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n ,m Abstract The coefficients &'", A:'"' , . . . , BI 
called the Hansen's coefficients, a r e  functions of 
e . ,  The approach of LeShack and Sconzo in com- 
puting these coefficients(') is through the u s e  of 
the Cauchy's numbers(') while the key of Deprit 
and ;%om's procedure is the application of Poin - 
c a r e ' s  method of continuation in the integration of 
a differential equation with p = cos E a s  dependent 
variable and the mean anomaly M as  independent 
variable.(2) In this paper we shall  construct a 
homogeneous l inear  differential equation of the 
second o rde r  which has the functions (1.1) as  in- 
dependent solutioni.  
we can derive some  recur rence  formulae and a t  
the s a m e  t ime establish a r ecu r rence  process  
which can be used t o  generate tables of the expan- 

, . . . , 
In th i s  paper we derive some recur rence  fo r -  

mulae which can be used t o  calculate the Four ie r  n expansions of the functions ( r /a )"cosmv and (r/a) 
s in  mv in t e r m s  of the eccentric anomaly I: o r  the 
mean anomaly M. W e  a l so  establish a recur rence  
process for  computing the s e r i e s  expansions for  
all n and m when the expansions of two basic s e -  
ries a r e  known. 
explicit fo rm i n  the c lass ica l  l i t e ra ture .  The re- 
currence formulae a r e  l inear  in the functions in-, 
volved and thus make very  simple the computation 
of the s e r i e s .  

1. Introduction 

These basic s e r i e s  w e r e  given in 

F r o m  the governing equation 

sion of the functions (1. 1) in any of the three  anom- 
alies t o  the des i red  o rde r  in the eccentricity and 
with a minimum number of computations involved. 

It has long been recognized that digital com- 

Thus it is 
puters a r e  capable of formal  manipulation of ' l i ter-  
a1 expansions in Celestial  Mechanics. 
now easy  t o  extend Cayle ' s  tables of the expan- 

in the eccentricity. 
schemes  seve ra l  authors have been successful in 
obtaining analytical expansions of functions which 
a r i s e  in Celestial Mechanics('-') It may. how- 
eve r ,  s t i l l  be of in te res t  i f  we can derive some  
exact formulae relatin these expansions. The 
new mathematical rela%ons not only provide ma-  
t e r i a l  for  teaching elliptic motion expansions but 
at the s a m e  time they can be used t o  check the ac- 
curacy  of the different algorithms already formu- 
lated. 

sions in elliptic motion ( 1 3  to include higher powers 
Using various computing 

- 

In this paper we sha l l  consider the develop- 
ments in t e r m s  of the eccent r ic  anomaly E or  the 
mean anomaly M of the functions 

where a is the s e m i  major -ax is ,  r the radial  d i s -  
tance and v the t rue  anomaly in elliptic motion. 
The functions were  f i r s t  considered by €)ansen i n  
his Fundaments('). For each specific pair  of val- 
ues of n and m where n is a positive o r  negative 
integer and m is a positive integer,  after a s e r i e s  
of transformations he a r r ived  to expres s  and 
,u"sm in t e r m s  of the expansions of ( r ia) '  and (r/$' 
and the i r  derivatives with respec t  to ' the ecccn- 
t r ic i ty  e .  

n (:) cos mv = A:m+ A:'m cos M +  A2mcos  2M+.  . * 
In general  we have 

2 .  Differential Equations 

Consider the vector equ a 1' ion 

X = A(t)X (2. 1) 

where A is the 2 X 2 mat r ix  

A(t) = ["'. ~ ~ ~ f z ~  (2 .2)  

P (fr f') 

where f , ( t )  and fZ(t) a r e  two a rb i t r a ry  functions of 
t of the c lass  C' , and LY and P a r e  two a rb i t r a ry  
constants. I t  can be shown that A(t) is the most  
general  2 X 2 mat r ix  which commutes with i t s  inte- 
gral .  For this paper it suffices t o  prove the fol- 
lowing theorem. 

Theorem. The equation (2.1) where A(t) is given 
by (2 .2)  can  he t ransformed into a homogeneous 
l inear  equation with constant coefficient. 

Proof: Le t  

X = exp(+ (f, + f,)dt)Z (2 .3)  

X = &(f, . + f z )  exp ( 

Dividing out by exp ( ) 

Z + e x p  ( )Z = exp ( )AZ 

Z = [A - $ ( f l  + f,)I]Z 

o r  
Z = (E, - f z ) B Z  (2 .4 )  

. ,  

where B is the constant matrix. (1. 2 )  
n,m . 

