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ABSTRACT
Combined Approximations (CA) is an efficient
method for reanalysis of structures where binomial
series terms are used as basis vectors in reduced
basis approximations. In previous studies high
quality approximations have been achieved for large
changes in the design, but the reasons for the high
accuracy were not fully understood. In this paper
some typical cases, where exact and accurate
solutions are achieved by the method are presented
and discussed. Exact solutions are obtained in the
general case where a basis vector is a linear
combination of the previous vectors. Such solutions
are obtained also in cases of low rank modifications
to structures or scaling of the initial stiffness matrix.
In general the CA method does not provide exact
solutions, but the solutions presented in the paper
explain the high accuracy achieved with only small
number of basis vectors. Accurate solutions are
achieved in many cases where the basis vectors come
close to being linearly dependent. Such solutions are
achieved also in cases of changes in a small number
of elements or when the angle between the two
vectors representing the initial design and modified
design is small. Numerical examples of various
changes in cross sections of elements and in the
layout of the structure show that accurate results are
achieved even in cases where the series of basis
vectors diverges.

1. INTRODUCTION
Multiple repeated analyses are needed in various
design and optimization problems. In general, the
structural response cannot be expressed explicitly in
terms of the structure properties, and structural
analysis involves the solution of a set of
simultaneous equations. Reanalysis methods are
intended to analyze efficiently structures modified
due to changes in the design.

Approximate reanalysis methods have been used
extensively in structural optimization to reduce the
number of exact analyses and the overall
computational cost during the solution process. The
Combined Approximations (CA) method developed
recently is considered in this paper. The method
combines several concepts and methods such as
reduced basis, series approximations, matrix
factorization and Gram-Schmidt orthonormalization.
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The effectiveness of the method in various
optimization problems has been demonstrated in
previous studies1'5. Initially the CA method was used
only for linear reanalysis models. Recently, the
method has been used successfully also in
eigenvalue6 and nonlinear analysis7 problems.
Applications of the method in a large variety of
problems is discussed elsewhere8.

High quality approximations of the structural
response for large changes in the design have been
achieved in previous studies, but the reasons for the
high accuracy were not fully understood. In this paper
some typical cases, where exact and accurate
solutions are achieved by the CA method, are
presented and discussed. In general the CA method
does not provide exact solutions, but the solutions
presented in the paper explain the high accuracy
achieved with only a small number of basis vectors.
The solution procedure is briefly described in Sect. 2.
Three typical cases, where exact solutions are
achieved by the CA method, are introduced and
discussed in Sect. 3. Exact solutions are obtained in
the general case where a basis vector is a linear
combination of the previous vectors. Such solutions
are obtained also in cases of low rank modifications
to structures or scaling of the initial stiffness matrix.
Various cases of accurate solutions are discussed in
Sect. 4. Convergence properties of the series of basis
vectors and the series of the CA terms are presented,
and criteria intended to evaluate the errors in the
approximations are introduced. Accurate solutions are
achieved in many cases where the basis vectors come
close to being linearly dependent. Such solutions are
achieved also in cases of changes in small number of
elements or when the angle between the two vectors
representing the initial and modified design is small.
Numerical examples illustrating the accuracy of the
results are included in Sect. 5.

2. APPROXIMATE REANALYSIS
Consider an initial design with stiffness matrix K*
and corresponding displacements r* computed by the
stiffness analysis equations

K* r* = R (1)

For simplicity of presentation the load vector R is
assumed to be constant, but the procedure presented
is suitable also when the elements of R are functions
of the design variables. Assume a change in the
desi«n so that the modified stiffness matrix is given
by "

K = K* + AK (2)
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where AK is the corresponding change in the
stiffness matrix. The object is to evaluate the
modified displacements r due to various changes AK
efficiently and accurately, without solving the
complete set of modified implicit equations

K r = (K* + AK)r = R (3)

Evaluation of the modified displacements by the CA
method is briefly described subsequently.

