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We shall describe a method to construct a simple 
but sufficiently flexible shape and sizing optimization 
system for structural design by using existing modules of 
modeling, finite element analysis, and optimization 
algorithm after a critical review of recent development of 
structural design optimization systems and theories. We 
shall solve several example problems of shape and sizing 
design optimization of structures to demonstrate the 
capability of the optimization system developed here. It 
will be also shown that the present approach can deal 
with not only linear problems but also nonlinear, multi- 
disciplinary, and weakly coupled problems. 

Reduction of the duration of design and 
manufacturing processes becomes much more important 
than reducing the cost of raw material of a product while 
the required functionality is fulfilled, to reduce the overall 
cost and to lead success of a new product. In order to 
reflect this situation to research and development in 
design methodology, we must reconstruct the notion of 
structural optimization in mechanical design. In past 
most structural design optimization tried to minimize the 
cost of raw material under certain constraints which are 
implied from mechanics and manufacturing requirement. 
But now, the most important matter is how easily certain 
design can be improved with minimal effort by design 
engineers rather than just considering minimization of 
the cost (i.e., weight) of raw material. In other words it 
becomes much important to examine how the optimal 
design can be achieved. 

Although design optimization capability is 
additionally implemented into some finite element 
analysis programs in 1980s 1-22, limitations are found 
in these systems. One is the closedness of these systems 
and the other is limited in shape design capability. 
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More precisely, state equations we can deal with in these 
systems are very limited to the ones which are originally 
designed in finite element analysis codes. Majority of 
existing design optimization is for stress analysis for 
linear elasticity, while other analysis areas such as heat 
conduction, fluid flow, metal forming, and others are at 
this moment excluded from existing design optimization 
systems. However, these wide range state equations 
must be involved in structural optimization for 
mechanical design, and they might be simultaneous. 
That is, thus it is required in a design system that we can 
deal with any kind of state equations using different 
analysis software; Le., a design system must be open. 
If other discrete methods such as boundary element and 
finite difference methods are applied to solve state 
equations, we should still be able to incorporate with 
these different type analysis capabilities in a design 
optimization system. 

It is noted that structural optimization had studied 
mainly by structural engineers in aeronautical and 
aerospace industry. They are based on the theory of 
linear elasticity and linear thermoelasticity. On the 
other hand, mechanical design requires optimal design not 
only the sizes of a structure but also its shape, and it 
mostly deals with design of components or parts of a 
structure rather than a large scale whole body of complex 
structure. The number of design variables is much less 
than that of aerospace type structures, but the shape 
design becomes far more important in mechanical design. 
Thus, analysis model developing with shape geometry is 
the most important in mechanical design. No matter 
how capable sensitivity analysis and optimization 
algorithms are developed in a design system, if an 
appropriate finite element model cannot be generated 
automatically at every design step during execution of the 
system, the optimum cannot be easily obtained. This 
implied that a design system must involve flexible 
modeling capability that can reflect any geometrical 
design change by an optimization algorithm. In other 
words, a design system may be constructed based on a 
modeling software rather than finite element or 
sensitivity/optimization software by adding other 
necessary modules for design optimization. 

It is thus required to study and to develop a simple 
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methodology that can deal with both sizing and shape 
optimization as well as multi-disciplinary problems. 

In this article we shall describe a method to 
construct a rather small scale but sufficiently flexible 
optimization system by integration of existing mesh 
generator, finite element analysis, and optimization 
algorithm capability using the concept of open-ended 
software modules in UNIX operating system. More 
precisely, we shall develop an optimization system using 
C-Shell scripts that can control the system flow and 
execute application programs in UNIX OS environment 
so that all function can be integrated in a system. It is 
noteworthy that the concept that we shall introduce to 
develop an optimization system should be general in the 
sense that the present approach is applicable to any 
software that has control flow commands to execute 
variety of modules and communication commands to the 
operating system. These are used as high level 
computer language to write a program of design 
optimization. The present system allows to deal with 
sizing and shape optimization in the same manner, while 
the nature of static/dynamic, or linear/nonlinear problems 
for analysis does not affect to the system itself since 
analysis is assumed to be independent of the system. In 
this sense, this can provide much flexible and powerful 
capability than existing one in commercially available 
codes for design optimization, and yet the size of the 
system is far smaller than any of existing programs. 

