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Abstract

In this paper we derive some recurrence for-
mulae which can be used to calculate the Fourier
expansions of the functions (r/a)n cos mv and (r,v’a)n
sin mv in terms of the eccentric anomaly E or the
mean anomaly M, We also establish a recurrence
process for computing the series expansions for
all n and m when the expansions of two basic se-
ries are known. These basic series were given in
explicit form in the classical literature, The re-
currence formulae are linear in the functions in-,
volved and thus make very simple the computation
of the series,

1. Introduction

It has long been recognized that digital com-
puters are capable of formal manipulation of liter-
al expansions in Celestial Mechanics. Thus it is
now easy to extend Cayle?r‘s tables of the expan-
sions in elliptic motion' / to include higher powers
in the eccentricity. Using various computing
schemes several authors have been successful in
obtaining analytical expansions of functions which
arise in Celestial Mechanics'?™® it may, how-

ever, still be of interest if we can derive some

exact formulae relating these expansions. The
new mathematical relrjions not only provide ma-
terial for teaching elliptic motion expansions but
at the same time they can be used to check the ac-
curacy of the different algorithms already formu-
lated,

In this paper we shall consider the develop-
ments in terms of the eccentric anomaly E or the
mean anomaly M of the functions

n n
g :(E) cosmv and ¥ :(£> sinmv (1.1

where a is the semi major-axis, r the radial dis-
tance and v the true anomaly in elliptic motion,
The functions were first considered by Hansen in
his Fundamenta), For each specific pair of val-
ues of n and m where n is a positive or negative
integer and m is a positive integer, after a series
of transformations he arrived to express &™ and
M in terms of the expansions of {;c';n’at)z and {r/a >
and their derivatives with respect to the eccen-
tricity e,

nln general we have
(§> cosmv = Aﬁ,’m+ Anl,m cos M+ Ar;’mcos 2 4.
2
' n,m n,m .
(:) sinmv=B8B;" sinM+B," " sinZM+...

*This work was supported by NASA contract No.
NASr 54(06),

. n,m .n,m n,m
The coefficients A", &/ ,....Br" ,...,

called the Hansen's coefficients, are functions of
e. The approach of LeShack and Sconzo in com-
puting these coefficients“) is through the use of
the Cauchy's numbers_{s) while the key of Deprit
and Rom's procedure is the application of Poin -
caré's method of continuation in the integration of
a differential equation with p = cos E as dependent
variable and the mean ancmaly M as independent
variabte.(?) In this paper we shall construct a
homogeneous linear differential equation of the
second order which has the functicns (1.1) as in-
dependent solutions., From the governing equation
we can derive some recurrence formulae and at
the same time establish a recurrence process
which can be used to generate tables of the expan-
sion of the functions (1.1) in any of the three anom-
alies to the desired order in the eccentricity and
with a minimum number of computations involved.

2, Differential Equations

Consider the vector equation

X = AX (2.1}
where A is the 2 X 2 matrix
(1) al(f;-f;)
Aft) = (2.2)

Bifi-f) ()

where fi{t) and f;(t) are two arbitrary functions of
1 of the class C!, and @ and B are two arbitrary
constants, It can be shown that A(t) is the most
general 2 X 2 matrix which commutes with its inte-
gral. For this paper it suffices to prove the fol-
lowing theorem. '

Theorem. The eguation (2,1) where A(t} is given

by (2.2) can be transformed into a homogeneous

linear equation with constant coefficient,

Proof: Let

exp(—}, S (f1 + fz)dt)Z

X = 4if) +f,)exp () Z+exp()Z = exp ()AZ

X (2.3

Dividing out by exp ()
Z = [A-4t +1)1]Z

or .
Z = (f - £;)BZ (2.4)
where B is the constant matrix
4 @
B - {2.5)
B -3
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By using the new independent variable s such that

:S {f; - f,)dt {2.6)
~we have the required equation
dz
- = 2.7
1s RZ (2.7)

Now, the equivslent second order differential
equation of the system (2.1) is

X - 1:f, +1; +&—f:\ X
£, - £,

(2.8)