We assume that the displacement vector of a
modified design can be approximated by a linear
combination of s linearly independent basis vectors
as

(4)

where rB is the matrix of s basis vectors and y is a
vector of the s coefficients to be determined.
Defining matrix B by

B = KMAK (5)

the basis vectors are then given by the terms of the
binomial series

= r*r2 = -B r* - _ US-1 (6)

Calculation of the series terms involves only forward
and backward substitutions in cases where the initial
stiffness matrix K* is given in a decomposed form
from the initial analysis5.

To determine the vector of coefficients y, the
approximate displacements of Eq. (4) are substituted
into the modified analysis Eqs. (3). Premultiplying
the resulting equation by rB

T yields

where

fl = rB Kre

(7)

RR = rT
B R (8)

For cases where s is much smaller than the number of
degrees of freedom n, the approximate displacement
vector can be evaluated by solving the smaller (s\s)
system in Eq. (7) for y instead of computing the exact
solution by solving the large (nxri) system in Eq. (3).
The final displacements are then computed for the
given y by Eq. (4).

In summary, evaluation of the modified
displacements by the CA method involves the
following steps:
a. The modified stiffness matrix K is first

introduced [Eq. (3)]. Since K* is already given,
this step involves only calculation of AK.

b. The basis vectors r, are calculated by Eq. (6).
Calculation of each basis vector involves only
forward and backward substitutions.

c. The reduced matrix K.R and the reduced vector
RR are calculated by Eq. (8).

d. The unknown coefficients y are calculated by
solving the set of (sxs) equations (7).

e. The displacements r are evaluated by Eq. (4).

The solution process is based on results of a single
exact analysis, and it is suitable for different types of
structures and design changes. The method is easy to
implement, it can be used readily with a general finite
element program, and calculation of derivatives is not
required.

The efficiency of reanalysis by the CA method,
compared with complete analysis of the modified
design, can be measured by various criteria, e.g. the
CPU effort or the number of algebraic operations. It
is then possible to relate the computational effort to
various parameters such as the number of degrees of
freedom, the number of basis vectors considered and
the accuracy of the results. It has been found that
calculation of each basis vector involves about 2% of
the CPU time needed for complete analysis. In many
cases a small number of basis vectors is sufficient to
achieve adequate accuracy. For moderate changes in
the design 2-3 vectors are often sufficient whereas 5-
6 vectors might be needed for large changes.
Considering the latter number of vectors results for
various problems showed that the total CPU effort,
compared with complete analysis of the modified
design, has been reduced by more than 75%.

3. EXACT SOLUTIONS
In this section the following three typical cases,
where exact solutions are obtained by the CA
method, are presented:
a. A general case, where a basis vector is a linear

combination of the previous vectors, is
developed in Sect. 3.1. In many cases, where the
basis vectors come close to being linearly
dependent, accurate solutions are achieved by
the CA method.

b. The case of low rank modifications to
structures, where the number of modified
elements in the stiffness matrix is limited, is
presented in Sect. 3.2. The exact solution is
achieved if one basis vector is introduced for
each changed member. If some of the vectors
are linearly dependent, the exact solution is
achieved with a smaller number of vectors.

c. The common case of scaling of the initial
stiffness matrix, where exact solutions are
obtained by consideration of a single basis
vector, is presented in Sect. 3.3. In many cases,
where the angle between the two vectors
representing the initial design and modified
design is small, accurate solutions are achieved
by the CA method.
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3.1 Linearly dependent basis vectors
A general case of changes in the structure, where
exact solution is obtained by the CA method, is
presented subsequently. To obtain a convenient
expression for the exact solution of the modified
design, premultiply Eq. (3) by K*"1 and substitute
Eqs. (1) and (5). The result is

(I + B)r = r* (9)

Premultipling Eq. (9) by (I + B) '] gives the exact
modified displacements

r^I + B)-1!-* (10)

To obtain a convenient expression for the
approximate solution in terms of assumed s basis
vectors, substitute the expressions of the basis
vectors [Eq. (6)] into Eq. (4). The resulting CA
expression is

r = y, r* - y2 B r* + y3 B2r*-... + y, Bs Jr* (11)

Assuming that the approximate expression of Eq.
(11) is equal to the exact solution of Eq. (10),
premultiplying both equations by (I+B) and
rearranging gives the linear expression

rs+i = 2,«,r,

where a, are scalar multipliers given by

al=(yl-l)/ys

i = 2, 3, ..