Standard procedure of structural optimization as a 
class of mechanical design consists of the following four 
major modules: 

1. Development of a Model for Analysis 
2. Finite Element Analysis 
3. Design Sensitivity Analysis 
4. Application of Optimization Algorithms. 

Development of a finite element analysis model is 
nothing but usual preprocessing for finite element 
analysis in sizing optimization. However, it must be a 
module inside of the design system for shape 
optimization, since geometric modeling itself is subject 
to design change during optimization. In general, finite 
element methods are applied to solve the state equation, 
but other analysis methods such as boundary element and 
finite difference methods should be also applicable. In 
any case a discrete model must be developed, and is 
directly related to shape design. It is noteworthy that 
design sensitivity calculation depends on analysis method 
applied. An appropriate method of sensitivity analysis 
may be determined by the characteristics of the state 
equation and a choice of method in the analysis module. 
The last part of the design optimization is the set of 

optimization algorithms to solve the optimal design 
problem that is formulated as a constrained nonlinear 
minimization problem. 

There are many well-developed sophisticated 
software for finite element analysis and optimization at 
present, and they are used daily in design practice. Thus 
it becomes rather ineffective to start writing all the 
program of structural optimization from scratch. It is 
better to develop a design system that can utilize these as 
intact existing modules so that it does not require 
additional effort to be familiar with analysis and 
optimization modules. Furthermore, since each 
organization has its own preference and rather extensive 
experience in use of a particular finite element code, the 
design optimization system should be able to integrate 
this specific one as well as other choices for other users. 
This means that the optimization system should be able 
to choose any of them according to the nature of the 
state equation and to the preference of a user. Since 
most of commercially available design optimization 
codes are developed as an enhancement of their original 
finite element analysis programs, they do not possess 
this flexibility and openness. As mentioned earlier, 
state equations in mechanical design are usually multi- 
disciplinary settings. Thus a design system should not 
be restricted by particular finite element analysis 
capability. It should be designed with new concept 
based on the nature of mechanical design that has much 
larger scope than analysis of the state equation. 

Since shape design is an important issue to be 
studied as structural optimization in mechanical design, 
an optimization system should easily be able to deal with 
the shape optimization of a structure as well as sizing 
optimization. The characteristic of shape design is that 
the geometric finite element model must be modified 
during optimization procedure, while sizing problems can 
be solved with a fixed geometrical finite element model. 
This nature of adaptation of the finite element mesh has 
been the major difficulty in shape optimization. Many 
researchers have been challenging to solve this difficulty 
and it is not completely solved yet especially for three- 
dimensional structures. The notion of shape 
optimization is first introduced by Zienkiewicz and 
Campbell 23.  In early days, the direction of mesh 
movement is specified according to the shape change of a 
structure, while the topology of finite element 
connectivity is fixed as the initial one19724. This 
approach failed to yield the optimum in many problems 
by crashing elements or destroying convexity of finite 
elements unless we can specify appropriate direction of 
mesh movement by predicting the final shape in advance. 
Thus, we have reached to the notion that finite element 
meshes must be regenerated completely only by using 
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boundary information that defines the shape of a structure 
for fully automated shape optimization methods, see 
references 25-29. This means that a design optimization 
system must contain the capability of finite element 
mesh generation. In the sense this becomes most 
important module for a design system involving shape 
change of a structure. We shall now briefly review 
development of shape optimization of an elastic 
structure. Extensive literature on this subject may be 
found, for example, in references 30726. 

