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Abstract 

In order to  develop numerical schemes for stiff prob- 
lems, we have studied a model of relaxing heat flow. 
To isolate those errors unavoidably associated with dis- 
cretization, a method of characteristics is developed, 
containing three free parameters depending on the stiff- 
ness ratio. I t  is shown that such 'decoupled' schemes 
do not take into account the interaction between the 
wave families and hence result in incorrect wavespeeds. 
We also demonstrate that schemes can differ by up to  
two orders of magnitude in their rms errors even while 
maintaining second order accuracy. Next, we develop 
'coupled' schemes which account for the interactions, 
and here we obtain two additional free parameters. We 
present numerical results for several decoupled and cou- 
pled schemes. 

1 Introduction 

In the real-life problem of attempting to  solve the re- 
active flow equations, we often have a so-called 'stiff' 
problem. The flow equations are constrained to a 
maximum time-step by the CFL condition. Unfortu- 
nately, such large time-steps may be unacceptable for 
the chemical reactions. We are usually left with two 
choices - split the chemistry from the flow for each time 
step, or use the time-step dictated by the chemistry to  
solve the entire problem. The former reduces the cred- 
ibility of the results, while the latter is prohibitively 
expensive computationally for obvious reasons. 

It was this impasse that motivated the present work. 
Instead of tackling the full set of reactive flow equations 
right off, a simple model was derived. We expected 
valuable insight into the real problem since its disper- 
sive wave characteristics are akin to  those of a reactive 
flow with the added advantages of minimal computa- 
tional cost and greatly simplified analysis. We started 
with the conservation of energy in a uniform conduct- 
ing rod with heat flow. Instead of using Fourier's Law 
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of Heat Conduction, which would lead to  the parabolic 
heat equation, we use a simple model of heat conduc- 
tion that has a relaxation time T ,  in which information 
propagates at a finite speed. The result is what we 
call the Hyperbolic Heat Equations. T = 0, oo give us 
the extrema: in the first case, we have Fourier's Law 
with an infinite propagation speed, and in the second 
case, we have no propagation of information. These 
relations are examined using dispersion analysis, and 
a transformation to  characteristic coordinates gives us 
the characteristic equations and jump relations. 

We now sought to  isolate the effect of stiffness on the 
quality of the numerical solution. We decided to use 
the Method of Characteristics, which is exact for linear 
problems without source terms, so that numerical diffi- 
culties would arise only due to the presence of the stiff 
source terms. A straightforward discretization results 
in the appearance of a 'stiffness factor' k in a natural 
manner. Due to this factor, we expected problems for 
k > 1, as some terms would change sign in this sim- 
ple discretization. Another scheme we tried out was a 
simple one used in practice - symmetric operator split- 
ting. Here, no terms change sign, but only the frozen 
wavespeeds are allowed for. 

Our initial hypothesis was that since the source term 
prevents the characteristic equations from being inte- 
grated exactly, success, if achievable, would come from 
finding the best approximate quadrature. To this end, 
we rewrote the Method of Characteristics with three 
free parameters, depending on k alone, and sought to 
determine these by various heuristic arguments, mak- 
ing numerical trials of the resulting schemes. Our plan 
was to  identify the successful heuristics, and then apply 
them to  more complex sets of equations. Constraints 
on the parameters were derived from discrete dispersion 
relationships, discrete eigenvectors, local truncation er- 
rors, a modified conservation as well as a decoupling 
condition. These constraints are found to be consistent 
for small k but to  suggest contradictory design criteria 
for large k. We ran tests on the various schemes varying 
k. Remarkably, our results show that the errors from 
various equally plausible characteristic schemes can eas- 
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ily vary by two to three orders of magnitude, although 
all schemes retain second order convergence. 