(12)

(13)

Equation (12) shows that when the reduced basis
expression with s terms is equal to the exact solution,
then the 5+1 basis vector is a linear combination of
the previous i vectors. That is, the s+l basis vectors
are linearly dependent.

3.2 Simultaneous rank one changes
Exact methods are efficient in cases of low rank
modifications to structures and are applicable to
situations where the number of modified elements in
the stiffness matrix is limited. These methods are
usually based on the Sherman-Morrison9 and
Woodbury10 formulae for the update of the inverse of
a matrix. It has been shown recently11 that various
reanalysis methods may be viewed as variants of
these formulae. In particular, exact solutions obtained
by the CA method and Sherman-Morrison-
Woodbury formulae are equivalent.

Consider for example the case of simultaneous
changes in m truss members. The exact solution is
obtained if one basis vector is selected for each
changed member3

where AK, is the contribution of the ith member to
AK. The exact solution is given by

m
r = ro + Zy,. r,. (15)

where r0 is the vector of initial displacements. This
procedure is efficient when the number of changed
members is much smaller than the number of
degrees of freedom. Exact solutions achieved by the
CA method and the Sherman-Morrison-Woodbury
formulae in such cases are equivalent. If some of the
vectors are linearly dependent, the exact solution is
obtained with a smaller number of vectors.

3.3 Scaling of the initial stiffness matrix
Scaling of the initial stiffness matrix K* is carried out
by multiplying the latter matrix by a positive scaling
multiplier p, to obtain the modified matrix

K i i 17"* < \ £\= (I K (16)

From Eqs. (1), (3) and (16) it is clear that the exact
displacements after scaling can be calculated directly
by

r = (17)

The condition of Eq. (16) requires linear dependence
of the stiffness matrix on the change in the design. In
general, the elements of K are some nonlinear
functions of the design variables. A typical case
where the condition of Eq. (16) is satisfied is scaling
of the cross sections or the geometry of a truss
structure, where the lengths of all elements are
multiplied by (i and their direction is unchanged.

Consider the case where the modified design is a
scaled design fiK*, as given by Eq. (16). Then, from
Eq. (5)

B = AK = (fi - 1) I (18)

where I is an identity matrix. The resulting basis
vectors [Eqs. (6)] become linearly dependent

r3=(|i-l)2r* (19)

Thus, the exact modified displacements are
determined directly by the first basis vector, and no
approximations are needed. Consideration of a single
basis vector with a coefficient y-[=\L~l will provide the
exact solution as given by Eq. (17).

4. ACCURACY CONSIDERATIONS

4.1 Convergence of the series
In this section convergence considerations related to
the series of basis vectors and the series of the CA
terms are presented.
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The series of basis vectors converges if and only if

limB" =0 (20)

A sufficient criterion for the convergence of the
series is that ||B|| < I, where ||B|| is the norm of B. It
can be shown that p(B) < ||B||, where p(B) is the
spectral radius, i.e. the largest eigenvalue of matrix
B. From the above, a sufficient condition for
convergence is p(B) < 1.

It is convenient to express the change in the
design AK [Eq. (2)] as

AK= aAK* (21)

Where AK* is a matrix representing the direction of
change and a is a scalar multiplier describing the
magnitude of change in the design. In the solution
process, the basis vectors r, are determined by Eq.
(6) and are multiplied by the corresponding scalars yi
to obtain the final displacements [Eq. (4)].
Multiplying a basis vector r, by any scalar will not
change the approximate solution (only the
corresponding scalar _y( will be changed). Therefore,
identical basis vectors can be selected for any given
AK* and different a values. In cases where the
elements of the basis vectors become very large due
to large AK values, it is possible to normalize a basis
vector r, by dividing it by an arbitrary reference
element of the vector (say, the first element r^) to
obtain

rATi = (22)

This operation scales the first element of the vector
to unity and, as noted earlier, it does not change the
approximate solution.