Fltfz—ﬁ—f& +aBif, - fzyz-flfz]xzo
1

where x is any of the two components of X, Since
the characteristic equation of the system (2.7) is

2 - op+ 4 (2.9)

we immediately have, through the changes of vari-
ables {2.3) and (2.6), for the general solution of
(2. 8)

If2 =af+ 4> 0

x(t) = exp(% S(f1 + fz)dt)
. [Cl exp()\g(fl - £,)dt) + C, exp(—}\S‘(fl - fz)dt)}

Ifop+ $<0

x{t) = exp(%— S}fw f, }dt)

- [Cl cos N-AZ \Sw(fl - f)dt+ C; sin'\f—kz‘g\(f] —fz)dt]

{2.19)
Ifap+ 4+ =0

x(t) = CXP(JZ"\YUTI + fz)dt)[clj‘(fl - fy)dt + Cz:l

We observe that the functions (r,n’a)ncos mv and
(rfa)nsin mv are sSpecial cages of the second solu-
tion in (2.10) with t = v,

Let
Pecepr ) -

exp( S‘(fﬁfz dv) ( )
S‘(fl - fdv = v

we can deduce

1’1
(l - e?)
(1+ coSs V)

nesinv

nesinv
l+ecosv

ltecosvy

e

Ay (v = + 3, f(v) = 4 (2.11)

By substituting into (2. 8) we have the differ-
ential equation which is satisfied by (1.1)

d®’x 2nesinv dx
dve ltecosv dv

+‘:1:n2 +

If we consider @n,m and gt as functions of
the eccentric anocmaly E, then by the change of
variables

_ neletcos v)
+ecosvy

n® e? sin? v
fl+ecosvf

} x=0 (2.12)

. N1 - €7 sinE
sin v =-ome—
1-¢ecos E
_coskE - e
COSV—I-ecosE (2.13)
dE _ 1
E o (1-ecos E)

we have the differential equation with E as the in-
dependent variable

Znje sinkE(l-ecos E) dx

(1-e cos EY d’x a-
€c drz ar
+ [-e?ym® - n?y+nn-1(l-eccos By
-nn-H(l-ecosEFx = 0 (2,14
Finally if we consider 8™ and ¢**™ as func-

ticns of the mean anomaly M, then by the transfor-
mation

M=E -esinE

am
dE

(2,15)
=1-ecos E

“we have the differential equation which is satisfied

by q)n,m and \Ifn’m, considered as functions of M.

n)e sinE-SX (2.16)

dM

[(1—e"‘) m? -n® i n2n- - cos 1

(l-ecos E)2

1
+ —_—
{I-ecos 2§

+2(1-

-nm-l{l-ecosE)¥lx=0

In the last equation the coefficients are to be
expressed in terms of M using the Kepler's equa-
tion (2.15).

The diffcrential equations (2.12), (2.14) and
(2,16) with respectively the {rue anomaly v, the ec-
centric snomaly I, and the mean anomaly M as in-
dependent variable will serve as basic equations in
the derivation of the recurrence formulae for the
series expansions of o and ¥ in each of the
three anomalies. In the following we shall consgid-
cr the expansions in E and in M,

3. Fourier Expansions in Terms of ¥

n
m, i‘lrn’m = (% ) exp (imv)

We have seen that Xn,m’
the eccentric anomaly E,
equation

Let

n,m n

b GRLLE 3.1

considered as function of
gatisfies the differential



: g2
{1-e¢cosEy —qE
n,m
. dx
+ {1-2n)esinE(l-e cos E) a5

+ [(t-e*)(m?-n?)+n(2n-1){- e cos E)

n,m

-n(n-l{l-ecosBfIX 7 =0 {3.2)

From (3.1

- d
r v
+ ;3 il
lm( a) dE
Since
r
~=1l-ecosE
a
-Ei-— ( ) - e sinkE
Also
-1
dv NI e? .=/
dE  l-c¢ cosE L-e (a)
Therefore

esink(l - ecosE)g—dXE—

= ne’sinE X" 4 im MTT 6% e sinE X
Using the relations

2
e?sin’E '—'ez—ezcoszE:—{l—eZHZ(g) - (é)