During this stage of the research, we were constantly 
surprised that our efforts failed to improve significantly 
or consistently on our first, straightforward, implemen- 
tation. This eventually led us to discard the first hy- 
pothesis and to  start afresh, beginning with the exact, 
analytic, solution to the initial-value problem. This rep- 
resents the solution a t  a point in terms of integrals along 
the initial line. The integrands are composed of the Rie- 
mann function, R ,  and u(x), where u may be either of 
q or 8. We utilize a polynomial approximation to u(x) 
keeping terms up to second order in x ,  and the result- 
ing integrals can be evaluated after some algebra. The 
resulting scheme contains a particular implementation 
of the Method of Characteristics as its leading terms, 
but includes additional terms that arise from coupling 
between the wave families. To evaluate these terms, the 
stencil needs to be modified to include the central point. 
The additional terms are small, being of third order in 
the stiffness factor k, but their inclusion gives results 
far superior to any of the uncoupled schemes, being four 
to five orders better than the rest of the pack for small 
k and about two orders better for large k.  In addition, 
it shows a consistent third order convergence, meaning 
that the errors are 0(Ax3) for any value of the param- 
eter k. In fact, for large values of k, the coupling terms 
are no longer small, and the numerical scheme, like the 
differential problem, loses its hyperbolic character, and 
takes on a more parabolic appearance. With hindsight, 
this now appears to be essential behaviour for any nu- 
merical scheme that can cope with wave propagation 
in the presence of rapid reaction. We also show how 
greatly improved accuracy can be achieved without the 
benefit of knowing an exact solution. 

2 A Model Equation For Dis- 
persive Waves 

We need a problem simple enough to permit detailed 
analysis, and carrying some physical meaning to help 
in understanding the results. The problem that has 
been chosen leads to a 2 x 2 system of equations. It 
has dispersive wave properties resembling those of a 
reactive flow, although no reaction is actually involved. 

2.1 Derivation of Governing Equations 

Consider the flow of heat in a uniform conducting bar. 
Conservation of energy can be stated as 

where 0 = temperature, q = heat flow per unit area and 
k = heat capacity per unit volume. 

Usually one now invokes Fourier's Law, that heat flow 
is proportional to the temperature gradient 

to  obtain the heat equation 

This is, of course, the prototype of all parabolic par- 
tial differential equations, in which information prop- 
agates with infinite speed. To avoid this unrealistic 
result, alternative models are sometimes adopted [I], of 
which the simplest is to replace Equation 2 with 

where T is a relaxation time. The pair of Equations 1 
and 4 form a non-homogeneous hyperbolic system for 
which the characteristic speeds are given by ($13. For 
simplicity, we will adopt units in which both c and k 
have the value 1.0, leading to the system 

which we will call the Hyperbolic Heat Equations. 

2.2 Dispersion Analysis 

To see the dispersive character of Equations 5 and 6, 
consider solutions of the form 

Substituting Equation 7 into Equations 5 and 6 gives 

and these equations can be solved for T and Q only if 

which is the dispersion relationship for Equations 5 
and 6. For an initial-value problem, [ is a real 
wavenumber, and w may be written as 

where W R  is a frequency, and wI is a damping ratio. 
Substituting Equation 11 into Equation 10 gives the 
pair of equations 



If W R  # 0, then from Equation 12 

and from Equation 13, 

The quantity (wR/() is a wavespeed, which we call a((). 
Then 

For very high wavenumbers <, the propagation speed 
is the characteristic speed r-4,  which could also be 
called the frozen wavespeed. For lower wavenumbers, 
the propagation speed is reduced (Figure l[upper]) be- 
coming zero when ( = ar-+, that is, the equilibrium 
wavespeed vanishes. For all wavenumbers in the range [a r-4, a], the waves are damped like e - k  . 

For wavenumbers less than $7-3, we have W R  = 0, 
and the waves do not propagate. After the typical time 
t = r, they are damped like e-"Ir, with 

When ( = 0, the solution does not depend on x, and 
the problem reduces to Bt = 0, rqt + q = 0. Since these 
have solutions corresponding to WIT = 0, 1 respectively, 
both branches of Equation 17 are relevant. The upper 
branch makes second-order contact with the dispersion 
relationship for the regular heat equation, which is 

shown as a dotted line in Figure l[lower]. 

2.3 Characteristic and Jump Relation- 
ships 

Introduce characteristic coordinates <,q defined by 

then Equations 5 and 6 transform to 

which are the characteristic equations. Unfortunately, 
it is not possible to integrate these equations and ob- 
tain Riemann invariants, as can be done with linear 
homogeneous problems. Thus, a numerical method of 
characteristics is no longer an exact method. 