There are two approaches to describe the shape of 
the design boundary. Majority of early days works on 
shape optimization define the design boundary by piece 
wise linear segments connecting nodes of a finite element 
model on the design boundary. Then the design 
variables are the coordinates of such nodes. In this case 
the number of design variables becomes significantly 
large if a refined finite element model is used to assure 
accuracy of approximation. 

Another disadvantage of this approach is that mere 
application of resizing algorithm of the nodal location 
may yield a physically unrealistic oscillatory optimum 
shape, because of “instability” of stress and strain on the 
boundary 31. The total number of degrees of freedom of 
displacement should be larger than the ones for stress and 
strain in the displacement finite element approximation, 
However, if the least squares method32 is applied to 
compute stress and strain on the boundary, those degrees 
of freedom exceed the one for the displacement. This 
leads instability in approximation. Stress and strains 
computed by the least squares method possess slightly 
oscillatory distribution, and then this slight oscillation is 
magnified during the iterations for shape optimization. 
Thus some smoothing algorithms of resizing or adaptive 
schemes to have accurate finite element approximation of 
stress and strain must be introduced to obtain a smooth 
optimum shape, see reference 33. 

To overcome the defect due to the definition of the 
boundary by nodal points, Braibant and Fleury introduced 
the method of B-spline to describe the shape of design 
boundaries 31,  After decomposing the design boundary 
into a set of design segments consisting of lines, arcs, 
and curves, each boundary segment is represented by an 
appropriate spline function. Then a finite element 
model is constructed independently of the number of 
control points of the splines. In most of shape 
optimization problems, design boundary segments are 
defined by few numbers of control points. If a cubic 
curve is expected, four control points are required. If an 
arc is desired, the location of the center and the radius are 
regarded as the control points. Despite that no matters 
how refined finite element models are introduced, the 
number of control points stays the same, that is, the 
total number of the discrete design variables can be fixed 
and not so many. Furthermore, as reference 31 showed, 
the smooth optimum shape can be obtained without 

introducing special techniques of smoothing and adaptive 
finite element methods. Therefore, the majority of 
researchers and structural engineers are now using this 
second approach to define the design boundary. 

Sensitivity analysis for shape optimization has been 
studied by Choi, Haug, Hou, and Yoo 34-36, and others. 
Since extensive treatment of sensitivity analysis can be 
found in reference 3 7 3 3 8 ,  we shall only give brief 
description of shape sensitivity. If the design boundary 
segment is described by the spline expression: 

O l s l l  
~ 

i=l 

where N, is the number of control points, X c i  , i = 1 ,  ..., 
N,, are the coordinates of the control points, s is the 
parametric coordinate, and Cpi are the basis function for 
spline expression. If either analytical or semi-analytical 
method is applied to compute the design sensitivity, we 
must calculate the sensitivity 

for a performance function g that is a function of only the 
displacement u. If Nsmax number of nodes are placed 
on this spline, sensitivity of g is thus computed by 

(3) 

where X i  , i = I ,  ....., Nsm, are the nodal coordinates of 
the finite element model on the design boundary 
segment, and Si are the parametric coordinates 
corresponding to X i .  Therefore, we must compute the 
sensitivity of the displacement u with respect to all of 
the nodal coordinates on the design boundary segment of 
a finite element model. If a refined finite element model 
is used for stress analysis, computing sensitivity might 
become fairly large despite a few numbers of control 
points for the spline expression in the case that analytical 
or semi-analytical method is applied. It thus follows 
from this fact that design sensitivity for shape 
optimization should be effectively computed by finite 
difference methods by taking advantage of a few control 
points of spline expression. 

In order to utilize an optimization algorithm, it is at 
least required to compute the value and its first derivative 
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of a performance function (that is the objective and 
constraint functions) g with respect lo a design variable 

d, i.e., g(u,d) and (u,d> , where u is the state variable 

to define the state equation (the equilibrium equation for 
stress analysis, the equation of motion in dynamics, the 
heat conduction equation for thermal analysis, ...) of a 
physical system to be optimized. 

