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Computational simulations of multiphase flow are challenging because many practical 

applications require adequate resolution of not only interfacial physics associated with 

moving boundaries with possible topological changes, but also around three-dimensional, 

irregular solid geometries. In this paper, we focus on the simulations of fluid/fluid dynamics 

around complex geometries, based on an Eulerian-Lagrangian framework. The approach 

uses two independent but related grid layouts to track the interfacial and solid boundary 

conditions, and is capable of capturing interfacial as well as multiphase dynamics. In 

particular, the stationary Cartesian grid with time dependent, local adaptive refinement is 

utilized to handle the computation of the transport equations, while the interface shape and 

movement are treated by marker-based triangulated surface meshes which freely move and 

interact with the Cartesian grid.  The markers are also used to identify the location of solid 

boundaries and enforce the no-slip condition there. Issues related to the contact line 

treatment, topological changes of multiphase fronts during merger or breakup of objects, 

and necessary data structures and solution techniques are also highlighted. Selected test 

cases including spacecraft fuel tank flow management, and movement and rupture of 

interfaces associated with liquid plug flow are presented.  

I. Introduction 

LOWS involving interactions between liquids and gases can be observed in a wide range of engineering 

applications. When capillary effects become significant, such flows are referred to as interfacial flows, in which 

one needs to account for the multiphase front, or the interface, separating the liquid and the gas state as the interplay 

between the interface and the flow dynamics determines the outcome of the application mechanics.  

Numerical simulations of interfacial flows are required to resolve the location of the interface to apply the 

conditions arising from surface tension forces and distinctive material properties of the constituents. As reviewed by 

multiple authors
1-6

, there exist numerous methods for tracking the location and the shape of the interface as well as 

for applying proper treatments around the interface. The computational techniques for treating moving interfaces are 

typically categorized into three separate groups:   

 Lagrangian methods
7,8

 that modifies the grid to match the interface location, 

 Eulerian methods
4,9-13

 that extract the interface location with the help of a scalar function on a stationary grid, 

 Eulerian-Lagrangian methods
5,14-18

 that utilize a separate set of grid representing the interface on a stationary 

grid. Grid that represents the front can move freely based on the solution obtained on the stationary grid.  

Once the location is known, various methods are usually employed for establishing the interfacial conditions, 

which impose the discontinuous pressure and viscous stresses across the interface as a result of the surface tension 

forces. According to multiple authors
1,2,4,19

, these methods can be observed in two separate groups:  

 Continuous interface methods
5,14,15,20,21

 (CIM) that solves one set of equations by smearing out the flow 

properties around the interface, 
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 Sharp interface methods
12,22-27

 (SIM) that impose the conditions directly on the interface by considering 

different sets of equations for different phases.  

During the last decade, various combinations of the interface tracking methods and interfacial conditions models 

have been proposed in order to capture the interfacial dynamics. As highlighted by Uzgoren et al.
1
, the difficulties 

that rise during developing a model for interfacial flows are limited not to the algorithmic challenges, but also to the 

compromise made between the computational cost and accuracy capturing the interfacial dynamics. The 

computational cost is mainly determined by solution of the non-linear Navier-Stokes equations on local adaptive 

meshes, the identification and treatment of marker-based triangularized fluid-fluid interface and solid boundary 

conditions, and interaction between the Navier-Stokes equations and moving interfaces.  

The goal of the present study is to develop a cost-effective method for a unified three-dimensional multiphase 

flow solver that is capable of capturing the interfacial flow dynamics,  

 around complex geometries, 

 with wetting surface as part of a computational boundary or the irregularly shaped solid geometry, 

 with multiple multiphase fronts that define existence of multiple constituents in various phases, 

 with topological changes, i.e. possibilities of a merger or a break-up 

In order to achieve the goals listed above, the present study utilizes a marker based interface tracking algorithm, 

which is an Eulerian-Lagrangian method. For interfacial flow conditions at the multiphase fronts, a continuous 

interface method (CIM) is adopted to allow utilizing a single set of equations. In order to maintain the computational 

cost at a feasible level, the stationary grid is implemented as a Cartesian grid which employs local adaptation
28

 to 

fully resolve the flow features at locations near the multiphase front. In this combination, the overall method is 

referred to as Immersed Boundary Method
1,5,14,20,21

.  

Practices of fluid flow simulations oftentimes require capabilities of handling complex geometries within the 

flow field. The marker based data structure which has already been defined for tracking the multiphase fronts can be 

utilized to apply the prescribed conditions on the embedded boundary. Consequential technique falls into the 

category of non-boundary conforming techniques, which are relatively easier to generalize, computationally 

efficient, and can be used along with Cartesian grids. In contrast to the continuous interface method adopted for the 

multiphase front, the embedded boundary method for solid geometries fall under the sharp interface methods, as no 

smearing is involved. Yang and Balaras
29

 demonstrated its capabilities via validation studies including the laminar 

flow induced by oscillating cylinder, a flow over a cylinder and turbulent flow (modeled by LES) over a traveling 

wavy wall. A similar approach is utilized for the numerical simulations of flapping wings and insect flight
30

.  

When moving multiphase front comes in the vicinity of a wetting surface, defined at a computational boundary 

or at a complex solid interface, there is a possibility of a tri-junction location formation where all phases (solid, 

liquid, and gas) meet. The corresponding forces at this location is not only determined by the surface tension 

between the liquid and gas phases, but also interactions due to solid-liquid, solid-gas phase as well as the adhesive 

forces keeping the contact line in touch with the solid surface. In static equilibrium, the angle between the solid 

surface and the multiphase front is described by the Young’s equation. The major difficulty in numerical simulations 

involving a contact line is that the contact line is known to slip on the solid surface, which is usually defined by a 

no-slip condition. One way to incorporate Young’s equation into the numerical simulations of droplets/bubbles on 

solid surface is to impose the static angle determined directly at the tri-junction location to produce the quasi-

equilibrium representation of the interface shape
21

. One of the drawbacks of such a treatment is that the modification 

at the contact line may result in a localized high curvature region on the fluid interface in the vicinity of the contact 

line. Especially considering the balance between the viscous and surface tension forces in that region, there is a 

possibility that this high curvature region can create instability for simulations with large Laplace numbers. Instead 

of imposing the contact angle, another possibility is to let the interface evolve into the equilibrium condition by 

modeling the force 

The formation of a contact line brings another challenge in terms representing the topology of the multiphase 

front. The markers representing the multiphase front are tracked with the help of connectivity information 

corresponding to a triangulated surface. This connectivity information allows us to compute geometric information, 

such as volume and curvature. Oftentimes, the algorithmic difficulty of finding the intersection between the 

interfaces brings additional computational cost, especially in three dimensional computations. This computational 

complexity can be reduced significantly by employing an indicator function, which varies from zero to one smoothly 

across the interfaces
18,31

, to identify the elements intersecting. Besides such a benefit, another benefit of using the 

indicator function is to allow a single set equation formulation of the continuous interface methods by treating the 

fluid properties such as density and viscosity across an interface over a finite thickness.  

In recent years, interface tracking via triangulated elements have improved its most obvious drawback of 

algorithmic complexity for the problems in which topological changes occur. This is achieved by means of level-
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contour construction algorithm without the need of the connectivity information
32

. On the other hand, keeping the 

connectivity information helps to reduce the computational effort as the reconstruction algorithm can be applied 

locally where it is required
18

.  

We highlight the capabilities of the techniques presented in our recent papers
1,14,15,18

 by exploring the following 

flow problems: 

 Attaining equilibrium in three-dimensional capillary tubes to assess the validation of contact line treatment  

 Elongated liquid plug experiencing a break-up as a practical application of the liquid drug delivery into the 

lungs  

 Dynamics of the draining process of liquid fuel contained in a spacecraft fuel tank subjected to acceleration in 

axial and radial directions.  

 Sloshing motion of the liquid fuel contained in a spacecraft fuel tank subjected to a sudden reduction in 

acceleration. 

II. Numerical Methods 

The marker based method employs Eulerian and Lagrangian variables in order to perform the interfacial flow 

computations.  Eulerian quantities are solved on the stationary background grid, whereas Lagrangian quantities arise 

due to the marker points defined on the interface which can move freely.  A single fluid formulation for all fluid 

phases is made possible by smearing the properties across the interface.  Incompressible Navier-Stokes equations for 

mass and momentum conservation are given in Eqs. (1) and (2) respectively, which accounts for the interfacial 

dynamics.  The source term in the momentum equation, 𝐹𝑓 , represents the conditions of interfaces due to surface 

tension effects of fluid interfaces, whereas additional source term, Fs, represents the forcing function to establish no-

slip condition on solid interfaces.   

𝛻 ∙ 𝑢 = 0 (1) 

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻 ∙  𝜌𝑢𝑢 =  −𝛻𝑝 + 𝛻 ∙  𝜇𝛻𝑢 + 𝜇𝛻𝑇𝑢 + 𝐹𝑠 + 𝐹𝑓 + 𝜌𝑔 (2) 

In general, the pressure and viscous stresses show discontinuities across a fluid interface related to the surface 

tension force and fluid property jumps. Equation (3) relates the jump in flow properties (pressure, p, and normal 

stress components, 𝑛 ∙ 𝜏 ∙ 𝑛)  with the surface tension force, 𝜍𝜅.  

 𝑝2 − 𝑝1 − 𝑛 ∙  𝜏2 − 𝜏1 ∙ 𝑛 = 𝜍𝜅 (3) 

On the other hand, solid interfaces match no-slip wall condition with a prescribed velocity field defining the 

motion of the solid boundaries via the force field created around the solid phases.  