NI-el gsinE (E)sinv

inv = exbiv) - A,-.Lﬂwws_
isinv =exp{iv) -~ cosv expliv) + 2 B S

1

we have

n,m
dx nti,m+1

+
mio = meX —an z.m

esinE(Q-ecos E)

+1
+im+ 2ap

~m+n{-et)x

By substituting inte Kq.
rence formula

(3. 2) we have the recur-

dzxn ,n

n—1,m+l + P X
diZ

miZn-eX

n-1

—m nyen-pxtTm o B03)

+m+nj(m+n- - eyxt ™
where X can be & or . This formula can be used
to go from cosmv (or sinmv) to cos (m + jv (or
sin (m + 1}v). __Changing m mto -m and noticing
that X270 = XM ghere ™ s the complex
conjugate of XM we have

—n-1m-1 qix e :=h,m
m(l - 2ZnjeX ? —"(TE'Z— + n X
- m)(l-2nxX b (3. 4)
n-z, m

+n-m)m-m-D1-e2)yx %
where X can be & or ¥. 'This formula can he used
to go from cos (m + 1}v (or sin (m + §jv) to

cos mv (or Sinmv).

Combining the Eqs.
obtain

(3.3) and (3.4) we easily

n,m+i n,m-~t

e[x™ +xP n-i1,m

=24 - e3yX" S2x™™M 3 s

where X can be & or ¥, This last relation can be
derived directly from the polar equation of elliptic
orbit.

The proccss for constructing tables of the ex-~
pansions of ™™ and P g as follows,

, n
Expansions of {r/a) cos mv

First step

Letm = 0 in (3.3) and we have

ZORONESON
+n{n-1(- eﬂ(ﬁ) )

Thig recurrence formula can be used to calcu-
late the series for (r/af for all values of n when
those for n = -1, and n = -2 have been obtained.

n
r n

= = §: . E
(a) Apcosp

p=0,1,2...
Then we have the recurrence formula for the co-
cfficients Ap

(3.6)

Let

(3.7

(n? - pZ)A;;- n@2n- AL “+nm-1 (- ez}A:_z =0 (3.8)
When n is negative the series is infinite. When

n z ¢ the series terminates at the term cosn®E. In

this case the last coefficient cannot be calculated by

formula (3. 8) but by setting E = 0 in Eq. (3.7) it
can readily be seen that :
© n B ogn
=(-e) - 3 A (3.9
. p:o
The starting series forn = -1 and n = -2 can be

_easil?( calculated by the classical methods. We
9

have

O =

(1+2pcos E+ 2pfcos 2+ ...y (3.10)
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where f is given by

1-81T- el

g = ————— (3.10
and in general

HOOETSION

pté
+ gy (PHAPT 5)(%)

e pts
+%(P+5)(p+6)(p+7)(5) *- (3.12)
Also
-2 3
r -2y Z
(£) -a-en
_%_ e
) Zﬁp(1+pV14e2)cospE (3.13)
p=1
Second Step
Calculate 21l (r,"a)n cos v by taking m = 0 in the

recurrence formula (3. 5).

(e (e

Third Step

Explicitly we have
n
i/fr
e(; ) (2.14)

Use (3.5 again with m = 1 to calculate all
(r/af cos 2v
n
E cos 2v

2 n-1 n n
M(ﬁ) COSV_E(£> cosv{z) 3.15)
e a e a a

The process continues by successive applica~
tions of {3.5) to calculate (r-/a)n cosmy,

Since the recurrence formulae are linear in
the functions involved, the calculation process is
extremely simple, But while this process is very
simple, it suffers from two unavoidable defects:

The Hansen's coefficients behave like the
Bessel's coefficients. Each time we apply formula
(3.5) the order in e of the coefficients is decreased
by one unit. Therefore to compute tables up to
cosmyv to the order of eP we need to compute the
basic series for {rfa)”!, and (r/a)~? to the order
of eP™™  Since these series are given in explicit
forms the defect does not create any real handicap.