To evaluate the accuracy of the approximations,
an uncoupled set of new basis vectors V, (i = 1, ..., s)
is introduced using a Gram-Schmidt
orthogonalization and normalization method5'7. The
new vectors are determined by the original ones r,
from

,r , TV 1-1/2V i = n K n r i

i-i

;=1

(23)

(24)

where V, and V, are the fth non-normalized and
normalized vectors, respectively. Defining the matrix
VB of new basis vectors and the vector z of new
coefficients, the reduced system of Eq. (7) becomes
uncoupled and the final displacements are given by
the explicit expression

(25)

Equation (25) can be expressed as an additively
separable quadratic function of the vectors V,- by

r=tv,.(vfR) (26)

One advantage in using the new vectors is that all
expressions for evaluating the displacements are
explicit functions of the original basis vectors.
Calculation of any new basis vector V, results in an
additional term of the displacements expression [Eq.
(26)] that is a function of the original vectors iy (j=l,
2, ..., z). Consequently, additional vectors can be
considered without modifying the calculations that
were carried out already.

For any assumed number of basis vectors, the
results obtained by considering either the original set
of basis vectors or the new set of uncoupled basis
vectors are identical. While the normalized vectors V,
are of similar magnitude, the values of the z,
coefficients and the corresponding terms of the series
of Eq. (26) are gradually decreased. It will be shown
later that transforming the binomial series terms [Eq.
(6)] into the terms of the CA series [Eq. (26)]
provides accurate solutions even in cases where the
binomial series diverges.

The accuracy of the results for a specific number s
of basis vectors can be evaluated by the sth term, r(s>,
of the approximate displacements expression [Eq.
(26)], given by

(27)

If the solution process converges, the size of the
elements of the vector r(s\ in Eq. (27) can be used as
a convergence criterion.

4.2 Accurate solutions
It has been noted that in general the CA method does
not provide exact solutions, but in many cases
accurate solutions are achieved with only a small
number of basis vectors. The various cases of exact
solutions presented in Sect. 3 explain the high
accuracy achieved by the method. In this section
some cases where accurate solutions are expected
will be presented.

Nearly linear dependent basis vectors. It has been
shown in Sect. 3.1 that exact solutions are obtained
in cases where the basis vectors are linearly
dependent. Consequently, it is expected that accurate
solutions would be achieved in cases were the basis
vectors come close to being linearly dependent. Two
basis vectors r,- and r,+1 are close to being linearly
dependent if

cos (3, M = (r, B* B*r. (28)
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where p, ,-+1 is the angle between the two vectors and
| | denotes the absolute value. It can noted [Eq. (21)]
that for any given AK*, the angle P, ,+1 is
independent of the scalar a. It will be shown by
numerical examples that the basis vectors determined
by the CA method satisfy the condition of Eq. (28),
as ( is increased, even in cases of very large changes
in the design.

Changes in limited number of elements. It has
been noted in Sect. 3.2 that in the case of
simultaneous m rank-one changes, exact solutions
are obtained by the CA method if one basis vector is
selected for each changed member. If some of the
basis vectors are linearly dependent, the exact
solution is achieved for a smaller number of vectors.
It has been observed that in many cases where
limited number of elements are changed, exact
solutions are achieved by the CA method with small
number of basis vectors. Results will be
demonstrated by numerical examples in Sect. 5.

Nearly scaled designs. Consider the case where the
change in the stiffness matrix AK [Eq. (21)] can be
expressed in terms of corresponding change in the
design variables X by

are expected for small angles 0, it might prove useful
to apply the angle constraints13

X = X* + AX = X* + a AX* (29)

Both the direction of change AX* and the magnitude
of change a may affect significantly the accuracy of
the approximations. The effect of both can be
represented by the single parameter 0, namely the
angle between the vector of the modified design X
and the vector of initial design X*, given by

cos 0 = (X x*) / (|x| |x*|; (30)

Various designs, obtained by scaling a certain
modified design, provide identical 0 angles. For
example, Fig. 1 illustrates how the two modified
designs A at X=X*+0.1AX*, and D at
X=10(X*+0.1AX*), correspond to an identical 0. It
will be shown in Sect. 5 that high accuracy is
achieved with a small number of basis vectors for
designs A (representing a small change in the design)
and D (representing a very large change in the
design), which both correspond to a small 0 value.
More basis vectors are needed for designs B and C
that correspond to larger 0. It should be emphasized
that in the present discussion only the space formed
by the vectors X* and X is considered. For the
complete design space, smaller 0 values not always
guarantee better approximations.

