton-Jacobi
theory to find periodic configurations.

2. Stable trajectories as solutions to two-point boundary value problems

In order to use the theory we have presented above, we formulate the search for stable trajectories as
two-point boundary value problems.

Define the local vertical plane as the two-dimensional vector space perpendicular to the velocity vector
of the reference trajectory. In other words, the local vertical is spanned by (f̂1, f̂2) where f̂1 and f̂2 are two

unit vectors along r0 × v0 and v0 × f̂1 respectively. In the local vertical plane, we use polar coordinates,
(r − r0, θ), θ being the angle between f̂1 and the local relative position vector r − r0. We denote by Cr

t the
circle of radius r centered on the reference trajectory that lies in the local vertical plane at t. A position
on this circle is fully determined by θ (see figure 8). Then given instant tf > t0 and a distance rf > 0, the
circle C

rf

tf
is defined.

v
0

x

y

z

r
0

f
1

f
2

r

q

Figure 8. Representation of the local geometry

Before searching for stable configurations, we first introduce a new methodology to find (M,T )-stable
relative trajectories for a single spacecraft about the reference trajectory defined above. Consider the fol-
lowing two-point boundary value problem:
Find all trajectories going from the initial position of the spacecraft to any point on C

rf

tf
in tf − t0 units of

time where rf < M (figure 9).
Solutions to this boundary value problem have the following properties:

1. they contain (M,T )-stable relative trajectories.

2. they contain relative trajectories that are not (M,T )-stable, i.e., trajectories that go far from the
reference trajectory in the time interval (0, tf ) but come back close to the reference trajectory at
tf . We point out that many of these trajectories are ignored by our algorithm since it uses a local
approximation of the dynamics.
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Figure 9. Boundary value problem

On the other hand, we know that stable trajectories must have similar orbit elements as compared to the
reference trajectory. Therefore, to discriminate between the solutions to the two-point boundary value
problem we can use orbit elements, especially since we know, a priori, that the longitude of the ascending
node and the argument of perigee have secular drifts. This leads us to define a cost function J as:

J =
1

4
‖∆ωtf

‖ +
1

4
‖∆ωtf

− ∆ωt0‖ +
1

4
‖∆Ωtf

‖ +
1

4
‖∆Ωtf

− ∆Ωt0‖ , (20)

where ‖∆ωtf
‖ corresponds to the relative argument of perigee at tf , i.e, the difference at tf between the

argument of perigee of the spacecraft trajectory and the argument of perigee of the reference trajectory,
‖∆ωtf

−∆ωt0‖ characterizes the change in the relative argument of perigee between t0 and tf and the other
terms are similar and involve the longitude of the ascending node instead.

Let us now consider the following boundary value problem: Find all trajectories going from the initial
position of the spacecraft to any point on C

rf

tf
in tf − t0 units of time that minimize J .

From the above discussion, we conclude that solutions to this boundary value problem characterize stable
relative trajectories.

3. Methodology

We showed in the previous section that the search for stable trajectories reduces to solving a two-point
boundary value problem while minimizing a given cost function. In this section, we solve this problem using
the generating function theory introduced in the first part of this paper.

First we notice that F1 solves the boundary value problem that consists of going from an initial position
q0 to a position qf in tf units of time. Indeed, from Eqs. (6) and (7) we have:

p0 = −
∂F1

∂q0
(q, q0, tf ) , (21)

pf =
∂F1

∂q
(q, q0, tf ) . (22)

Then we assume that qf describes C
rf

tf
, that is, qf = rf cos(θf )f̂1 + rf sin(θf )f̂2 where θf ranges from 0 to

2π. Since F1 is approximated by a polynomial in (q, q0) with time-dependent coefficients, Eqs. (21) and (22)
allow us to express p0 and pf as polynomials in θf with time-dependent coefficients. Finally, with knowledge
of p0(θf ), pf (θf ), q0 and qf (θf ), we can express J as a function of θf and easily find its minima {θ1

f , · · · , θr
f}.

Stable trajectories are then those that travel from q0 to qf = rf cos(θi
f )f̂1 + rf sin(θi

f )f̂2, i ∈ [1, r] in tf units
of time.

4. Example

Let us illustrate this procedure by searching for stable trajectories for a spacecraft whose initial position
relative to the reference trajectory is q0 = (495,−428.6, 247.5) m in the inertial frame or equivalently q0 =
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700 cos(π/4)f̂1 +700 sin(π/4)f̂2 m. We use an order 4 approximation of the dynamics, tf = 10 d 19 h 13 min
and rf = 700 m. Then, using a symbolic manipulator, we express J as a function of θf and plot its values
in figure 10. It has two local minima at θ1 = 0.671503 rad and θ2 = 2.4006615 rad that correspond to stable
trajectories. The relative motions associated with these two trajectories are represented in figures 11 and
12 over time spans smaller and larger than tf . We notice the excellent behavior of these trajectories, they
remain stable over a time interval larger than the one initially considered.