When n is a negative integer, to compute
(r,u’a)n cos{m + 1)v, it involves the expansion of
(r/fa)® ! cosmv. Therefore to compute tables
down te (r/a*cosm v, n being a negative integer,
in the first step mentioned above we should com-
pute down to the expansion of (r,"a)n_m. This de-
fect again does not create any serious problem
since by the recurrence formula (3.8) we can
easily calculate (r/af for any negative n,

Expansions of (r/af sin mv

We first compute all {1:',"a)rl sin v by the rela-

tion ‘
(r)n . NT-e? d (r)n
— ] sinv = ——— == =
a ne dE \ a

When n = 0 we can calculate the expansion of sin v
by

(3.16)

-1
4 (8inv) = N1-e2 (E) cosv (3.17)

dE
_ (- ez)% (_r;)’z_ (1- 82)45(£>_
; e a o a

or directly by
“'sin pE

1

sinv=(1-p3 3 " (3.18)
p=1

Next we can successively apply the recurrence
formula (3.5} to calculate all {r/a) sin2v, and so
on,

4. Fourier Expansions in Terms of M

First we notice that these developments can be
deduced from those in terms of E by using the
classical series expansions

. & sinpM
= — +
sin mE m;)i_}] [Jp_mfpe) Jp+m.{p8}]
(£.1)
o X cos pM _
cosmE = A +mpE:1 T Wy Pel- I pet]
A, =1ifm=20

¢

n

-te ifm=1

0 ifm>1

u

where Jk(p e) is the Bessel's coefficient of order k
and argument pe,

If direct computation is desired, we can start
with the differential equation (2.16) and, by using
the same type of derivation as in the preceding
section, we obtain the recurrence formula

azx"

+
2mn- hex M W'Fn(n HxTET 4,2
- (2n"'+ Zmn-3n- Zm)Xn_s’rn
+m4n)(m+n-2)d-etyxt ™
where X can be d or ¥.
By taking n = 1 we have
cosmv L\cosmy
+ —_—
Z( >smmv (a) sinm v
~3Ccosmv
+ -bha- =0 4.3
(m*- 1 e)() sin mv (4.3)

By further taking m =1 we have the classicsal



formula

COs v zcos8v
a (3, 6)

sin v sinv

(4.4)

Putting m = 0 in (4.2) we have Hansen's recurrence
formula(""?"’)

m—:( ) +nn- 1)( )n ’ n(2n- 3)( >n3

PNt
+n(n—2){l—ez)(;> = 4.5)

We slso have as before
e[Xn,m+1+xn,m—1]:2(1_ e;,)Xn—l-,m_ 2Xn,m (4.6)

where X can be & or .

The process for computing tables of the ex-
pansicns of & M and MM g as follows.

Expansions of (r/a) cos mv

First Step

The recurrence form}.llla (4. 5) is used to cal-
culate the series for {r/a) for all values of n when
those for certain values have been obtained,

.

Let
(4.7}

n o0
(E) = EAncospM
a P

Then we have the recurrknce formula for the co-
efficients Ag '

n n-z n-3
pZAp = n(n - l)Ap -n(2n- S)Ap
"+ nn-2)- eZ)AI;"“ (4. 8)
In particular the constant ferm is given by
(n+l) @+ 2)AN- (n+2) 2+ Al
tnnr2)-et)al - (4.9)

Examination of the formulae reveals that the
expansions for all values of n can be evaluated in
terms of the expansions forn =1, 2, -2 and -4,
But the expansions forn =1, and n = -4 can be
evaluated in terms of the expansionsg forn = 2, -2
and -3 through the relations

( ) 1-e Zde( )
- (£ (5 5 ()

Hence we only need to compute the two basic start-
ing series {r/af and {rfa)”? by the classical
methods, These are given explicitly in the

{(4.10}

classical literature. We have

°° 4
( )—1+-—e —ZJ (pe)cospM (4.11

Series expansion of (1"/:5\)‘a is more-involved.
Probably the simplest way is' to use the series
(3.13) and the transformation (4.1) with the know-
ledge that the constant term in the expansion is