Equations (1) and (2) are solved adopting a projection method using staggered grid finite volume formulation as 

described in prior studies.
33,34

 The pressure and fluid properties are stored at the cell center and the face-normal 

velocity is stored on Cartesian cell faces. The flow computation follows the following sequence of steps:  

Step 1: Predictor-step 

Solve the momentum equation for an intermediate velocity field 𝑈∗ using Eq. (4) where all the known 

values such as surface tension source, forcing function for solid geometries, gravitation, convection and 

old time-step viscous term due to Crank-Nicholson method are lumped into 𝑆𝑛 . The term, 𝑎𝑣 , 

corresponds to the other half of Crank-Nicholson method. Temporal discretization of the convection term 

uses 2
nd

 order Runge-Kutta integration. The pressure term is approximated using the old time pressure 

field. Subsequently, remove the effect of pressure term by shifting the velocity field back to obtain 

another intermediate velocity field 𝑈∗∗ using Eq. (5). 

 𝛥𝑉
𝜌

𝛥𝑡
− 𝑎𝑣 𝑈

∗ = − 𝛻𝑃𝑛 ∙ 𝑑𝐴
𝑑𝐴

+ 𝑓𝑣𝑖𝑠𝑐
∗ + 𝑆𝑛   (4) 

𝑈∗∗ = 𝑈∗ +
𝛥𝑡𝛻𝑃𝑛

𝜌𝑛+1
 (5) 
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Step 2: Corrector-step 

Correct the predicted velocity field (𝑈∗∗) using Eq. (6). The pressure field for this correction is computed 

by enforcing the velocity-divergence condition and solving the Poisson equation (Eq. (7)). The 

divergence of the new velocity field 𝑈𝑛+1 is zero due to incompressible flow. 

𝑈𝑛+1 = 𝑈∗∗ −
𝛥𝑡𝛻𝑃𝑛+1

𝜌𝑛+1
 (6) 

  
𝛻𝑃𝑛+1

𝜌𝑛+1
 ∙ 𝑛𝑑𝐴

𝑓𝑎𝑐𝑒

=
1

𝛥𝑡
 𝑈∗∗ ∙ 𝑛𝑑𝐴 

𝑓𝑎𝑐𝑒

 (7) 

 The components of the numerical algorithm and their interactions are summarized in Fig. 1. 

 

 
Figure 1. Summary of the numerical method and the interactions between Eulerian and Lagrangian descriptions. 

 

A. Marker Based Interface Tracking 

The interface is represented by 

marker points, which keep track of the 

neighboring markers through the 

maintained connectivity information. 

The corresponding data structure is 

established through formation of 

elements; line-segments in two-

dimensional computations and triangles 

in three-dimensional computations, as 

represented in Fig. 2(a)-(b). Each marker 

point tracks all the elements that it is 

connected to while the elements keep 

                   
(a)                                                      (b) 

Figure 2. Interface representation by marker points. (a) Line segments in 

2D, (b) Triangular elements in 3D. 
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information of the neighboring elements 

based on the edge that they share. Figure 

3 illustrates the connectivity information 

for two common scenarios; regular 3D 

element, 3D boundary element. A regular 

3D element, or inner element, is when it 

has three neighboring elements while the 

boundary element has less than three 

elements, due to one or more edges being 

on a boundary. The connectivity 

information for the boundary edge is 

represented by the information of the 

boundary as a negative integer. Absolute 

value of the boundary index corresponds 

to the computational boundary for 1 to 6, 

reserved for the east, west, north, south, 

front and back faces of the domain boundary, while the larger numbers representing the elements belonging to a 

possible solid interface.  

The marker locations for the surface grid are computed using the marker velocities as shown in Eq. (10). 

𝜕𝑋

𝜕𝑡
= 𝑢𝑛(𝑋) (10) 

Fluid interfaces use the solution field to compute the marker velocities. Similar to translating the surface forces 

into the volumetric form, the discrete Dirac delta function is employed for obtaining Lagrangian form of the 

Eulerian velocity field using Eq. (11).  The solid interfaces use the prescribed velocity field to advance the marker 

points using Eq. (11). 

𝑢𝑛 𝑋 =  𝑢𝑛 𝑥 𝛿 𝑥 − 𝑋 𝑑𝑣
𝑣

 (11) 

As the marker points advance to a new position with time, it can lead to an unevenly distributed marker points on 

the interface. Such a representation would produce large errors in computations. In order to prevent such a scenario, 

the spacing between marker points is rearranged by addition/deletion whenever two markers come too close or too 

distant from each other. The criteria is estimated based on the requirements posed by the background grid and. A 

correction-step to the edge deletion procedure is performed to locally preserve the phase-volumes
35

. Readers may 

refer to Uzgoren et al.
15

 for further information. 

B. Indicator Function 

Cells on the Cartesian grid are represented by a unique material index to identify the constituents separated by 

interfaces. This brings an algorithmic advantage to identify the interface location as well as to assign proper material 

properties, i.e. density and viscosity, for flow computations. In order to facilitate a single set of equation formulation 

of CIM for the whole domain, a smooth variation of discontinuous material properties across interfaces are used. 

This is achieved with the help of a scalar function, varying from zero to one smoothly. Throughout this document, 

this function is referred to as the indicator function and denoted by I. Once the indicator function is obtained, the 

fluid properties such as density and viscosity, varying from values between 𝜑1 and 𝜑2, are computed using Eq. (12). 

𝜑 = 𝜑2 +  𝜑1 − 𝜑2 𝐼 (12) 

First, the material properties are assigned using a simple and efficient method based on the painter’s algorithm 

frequently employed in computer-graphics rendering. Unlike the ray-tracing algorithm, the painter’s algorithm does 

not require expensive computation of three-dimensional line-surface intersection and it is sufficient as the material 

properties are then corrected with the help of the indicator function, which marks the interface location on the 

Cartesian grid for the value of 0.5. Such a feature enables handling the geometry related algorithms in a 

computationally efficient way.  

The indicator function is not only utilized for smoothing material properties to facilitate single equation 

formulation but also brings computational advantages on dealing with interacting complex geometries represented 

by triangulated surfaces. Obtaining such a function accurately is critical for successful numerically simulating 

multiphase flow problems. In the literature, two closely related but numerically distinct forms of computations can 

   
 Figure 3. Connectivity information through element edges. (a) inner 

element with three neighbors, (b) boundary element with two neighbors. 
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be found. One of these methods adopts the solution of a Poisson equation using the form in Eq. (13), while the 

others utilize a discrete form of the Heaviside step function (Eq. (14)). Noting that Eq. (13) to be exact, in which 

indicator function, 𝐼, yields a Heaviside step function, numerical approximations especially in discrete form of Dirac 

delta function, 𝛿, and the Heaviside function create differences between these approaches.  

𝛻2𝐼 = 𝛻   𝛿 𝑥 − 𝑋 𝑛 ∙ 𝑑𝐴
𝐴

  (13) 

In Eq. (13), the location of the interface is represented by the Lagrangian quantity, 𝑋, while 𝑥 corresponds to the 

Eulerian description of the computational domain. Analytical form of the Dirac delta function is only non-zero at 

𝑥 = 𝑋, where the interface is located. Approximations to the Dirac delta and Heaviside step functions introduce a 

region that represents the interface over a finite thickness. The properties of these approximations particularly 

focusing on Dirac delta function have been investigated in prior studies.
20,36,37

  

In the present study, the Dirac delta function approximation, that supports the conservation rules dictated by 

zeroth, first and second moments as described in Peskin,
20

 is employed as the base discrete form using the one-

dimensional representation given in Eq. (14).  

In Eq. (14), 𝑟 is the closest distance between the cell-center to the interface location, and is normalized by the 

cell spacing, 𝑕. Because 𝜙 𝑟  becomes zero when the distance is larger than two cell width, the smearing region 

becomes limited to two-cell width on each side of the interface. 

One way to extend the one-dimensional representation of the discrete Dirac function to two- and three-

dimensions is to use the multiplication rule as presented in Eq. (15)
20

.  This approach is attractive due to its low 

computational cost.  

On the other hand, when the information of minimum distance is readily available as in the case of level-set 

methods, it is possible to utilize the distance function with the one-dimensional form of discrete Dirac function, 𝜙, 

directly as shown in Eq. (16).  

The indicator function can be obtained via solving Eq. (13) on the Cartesian grid, where it is defined. The 

discrete form is presented in Eq. (17) for a cell, denoted by 𝑃. 

 
(𝐼𝑁 − 𝐼𝑃)

Δ
𝐴𝑁𝑃

𝑁=𝑁𝐺𝐵𝑅

=   𝐴𝑁𝑃𝑆𝑁𝑃 

𝑁=𝑁𝐺𝐵𝑅

 (17) 

The right hand side term, 𝑆𝑁𝑃 , is computed at the cell faces using the Dirac delta function as in Eq. (18) to 

convert the surface quantity into its volumetric form.  

𝑆𝑁𝑃 =  𝛿𝑕 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧  𝑛𝑙 ∙ 𝐴𝑙
𝑙

 (18) 

In Eq. (18), the summation is performed over the interface elements, denoted with 𝑙, and its contribution on face 

𝑁𝑃  is computed based on 𝛿𝑕 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 . The arguments of this function are based on the center of the surface 

element, 𝑙, and the center of the face, 𝑁𝑃. However, in practice computing 𝑆𝑁𝑃  directly at the faces can create 

oscillations due to a large gradient in the source term. One remedy to this problem is to apply smoothing via 

computing 𝑆𝑁𝑃  at the cell centers and computing face values by linear-interpolation.  