1 2 3 4 5 6
Θ HradL

0.0001

0.0002

0.0003

Values of the cost functions
at t = 259 h 13 min

Figure 10. Cost function as a function of θf

(a) x − y motion during 26 hours (b) x − z motion during 26 hours (c) y − z motion during 26 hours

(d) x − y motion during
11 days 19 hours

(e) x − z motion during
11 days 19 hours

(f) y − z motion during
11 days 19 hours

(g) x − y motion during
21 days 11 hours

(h) x − z motion during
21 days 11 hours

10 m

10 m

(i) y − z motion during
21 days 11 hours

Figure 11. Trajectory associated with the minimum θf = 0.671503 rad, tf = 10 d 19 h 13 min.
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(a) x − y motion during 26 hours (b) x − z motion during 26 hours (c) y − z motion during 26 hours

(d) x − y motion during
11 days 19 hours

(e) x − z motion during
11 days 19 hours

(f) y − z motion during
11 days 19 hours

10 m

10 m

(g) x − y motion during
21 days 11 hours

10 m

10 m

(h) x − z motion during
21 days 11 hours

(i) y − z motion during
21 days 11 hours

Figure 12. Trajectory associated with the minimum θf = 2.4006615 rad, tf = 10 d 19 h 13 min.

Before going further, let us discuss the role played by tf . We transformed the search for stable trajectories
into a boundary value problem over a time span defined by tf that we apparently chose arbitrarily. By varying
tf , we notice that minima of the cost function correspond to different stable trajectories. In figure 13 we plot
the cost function as a function of θf for t = tf − 1 h 6 min = 10 d 18 h 19 min. In contrast to the previous
case, the cost function has only one minimum at θ = 3.814575 rad. In figure 14 we represent the trajectory
that corresponds to this minimum. It is stable but different from the previous ones (figures 11 and 12).
This result was expected and makes our approach even more valuable. Indeed, since we reduced the search
for stable trajectories to a boundary value problem, we completely ignore the behavior of the spacecraft at
intermediary times t ∈ [0, tf ], we only take into account the states of the spacecraft at the initial time and
at tf . As a result, short term oscillations play a major role and alter the locus of the minima of J . Thus, by
varying tf we are potentially able to find infinitely many stable trajectories going through q0 at the initial
time. This aspect allows us to design a deployment problem, for instance, where several spacecraft are at
the same location at the initial time and we want to place them on stable trajectories that do not collide.

Furthermore, larger or smaller values of tf could have been chosen, however we must be aware that if tf
is too small, short term oscillations may be as large as the drift and in that case the cost function does not
discriminate well; its minima do not necessarily correspond to stable trajectories. On the other hand, if tf
is very large, the minima correspond to (M,T )-stable relative trajectories with T increasing as tf increases.

Finally, in the above example we selected trajectories that correspond to minima of J and let tf vary to
find several stable trajectories. However, trajectories that correspond to values of J close to the minimum may
be stable trajectories as well. If we vary tf , say from T 1 to T 2, we noticed that the trajectory corresponding
to the minimum of J at T 1 is different from the one corresponding to the minimum of J at T 2. Although
the trajectory associated to T 1 does not correspond to a minimum of J at T 2, it is stable and corresponds to
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Figure 13. Cost function as a function of θf

(m)

(m)

(a) x − y motion during 26 hours

(m)

(m)

(b) x − z motion during 26 hours

(m)

(m)

(c) y − z motion during 26 hours

Figure 14. Trajectory associated with the minimum θ =f 3.814575 rad, tf = 10 d 18 h 19 min.

a small value of J at T 2. As a result, we are able to identify regions in which there are no stable trajectory
that go through an initial position q0 and through the circle of radius rf at tf . For example, all stable

trajectories that goes through q0 = (495,−428.6, 247.5) m and qf = 700 cos(θf )f̂1 + 700 sin(θf )f̂2 m at tf
are localized on the arc defined by θf ∈ [0, π] when tf = 10 d 19 h 13 min and by θf ∈ [2, 5] rad when
tf = 10 d 18 h 19 min.

D. Stable configurations

In this section, we generalize the approach introduced above in order to design stable configurations. Without
loss of generality, and for sake of simplicity, we assume that the formation is on Cr0

t0
at the initial time so that

the positions of the spacecraft are determined by the angle θ0, the angle between f̂1 and the local relative
position vector. As a result, the initial position may be regarded as a function of θ0. Thus, Eqs. (21) and
(22) provide a polynomial approximation of p0 and pf in the variables (θ0, θf ) (instead of θf only) with
time-dependent coefficients. The procedure to find stable trajectories is the same as before but now we have
an additional variable, θ0. In figure 15 we represent the values of the cost function as a function of θi and
θf for different times. We notice that if two out of the three variables (θf , θ0, tf ) are given, there exists a
value of the third variable that minimizes the cost function. In other words, whatever θ0 and tf are, there
exists a stable trajectory that goes through the initial position at the initial time and reaches C

rf

tf
in tf units

of time. Moreover, if tf varies, minima of the cost function correspond to different stable trajectories due to
short term oscillations.