Figure 1: Analytic Dispersion Diagrams for the Hyper- 
bolic and Parabolic Heat Equations 

As usual, the solution will admit discontinuities that 
lie along characteristic paths. It is easy to show that 
the jump relationships are those of the homogeneous 
problem, i.e., across a jump lying in the J-direction 

and across a jump lying in the q-direction 

3 A Riemann Problem for the 
Hyperbolic Heat Equations 

A natural problem to pose in connection with the hy- 
perbolic model of heat conduction is that of two semi- 
infinite rods, having temperatures O L ,  OR,  brought into 
contact at t = 0. The solution will be of the form shown 
in Figure 2. 

The problem is to find 8, q, in the region POQ. There 
is an analytic solution for q, which is (see article 12 of 
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0 
Figure 2: Schematic of the problem 

where lo is the modified Bessel function of order zero. 
This can be written in the similarity form 

showing that solutions for different T are not really in- 
dependent, but affinely related. 

There appears to be no closed-form solution for 0, 
but a solution that is sufficiently accurate for testing 
the numerical results can be found by numerically inte- 
grating Equation 6, knowing q and qt analytically, using 
Gaussian quadrature formulae. 

As time increases, the solution assumes a more typ- 
ically parabolic character. The region of space within 
which significant variations occur grows, not linearly, 
but like t i .  In fact, for large times, the expression 
given by Equation 25 simplifies to  

q(x, t )  = (q) exp (- $) (27) 
2 r  

which is the classical fundamental solution to  the heat 
equation. 

4 A Numerical Method of Char- 
act erist ics 

In this section, we develop and analyse the numerical 
method of characteristics for the hyperbolic heat equa- 
tions. We begin with a simple treatment that appar- 
ently does not take into account the potential stiffness 
of the problem. 

P 

Figure 4: Stencil for the Method of Characteristics 

Given, as in Figure 4, a point P and two characteris- 
tic lines P A  and P B ,  we make the obvious discretiza- 
tion of Equations 21 and 22 as 

Solving these equations, we have 

8.0 
PA + qB 

PP = (E) (T) + ( 0 A  - OB 
Figure 3: Exact solution to the Riemann Problem for 
the heat flow q (31) 

where we have written 

The character of the solution can be appreciated from 1 At 
Figure 3. For t / ~  small, the solution is typically hyper- k = - -  

2 7 
(32) 

bolic and strongly discontinuous, but the jumps in the 
solution decay like exp(- &) (which is also the rate at Henceforward, we refer to k as the stiffness parame- 
which high wavenumbers decay). ter. Because of the geometry of the characteristic mesh, 



note that we also have 

Now let us rewrite Equations 30 and 31 as follows: 

Here, we have introduced three general functions of 
k which appear as coefficients in Equations 34 and 35. 
This is the general solution to the Hyperbolic Heat 
Equations by the Method of Characteristics. For our 
simple discretization which we call version 0, we have 

4.1 A Practical Scheme - Operator 
Splitting 

We break our problem solution into two parts. In one, 
we solve the homogeneous problem 

In the other, we solve for the damping due to the 
source term as 

q;+l = qi exptlT (41) 

Let us call the damping operation L1 and the so- 
lution to the homogeneous problem by the Method of 
Characteristics L2. TO get second order accuracy, we 
must use one of the sequence of operations Ll LzL2Ll  
or L2L1L1  L2 [3]. For the sequence L1L2L2L1 

*;+1 = 0; 
(42) 

n+f  
Qi = q ~ e - ~  (43) 

q + t  

q;+ie-k  

we get Equations 

X(k) = 
Y(k) = 

34 and 35 with 

e - k  

eWk 

Z ( k )  = e -2k  

which we will refer to as version 9. 

4.2 Some Numerical Results 

In Figure 5 we plot on log-log scales the rms error in q 
(at $ = 3,6,10,30,60,100,300,600,1000) versus k for 
the method of characteristics version 0 (the straight- 
forward discretization), applied to the Riemann prob- 
lem described in Section 3. In Figure 6, the exercise is 
repeated for version 9 (operator splitting). As bound- 
ary conditions we have supplied the analytical solution 
along both limiting characteristics. Thus we do not 
attempt to capture the discontinuities, and our tests 
relate purely to the smooth part of the solution. 