𝜙 𝑟 =

 
 
 

 
 

 

1 −
11

16
 𝑟 −  𝑟 2 −

1

6
 𝑟 3 1 ≤  𝑟 ≤ 2

1 −
1

2
 𝑟 −  𝑟 2 +

1

2
 𝑟 3 0 ≤  𝑟 ≤ 1

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

     (14) 

𝛿𝑕 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 =
1

𝑕𝑥𝑕𝑦𝑕𝑧
𝜙 𝑟𝑥 . 𝜙 𝑟𝑦 . 𝜙 𝑟𝑧  (15) 

𝛿𝑕 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 =
1

 𝑕𝑥
2 + 𝑕𝑦

2 + 𝑕𝑧
2
𝜙   𝑟𝑥

2 + 𝑟𝑦
2 + 𝑟𝑧

2  (16) 
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Considering discrete Delta function’s support, the 

computations are only performed over the two-cell width region 

on each side of the interface to reduce the computational cost of 

the Poisson equation. Figure 4 illustrates this region for the 

computation. This region is obtained by determining cells around 

each surface node with two-cell width radius. The boundary 

conditions away from the interface are set to yield the desired 

variation, i.e. from zero to one. In the present study, we choose 

the convention as the normal direction points towards the 

indicator function to be one. This approach is computationally 

effective when the boundary conditions are well defined, i.e. away 

from the interface location once right hand side term is calculated 

during computations of surface tension forces to reduce its cost.  

On dealing with contact line problems, in which the interface 

is on a surface, the above approach requires boundary conditions 

in the vicinity of the interface. Because the variation of the 

indicator function at this region depends on the normal direction, it makes difficult to utilize an appropriate 

boundary condition. One possible condition is to assume zero variation in the indicator value at the normal direction 

to the boundary. However, this condition leads to an interface representation that makes 90𝑜  to the domain 

boundary, which can result in a different interface shape on the Cartesian than the actual interface at angles away 

from 90𝑜 . Using linear extrapolation can also cause incorrect interface line (𝐼 = 0.5) around this region. Figure 5 

illustrates such a scenario.  

This issue can be handled using the alternate way of computing the indicator function, which utilizes the shortest 

distance value between the cell-center to the interface location by 

the integrating the one-dimensional form of discrete Dirac function 

as a result of Eq. (19). 

Utilization of Eq. (19) requires the determination of the shortest 

distance, 𝑟, which can easily increase the computational time when 

performed on a large surface grid.  In order to avoid such a 

difficulty, similar analogy to what has been described in Fig. 5 is 

adopted. Specifically, during the isolation of the computational 

region indicated in Fig. 5, each element computes its distance from 

its geometric center to the cell-centers which are in their zone of 

influence and compares it to the distance value contained in that 

particular cell to find the minimum distance from the cell to the 

overall interface. In order to overcome the difficulties caused by 

sharp corners, the distance values are interpolated to face-centers 

from the cell-centers. Furthermore, this algorithm is coupled with 

identification of material tags on the Cartesian grid to save 

computational time. 

 

𝐼 𝑟 =
1

8
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C. Adaptive Grid 

Multiphase flow problems involve multiple length scales. In order to effectively resolve the flow features in such 

cases, the present study considers adaptive grid refinement employed on Cartesian grids. The approach is based on 

isotropic refinement which splits the cells into four and eight equal sibling cells in two- and three-dimensions, 

respectively. The grid is represented using an unstructured data that connects cells through cell faces. The details of 

the algorithm can be found Singh and Shyy.
35,38

 Adaptation is performed based on the interface location and the 

flow solution quality.  

The geometry-based adaptation near interfaces has different characteristics based on what interfaces represent. 

The fluid interfaces, for which discontinuous flow properties smeared across two layers of cells, perform refinement 

to achieve full resolution in their vicinity in order to capture interfacial dynamics accurately. This fully resolved 

region around a fluid interface is further extended to six layers of cells to handle both discrete Dirac function as well 

as a possibility for large deformation of interface. Figure 6 illustrates the process of geometry based adaptation 

starting from a uniform base grid and refining up to four levels. On the other hand, solid interfaces, which do not 

employ discrete Dirac function, triggers full refinement on vicinity including two-cell layers from the interface. 

 

 

Cells, those are not already fully refined, are adapted based on solution (of the flow field). The present 

implementation uses a curl based adaptation criterion
39

 that computes a parameter 𝜉 for each cell as shown in Eq. 

(20). The length scale 𝑙 is estimated as the cubic root of cell-volume. The decision to refine or coarsen a cell is made 

by comparing 𝜉𝑐𝑒𝑙𝑙  to the standard deviation (Eq. (21)) using the criteria in Eqs. (22) and (23). 

𝜉𝑐𝑒𝑙𝑙 |~ 𝛻⨂𝑈 𝐼   (20) 

𝜍 ′ =
1

𝑁𝑐𝑒𝑙𝑙  𝜉𝑖
2

𝑖

 (21) 

𝜉𝑐𝑒𝑙𝑙 > 𝜍 ′ → 𝑅𝑒𝑓𝑖𝑛𝑒 𝑐𝑒𝑙𝑙 (22) 

𝜉𝑐𝑒𝑙𝑙 > 0.1𝜍 ′ → 𝑐𝑜𝑎𝑟𝑠𝑒𝑛 𝑡𝑕𝑒 𝑐𝑒𝑙𝑙 (23) 

During the adaptation procedure, the Cartesian cell center values such as pressure, temperature and face normal 

velocities need to be reconstructed for the newly created cells and faces. Flow variable reconstruction during cell 

and face coarsening is performed simply by averaging of the corresponding cell-centered or face-centered values. 

Because the adaptation algorithm is triggered during the predictor step, just before solving the pressure Poisson 

equation, the reconstruction algorithm is not required to satisfy the divergence free velocity condition for 𝑈∗∗. 

     
 (a) Level = 1                             (b) Level = 2                             (c) Level = 3                             (d) Level = 4 

Figure 6. Snapshots of geometry-based grid adaptation for fluid interfaces. 
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D. Fluid Interface Treatment 

 

1. Surface Tension 

When interface separating fluid phases, the source term arises from the surface tension (𝜍) and the curvature (𝜅) 

as shown in Eq. (24). 

𝐹𝑠 =  𝜍𝜅𝑛𝛿 𝑥 − 𝑋 𝑑𝑆 
𝑆

 (24) 

The surface force is computed using the Lagrangian marker points, 𝑋, and is translated into an Eulerian quantity, 

𝑥, via the approximate discrete Dirac delta function,  𝛿(𝑥 − 𝑋).  After these equations are solved, approximate Dirac 

delta function is also used for obtaining the marker velocity field to move marker points for obtaining the new 

geometric surface representation.  

The surface tension force is computed on the interface triangles. The surface tension force on a discretized 

interface element (curves in 2D and triangles in 3D) can be evaluated in several ways: computation with Eq. (25) 

where unit normal vector and curvature can be computed using curve fitting for two-dimensional interfaces
21,22,40

 

and surface fitting for three-dimensional interfaces;
41

 computation using a line integral form shown in Eq. (26) and 

fitting curves/surfaces to obtain normal and tangent vectors.
5,42

 

𝛿𝑓 =  𝜍𝜅𝑛𝑑𝐴
𝛿𝐴

  (25) 

𝛿𝑓 =  𝜍 𝑛 × 𝛻 × 𝑛𝑑𝐴 =  𝜍𝑡 × 𝑛𝑑𝑠
𝑠𝛿𝐴

 (26) 

There are two important observations to be made here: the net surface tension force on a closed surface should 

be zero (conservation); curvature computation using 

interpolation based methods are numerically sensitive and 

often requires some form of data smoothing.
21,40,41,43

 The 

use of Eq. (25) does not enforce conservation whereas the 

line-integral form, Eq. (26), does not require explicit 

curvature computation and maintains the conservation.  

The approach developed by Singh
35

 uses the line 

integral form and computes the local normal and tangent 

vectors along the triangle edges using the simple approach 

of Al-Rawahi
42,43

 shown in Eq. (27) following Fig. 7. If 

required, the curvature can be computed using Eq. (28). 

Such a simple technique is seen to produce sufficient 

accuracy demonstrated by Fig. 7, comparing curvature of a 

unit circle using present method and a cubic-spline 

interpolation. The overall accuracy of this approach to 

compute surface tension force and its modeling have 

already been demonstrated for boiling flows
44

 and for 

dendritic solidification
43

.  

𝛿𝑓 =  𝜍 𝑡⨂𝑛 𝑒𝑑𝑔𝑒 𝛥𝑠

𝑒𝑑𝑔𝑒 =123

 (27) 

𝜅 =
𝛿𝑓 ∙ 𝑛

𝜍𝛥𝐴
 (28) 

 

 

2. Van der Waals Forces 

Additional physical mechanisms at the interface can be computed using the same methodology described for the 

surface tension forces. One of these forces considered in this study is the van der Waals attraction forces, which 

 
Figure 7. Computation of the unit normal and tangent 

vectors on interface triangles. 
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describes the interaction between film surfaces due to molecular force attraction using a potential. The potential 

describing the attraction is defined based on the minimum distance between the interfaces: 

𝜙 𝑟 =
𝐴′

𝑟3
 (29) 

In the above equation, 𝐴′, is the Hamaker constant describing the strength of the potential based on the materials 

involved. The force field due to Waals potential can be estimated as follows:  

𝑭𝒘 = 𝜵𝜙 =
𝜕𝜙(𝑟)

𝜕𝑥
𝑖 +

𝜕𝜙(𝑟)

𝜕𝑦
𝑗 +

𝜕𝜙(𝑟)

𝜕𝑧
𝑘 (30) 

=
𝜕𝜙

𝜕𝑟

𝜕𝑟

𝜕𝑥
 𝑖 +

𝜕𝜙

𝜕𝑟

𝜕𝑟

𝜕𝑦
𝑗 +

𝜕𝜙

𝜕𝑟

𝜕𝑟

𝜕𝑧
𝑘 =

𝜕𝜙

𝜕𝑟
𝒓 (31) 

𝑭𝒘 = −
3𝐴′

𝑟4
 𝑟𝑥 𝑖 + 𝑟𝑦 𝑗 + 𝑟𝑧𝑘  (32) 

The modified incompressible Navier-Stokes equations then incorporate this force as a source term in the 

momentum equation, similar to the surface tension force treatment.  