1. Example

We consider a formation of 4 spacecraft equally spaced on a circle of radius 700 m about the reference
trajectory that lies in the local vertical plane at the initial time. Spacecraft k has its initial position defined
by θi = π/4 + (k − 1)π/2. Stable trajectories may be found by minimizing the cost function with respect to
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(a) At tf = 10 d 18 h 19 min (b) At tf = 10 d 18 h 34 min (c) At tf = 10 d 18 h 42 min

(d) At tf = 10 d 18 h 50 min (e) At tf = 10 d 18 h 57 min (f) At tf = 10 d 19 h 13 min

Figure 15. Cost function as a function of the initial and final positions for several tf

θ. For every choice of tf there is a solution to the minimization problem (see figure 15). As a result, we are
able to find infinitely many stable trajectories for each spacecraft. In figure 16 we plot the trajectories of the
four spacecraft that are found by considering tf = 10 d 18 h 19 m and in figure 17, tf = 10 d 19 h 13 m. The
two solutions have very different properties; Even though the positions at the final time tf are constrained
to be at 700 m from the reference trajectory in the local vertical plane, the relative distance may be large
at intermediary times. For instance the solution found for tf = 10 d 18 h 19 m yields a formation that is as
large as 6 km. Such trajectories cannot be found using linear approximations of the relative motion.

V. Conclusions

In this paper, we have joined elements of Hamilton-Jacobi theory and a robust algorithm that computes
generating functions to address the challenges that arise in missions involving spacecraft flying in formation.
Despite a complex dynamical model and an arbitrary reference trajectory we have been able to obtain a
semi-analytic description of the phase flow as two-point boundary value problems. Such a description of the
phase space is superior in many ways to the traditional approach based on the initial value problem. In
particular it allows us to solve two-point boundary value problems using only simple functions evaluations.
This aspect is crucial when dealing with spacecraft formations because of the combinatorial nature of the
reconfiguration problem. In addition, we have shown that the algorithm we have developed is able to predict
the dynamics over a long time span with high accuracy. The examples we have chosen illustrate the use of
our method, but our method does not reduce to these examples and can be used to deal with more complex
problems. To conclude, we recall the main feature of our method:

• The dynamical environment may be as complex as one wants, the only constraint being that the
dynamical system must be Hamiltonian. In addition, the complexity of the dynamical system does not
seriously impact the computation times.

• The reference trajectory may be arbitrary, however it influences the domain of convergence of the series
defining Hh. Techniques to estimate this domain have been developed by Guibout and Scheeres.21

• The time span we consider may be very large, the larger it is the longer the ordinary differential
equations obtained with the indirect algorithm should be integrated. The main advantage of describing
the phase flow as two-point boundary value problems is that the time period we consider does not
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influence the accuracy of the results. This aspect is of main importance, especially as this is a weakness
of traditional approaches based on the initial value problem.

• Our approach also allows one to deal with low-thrust spacecraft. In this case, the reconfiguration
problem can be formulated as an optimal control problem whose necessary conditions for optimality
are a Hamiltonian two-point boundary value problem. For these problems, the dynamical environment
may not be Hamiltonian since the necessary conditions for optimality yield a Hamiltonian system.
However, it should be emphasized that the dimensionality is double (because of the adjoint variables).

• There are no limitation on the complexity of the formation geometry in the reconfiguration problem
as long as the geometry can be described with constraints on (q, p) only.

• From the semi-analytic expression of the generating functions, several problems may be addressed. We
have seen how to solve the reconfiguration problem and the deployment problem, we have also been
able to find stable configurations and in previous articles the authors showed that one can also find
periodic configurations. In the future, additional problems will be addressed.

Finally, the Mathematica c© package we have developed to run these simulations is freely available from the
authors upon request.
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A. Appendix: Computational times

All the computations have been made using Mathematica c© 5.0 on a 2GHz processor with 2GB RAM
running under Linux.

• Computation of the generating function F1 up to order 4 over a time span of about 5 days: about 5
hours.

• Solving the 120 two-point boundary value problems in the first multi-task missions: about 3 minutes.

• Solving the second multi-task mission: about 1 minute.

• Solving the deployment problem: instantaneous once F1 is known.

• Finding stable configurations: instantaneous once F1 is known.
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Figure 16. Trajectories of the four spacecraft found by minimizing the cost function at tf = 10 d 18 h 19 m
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Figure 17. Trajectories of the four spacecraft found by minimizing the cost function at tf = 10 d 19 h 13 m
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