For any given direction vector AX*, the magnitude
of change a determines the value of 0 and the
accuracy of the results. The larger a is, the larger is
the angle 0, and more basis vectors might be required
to achieve adequate accuracy. Since accurate results

< 0 < Qu (31)

where QL and Qu are predetermined limits.
Common limitations on changes in the design, are

the move limit constraints

AXL < AX < (32)

where AXL and AXU are predetermined lower and
upper limits, respectively, on the design variable
changes. An alternative approach, used in trust region
algorithms12, is to restrict the solutions to some region
around X* by constraints of the form

H A X H - A (33)

in which A is the radius of the region to be restricted.
Constraints of the type of Eqs. (32) and (33) might
be effective only for local approximations (such as
the Taylor series), where small changes in the design
variables are assumed. They are not suitable for the
CA method where accurate solutions are obtained for
large changes in the design.

5. NUMERICAL EXAMPLES

5.1 Various design changes
Consider the classic ten-bar truss problem shown in
Fig. 2 with a single loading condition of two
concentrated loads. The design variables are the
members' cross-sectional areas, the initial cross
sections equal unity, the modulus of elasticity is
30000, and the analysis unknowns are the horizontal
and vertical displacements at joints 1, 2, 3 and 4,
respectively. The stress constraints are -25<o<25,
and the minimum size constraints are 0.001<X.
Assuming the weight as an objective function, the
resulting optimal design is

Xopt = {8.0, 0.001, 8.0,4.0, 0.001, 0.001, 5.667,
5.667,5.667,0.001}

The line from the initial design to the optimal design
is given by

X = X* + a AX*

where AX* is defined as

AX*T= {7.0, -0.999, 7.0, 3.0, -0.999, -0.999,
4.667,4.667, 4.667, -0.999}

To illustrate the effect of various design changes on
the accuracy of the results, four typical cases were
considered (see Fig. 1):
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A. Small change in the design (up to -10% and
+70%) and small angle 6 (o=0.1, 8=14°). The
modified design is given by X=X*+0.1AX*.

B. Medium change in the design (up to -50% and
+350%) and medium angle 6 (a=0.5, 9=34°).
The modified design is given by X=X*+0.5AX*.

C. Large change in the design (up to -100% and
+700%) and large angle 0 (the optimum,
a=1.0, 0=41°). The modified design is given
by X=X*+AX*.

D. Very large change in the design (up to
+ 1600%) and small angle 6(6=14°). The
modified design is given by scaling design Case
B by a factor of 10, X=10(X*+0.1AX*).

Results obtained for the above cases and various
numbers of basis vectors by the CA method are
summarized in Table 1. An accurate solution
(maximum displacement error of 0.05) is achieved
with only two basis vectors for cases A and D.
Similar accuracy is achieved in both cases with
identical small 6 values, although the design change
in Case D is much larger. The accuracy in Case D is
higher than that of Case C, although the design
change in the latter case is smaller (but the angle 6 is
larger). For a given direction AX*, the number of
basis vectors needed to achieve a certain accuracy is
increased with a. Accurate solution (maximum
displacement error of 0.05) is achieved with three
basis vectors for Case B (a=0.5) and with four basis
vectors for case C (ct=l).

Considering Case C (oc=l), Fig. 3 shows how the
norm of the basis vectors (the binomial series terms)
is increased and the series diverges. Figure 4 shows
the norm of the uncoupled basis vectors V,, and Fig. 5
shows how the norm of the CA terms V,z, is
decreased and the series converges as the number of
basis vectors is increased.

In summary, accurate results are obtained even in
cases where the series of basis vectors (the binomial
series) diverges. Finally, Table 2 shows that the basis
vectors determined by the CA method are close to
being linearly dependent even in cases of very large
changes in the design. Identical (3 values are obtained
for design Cases A, B and C, having identical
direction of change AX*.