If the state equation is static and linear, and if a 
discrete model of the state equation is expressed by 

Dg 

u =  f , (4) 

then differentiation of this in a design variable d yields 
the sensitivity of the state variable 

- l  is the inverse of a linear operator (ie., the 
global stiffness matrix in stress analysis by the finite 
element method). Thus the sensitivity of the 
performance function g, Le., the first derivative of g with 
respect to a design variable d is given by 

This form of sensitivity requires explicit representation 
of a performance function in terms of the state variable u 
and a design variable d. And it has to be assured that 
state variable u is differentiable with respect to design 
variable d. 

Thus application of the above analytically derived 
sensitivity might not be useful for performance functions 
which are implicit functions of the state variable u such 
as the principal stresses of a three-dimensional solid 
structure. Even in the case that performance functions 
are explicitly expressed in the state and design variables, 
utilization of the above form of sensitivity might not be 
practical since we have to compute the first derivative of 
the linear operator (stiffness matrix in stress analysis) 
of the state equation. For example, in a three- 
dimensional shell structure, the analytical partial 
derivative of the stiffness matrix with respect to a 
nodal coordinate of a node may not be obtained in a 
simple form. For shell formulation in the finite 
element method we use a local coordinate system attached 
into each finite element that is defined by the nodal 
coordinates of the four corner nodes of the element. The 
element stiffness matrix is transformed to the one 

ilobal in the global coordinate system and it is 
assembled to the global stiffness matrix: 

(7) 

is the transformation matrix from the local to 
the global coordinate system. The first derivative of the 
stiffness matrix is then computed by 

that is, the first derivatives of both coordinate 
transformation and element stiffness matrices must be 
analytically obtained. Since the transformation matrix 

is not a straightforward function of the nodal 
coordinates, it is not practical to compute the analytical 
first derivative of the stiffness matrix. Furthermore, 
unless the exact formulation of the stiffness matrix is 
known, this form of sensitivity is not applicable. In 
many commercially available finite element codes, this 
formulation is not opened to public in general. This leads 

ite difference scheme to compute the first derivative 
of the state equation: 

at the two perturbed designs d+Ad and 
d-Ad, where Ad is a sufficiently small design change at 
the current design d. This approximation yields the so- 
called semi-analytical method to compute the design 
sensitivity 

The semi-analytical method does not require to know the 
exact explicit form of function in the state variable u. If 
the operator can be evaluated at two different designs in 
analysis procedure (that is, if we can output the stiffness 
matrix and the load vector at two different design stages), 
we can compute the design sensitivity by using the semi- 
analytical method. Then, we may not need direct access 
to the source code of finite element analysis to develop a 
sensitivity analysis program using the semi-analytical 
method. However, it would be very inefficient. 

Therefore, for multi-disciplinary problems, it might 
be much simpler to apply the finite difference 
approximation to compute the sensitivity of a 
performance function g: 
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There are four reasons it is concluded that the finite 
difference method is the most appropriate method to 
compute sensitivity for most of practical optimization 
problems in mechanical design. 

i f f erent ia~ i l i ty .  In the finite difference 
scheme, the explicit function form of g in d and u is not 
required, and even the first derivative of the linear 
operator of the state equation need not be calculated. 
Even the differentiability of the state variable with 
respect to design variables does not have to be considered. 

Flexibility. The finite difference approximation 
is applicable both for linear and for nonlinear state 
equations, while time dependency of the state equation 
does not affect at all in computation of the design 
sensitivity. Mechanical design requires consideration of 
multi-disciplinary settings. This nature of mechanical 
design yields consequence that analytical, even semi- 
analytical methods are not practical to compute design 
sensitivity. Flexibility of the finite difference method 

sitivity is thus truly great. 
evelopment Cost. We cannot expect a 

single software to integrate the capability to calculate 
sensitivity in the different disciplines (e.g., stress and 
fluid flow) based on the analytical or semi-analytical 
methods at least at present. The finite difference method 
is, however, applicable together with already existing 
analysis programs for different kind of state equations to 
compute sensitivity without any modification or 
enhancement of these at all. 