When 𝑟 becomes smaller, the attraction forces becomes significant leading to a modification to the interface 

shape. This change can be responded by the surface tension forces due to newly formed curvature effects. The 

interface shape can be recovered if curvature effects are dominant than the attraction forces. If the attraction forces 

are larger, the interfaces reaches a critical value of 𝑟,  for which the surface tension forces can no longer compete 

with the attraction forces. At this stage, the film thickness becomes smaller and smaller, eventually leading to a 

topological change. In order to identify this critical film thickness, the ratio between the non-dimensionalized 

surface tension and van der Waals attraction forces is used. The characteristic length is chosen as the film thickness 

to yield Eq. (33).  

𝜌1

𝜇1
2  𝜍𝑕𝑜 −

𝐴′

𝑕𝑜
 → 𝑕𝑜

2~
𝐴′

𝜍
 (33) 

 

E. Solid Interface Treatment 

Solid interfaces are modeled using a sharp interface method that imposes the prescribed conditions on an 

arbitrary interface by reconstructing a force field around a solid phase.  Using Eq. (2), the source term due to solid 

interfaces, Fs , can be estimated at its non-zero locations with the help of the prescribed velocity at the interface, 𝑢𝑖𝑛𝑡 , 

as in Eq. (34). 

𝐹𝑠 = 𝜌
𝜕𝑢𝑖𝑛𝑡
𝜕𝑡

+ 𝛻 ∙  𝜌𝑢𝑢 𝑖𝑛𝑡 − 𝛻𝑝 − 𝛻 ∙  𝜇𝛻𝑢 + 𝜇𝛻𝑇𝑢 𝑖𝑛𝑡 − 𝐹𝑓 − 𝜌𝑔 (34) 

Following the prior naming by Yang and Balaras 
29

, these non-

zero locations are referred to as forcing faces as the present study 

considers a staggered variable arrangement, in which the velocity 

components are defined at the face-centers and the forcing field is 

formed using the face-centers of the cells surrounding the solid 

interfaces.  

Recalling one of the merits of Harlow-Welch type staggered 

grid, there is no need for the artificial pressure boundary conditions 

in the continuity equation
45,46

. At locations, where the boundary 

conditions are defined exactly on the face-centers, i.e. 

computational boundaries, the procedure of solving the pressure 

Poisson equation is presented in Eq. (35) with the guidance of Fig. 

8.  

 

Velocity BC’s 

CV 

𝑣𝑏𝑛𝑑𝑟
𝑛+1  

𝑃𝐸 

 
𝑃𝑃 

 

𝑃𝐸 

 
𝑢𝑤
∗  𝑢𝑒

∗  

𝑣𝑛
∗ 

Figure 8. Pressure control volume at the 

computational boundaries. 
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𝑃𝐸 − 𝑃𝑃
𝛥𝑥

𝐴𝑒 +
𝑃𝑊 − 𝑃𝑃
𝛥𝑥

𝐴𝑤 +
𝑃𝑁 − 𝑃𝑃
𝛥𝑦

𝐴𝑁𝐴𝑆 = 𝑢𝑒
∗𝐴𝑒 − 𝑢𝑤

∗ 𝐴𝑤 + 𝑣𝑛
∗𝐴𝑛 − 𝑣𝑏𝑛𝑑𝑟

𝑛+1 𝐴𝑠 (35) 

The last term of the right hand side term in Eq. (30), is the total mass flux at the boundary face and the 

corresponding pressure gradient term on the left hand side term is not needed as mass flux is known at the next time 

step. Similar procedure is adopted for the forcing faces. Hence the identification procedure considers the pressure 

Poisson equation on the fluid side and marks the faces as forcing if the material on the other side indicates a solid 

material flag. This study utilizes negative values for solid phase and positive values for the fluid phases. As a result, 

any cell that has a negative index value is removed from the solution procedure of the Poisson equation. These faces 

form the first set of the forcing faces.  

Additional faces are also marked as forcing faces due 

to the nature of the prediction step of the projection 

method. When we consider the momentum equation, the 

viscous and advection terms require another set of faces 

that would yield a correct gradient at the boundary layer. In 

this study, this set of faces is chosen on the solid side as 

shown in Fig. 9. It should also be noted that, in some 

problems dealing with thin or zero-thickness solid 

interfaces, these faces can also be chosen from the fluid 

side
29,30

. However, this approach would make the 

construction of the interpolation scheme difficult 

especially at the inner corner locations, where less than 

sufficient fluid faces exist.  

Once the forcing faces are set, the forcing terms on 

these faces are computed using a linear interpolation 

scheme between the prescribed velocity field on the 

interface, and the predicted velocity field at the fluid side. 

The first point on the interpolation scheme, the closest 

location on the interface from the forcing face, is found by 

comparing the distance normalized by the grid spacing for 

the elements in the vicinity of the forcing face. Once 

determined, interpolation weights based on inverse distance is computed using Eq. (36) as the shortest possible 

distance does not necessarily need to be from the markers (Fig. 10). Then the prescribed condition on the interface 

can be obtained for any function, 𝜙, using Eq. (37). 

𝑤𝑖𝑗 =
1 𝛥𝑖𝑗 

 (1 𝛥𝑖𝑗 )  𝑖=1,3

 (36) 

𝜙𝑗 = 𝜙1𝑤1𝑗 + 𝜙2𝑤2𝑗 + 𝜙3𝑤3𝑗  (37) 

The remaining points in the interpolation scheme are the 

fluid faces, identification of which is one of the most critical 

parts of the algorithm. The accuracy of the interpolation 

scheme improves when those fluid faces are selected as close 

as possible to the forcing face while avoiding an ill-

conditioned scheme, which can happen when some of the 

interpolation points are aligned together. To satisfy the 

requirements for shortest distance and avoid ill-conditioned 

scheme between the face-centers included in the scheme, a 

short list of liquid faces is formed using the neighboring 

cells. This list is sorted using a merge-sort algorithm based 

on the distance values. The various combinations of faces are 

checked for their cross-product to verify their alignments 

starting from the best qualified distance values. This 

procedure results in an interpolation scheme, which can be 

geometrically represented in the shape of a triangle in 2D, and a tetrahedron in 3D as illustrated in Fig. 11.  

𝜙2 

𝜙3 
Closest distance to 

the forcing face. 

Δ2 

Δ3 

Δ1 

𝝓𝒋 Face-center 

𝜙1 

Figure 10. The closest interface element to a forcing 

face. 

 
 

Figure 9. Identification of forcing faces. Red faces and 

green faces belong to fluid and solid phases, respectively. 

Blue color indicates the forcing faces based on pressure 

Poisson and momentum equation of the prediction step.   

 Required by the 

momentum equation 
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The interpolation procedure is performed assuming a linear variation of any variable, 𝜙.  Equations (38) and (39) 

are the formulation of the procedure in 2D.  

𝜙 = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑦 (38) 

 

𝑏1

𝑏2

𝑏3

 =  

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

 

−1

 

𝜙1

𝜙2

𝜙3

  (39) 

In Eqs. (33) and (34), xi and yi represents the corners of the triangle presented in Fig. 11. For stationary objects, 

the coefficients can be obtained once and then be used for reconstructing the velocity field at each time step. On the 

other hand, the system has to be solved at every time step for moving boundaries. 3D computations are achieved in a 

similar manner by adding an additional point to obtain the coefficient of the z-coordinate, b4.   

The above interpolation scheme is utilized in the estimation of the forcing term, Fs , in Eq. (2). Because this term 

is computed at the prediction step of the projection method, it is not computed explicitly which is the case for 

surface tension forces, Ff , for the fluid interfaces. Instead, it is reflected in the predicted velocity field using the 

interpolation scheme discussed in the prior sections. These forcing velocity terms are utilized in the prediction step 

to determine the flux computation in the advection-diffusion equation as well as the mass flux values in the 

continuity equation as described in Eq. (35).  

The corrected velocity field is required to satisfy the divergence free condition both locally and globally. In the 

staggered grid configuration, having the sum of local control volumes equal to the global control volume, this 

condition is automatically satisfied when the correct mass flux information is used at the boundary cells that utilize 

the concept presented in Eq. (35). As one may expect, the constructed forcing velocity field does not impose the 

conditions required by the continuity equation and hence is not divergence free.  

Figure 12 is an example to illustrate 

the correction algorithm. The forcing 

faces that divides solid and fluid creates 

staircase-like boundary faces for the 

pressure Poisson equation. Let 𝑢∗ and 𝑣∗ 
be the forcing velocities defined at the 

faces between fluid and solid phases. 

The correct flux to be included in the x-

face needs to account for the area that is 

cut by the interface, Δ𝐴𝑥
′  instead of the 

full area of the face, Δ𝐴𝑥 . It is a similar 

case for the y-face, that is Δ𝐴𝑦
′  instead of Δ𝐴𝑦 . Hence, assuming the velocity field, 𝑢∗ and 𝑣∗, is divergence free, Eq. 

(40) should be satisfied, resulting an error, 𝑒, when the full area for each face is utilized as given in Eq. (41). 

𝑢∗𝛥𝐴𝑥
′ − 𝑣∗𝛥𝐴𝑦

′ = 0 (40) 

Interface 

Solid 

Fluid 

𝑢∗ 

𝑣∗ 

Δ𝐴𝑦  

Solid 

Δ𝐴𝑦
′  

Δ𝐴𝑥
′  

𝑢∗ 

𝑣∗ 
Fluid 

Forcing 

faces 

Δ𝐴𝑥  

Figure 12. Region of correction to ensure divergence free velocity field. 