5.2 Change in small number of elements
To illustrate numerical results for cases where the
number of changed elements is small, consider again
the initial ten-bar truss shown in Fig. 2. The
following cases of changes in the topology by
deletion of members and joints have been solved
(see the modified topologies in Fig. 6):
a. Deletion of members 2+6+10 and joint 2.
b. Deletion of members 2+5+6+10 and joint 2.
c. Deletion of members 2+6+7+10 and joint 2.
d. Deletion of members 2+6+8+10 and joint 2.

The exact solutions, summarized in Table 3, have
been achieved for all the above cases with only three
basis vectors.

5.3 Fifty-bar truss, nearly scaled designs
Consider the cantilever truss shown in Fig. 7a. The
truss is subjected to a single load at the end and all
cross section areas equals unity. The modulus of
elasticity is 10 000 and the forty unknowns are the
horizontal (to the right) and the vertical (upward)
displacements at joints 2 through 21, respectively.
Two geometric variables have been considered, the
depth D and the width 10W. Exact solution is
achieved with a single basis vector for all designs
where the ratio between the depth and the width of
the truss does not change. The reason is that the
vertical and the horizontal joint coordinates are
changed simultaneously such that the geometry is
scaled (the lengths of all members are changed by
the same percentage whereas the direction cosines
are unchanged). Assuming the initial geometry D =
W = 1.0, two cases of geometrical changes have been
solved:
a. The modified geometry is given by D = 1.2 (a

change of 20% in the depth, Fig. 7b).
b. The modified geometry is given by D = 2.0, W

= 1.9 (a change of 100% in the-depth and 90%
in the width, Fig. 7c).

The stiffness coefficients of thirty members have
been changed, therefore exact reanalysis is not
efficient. Assuming only two basis vectors (first-
order approximations, CA1), the results are given in
Table 4. Comparing the results obtained for the two
cases of geometrical modifications it can be seen that
better approximations have been achieved in case b,
for larger changes in the geometry. The better results
in case b are attributed to the fact that the modified
geometry is relatively close to a scaled geometry (D
= W), for which the exact solution is achieved with a
single term.

5.4 Nearly linear dependent basis vectors
Consider again the fifty-bar truss shown in Fig. la.
Deleting ten diagonal members, the modified design
is shown in Fig. 8. Despite the relatively large
number of deleted members, the exact solution has
been achieved with only three basis vectors. The P
values obtained for the basis vectors [Eq.(28)],
cospi,2=0.9621, cos P2?3=1.000, show that the second
and the third basis vectors determined by the CA
method are linearly dependent.

6. CONCLUSIONS
Some typical cases where exact or accurate solutions
can be achieved by the CA method have been
presented. It has been shown that exact solutions are
obtained in the general case where a basis vector is a
linear combination of the previous vectors, and also
in cases of low rank modifications to structures or
scaling of the initial stiffness matrix. In general the
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CA method does not provide exact solutions, but the
solutions presented in the paper explain the high
accuracy achieved with a small number of basis
vectors. It has been observed that in many cases,
where the basis vectors come close to being linearly
dependent, accurate solutions have been achieved.
Accurate solutions have been achieved also in cases
of changes in a small number of elements or when the
angle between the two vectors representing the initial
design and modified design is small.

The main observations that have been made from
the numerical examples are as follows:
a. The reduced basis coefficients can change

significantly the convergence properties of the
series of basis vectors. Accurate results are
obtained by the CA method even in cases where
the series of basis vectors diverges.

b. The direction of change and the magnitude of
changes in the design have a significant effect
on the accuracy of the approximations.

c. For any given direction vector AX*, the
magnitude of a determines the value of 6. For
given number of basis vectors and direction of
change AX*, the accuracy of the results depends
on a. The larger a is, the larger is the angle 0
and more basis vectors will be needed to achieve
adequate accuracy.

d. A specific 0 may correspond to many different
combinations of AX* and a. Various modified
designs obtained by scaling a specific design
correspond to the same 0 angle. Similar accuracy
has been achieved for the above designs, even in
cases where the design changes are very large.
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Table 1. Displacements for various modified designs (ten-bar truss)