Calculation Cost. The disadvantage of this 
method is requirement of two analyses per design variable 
to compute the sensitivity. Thus, if m number of 
performance functions and n number of design variables 
are involved in a design problem, (2n+I)m analyses are 
required to compute the sensitivity and the value of 
performance functions. If the number of design 
variables is large as in sizing problems for aerospace 
structures, the finite difference method is not practical at 
all. However, if the number of design variables is rather 
small, it becomes powerful. As mentioned earlier, most 
of mechanical design problems, the number of design 
variables is very small, because of the requirement from 
cost effective manufacturing. 

Here the central finite difference approximation is 
applied instead of forward or backward finite difference 
scheme, although it requires one more additional 
analysis. It is noted that the central difference method is 
a second order accurate approximation. Indeed, if a 
performance function g is sufficiently smooth, the 
approximation errors are given as follows: 

It is not necessary to assume too small design 
perturbation Ad to calculate the sensitivity. If the 
central difference scheme is applied, errors in the forward 
and backward difference schemes can be estimated by 

This may be applicable to modify the size of design 
perturbation Ad by specifying the allowable tolerance E 

for the approximation error in the forward or backward 
difference scheme, Indeed, we first estimate the second 
derivative of the performance function using a trial design 
perturbation Adfriol, and then we check whether the 
estimated error 

is smaller or larger than a given tolerance E .  If this 
estimated error is larger than E ,  then we define a new 
perturbation Addesired by 

For the sensitivity, however, we shall apply the 
central difference scheme to assure at least one order 
higher accuracy than this estimation based on the forward 
or backward difference approximation. Since it is 
possible to estimate the upper bound of the amount of 
the approximation error, the finite difference method is 
now applicable with more confidence to compute design 
sensitivity. 

@ Applied Transverse Load 
0 Fixed Nodes 

Fig. 1. Finite Element Mesh and Definition of Design 
Variable 
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We shall provide an example of error estimation of the 
forward or backward finite difference method for 
sensitivity analysis related to the shape of the body. To 
do this, the bending problem of a plate with a circular 
hole is considered shown in Fig. 1 .  The nodes on the 
left edge are fixed, and transverse force is applied 
uniformly on the right edge. If a performance function g 
is the maximum principal stress 3 of the structure, and 
design variable is d = ( 1  - r )  the finite difference 
approximation error is estimated by eqn. (14). 

The size of perturbation Ad is determined by Ad = 

load (a = -1,-2,-3). Figure 2 shows the estimated error 
of the sensitivity of the maximum principal stress with 
respect to the radius of the circular hole. The estimated 
error ratio is plotted with the radius r changed from initial 
value 2.0 to the upper limit 4.0. It follows from the 
plotting of the estimated error in Fig. 2 that the lowest 
error is obtained at a = -2 while much worse results are 
obtained for a = -1 and -3. In the case that a = -1, we 
may say too large Ad is assumed. However, for a = -3, 
the round off error becomes much bigger than 
approximation error. In the finite difference 
approximation, the round off error occur in the 
calculation of gJd+M - gJd-m, thus the error is quantified 

by 
ERmndl?ly - - gld+M - d d - M  . (16) 

81, 

In the present example, the round off error is 
O(Ad)=l(Y3 at a = -3.  This implies we would loose 3 
digits in the calculation. This is the reason the error 
declines when the value of performance function and the 
perturbation size Ad become large. 