( ~ ) n s i n m v = B : ' m s i n M + B 2  s i n 2 M + .  . .  ,1 
'::This work was supported by NASA contract No. 

NASr  54f06). -. 
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By using the new independent variable s such that 
n 

s = J i f ,  - f,)dt (2.6) 

we have the required equation 

-~ d Z  - B Z  
d s  ( 2 . 7 )  

Now, the equivalent second o rde r  differential  
equation of the sys tem (2. 1 )  is 

. .  
x - f ,  i f, +-] x [ ' f ,  - f 2  

where x is any of the two components of X. 
the charac te r i s t ic  equation of the sys tem ( 2 . 7 )  is 

Since 

= n p + +  ( 2 . 9 )  

we immediately have, through the changes of var i  
ables (2.3) and ( 2 . 6 ) ,  for the general  solution of 
( 2 . 8 )  

If A* =e$ + $ >  0 

1 C,exp(-h i f ,  - f2)dt) r l  
If u p  + f < 0 

(2.10) 

I f u p + *  = o  

x(t)  = . x p ( ~ ~ [ f , . ; f * ) d t : ) [ C , ~ ( f , -  f,)dt + C2 I 
n W e  ohservc that the functions ( r / a )  cos mv and 

(r/a)"sin mv  a r e  special  ca ses  of the second solu- 
tion in (2 .  IO) with t = v.  

Let  

-x* = -(+ + f )  = mz 

n j(fl - f,)dv = v 

we can deduce 

By substituting into (2. 8) we  have the differ 
entia1 equation which is satisfied by (1. I )  

dzx 2 n e s i n v  & 
p- l + e c o s v  dv 

x = o  (2.12) I [ ( l + e c o s v ?  
n2 e' sin2 u ne(e + c.os v) + m2 + 

V If w e  conslder QnSm and ,u"'m as functions of 
the eccentric anomaly E ,  then by the change of 
variables 

d F - 3  s e  s in  v = 
1 - e c o s  E 

we have the differential  equation with E as  the in- 
dependent variable 

dz x dX ( 1 - e  c o s E f  7 + (1-2n)e  s i n E ( 1 - e c o s I ? ) -  dE d J3 

+ [(I - ez)(mZ - n') + n(2n-  1)(1- e cos E) 

- n ( n - ~ ) ( l - e c o s E ) " ] x  = 0 (2.14) 

and qn*" as func- Finally i f  we consider 
tions of the mean anomaly M ,  then by the transfor- 
mation 

iil = E - e s i n E  

d 'we have the differential equation which is siitisficd 
by enam and Pdm, copsidered as  functions of M .  

(2.16) 
dz x dx ( 1 - e c o s E f  - + 2 ( 1 - n ) e s i n E -  
dM dM 

+ ,[(I-ez)((mZ-n2~+n(2n-l)(l-ccos~) 
1 

(I-e cos 15) 

-n(n-l)  (1-e cos E) '  ]x = o 

In the las t  equation the coefficients a r e  to he 
expressed in t e r m s  of M using the Kepler 's  equa- 
tion (2.15) 

The diffcrential  equations (2.12) ,  (2.14) and 
( 2 . 1 6 )  with respectively the t rue  anomaly v ,  the ec- 
centric momaly E .  and the mean anomaly M a s  in- 
dependent variable w i l l  s e rve  a s  hasic equations in 
the derivation of the recur rence  formulae for the 
s e r i e s  expansions of and \v"3m in each of  the 
t h r e e  anomalies. In the following we shall  consid- 
e r  the expansions in E and in M. 

3. 

Le t  

Four i e r  Expansions in T e r m s  of E 

(a )" exp ( imv)  ( 3 .  1) X n m  = * n m +  iqn.m = 

We have seen  that XnJm, considered as function of 
the eccentric anomaly E ,  sa t i s f ies  the differential 
equation v 

2 



dXnJm + ( 1 - 2 n ) e s i n E ( l - e  c o s E ) ~  

+ [(I - e ' )  (m' - n 2 )  + n(2n - I) (1 - e cos E) 

-n(n - 1) (1 - e cos El' ]Xnam = 0 (3.2) 