Figure 5: rms error in q vs k for version 0 

In(rms error in q )  vs I n ( k )  Version 9 

0.0 

(50) Figure 6: rms error in q vs % for version 9 
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In Figures 7 and 8, we make similar plots for errors 
in 0 (obtained by comparison with an accurate solution 
obtained by integration of Equation 6 using the Gaus- 
sian quadrature formulae). In all cases, the errors are 
normalized so that In(&) = 0 indicates an error of the 
same size as the solution. 

ln(rms error in 0 )  vs In(k) Version 0 
2 .0  , 1 

Figure 7: rms error in 0 vs k for version 0 

In(rms error in 0 )  vs In(k) Version 9 

2.00 

Figure 8: rms error in 0 vs k for version 9 

We see that all our solutions are quite consistently 
giving slopes of two (as seen by comparison with the 
solid line), indicating second-order accuracy, for k less 
than about 2. 

Surprisingly enough, although Version 0 looks as 

though it should break down for k > 1, it continues to 
give useful answers for values of k up to about 25 or so, 
whereas Version 9, which contains no obvious signs of 
trouble, does not produce useful answers beyond k E 2. 
To improve on these methods, we looked for combina- 
tions of X(k),  Y(k), and Z(k) that would enforce a va- 
riety of apparently desirable properties. Some of these 
were derived from the dispersion relationship of the dis- 
crete equations, which is 

We list below some of the constraints that were tried, 
together with the properties that each bestows. 

1) This condition ensures that 

(a) all propagating waves have the same damping 
ratio 

( b )  the scheme is derivable from some pair of 
characteristic equations 

X(k)Y (k) = Z(k) (52) 

2) This condition 

(a) eliminates the leading error term from the Lo- 
cal Truncation Error of the g-equation 

( b )  ensures 'conservation' of the quantity ef  

(c) ensures correct damping at low wavenumbers 

3) This condition ensures that the eigenvectors of the 
discrete equation match those of the analytic equa- 
tion 

4) This condition ensures the correct separation be- 
tween propagating and non-propagating waves 

5) This condition ensures correct damping for the 
highest wavenumbers 

It is possible to  satisfy all of these constraints to 
within an error of 0 (k2) .  However, by choosing to sat- 
isfy one or more of them exactly, we generate a variety 
of schemes with different properties. 



A sample plot of several such decoupled schemes is parameters that define them, analyse them - analyti- 
given in Figure 9, where we plot the error in 0 versus cally, to  the extent possible, and numerically - and then 
k at = 10 for some of these schemes. This demon- present results from some tests run. 
strates the interesting fact that schemes derived from We begin with the stencil shown in Figure 10 
sound fundamentals all give slopes of two (as indicated 
by the solid line), but exhibit two orders of magnitude 
difference between the best and worst results. 

In(rms error in 8 )  vs In(k) Decoupled Schemes 
-5.0- 

-6.0- 

- 
-7.0- 

-2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 

Figure 9: rms error in 0 vs k for several Decoupled 
Schemes a t  t / r  = 10 

4.3 A New Direction - 
Our constraint relations provided consistent design cri- 
teria for small k but contradicted each other for large k. 
Our results have shown widely differing errors, but we 
also found that we were never really doing much better 
than the simple discretization. These observations mo- 
tivated us to reject our initial hypothesis that there is a 
scheme which has desirable characteristics for large k, 
which can be put together from constraints arrived at 
by heuristic arguments. We then began anew with the 
exact, analytic solution to  the Initial-Value Problem at - 
hand. This led us to  the new hypothesis that for any 
scheme to posess the ability to cope with wave prop- 
agation in the presence of rapid reactions, there must 
exist a coupling between the characteristics to  account 
for the change in wavespeeds. This effect should also 
be more pronounced at large values of the stiffness pa- 
rameter k. In order to account for the coupling, our 
computational stencil gets modified and now includes 
the middle point. The resulting scheme we call the Cou- 
pled Method of Characteristics, which is what we focus 
on next. 

5 The Coupled Method of 
Characteristics 

Figure 10: Stencil for the Coupled Method of Charac- 
teristics 

By an extension of the analysis given in [2], we can 
obtain 

. , 

where Cl is the Riemann function 

(59) ' 
To create a numerical method we have to  evaluate the 

integrals. In these, the functions, R and Rt are of course 
known exactly, but the functions 0, q, 0, and q, have to 
be approximated using the available information. We 
will represent them as polynomials as follows 

Note that since R and Qt are even functions, only the 
even parts of u and u, will contribute to  the integrals. 