From this error analysis, the finite difference 
approximation is practically accurate enough to perform 
optimization. In other words, the error is not too large 

(less than 2% at a = -2) even in the forward or backward 
finite difference approximation that is one order less 
accurate approximation than the central difference scheme 
applied in our optimization study. 

Many algorithms have been developed to solve the 
optimization problems modeled as following 38739; 

Minimize f ( x )  
Subject to: g i ( x )  5 0 i = 1,2, ..., m 

h j ( x ) = O  j=1, .2, , . , ,1  (17) 
- 

x, I x, I x, k = L.2, ..., n - 

If application range of a design system is limited in 
a single disciplinary problem for linear elastic or 
eigenvalue analysis of a structure, it is much more 
efficient to develop an optimization system using the 
optimality criteria method to find the optimum. 
However, the optimality criteria method is highly depend 
upon the nature of state equations in the design problem 
as well as a “single” design constraint, and further it is 
very difficult to extend to solve multi-disciplinary design 
optimization problems. The method of Mathematical 
Programming, especially Non Linear Programming is 
most suitable for the system because the method is 
independent from the state equation and most cases of 
problems have highly non linear objective functions or 
constraints. 

There are many available commercial and public 
domain packages of optimization algorithms based on the 
theory of mathematical programming methods both for 
linear and nonlinear programming problems 39-47. 

On the basis of the open-ended concept, a prototype 
of optimization system has been implemented by 
integrating modules. The system consists of 1) MAZE 
49 as a geometric modeler and finite element mesh 
generator, 2)  the system driver written in UNIX C shell 
script 3)  TOPAZ2D 50 as FEM analysis code for heat 
conduction and magnetic field problem, 4 )  NIKE2D 51 as 
FEM analysis code for thermal stress problem, 5 )  D O T  
42 for a sequential linear programming optimizer. 

Because these modules are all complete package 
software and independent from the other modules, the 
communication between the modules has to be taken by 
using input and output data files, and these modules have 
to be controlled by high level (OS level) language. This 
is the reason the system driver 2) has to be written in 
UNIX C-Shell Language. 

Fig. 3 shows the basic flow of the optimization for 
the case of temperature-thermal stress coupled case. First 
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of all the model of initial design is created. After design 
variables, an objective function and constraints are 
defined, optimizer DOT is initialized. In the main loop, 
the system calculates the value or the sensitivities of 
performance functions, which are required by DOT. If 
the value is required, the geometric model is updated 
according to the current design variables, then finite 
element model and boundary conditions are created using 
MAZE. Temperature is analyzed by TOPAZ2D and 
thermal stress is analyzed by NIKE2D using the results 
from TOPAZ2D. The values of performance functions 
are calculated from the output file of the analysis and 
they are given to the optimizer. If the sensitivities are 
required, perturbation sizes of the design variables are 
calculated and the model is passed to the sensitivity 
analysis sub system. 

Fig. 3. Optimization Procedure 

Using the values and sensitivities of the 
performance functions optimizer will calculate the values 
of the design variables of the next trial design. After the 
optimization is converged, the program exits from the 
main loop and outputs the optimal design. 

Fig. 4 shows the basic flow of the sensitivity 
analysis sub system. According to the perturbation size, 
two kinds of perturbed model, one has slightly large 
value of the design variable and the other has small 
value, are created and analyzed. From the values of 
performance functions of perturbed models, the 
sensitivities are calculated by the central finite difference 
scheme. The sensitivities are given to the optimizer, 
and those are used to calculate the values of the variables 
of the next trial design. 

Because of the choice of sensitivity calculation 

using the central finite difference scheme, the main 
routine becomes very simple. If different geometric 
modules, analysis codes, and optimizers are intended to 
use in the system of optimization, we simply call desired 
modules. Most of the rest of the program of the 
optimization is unchanged. 

It is clear that if the total numbers of design 
variables are reasonably small, and if computing speed is 
not so critical, this simple and small design optimization 
system written in UNIX C-Shell scripts can solve multi- 
disciplinary design optimization problems both in size 
and shape design. 