F r o m  (3.1) 

n 
+ im(:) exp ( imv)  - dv 

dE 

Since 
r - = 1 - e c o s E  a 

P ( c )  = e s i n E  dE a 

Also 

dv 
dE 1 - C C O S E  

Thcrefore 

dXnzm e s i n E ( 1 -  e cosE)- 
dE 

= n e 2 s i n 2 E x n ' m + i m ~ e   sin^^^,^ 

Using the relations 

lil-e" s i n E  = (:)sin" 

we have 

n+i,m+l n+z,m cs in I3 ( l - ecos~ ; ) -  ' dXn'm_ - m c x  
- n X  dE 

nc1.m .+ (m + 2n)X 

- (m+ n) (1 - ez )xn 'm 

By substituting into Eq. ( 3 .  2)  we have the r ecu r -  
rence  formula 

m ( z n - ~ ) e ~ ~ - " ~ + '  - 
d z X n m  

- (rn i- n) (zn - 1 ) ~ ~ - ' a ~  

+ ( m + n ) ( m + n -  I)(I- e 2 ) x n - 2 . m  

This formula can  he used 

.,. n2Xn,m 
dEz 

( 3 . 3 )  

where X can  be m o r  yl .  

t o  go f rom c o s m v  (or  s i n m v )  to cos (m .+ l ) v  (or 
s in  (m + 1)v). 
that X n s - m  = Xndm where fln'm i s  thc complex 

Changing m into - m  and noticing 

conjugate of Xnzm we have 
, 

3 

-n- 1 ,m +(n - m) (1 - 2n)X (3.41 

-n- 2 ,  m + ( n -  m)  ( n -  m -  1)(1- cZ) )x  

where 5 can he  or yl. 

t o  go f rom cos (m + I )v  (or s in  (m + 1)v) to 
cos  m v  (or s i n m v ) .  

This formula can  be used  

Combiningthe Eqs. ( 3 . 3 )  and (3.4) we eas i ly  
obtain 

e [xn m+ 1 .i Xn ,m- 1 

where X can be m or  y l ,  

derived directly f rom the polar equation of elliptic 
orbit. 

The process  for constructing tables of the ex- 
pansions of anam and .Y"'m is a s  follows, 

Expansions of ( r /  a) 

F i r s t  s t e p  

] = Z ( 1 .  e2)X"l'm. 2X"'m (3 .  5) 

This l a s t  relation can he 

n cos m v  

Let m = U in (3.3) and we have 

This recur rence  formula can be used to calcu- 
la te  the s e r i e s  fo r  (r/a)" f o r  all values of n when 
those for  n = -1, and n = -2  have been obtained. 

Let 

p = U , l , Z . .  . 
'Then we have the r ecu r rence  formula  for  the c o  
cfficicnts A n 

P 

(n2 - ~ 2 ~ ~ n - n ~ 2 n - ~ ~ ~ n ~ ' + n ~ n ~ ~ ~ ~ ~ - e 2 1 A n ~ z ~  u (3 .8)  
P P P 

When n is negative the s e r i e s  is infinite. When 
n 2 0 the s e r i e s  te rmina tes  a t  the t e r m  c o s n E .  
this case the l a s t  coefficient cannot be calculated by 
formula ( 3 . 8 )  but by sett ing E = 0 in Eq. [ 3 .  7) it 
can readily be seen  that 

In 

n-1 
An = (I- e)n - A 

p'Q p n (3. 9) 

The s ta r t ing  s e r i e s  f o r  n = -1 and n = -2  can be 
.e 3 . 1  calculated by the c lass ica l  methods.  W e  
have a' 6) 

1 
( l+ZPcosE  i~ 2P2cos 2 E + .  . .) (3.10) 

6 9 - 9 1  0 



where p is given by Expansions of (ria)" s in  m v  

n We f i r s t  compute all  ( r l a )  s in  v by the re la  
tion 

(3.11) 
1.- 

P =  e 

and in eeneral  

Also 

m 
+ ( l - e ' < ' C  Z P p ( l + p G ) c o s p E  (3.13) 

p=1 

Second Step 

Calculate a l l  (rla," cos v by taking m = 0 in the 
recur rence  formula (3. 5). Explicitly we have 

(3.14) 

Third Step 

Use (3. 5) again with m = 1 to calculate all  
( r / a f '  cos zv 

The process  continues by successive applica- 
tions of (3 .5)  to calculate ( r l a f  c o s m v .  

Since the recur rence  formulae a r e  l inear  in 
the functions involved, the calculation process is 
extremely simple.  
s imple ,  i t  suffers f rom two unavoidable defects: 

But while this process  is very 

The Hansen's coefficients behave l ike  the 
Besse l ' s  coefficients. Each t ime we apply formula 
(3. 5) the o rde r  in e of the coefficients i sdec reased  
by one unit. 
cos m v  t o  the o rde r  of ep  we need t o  compute the 
bas ic  series for (ria)-], and ( r l a ) - 2  to the o rde r  
of eP+m. Since these s e r i e s  a r e  given in explicit 
forms  the defect does not c rea te  any r e a l  handicap. 