 
(a)                                                                                            (b)  

Figure 11. Definition of faces around the solid interface for u-velocity (a) in 2D, (b) in 3D. 

Forcing Forcing 

FacesFaces

INTERFACE

INTERFACE
SOLIDSOLID
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𝑢∗𝛥𝐴𝑥 − 𝑣∗𝛥𝐴𝑦 = 𝑒 (41) 

The determination of correct face areas requires finding intersection points between the interface grid and the 

Cartesian grid, which can be computationally challenging and expensive. Instead, the requirement can be obtained 

by introducing Eq. (42), a correction term for the forcing face velocities to adjust the fluxes accordingly.  

𝑒 = 𝜖 𝛥𝐴𝑥 + 𝛥𝐴𝑦  (42) 

(𝑢∗ − 𝜖) 𝛥𝐴𝑥 −  𝑣∗ − 𝜖 𝛥𝐴𝑦 = 0 (43) 

When this correction is applied cell-by-cell, the global conservation is automatically satisfied as a result of their 

individual sum at the corresponding control volumes. This is illustrated in Fig 13. The condition that needs to be 

satisfied is the divergence free mass flux at the region enclosed by the irregular interface line, marked with red color. 

The condition is enforced locally at the black line on the regular Cartesian boundary faces, where the material tag 

changes sign. In Fig. 13, this corresponds to a layer of cells, colored dark. This also satisfies the global conservation 

requirement on the other side of the bold Cartesian boundary cells.  

Starting from a divergence free velocity field at a given time step, 𝑛, the forcing 

function is incorporated in the predicted velocity field, 𝑢∗ , on the forcing faces 

using Eq. (38) leaving the fluid faces at the 𝑢𝑛  values.  This corresponds to the first 

step in Table 1, which summarizes the algorithm advancing from time step [𝑛] to 

time step [𝑛 + 1]. The second step involves the correction step on the first set of 

forcing faces, which is required only by the Poisson equation. The idea behind the 

correction is to enforce the global correction based on the way that the cells are cut, 

so that the continuity equation becomes well-posed. The rest of the terms in the 

momentum equation are accounted for on solving the advection-diffusion equation 

to predict the velocity field as appears in third item in Table 1. The fluxes for 

convection and diffusion equation are computed using the conditions posed by all of 

the forcing faces and the predicted velocities are updated only at the fluid faces 

while faces on the solid side are ignored. Similarly, pressure field, defined at the cell 

centers, are solved at only on the fluid side using the fluxes computed by predicted velocity field for fluid faces and 

the fluxes at the corrected forcing faces. Hence, the correction is only applied on the fluid faces to satisfy the 

divergence free condition for the next time step.  

 
Table 1. Overall algorithm for solid boundary treatment 

1. Apply forcing terms: 𝑢𝑖
∗ =  

𝑢𝑖
𝑛 𝑖 → 𝐹𝑙𝑢𝑖𝑑 𝑓𝑎𝑐𝑒𝑠

𝑏𝑖1 + 𝑏𝑖2𝑥𝑖 + 𝑏𝑖3𝑦𝑖 + 𝑏𝑖4𝑧𝑖 𝑖 → 𝐹𝑜𝑟𝑐𝑖𝑛𝑔 𝑓𝑎𝑐𝑒𝑠
  

2. Apply local correction for global conservation  

𝑢𝑗
𝑛+1 = 𝑢𝑗

∗ + 𝜖𝑗 𝑗: 𝐹𝑜𝑟𝑐𝑖𝑛𝑔 𝑓𝑎𝑐𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑜𝑛𝑙𝑦 𝑏𝑦 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

3. Solve for advection diffusion equation: 

 𝛥𝑉
𝜌𝑛+1

𝛥𝑡
− 𝑎𝑣 𝑢

∗∗ = − 𝛻𝑝𝑛 ∙ 𝑑𝐴
𝑑𝐴

+ 𝑓𝑣𝑖𝑠𝑐
∗∗ − 𝑓𝑐𝑜𝑛𝑣

∗∗ + 𝑓𝑓
𝑛+1 + 𝑔

𝑢𝑖
∗∗∗ = 𝑢𝑖

∗∗ +
𝛥𝑡 𝛻𝑝𝑛 𝑖
𝜌𝑛+1

𝑖: 𝑜𝑛𝑙𝑦 𝑓𝑙𝑢𝑖𝑑 𝑓𝑎𝑐𝑒𝑠 

4. Solve for continuity equation (pressure Poisson equation) 

  
 𝛻𝑝𝑛+1 𝑖
𝜌𝑛+1

 ∙ 𝑛𝑑𝐴

𝑖

=
1

𝛥𝑡
 𝑢𝑖

∗∗∗ ∙ 𝑛𝑑𝐴 

𝑖

+
1

𝛥𝑡
 𝑢𝑗

𝑛+1 ∙ 𝑛𝑑𝐴 

𝑗

𝑖: 𝑜𝑛𝑙𝑦 𝑓𝑙𝑢𝑖𝑑 𝑓𝑎𝑐𝑒𝑠
𝑗: 𝑜𝑛𝑙𝑦 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 𝑓𝑎𝑐𝑒𝑠 

5. Correct velocity field: 𝑢𝑖
𝑛+1 = 𝑢𝑖

∗∗∗ −
𝛥𝑡 𝛻𝑝𝑛+1 𝑖

𝜌𝑛+1
𝑖: 𝑜𝑛𝑙𝑦 𝑓𝑙𝑢𝑖𝑑 𝑓𝑎𝑐𝑒𝑠 

Figure 13. Global conservation 

with local correction. 
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F. Contact Line Treatment 

When we consider a fluid-fluid interface intersecting a solid surface, the treatment of the tri-junction locations 

needs to account for the presence and interactions of all three phases, fluid-fluid-solid, which can be challenging.  

One of the mostly discussed issues for modeling the tri-junction location, or the contact line, with Navier-Stokes 

equations is that the imposed no-slip condition for velocity leads to a non-integrable singularity in stress. Among the 

various models, ones which produce slip condition
47,48,49

 is adopted in this study.  

The angle at the contact line, shown in Fig. 14, can be 

used for representing by the balance of forces resulting from 

different intermolecular forces between solid, liquid and gas 

phases. The tangential component of the resulting force, 𝐹𝑅, is 

shown in Eq. (44). In static equilibrium, Eq. (44) leads to the 

well-known Young’s equation as given in Eq. (45).   

𝐹𝑅 = 𝜍𝑠𝑔 − 𝜍𝑠𝑙 − 𝜍 𝑐𝑜𝑠 𝜃 (44) 

𝜍𝑠𝑔 = 𝜍𝑠𝑙 + 𝜍 𝑐𝑜𝑠 𝜃0 (45) 

In Eq. (44), 𝜍𝑠𝑔  is the surface force due to the interaction 

of solid and gas, 𝜍𝑠𝑙  is the surface force due to the interaction 

of solid and liquid and 𝜍 is the surface tension defined for liquid and gas.  

In this work, we adopt an approach based on a simplified version of Huang et al.
49

 without considering the 

effects of the slip velocity on the contact angle. In the present work, flow dynamics moves the contact angle 

asymptotically towards a prescribed static contact angle. The force at the contact line is obtained by plugging Eq. 

(45) into Eq. (44), to estimate the force to recover the static contact angle.  

𝐹𝑅 = 𝜍(𝑐𝑜𝑠 𝜃0 − 𝑐𝑜𝑠 𝜃) (46) 

During the computation of the source term due to surface tension, the contact line region contributes to the 

recovery force described by Eq. (46), instead of the curvature effects given in Eq. (27). The contact angle is enforced 

on open edges where the element connects to either a computational boundary or a solid interface by modifying Eq. 

(27) into Eq. (47). In Eq. (47), the angle, 𝜃, defined by the solid surface and the line formed by the mid-point of the 

edge and the node across. The difference in cosine values between the computed angle, 𝜃, and the prescribed static 

angle, 𝜃0, is translated into a force acting on the contact line. For a static problem, i.e. capillary tube simulation, this 

force alone derives the contact line into a given static contact angle from any given initial condition. 

𝛿𝑓 =  𝜍 𝑡⨂𝑛 𝑖𝛥𝑠
𝑖=𝑐𝑙𝑜𝑠𝑒𝑑

 𝑒𝑑𝑔𝑒𝑠

+  𝜍 𝑐𝑜𝑠𝜃0 − 𝑐𝑜𝑠𝜃 𝑖𝛥𝑠
𝑖=𝑜𝑝𝑒𝑛
 𝑒𝑑𝑔𝑒𝑠

 
(47) 

The slip velocity condition on interface markers at the contact line is imposed during the transfer of Eulerian 

velocity field into the Lagrangian marker points. Instead of imposing the full Dirac function region in Eq. (11), we 

consider a one-sided averaging via Dirac function. This treatment is represented by Eq. (48).  

𝑈(𝑋) =
 𝑢 𝑥 𝑥 𝛿(𝑋 − 𝑥)

 𝛿𝑥 (𝑋 − 𝑥)
 (48) 

In Eq. (48), the summation of delta function in denominator will yield unity (as a property of delta function) 

further away from the contact line whereas it is less than unity for markers in the proximity of a solid surface. As a 

result, casting the velocity field on the contact line yields a slip condition on the solid surface.  

G. Intersecting Solid and Fluid Interfaces 

The contact lines can occur not only on the boundaries of the fixed Cartesian grid but also at the solid interfaces 

that have irregular geometries. Computing the contact line force requires identification of the angle between the 

fluid and solid interfaces. In order to estimate the contact angle, it is crucial to know which elements of fluid and 

solid interfaces are in contact. This requirement is imposed by identifying the intersection marker and relating the 

corresponding fluid and solid markers/elements with each other.  