Fig. 4. Sensitivity Analysis 
by the Central Finite Difference Scheme 

Some examples in mechanical design using the 
present design system will be presented for multi 
disciplinary and weakly coupled problems. TOPAZ2D is 
used for heat conduction and magnetic field analysis, 
while NIKE2D is used for thermal stress analysis. 

The first example is a shape design problem of a 
plate that is placed in a field (Fig. 5). The plate is subject 
to two kinds of filed, one is magnetic filed (Fig. 6)  and 
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Fig. 3 Geometric and Finite Element Model for the Initial 
Design 

Fig. 4. Magnetic Flux of the Initial Design 
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Fig. 5. Temperature Field of the Initial Design 

the other is temperature field (Fig. 7). The magnetic flux 
passed through the plate is maximized without increasing 
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Fig. 6. Iteration History of Design Variables 
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Fig. 7. Iteration History of Performance Functions 

Fig. 8. Geometric and Finite Element Model of the Optimal 
Design 

The finite element model of the optimum design is 
shown in Fig. 10. Figure 11 shows the vector plot of 
magnetic flux at the optimum. 

the heat given to the plate and its weight by varying the 
dimensions (sizes) of the width and height. Figures 8 and 
9 show the iteration history of the optimization process. 

After optimizing this design problem, the width of 
the plate is increase while its height is reduced, and the 
magnetic flux is increased 146% within the constraint. 

The other problem is a shape optimization of an L- 
tYPe structure in the temperature field ( ~ i ~ .  12). ~i~~~ 
13 shows the deformed shape with a finite element mesh 
at the initial design. This is modeled using plane 
finite elements. The mate*al of the structure is expanded 
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by changing the temperature (Fig. 14), and thermal stress 
is generated inside the structure (Fig. 15). The objective 
of this problem is to minimize the maximum stress in 
the structure by modifying the shape of the structure. The 
total volume of the structure is bounded to the one at the 
initial design. The design variables here are the sizes of 
Xi, i=1,2. 

The iteration history of the design variables is 
shown in Fig. 16, while the history of the performance 
functions 

. . . . . . . . . 

. . . .  . . . . . ,  

, . , . - .  - - .  . . . . .  . 
- - . . a  - . . . ,  
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I , , , #  

I , , , I , .  - - . . . *  8 ,  

I : : : :  , . . * "  

, , , , ,  . . . . . * \ % I 1  

Fig. 9. Magnetic Flux of the Optimal Design 
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Fig. 11. Deformed Shape and FE Mesh of Initial Design 

is shown in Fig. 17. 
As the result of the optimization process, the shape 

of the structure is modified, and the maximum stress in 
the structure is reduced 25.4% from 9.15 to 6.83. Figure 
16 shows the deformed shape and finite element model of 
the optimal design. 

Fig. 12. Temperature of Initial Design 

Fig. 13. Thermal Stress of Initial Design 
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Fig. 16. Deformed Shape and FE Mesh of Optimal Design 

As shown above, a system based on the open-ended 
concept can solve both multi disciplinary and weakly 
coupled structural optimization problems by calling 
different type of finite element analysis programs, an 
optimization code, and a mesh generation program from 
the system. If the speed of the process is not too 
concerned, the present system can handle most of 
optimization problems in mechanical design. 

The key of the system is the capability of 
parametric mesh generation of the analysis model, since 
shape optimization is a much more important in 
mechanical design problems. Although only 2D 
problems are presented here, the present concept can be 
easily extended to the 3D problem using 3D mesh 
generating program and solid geometric modeler. The 
disadvantage of the present method is the necessity of 
large amount of calculation. It is certain that we have 
used more than one workstation to make finite element 
analysis to reduce the overall processing time. But still 
this may be insufficient if the number of design variables 
becomes large. At this moment, we must restrict the 
number of design variables into at most 20 - 30. 
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