Therefore t o  compute tables up to 

When n is a negative integer,  to compute 
n ( r i a )  cos(m + l ) v ,  it involves the expansion of 

( r l a ) n - '  cos m v .  Therefore to compute tables 
down to  (rl a F  cos m v, n being a negative integer,  
in the f i r s t  s t ep  mentioned above we should com- 
pute down t o  the expansion of ( r l a y - m .  This de- 
fect  again does not c rea te  any ser ious  problem 
since by the recur rence  formula (3.8) we can 
easily calculate ( r l a r  f o r  any negative n. 

When n = 0 we can calculate the expansion of s i n  v 
by 

(3.17) dE 

or  directly by 
m 

s i n v =  (1- p2) p P - ' s i n p E  (3.18) 
p=1 

Next we can successively apply the recur rence  
formula (3.5) to calculate all  (ria? s inZv,  and so 
on. 

4 .  Four ie r  Expansions in T e r m s  of M 

First we notice that these developments can he 
deduced f rom those in t e r m s  of E by using the 
c lass ica l  s e r i e s  expansions 

A , = l i f m = O  

= - + e  i f m . 1  

= O  i f m > 1  

where Jk (pe )  is the Besse l ' s  coefficient of order  k 
and argument p e. 

If direct  computation is des i red ,  we can s t a r t  
with the differential equation (2.16) and, by using 
the same  type of derivation a s  in the preceding 
section, we obtain the recur rence  formula 

n-2.m Zm(n- 1)eX + n(n - 1)X (4 .21  dRil2 
- ( ~ n ~ + ~ m n - 3 n - ~ m ) ~  

+ ( m + n ) ( m +  n - 2 )  (1 - e 2 ) x  

n-3,m+i. dzXn'm 

n-3,m 

n -4 .m 

where X can be & o r  W. 

By taking n = 1 we have 
cos m v -2cos rnv  

s i n m  v 

LJ 

- 3 c o s m v  

sin m v  
+ ( m z - l ) ( l - e ' ) ( ~ )  . = 0 ( 4 . 3 )  

W 
By fur ther  taking m = 1 we have the c lass ica l  

4 



formula c lass ica l  literature: We have 
cos v z c o s v  

(4.11) 
(4 '4 )  (C)z.=l+7ez 3 - 2 - 4  -J ( p e ) c o s p M  

s i n v  a p=, P2 P 

Putting m = 0 in (4.2) we have Hansen's r ecu r rence  Ser ies  expansion of (r/a)- '  is more involved .  
Probably the s imples t  way is t o  u s e  the series 
(3.13) and the transformation (4.1) with the know- 
ledge that the constant t e r m  in the expansion is 

(1 -, e')-  z .  
expansion of ( r / a j z  is t o  use the relation 

- -".(.r i n(n - +"-'-n(2n- 3)(;)n-I dM a I 
n-4 Another s imple  way to have the series 

(4,  5) +n(n - 2) (1 - e 2  )(a) = 0 

(4.1 2 )  
1 dv 

We a lso  have as  before 

e[Xn,m+l n,m-i1 = z,., . ez)Xn-i+ - 2X"'m (4, 6) The expansion of v i n  t e r m s  of M has been calcu- 
lated by Schubert as  f a r  as e'" (la).  

+ X  

where X can be rn or W. 
Second Step 

The process  for  computing tables of the ex- 
Once the expansions of (ria," f o r  all  values of pansions of rnn'm and qZm is a s  follows. 

n have been obtained we can successivelv use  the 
r ecu r rence  formula (4.6) with m = 0,1,. . . t o  cal-  
culate the expansions of @/a )  c o s v ,  ( r i a )  cos  2v, ... 
as  described in the preceding section. 

n Expansions of ( r / a )  s in  m v  

Expansions of (ria)" cos m v  n n 

First Step 

The r ecu r rence  formula  (4.5) is used t o  cal-  n culate the series for  ( r / a )  for all  values of n when 
those for  cer ta in  values have been obtained. 

n We f i r s t  compute al l  ( r i a )  s in"  b y  the relation 

m d  n 
Let  ( t ) ~ i n v = - - ( ~ r + '  ( n + l ) e  dM a (4.13) 

n 

When n = -1 we can u s e  the relation 
('1 = 2 ~ f : c o s p ~  (4 .7)  

p.0 

d 
v 

Then we have the recur rknce  formula for  the co- 
efficients A" 

P 

(4.14) 
p'Af: = n(n - 1)An-z-n(2n-3)An-3 

P P 

t o  calculate ( r i a ) - '  s i n v .  ' + n(n-2) (1-ez)An-4  (4.8) 
P 

In particular the constant t e r m  is given by 
Next we can use  the r ecu r rence  formula (4.6) 

(n+ 1) (n+ 2)Ay - (n+ 2 )  (2n+ I)&"-' 

+n(n+2)(1-e'))%"-' = o 

t o  calculate all @/a)" s i n z v ,  and s o  on. 