This identification process starts during the computation of the indicator function. The material properties 

assigned in a particular order, starting with solid interfaces followed by fluid interfaces. This allows us to leave an 

𝜽 

Liquid Gas 

𝝈𝒔𝒈 
𝝈𝒔𝒍 

𝝈 

Solid 
𝑭𝑨 

Figure 14: Forces at tri-junction (contact line). 𝑭𝑨 

represents the adhesive forces.  
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identification number for solid marker on the Cartesian grid cells. As the indicator function computation involves 

the shortest distance, each cell around a solid interface keeps the index of the closest solid marker point. This 

information is then used among the fluid interfaces to determine whether they are in the vicinity of a solid boundary.  

When there is wetting on a solid interface, the fluid interfacial structure includes open elements, as described 

earlier in section B. The open elements lack of connectivity information on one of their edges to another element. 

The markers on this edge is extended or trimmed to fit on the closest solid interface. During this process, the 

orientation, i.e. normal direction, of the element is maintained.  

The identification of open elements in a fluid interface is achieved by utilizing the indicator function which is 

available on the Cartesian grid. The information of solid indicator function, 𝐼𝑠 , is transferred onto fluid interface 

markers, 𝑋𝑓 , via Eq. (49) from the Cartesian grid cells, 𝑥. 

𝐼𝑠 𝑋𝑓 =  𝐼𝑠 𝑥 𝛿 𝑥 − 𝑋 𝑑𝑣
𝑣

 (49) 

When the value of 𝐼𝑠  at any marker is less than half, which corresponds to the location of the solid interface, it is 

marked to be trimmed. In addition, elements having markers all to be trimmed are removed from the fluid interface 

list. For elements having some markers lying inside and outside the solid interfaces are marked as open elements, for 

which the connectivity information is filled with the corresponding solid marker point, determined by checking 

index value of the closest solid marker from the underlying Cartesian grid cell. 

Once the intersecting solid and fluid elements are known, markers on the open edge are moved on to the solid 

interface using the distance information as shown in Fig. 15. 

 
(a)                                                                               (b) 

 

Figure 15. Intersecting fluid and solid interfaces. (a) intersection between elements (b) Snapping procedure (point of view 

is tangential direction to the solid element. Marker on the open edge is marked with red.  

III. Computational Assessment 

To highlight the performance of the present 

approach, case studies have been conducted for (i) 

Capillary tube simulation at zero gravity with various 

contact angle and parameters (ii) liquid plug problem, 

and (iii) 3D simulation of spacecraft fuel tank dynamics 

including liquid fuel draining at a tilted micro-gravity 

and liquid sloshing motion under a sudden change of 

accelerational direction and/or magnitude. These cases 

are presented in the following. 

A. Capillary Tube Simulation 

To validate the ability of the current approach for 

contact angle and solid interface, the Capillary tube 

with initially flat interface was simulated at zero-

gravity condition varying contact angles and non-

 

Solid element 

 

 

Solid element’s plane 
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(a) (b) 

Figure 16. The computational configuration for 3D 

Capillary tube simulations. (a) adaptive Cartesian grids 

and tube wall represented by solid interface, (b) 

configuration with initial flat interface. 
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dimensional parameters. The initial flat interface between gas and liquid is deformed into the curved steady interface 

shape with the given contact angle by the contact line force applied on the tri-junction point between gas, liquid, and 

solid wall. The grid convergence and accuracy for various contact angles were first studied in axisymmetric domain. 

Then, 3D simulations were conducted by representing the circular tube wall using solid interface with triangular 

element in Cartesian adaptive background grid. These configuration and initial flat interface in a Capillary tube are 

shown in Fig. 16. The density ratio and viscosity ratio are 1000 and 100 respectively. The Bond number, 𝐵𝑜 =
𝜌𝑔𝐿2/𝜍, is zero for zero-gravity condition, and it is tested by varying Laplace number, 𝐿𝑎 = 𝜌𝜍𝐿/𝜇2, from 102 to 

105. 

The height of liquid column (ΔH), the difference between wall attachment point and centerline location, is 

normalized by the radius of tube (R) and chosen for verifying the performance of present contact angle model. 

Figure 17 shows the comparison between the analytical solution
46

 and the present axisymmetric computation results 

with various contact angles from 0° to 180° at 𝐿𝑎 = 104. Maximum 129 grid points are used along tank radius 

based on the grid convergence test. The current contact angle model works very well with various contact angles, 

and shows good consistency with theoretical values especially from 15° to 165°, where the difference is just around 

one cell distance. 

 

 

  
Figure 17. Comparison of non-dimensional height of 

liquid column between theoretical values and present 

axisymmetric computation. 𝑳𝒂 = 𝟏𝟎𝟒 , and a maximum 

of 129 grid points are used along radial direction. 

Figure 18. The wall attachment point of 3D Capillary 

tube with 30o contact angle. The Laplace number varies 

from 100 to 50,000. 

   

   
(a) θ = 30° (b) θ = 90° (c) θ = 150° 

 

 

  

Figure 19. The steady interface shape of 3D Capillary tube for different contact angles. (a) 30°, (b) 90°, (c) 150° 



 

American Institute of Aeronautics and Astronautics 

 

17 

 

The 3D Capillary tube geometry in Fig. 18 was tested with various Laplace number for validating the 3D 

performance of contact angle and solid interface. At the same grid resolution, the 3D computation has same 

accuracy as 2D, where the interface location is tracked with an accuracy of one cell distance. The change of wall 

attachment point at 30° contact angle is tracked in time from initial flat interface shape to the final steady state in 

Fig. 18. With a modest Laplace number, for example, 𝐿𝑎 = 100, the interface shape evolves smoothly without 

overshooting, but a large Laplace number can cause oscillations in interface shapes before it reaches the steady state 

solution because the relatively large surface tension and small viscosity create a larger contact line force, and thus 

movement. Figure 19 shows the 3D sample snapshot of deformed interface shape for given contact angles 30, 90, 

and 150°. The Cartesian grid is locally adapted dynamically tracking the interface location for effective 

computation. The streamlines and pressure contour in a plane of 3D domain are shown in Fig. 20.  

B. The Liquid Plug Flows 

The lung airways are coated with a thin liquid film, which can become thicker during various situations, such as 

congestive heart failure, asthma, cystic fibrosis, delivery of drugs
50

. This liquid film can become unstable and form 

airway closure, or liquid plug, which can initiate undesired outcomes for the patient.  In addition to having a role of 

blocking gas exchange, liquid plugs can cause damage to pulmonary epithelial cells because of the additional 

mechanical stresses they bring
51

. These factors become more significant especially when liquid plug experiences a 

rupture (reopening of the airway), causing a sudden change in air pressure. Many factors can lead to a rupture, 

including the liquid properties, gravity, propagation speed, presence of downstream plugs, airway geometry, plug 

size, and interfacial activity
52

.    

In this section, we investigate the dynamics of a liquid plug rupture for a small plug length, where the van der 

Waals attraction forces significantly affects the dynamics and stability of the plug flow. In particular, the van der 

Waals forces can be the major source determining the threshold of the rupture. The critical length is determined 

based on non-dimensional form of Navier-Stokes equations, which is consistent with prior considerations 
53,54

 

focusing on thin liquid films.  

In order to investigate the rupture dynamics and its effects, it is desirable to start the numerical simulation with a 

steady state solution of the liquid plug. Hence the numerical simulation is handled in two stages of computations; (i) 

obtaining steady state solutions of liquid plug propagating in an infinitely long channel when no attraction forces are 

present, and (ii) using the steady state solution with van der Waals potential. The steady state solutions are obtained 

at various plug lengths to compare our approach with prior studies of Fujioka and Grotberg
51

, who employed a 

Lagrangian type interface tracking in a 2D channel. In addition to planar results, we extend their study for 

axisymmetric computations.  

Figure 21 shows the computational setup based on the channel geometry and the liquid plug. Two air-bubbles 

containing different pressure levels drive the liquid plug at a constant speed. The liquid plug length, denoted by 𝐿𝑝 , 

is the distance between air bubbles. The liquid film thickness for air bubbles are denoted as 𝑕1 and 𝑕2.   

    
(a) t*=0.0 (b) t*=20.0 (b) t*=40.0 (c) t*=100.0 

 

 

  

Figure 20. Evolution of streamlines and pressure of 3D Capillary tube with 150° contact angle. 
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Figure 21. Computational setup and the boundary conditions. 

 

The flow conditions are set by taking the characteristic length as the radius, denoted with 𝐻, and characteristic 

velocity as the bubble tip velocity, denoted with 𝑈. Focusing on the liquid plug region, no-slip wall condition at the 

pipe wall is employed by changing the computational framework to follow the bubble tip, which propagates at a 

constant speed. Using the described computational framework, axial velocity at the channel walls is set to negative 

unity yielding a zero-velocity for the bubble tip. The boundary conditions at the channel entrance and exit are 

designed to honor the infinitely long channel assumption. No air is allowed to enter or escape from the channel by 

setting the velocity profiles inside the air bubble to zero. On the other hand, a linear velocity profile is assigned to 

liquid at the entrance based on velocity profiles on the interface and the no-slip wall. Outflow conditions based on 

constant pressure leveled at zero is assigned at the channel exit. Lastly, symmetry conditions are considered at the 

centerline to facilitate half-domain solutions to the planar and axisymmetric numerical simulations.  

Based on the parameters presented in Fig. 21, the non-dimensional parameters based on liquid’s density and 

viscosity are given in Eq (50).  