1
(-e?) 2,
expansmn of (r/a)

Another simple way to have the series
is to use the relation
dv

( ) J—--E-_,_— (4.12)

The expansion of v in terms of M has been calcu-
lated by Schubert as far as e (19,

Second Step

Once the expansmns of (r/a for all values of
n have been obtained we can successively use the
recurrence formula (4.6) w1th m=0,1,,. " to cal-
culate the expansions of r!a} cos vV, (r/a) cos 2v,.
as described in the preceding section.

Fxpansions of (r/a} sin mv

We first compute all (rJ"a)n ginv by the relation

r Y NT- el k
(Z) SIBY T T Tye dM( ) (.13)

When n = ~1 we can use the relation

a (5 ) va-m() 6]
0]

Next we can use the recurrence formula (4.6)
to calculate all (r/a) sin2v, and soon,

(4.14)

to calculate (r/a) ! sinv.

As discussed before to compute tables for the
expansions of %™ and ¥™ up to the value m and
frem a negative -nfn > 0)to a positive n up to the
order of eP we should compute the basic series for
{r/af and (r/a) ® to the order of eP*™ and first
calculate the series from (r/fa) B~ to (r/aft!,

5. Conclusion

In this paper we have derived recurrence for-
mulae to calculate the geries expansions of
(r/faflcosmv and (r/a)nsinmv in terms of the ee-
centric anomaly E or the mean anomaly M, We
also have established a recurrence process which
can be used to compute the series expansions for
all n and m when the expansions of two basic series
are known, The expansions in terms of the true
anomaly v are similar to those in terms of the ec-
centric anomaly E. By observing that
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a-e?)"

(1+e co8 V)':I .0

n

(£> = (1-e cos E)
a

for the expansions in v we only need to change n

into -n, e into -e, a into a(l- e*}, and E into v in

Eq. (3.6) and next change the sign of all the expe-

nents to have

Zdz I‘114"2 21"rl +1£n+1
L-e*) 3z ;) n®(l-ef = ) -nzntl) =
n+z
T
n(n+1)(—£) .

In applying the recurrence formulae, each
time we go to a next higher multiple anomaly the
order in e in the Hansen's coefficients is decreased
by one, This is caused by a property of the Han- |
sen's coefficients, called the D'Alembert charac-
teristic by E. W, Brown (1, namely, the lowest
order in e in the coefficient of cos pM {or sin pM])
in the expansion of (rfa cosmv (or (rfafsinmv)
is |p - m|. This property is also true for the ex-
pansions in E and in v,

(5.2)

In his tables Cayley also gave the series ex-
pansion of log (rfa) in terms of M, FIxplicitly we
have'*!

.

P
log@) - log+ph-2) EcospE  (5.3)
p=1 P
log( ) -—log (1+pi+ep |
-2 _ M
SZ_>1 SZ;]ﬁ Se) Js+p(se)]c0ss

(5.4)

In our process we can have those expansions by in-
tegrating term by term the following relations

e

VT———'——E—,SU'LV
-e

d ro_
—~10g5-

iF (5. 5)

with the constant term in the integration being log

(1 +~1-e?)2 and

d . rn._e _<£'1-
o fog 3 =5 ) sinv

with the constant term being log (1 +~1-e?%/2
+1-AT-2e7,

{5. 6}

The formulae we have derived are.general and
they may serve to add new dimension to the teach-
ing of gseries expansions in elliptic motion. The
differential equations in section 2 can be consider-
ed as general equations of motion of the two-body
problem. For example, if weputn=1 m =0,

=1 -ecosE =1- ep in Fg. (2.16) we have

D*p +(p-e){l-ep) (5.7)

where D denotes the differentiation with respect to

M. Using binomial series expansion we have the
diffe{‘ential equation considered by Deprit and

rRom!?!, and Moulton(12
-1
(D* +1p =3 3 (p+blp-(p+2)p?Jp° " eP (5. 8)
pzl
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