As discussed before t o  compute tables fo r  the 14' 9, expansions of anam and ,u"*m up t o  the value m and 

o rde r  of e p  we s$ould compute the bas ic  series for 
( r i a ?  and ( r l a i  
calculate the s e r i e s  f r o m  (r/a)-"-m t o  (r/a)"+' 

5. Conclusion 

Examination of the formulae reveals that the f rom a negative -n(n  > 0) t o  a positive n UP t o  the 

expansions for all values of 
t e r m s  of the expansions for  n = 1, 2 ,  - 2  and -4. 
But the expansions for  n = 1, and n = -4  can be 
evaluated in t e r m s  of the expansion? fo r  n = 2 ,  - 2  
and - 3  through the relations 

can be evaluated in 
t o  the o rde r  of ep+m, and f i r s t  

In this paper we have derived recur rence  for -  
mulae to calculate the s e r i e s  expansions of 
( r / a p c o s m v  and ( r / a ) " s i n m v  in t e r m s  of the ee-  
cent r ic  anomaly E or  the mean anomaly M. We 
a l so  have established a r ecu r rence  process  which 
can  be used t o  compute the s e r i e s  expansions fo r  
a l l  n and m when the expansions of two bas ic  series 
a r e  known. 
anomaly v a r e  s imi l a r  t o  those in t e r m s  of the ec -  

2 
e d  (') = (1 - e') + - 2 - de ( r )  a 

(4,10, 

a a 

Hence we only need t o  compute the two bas ic  s t a r t -  
ing s e r i e s  ( r i a ?  and ( r /a ) - '  by the c lass ica l  

The expansions in t e r m s  of the t r u e  

, methods. These a r e  given explicitly in the centric anomaly E. By observing that 

5 



M .  
dlffe entia1 equation considered by Deprit and 

Using b inomia l se r i e s  expansion we have the n 
( 1 - e 2 )  n (a) = (1- e  cos^)" = ( l+e  coavjn (5.1) Romr2). and Moulton(") 

(5.  8)  
for  the expansions in v we only need to change n p - '  P ( D ' + + ~ ) P  = + C ( P + ~ ) [ P - ( P + ~ ) P ~ ~ P  . e 

W into -n ,  e into -e ,  a into a(1- e z ) ,  and E into v in  
Eq. (3.61 and next change the sign of all the expo- 

p' 1 

nents t o  have 
Acknowledgements n n n+ I 

+nZ(1- e')(') -n(2n+1)(5) 
' The  author would l ike to thank R. Brouke f o r  

a - e z ) s ( < )  dZ  

his helpful comments.  n+r 
+ n ( n + l ) ( t )  = 0 (5.2) 

In applying the r e i u r r e n c e  formulae,  each 
t ime  we go to a next higher multiple anomaly the 
order in e in the Hansen's coefficients IS decreased 
by one. This  is caused by a property of the Han- 
sen's coefficients, called the D'Alembert charac-  
t e r i s t i c  by E .  W. Brown('$; 
order  in  e in the coefficient of cos pM (or s inpM) 
in the expansion of (r/a)" c o s m v  (or ( r / a P s i n m v )  
is I p - ml  , This  property is also t rue  fo r  the ex- 
pansions in  E and in v. 

namely, the lowest 

In h i s  tables Cayley also gave the s e r i e s  ex- 
Explicitly we pansion of log ( r l a )  in t e r m s  of M. 

have(") 

and 

In our  process  we can have those expansions by in- 
tegrating t e r m  by term the following relations 

with the constant term in the integration being log 
( 1  + c ? ? ) / 2  and 

with the constant t e rm being log (1  + -)/2 
+ l - d T .  

The formulae we have derived are .genera1 and  
they may s e r v e  to add new dimension to the teach- 
ing of s e r i e s  expansions in elliptic motion. 
differential equations in section 2 can be consider- 
ed a s  general  equations of motion of the two-body 
problem. For example, if we put n = 1, m = 0 ,  
x = 1 - e cosE = 1 - ep in Eq. (2.16) we have 

The  

~ ' p  + ( p - e ) ( i - e p ) - '  E O .  (5 .  7 )  

1. 

'2. 

3 .  

4. 

5. 

6. 

7 .  

8. 

9. 

10 

11 
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