𝑅𝑒 =
𝜌𝑙𝐻𝑈

𝜇𝑙
;  𝐶𝑎 =

𝜇𝑙𝑈

𝜍
 (50) 

 

1. Steady State Liquid Plug Propagation 

The flow properties of steady state plug propagation are obtained via time marching from an initial condition of 

a zero velocity field and an arbitrary interfacial geometry, which is chosen to be a combination of half circles in the 

vicinity of the liquid plug and straight lines to resemble infinitely long air bubble with no variation in film thickness.  

The first set of steady state solution focus on the two-dimensional channel flow, similar to the numerical study 

carried by Fujioka and Grotberg
51

. We consider the shape of the plug and the mechanical stresses at the channel wall 

at 𝑅𝑒 = 50  and 𝐶𝑎 = 0.05 . Three different plug lengths, i.e. 𝐿𝑃 = 0.5 , 𝐿𝑃 = 1.0  and 𝐿𝑃 = 2.0  are studied for 

validating our approach.  

Figure 22 shows the pressure contours and the streamlines for three different values of 𝐿𝑃  in a two-dimensional 

channel and axisymmetric circular tube along with the steady state grid distributions. The pressure drop between the 

air bubbles drives the liquid plug through the channel. A circulation zone at the plug core is observed for each of the 

solution, causing the film thickness at the upstream of the liquid plug to be at a minimum. This location also marked 

as the minimum liquid pressure location, which is accompanied by large pressure gradients on each side. A 

qualitative comparison between the axisymmetric and the planar geometries suggest that the flow structures are 

similar to determine the critical locations of wall stresses, while the interface shapes, hence the trailing film 

thickness, 𝑕1, and the magnitude of the pressure drop across the plug are quantitatively different, as presented in 

Table 2.  For instance, the axisymmetric geometry is observed to have smaller film thickness than the planar cases 

for all plug lengths. In addition, the trailing film thickness remains the same for plug lengths of 1.0 and 2.0, in spite 

of an increasing trend seen in planar cases. 

 

𝐿𝑝  

𝐻 

𝑈 = −1 𝑈 = −1 

𝑈 = 0 

20𝐻 

𝑈 = 0 
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 (a)  (b) 

 Figure 22. Two-dimensional steady state solutions of the liquid plug problem with plug lengths: Lp=0.5, Lp=1.0, and 

Lp=2.0, (a) planar geometry, (b) axisymmetric geometry. Colors indicate pressure levels.  

 
Table 2. Steady state trailing film thickness and the pressure drop across the plug, at Re=50 and Ca=0.05.   

 Axisymmetric Planar 

 Present Computations Present Computations Fujioka and Grotberg
51

 

𝐿𝑝  0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0 

𝑕1 0.111 0.115 0.115 0.114 0.119 0.123 0.113 0.119 0.123 

Δ𝑃/𝐿𝑝  46.0 24.0 14.7 21.7 12.0 7.1 23.0 13.0 8.0 

 

In Table 2, the film thickness length and the pressure drop across the plug for planar geometries are compared 

with the prior numerical study by Fujioka and Grotberg
51

. Their numerical approach adopts a Lagrangian method to 

identify the moving air bubble shape with a single fluid formulation, which assumes constant pressure inside the air 

bubble. In present approach, this assumption is replaced by assigning material properties to air, i.e. density ratio as 

50 and viscosity ratio as 10. Despite the difference in formulations, both approaches agree on the characteristics of 

the flow. For instance, both 2D planar results show that the steady state trailing film thickness, 𝑕1, decreases with a 

decreasing plug length for the two-dimensional channel and the steady state pressure drop across the plug, Δ𝑃/𝐿𝑃, 

shows the same decreasing trend for larger plug lengths. Quantitatively, 𝑕1  and Δ𝑃/𝐿𝑃  are within 1% and 10%, 

respectively. The discrepancy in Δ𝑃/𝐿𝑃  can be related to the difference in single and two-fluid formulation which in 

return affects the interface shape at the region where the film thickness is at minimum and the wall shear stresses 

have the steepest gradient. At this location, we obtained the minimum peak value of the non-dimensional wall shear 

stress, defined as 𝜏 = 𝐶𝑎 𝜕𝑢/𝜕𝑦 (𝑦 = −1), at 𝑅𝑒 = 40 as −0.19 whereas Fuijoka and Grotberg
51

 reported it to be 

−0.41. As illustrated in Fig. 23, both formulations agree with each other at other locations.  
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Figure 24 illustrates the wall shear stress distribution for the 

planar geometry for various plug lengths at Re=50 and Ca=0.05. 

Because the flow is uniform for the liquid film at locations away 

from the plug, the shear stress becomes zero. For all plug lengths, 

the shear stress starts to increase at the trailing liquid film region, 

reaching a local maximum. Then the shear stress starts to decay as 

a result of the right bubble interface shape. The shear stress at the 

core of the liquid plug is almost constant for the plug length, 

𝐿𝑝 = 2.0 , which asymptotically approaches to a value of 

3𝐶𝑎 1 − 𝑕1  considering the velocity profile of 2D Poiseuille 

flow as 𝑈 = −1 + 3/2 1 − 𝑕1  1 − 𝑦2 . This result is consistent 

with our prior study
14

, in which plug length is considered to be 

very large, i.e. 𝐿𝑃 → ∞. For plug lengths, 𝐿𝑝 = 0.5 and 𝐿𝑝 = 1.0, 

this region is no longer flat as a result of the existence of 

upstream air bubble. The maximum shear stress is observed at the 

location where the film thickness is at minimum. This is followed 

by a sharp change in shear stress resulting in a oscillations in the upstream liquid film region until zero stress is 

attained further away from the plug core. The pressure distribution along the wall is also shown in Fig. 25. Similar to 

the shear stress values, the peak magnitudes of the wall shear stresses do not change with the plug length, while the 

wall shear stress at the plug core is larger for smaller plug lengths.  

   
Figure 24. Steady state wall shear stress distibution for vaious 

plug length at Re=50. 

Figure 25. Steady state dimensional pressure scaled with 

the surface tension  (P*=CaP) disribution for various plug 

lengths at Re=50.  

 

2. The van der Waals Effects 

The main focus of the present study is to capture the flow dynamics and the stresses occurring at the channel 

walls during the airway reopening by numerically simulating the plug rupture. To investigate the rupture dynamics, 

we initiate flow using the steady state solutions obtained in the absence of the van der Waals attraction forces. These 

forces are the main mechanism of a reopening as they are reversely proportional with distance between the air 

bubbles. The film thickness defined earlier corresponds to the liquid plug length. Hence, the smaller the plug length, 

the more dominant they become over other forms of forces, i.e. surface tension. Eventually the liquid plug will 

rupture causing bubble interfaces to merge removing the airway blockage.  

We consider the van der Waals attraction forces on the axisymmetric configuration for the plug length of 

𝐿𝑃 = 0.5. The potential of the attraction forces at an interface location is defined based on the minimum distance to 

another fluid interface. This distance is not only used to compute the potential but also utilized to determine the time 

of the rupture, at which the film becomes unstable. Once the liquid plug length becomes smaller than a critical plug 

length, rupture is numerically initiated. The critical plug length is determined by the balance between the surface 

tension and the attraction forces using Eq. (33). The attraction forces defined by the Hamaker constant, 𝐴 , is 

introduced to the computations as unity, whereas all other parameters including boundary conditions are kept the 

Figure 23. Steady state wall shear stress obtained 

by the present study and Fuijoka & Grotberg50. 

Re=40, Ca=0.05 and Lp=2.0. 
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same as the steady state cases.  According to these parameters, non-dimensional time and critical liquid plug length 

that would cause a rupture read: 

𝑡 =
𝐴𝜌

𝜍𝜇
𝑡∗;    𝑕𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  

𝐴

𝜍
= 0.22 (51) 
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 (a) (b) 

Figure 26. Time instants of the flow field during the reopening of the airway at Re=50, Ca=0.05 with an initial plug length 

of 0.5. (a) Pressure contours levels (color) and streamlines (white lines). (b) Wall pressure and wall shear stress. 
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Figure 26 shows the time history of the pressure contours and streamlines before and after the rupture. The 

rupture is observed to happen between 𝑡∗ = 0.148  and 𝑡∗ = 0.164. Before rupture happens, the pressure starts to 

build up at the liquid plug as its length kept decreasing. At the rupture time, 𝑡∗ ≅  0.16, the length goes below the 

critical plug length and the interfaces experience a topological change, which causes a sudden change in pressure. 

Afterwards, the surface tension becomes locally dominant in this region, causing the freshly merged interface to 

move towards the channel walls. The sudden change in pressure level due to reopening is felt at the walls. This is 

illustrated using the time variation plot of wall shear stress and wall pressure at five different locations, marked in 

Fig. 26 as A to E, are shown in Figs. 27 and 28. 

 

 

 
 

 

Figure 27. Time history of wall pressure during the rupture 

of  a liquid plug with a length of 0.5. 

 

Figure 28. Time history of wall shear stress during the 

rupture of  a liquid plug with a length of 0.5. 

 

In Fig. 27, the abrupt change in pressure is directly observed by all probe locations except point E, which is 

located near the minimum film thickness. Before the rupture, the wall pressure in the vicinity of the liquid plug (B-

D) is observed to increase more rapidly than the location at liquid film (A and E). This is due to the inclusion of the 

van der Waals attraction forces applied at the liquid plug region. As a result, the gradient of pressure changes sign 

between B and C. On the other hand, the wall shear stress tends to decrease for A and B while its magnitude grows at 

points C, D, and E. At the time of the rupture, the sudden change in pressure at point B is the largest, suggesting 

large normal stresses acting at the channel wall. On the other hand, shear stress at B experiences a small increase 

followed by a gradual decay until 𝑡 = 0.41, when the shear stress at location E reaches to its maximum at 𝑡 = 0.41 

after which rapidly decays with an increasing film thickness at this region.  For a period of time, the gradient of 

pressure is reversed for A-B (0.2 < 𝑡 < 1.17), B-C (0.17 < 𝑡 < 0.98), and C-D (0.42 < 𝑡 < 0.81). Overall, during 

a liquid plug rupture the critical locations at the airway walls is observed to be in the vicinity of point B, where a 

sudden change in normal stresses occur, and point E where the shear stress reaches at its maximum as a result of the 

interface shape change causing change in the film thickness.  