Method

Number of basis vectors
Case A 9=14°
(small change)

CaseS. 9=34°
(medium change)

CaseC. 9=41°
(large change)

Case a 9=14°
(very large change)

CA Exact

2
1.36

3.59
1.76
8.23

-2.06
8.62

-1.44
3.92
0.50

1.53
0.71
3.56

-0.89
3.77

-0.54
1.71

0.28

0.90
0.41
2.10

-0.53
2.24

-0.30
1.01
0.14

0.36
0.18
0.82

-0.21
0.86

-0.14
0.39

3 4

0.52

1.46
0.76
3.63

-0.98
3.87

-0.55
1.64
0.29 0.29
0.84 0.88
0.45 0.47
2.17 2.19

-0.61 -0.62
2.34 2.37

-0.31 -0.31
0.95 0.93

1.37

3.56
1.77
8.25

-2.10
8.65

-1.45
3.89
0.52

1.49
0.77
3.65

-0.98
3.90

-0.55
1.62

0.30

0.90
*0.52
*2.17
-0.60
2.40

-0.30
0.90
0.14

0.36
0.18
0.83

-0.21
0.87

-0.15
0.39

* Joint 2 is practically eliminated
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Table 2. Values of cos J3/,/+i, various modified designs and basis vectors (ten-bar truss)

Vectors
Cases A, B, C
CaseD

Table 3. Exact solutions,

Deleted
members 1
2+6 2.40
4+9 2.11
5+8+9 *
4+5+8+9 1.20

1,2

0.9989

0.9998

various cases

2
5.80 *
4.67 3
* 2
* 2

2,3 3,4

0.9992 0.9994

0.9999 0.9999

4,5

0.9997

0.9999

i of deletion of members (ten-bar trass)

Displacements
3 4

* -3
.30 13.62 *
.40 19.76 -3
.40 19.76 *

5 6
.60 15.18

14.81
.60 20.96

20.96

7
-2.40
-1.35
-3.60
-3.60

8
5.80
5.57

10.38
10.38

* Irrelevant results

Table 4 First-order approximations, geometrical changes (fifty-bar truss)

Joint
2

3

4

5

6

7

8

9

10

11

Direction
X
Y
X
Y
X
Y
X
Y
X
Y
X
Y
X
Y
X
Y
X
Y
X
Y

Case a
Exact

0.08
0.08
0.15
0.28
0.21
0.60
0.27
1.01
0.31
1.51
0.35
2.07
0.38
2.69
0.40
3.36
0.41
4.05
0.42
4.75

CA1
0.09
0.11
0.16
0.35
0.22
0.69
0.26
1.12
0.29
1.60
0.32
2.13
0.34
2.69
0.35
3.27
0.35
3.86
0.35
4.45

Case b
Exact

0.20
0.24
0.38
0.88
0.54
1.87
0.67
3.18
0.79
4.74
0.88
6.54
0.96
8.50
1.01

10.60
1.04

12.79
1.05

15.02

CA1
0.20
0.25
0.38
0.90
0.54
1.90
0.68
3.21
0.79
4.79
0.88
6.58
0.95
8.54
1.01

10.63
1.04

12.81
1.05

15.02
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D. X=10(X*+0.1DX*)

A. X=X*+0.1DX*
B. X=X*+0.5DX*

C. X=X*+DX* (optimum)
X*

* H*Fig. 1. Various modified designs shown in the space of X and AX

6 1 1

360

Fig. 2. Ten-bar truss.

Norm
30000

20000

10000 Z
1 2 3 4 5
Basis vector (term) number

Fig. 3. Norm of the original basis vectors (oc=1.0).
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0.12

0.08

0.04

1 2 3 4
Basis vector (term) number

Fig. 4. Norm of the uncoupled vectors.

Norm
3.0»

2.0

1.0

1 2 3 4 5
Basis vector (term) number

Fig. 5. Norm of the CA terms.

(a) (b) (c)

Fig. 6. Ten-bar truss, modified topologies.
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(a)
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12

(c)

Fig. 7. Fifty-bar truss, initial and modified geometries.

(d)

100
Fig. 8. Fifty-bar truss, modified topology.
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