C. Spacecraft Fuel Tank Dynamics 

The dynamics of the liquid fuel contained in a tank is of interest especially for spacecraft applications. 

Considering micro-gravity conditions, capillary and viscous effects can become as significant as inertia effects, as 

opposed to normal gravity conditions. In such conditions, the flow characteristics may change rapidly in response to 

the spacecraft motion as a result of altered magnitude and direction of the body forces. These factors not only 

determine the amount of fuel delivered to the combustion chamber but also influence the spacecraft dynamics 

because the flow motion in the tank can disturb the dynamics of the vehicle by changing its center of mass
55

.  

 

1. Draining Tank Flow 

The liquid fuel draining process depends on many factors, i.e. tank geometry, acceleration, surface tension, 

pressure difference applied and the material properties of the liquid fuel
14,15

. The effects of these parameters have 
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been studied experimentally
56,57

 under the effects of axial acceleration. When the acceleration or the gravitational 

force is aligned with axial axis of a symmetric fuel tank, the problem can be tacked in an axisymmetric formulation 

of the Navier-Stokes equations
14,15

. On the other hand, when the direction of the acceleration is different, the 

dynamics can only be captured using full three-dimensional approach.  

In the present study, we first examine the validity of our developed strategy in 3D configuration using our 

previously reported results
14,15

. Then, we test fuel tank draining case at 45° tilted micro-gravity. Weber number, 

Bond number and Reynolds number are used to study the draining flow in a micro-gravity condition. 

In these equations, 𝜌 is the density of the liquid, 𝑄  is the volume flow rate, 𝜍  is the surface tension of the 

interface between gas and liquid, 𝑔 is the gravitational acceleration, and 𝑅 is the characteristic length of the fuel 

tank, which is taken as the radius for cylindrical geometry in this study. Accordingly, non-dimensional time is 

defined as 𝑡∗ = 𝑡𝑄/𝜋𝑅3.  

Figure 29 shows the computational geometry configuration used for the verification of the three-dimensional 

computations. An axisymmetric fuel tank with a hemispherical bottom is considered to compare 3D computation 

with axisymmetric one. The initial fluid interface shape is assumed as circular arc with the given contact angle, 45°, 

at the tank wall. Bond number, Weber number, and Reynolds number are considered as 5, 0.97, and 216, 

respectively. Figure 30 illustrates that non-dimensional centerline and wall attachment location of the interface for 

3D computations are in agreement with the axisymmetric computations. The snapshots of adaptive grids and 

pressure contour for 3D computation are shown in Fig. 31, where maximum of 21 grid points are used along radius 

of tank. In spite of the fact that there are only 4 cells across the outlet pipe, the core dynamics of the draining process 

is captured.  

 

 

Weber Number,  𝑊𝑒 =
𝜌𝑄2

𝜋2𝜍𝑅3
 (52) 

Bond Number,  𝐵𝑜 =
𝑊𝑒

𝐹𝑟
=
𝜌𝑔𝑅2

𝜍
 (53) 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑁𝑢𝑚𝑏𝑒𝑟,  Re =
𝜌𝑈(2𝑅)

𝜇
 (54) 

 
 

 

(a) 

 

(b) 

Figure 29. The computational geometry configuration of 

draining fuel tank with hemispherical bottom. (a) 

axisymmetric domain, (b) 3D computational domain 

 

 
Figure 30. The comparison between axisymmetric and 

three dimensional computation for draining tank flow 

simulation. Bo=5, We=0.97, and Re=216. 
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 To illustrate the 3D capabilities, the draining fuel tank 

simulation is conducted at a 45° tilted micro-gravity condition 

in Fig. 32. The ratio between the outlet radius, 𝑟, and the tank 

radius, 𝑅, is 1/10, and the tank height is 4.0 times of tank 

radius. All simulations are conducted in a micro-gravitational 

environment with 1.5% of normal gravity. The initial fluid 

interface shape is assumed as a circular arc with the given 

contact angle, 45°, at the tank wall. Bond number, Weber 

number, and Reynolds number are considered as 5, 0.97, and 

21.6, respectively. The computational geometry configuration 

is shown in Fig. 32. The complex 3D tank wall is represented 

by solid interface on a Cartesian computational grid. Figure 

33 shows the snapshots of adaptive grid and pressure contour 

plot. Similar to the axial gravity case, maximum of 21 grid 

points along the tank radius is employed, which corresponds 

to 4 grid cells per the diameter of the outlet pipe.  

 

 

      
(a) t*=0.0 (b) t*=0.2 (c) t*=1.0 (d) t*=1.6 (e) t*=1.8 (f) t*=2.0 

 

Figure 31. The snapshots of 3D liquid fuel draining flow under axial-direction micro-gravity. Grids are locally 

adapted around interface in time. Black lines represent streamlines and colored contour shows pressure distribution. 

 
Figure 32. The computational geometry 

configuration of 3D draining fuel tank with tilted 

acceleration. (Bo=5, We=0.97, and Re=21.6) 

     
(a) t*=0.15 (b) t*=0.60 (c) t*=1.05 (d) t*=1.28 (e) t*=1.33 

 

 

  

Figure 33. The snapshots of 3D fuel tank draining with 45° tilted gravitational acceleration. The magnitude of 

acceleration is 0.015g0, and 45° contact angle is applied on the wall. (Bo=5, We=0.97, and Re=21.6) 
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2. Sloshing liquid motion in a spacecraft fuel tank 

The sloshing waves on the liquid fuel surface can 

influence the fuel draining dynamics affecting vapor 

ingestion and liquid fuel residuals. In addition, it can 

change the whole spacecraft dynamics due to the 

movement of center of mass of the liquid fuel during 

landing and/or docking maneuver. At normal or higher 

gravitational acceleration during powered flight, the 

fluid motion is remained damped, and shows moderate 

flow motion. On the other hand, even smaller potential 

energy change can cause large movements under micro-

gravity conditions. For example, the sudden engine 

cutoff transforms the potential energy of liquid at a 

higher acceleration into kinetic energy, and thus, large 

sloshing fluid motion. Understanding the flow motions 

in a liquid fuel tank, and its influence on the spacecraft 

dynamics are crucial for spacecraft applications. 

The present study considers the pure sloshing 

motion of a liquid fuel in a spacecraft tank. Figure 34(a) 

shows the configuration of the scale model of the Saturn V/S-IVB liquid hydrogen tank experimented by Toole et 

al.
58

 This complex concave-shaped tank is represented by the triangular solid interface elements in Fig. 34(b) for 3D 

computation on the stationary Cartesian grids. Figure 35 shows the flow field and instantaneous interface shapes 

during a sloshing flow inside this particular geometry undergoing a sudden change of direction of acceleration at 1% 

of the earth gravity level. The applied acceleration is initially 45° tilted for the axis in Fig. 35(a), where, the 

deformed interface with 60° contact angle between liquid and gas are shown. At t
*
=0.0, the applied acceleration is 

abruptly changed into axial direction, and the difference of potential energy makes sloshing motion. Bond number, 

which is defined as the ratio of gravitational force to surface tension forces, Bo=24 is used in this simulation. 

 

IV. Summary and Conclusions 

In this paper, we report our recent efforts in developing a multi-scale three-dimensional adaptive grid method for 

multiphase flow problems. The method utilizes marker points representing a triangulated surface for both tracking 

interfaces separating fluid constituents and arbitrarily shaped solid geometries. The transport equations are solved on 

the Cartesian grid with automated local grid adaptation to capture the flow features. The triangular mesh 

representing the Lagrangian framework is free to move on the Cartesian grid that represents the Eulerian framework. 

These components are coupled together to capture interfacial flow dynamics for various applications. In summary, 

the following key ingredients are developed and incorporated: 

  
 

(a) 

 

(b) 

Figure 34. The computational geometry configuration of 

draining fuel tank with hemispherical bottom. (a) 

axisymmetric domain, (b) 3D computational domain 

 

      
(a) t*=0.0 (b) t*=1.0 (c) t*=2.2 (d) t*=3.4 (e) t*=4.2 (f) t*=20.0 

 

 

  

Figure 35. Sloshing motion of liquid fuel in a concave-bottomed tank with a sudden change of accelerational 

direction. Velocity vector and colored pressure contour are represented. 
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(i) The marker-based data structure that allows contact lines on computational boundaries and other marker 

based interfaces 

(ii) Surface tension forces on interfaces separating fluid phases, as well as on contact lines where fluid-liquid-

gas phases all meet, 

(iii) Modeling marker based surface as a solid geometry, to allow Cartesian grid based computations around 

two- and three- dimensional irregular object.  

(iv) Indicator function based on distance formulation to distinguish materials, and aid cost of computations 

relevant to geometric calculations.  

(v) Multiple physical mechanisms including surface tension, van der Waals effects in the interface region, 

along with the full Navier-Stokes equations.  

 

To highlight these features, the following case studies are presented: 

(i) Capillary flows with various Laplace numbers and contact conditions.   

(ii) Spacecraft fuel tank flow problems with gravitational effects and varied control parameters including the 

capillary and Bond numbers. 

(iii) The liquid plug problem, motivated by issues associated by drug delivery into the lungs, is investigated 

using the present two-fluid formulation. The combined surface tension and van der Waals effects, 

interacting with different plug lengths and flow parameters, leading to rich physical phenomena including 

topological changes and distinct flow characteristics.  
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