The required integrals are of the form 

In this section, we shall derive the general equations for B 

the Coupled Method of Characteristics and the design J p  = xPRtdx  (63) 



These can be evaluated in terms of Bessel functions must account for the coupling between waves, and 
of half-integer order and are expressible in terms of ex- hence must make use of the middle point in our sten- 
ponentials and polynomials [4] leading to cil. This can be done using a variety of integration 

schemes. In each of these schemes, we use the stencil 
1 given in Figure 13. 

1 7- 5 
QP = -(0A + BE) + -(I - e-2k)(qA - QB) 2 4k h(rrns error in q )  vs In(k) 

1 
-0.5- 

+-(e-2k - 1 1  2k - 2k2)(eA - 2OM + oB) 
f - 

462 -2.5- 

+0(~4~3,)q,, ,  (64) - 
1 -4.5- e-2k T-5 

QP = -(QA + QB) + -(I - e - 2 k ) ( 0 ~  - OB) 
2 4k 
1 -6.5- 

--[e-2k(l + 2k + 2k2) - - 2qM + qB) In(rms(r,)) - 
4k2 -8.5- 

+0(7-+ A ~ ) Q ~ ~ ~  (65) 

In each of the above equations, the terms in the top 
line make reference only to the values a t  P, A and B, 
and give the appearance of a Method of Characteris- 
tics solution. However, the truncated equations cannot -14.5 , , , , , , , , , ,  , , , 
be decomposed into a pair of characteristic equations -3 -2 -1 o I 2 3 4 Wk) 
because they fail to satisfy Equation 52. Thus, some 
coupling of the characteristics is already involved. Figure 11: rms error in q vs k for the Optimum scheme 

The second difference terms are in each case of or- - 3rd Order 
der kAx2, and hence negligible for small k, but need * - + , t / ~  = 3 

, , - - - - D t / ~  = 6 to be considered for large k. We will refer to  Equa- t / r  = 10 
tions 64 and 65 as the Optimum scheme, because it + - , t / r  = 30 

. . -- . , t /r  = 60 gives the closest approximation possible to  the exact , - - , t / r  = 100 
solution (Equations 57 and 58) with the data available + - - + t / r  = 300 

,........, t / r  = 600 
in Figure 10. ,-,t/r = 1000 

We can rewrite Equations 64 and 65 in the form 

1 
1 

73 ln(rms error in 6') vs In(k) 
-2.0 

Qp = R O ( ~ ) ~ ( ~ A  + %B) + So(k)-(BA - q ~ )  
2 - 

+Te ( ~ ) ( Q A  - 2 6 ~  + QB) (66) -4.0- 
1 

1 
- 

T- 7 

qP = R q ( k ) 5 ( q ~  + YE) + Sq(k) )10A - 08) -6.0- - 
+Tq(k)(q~ - %M + QB) (67) -8.0- 

In(rrns(ra) - 
The coefficients Re,  So, To, R,, Sq and T, are tabu- 

-10.0- 
lated in Table 1. Their polynomial expansions for small 
k are given in Table 2 while the asymptotic behaviour 

-12.0- 
of the coefficients is tabulated in Table 3. 

5.1 Some Numerical Results 
-16.0 , , , , , , ,  I I I I I I 

In Figures 11 and 12, we plot the error in q and 0 for the -3 -2  -1 o 1 2 3 

Coupled Method of Characteristics exactly as we had Wk) 

done earlier in Figures 5 and 7. Here we consistently Figure 12: rms error in 0 vs k for the Optimum scheme 
see a slope of three, indicating third order accuracy. 

We use the simple method of characteristics on A M F  
6 Some Simple and M B G  to obtain q~ and qc.  Now, we integrate the 

Schemes characteristic equations (Equations 21 and 22) using 
the simple method of characteristics, modified to  inte- 

In Section 5, we achieved exceptionally good results grate the source term using the information now avail- 
which reenforced our hypothesis that a correct scheme able at F and G.  Substitution of the expressions for 



Version Definition for Cou~ led  Schemes 

Table 1: Coefficients Re ,  Se, Te, R,, S, and T, for the Coupled Schemes 

Version 

Optimum 

Simpson 

Trapezium 

Pade 

Midpoint 

Figure 13: Stencil for the Simple Coupled Schemes 

qp and qc in the resulting equations provides explicit 
expressions for 6p and qp. Our first attempt was to 
use Simpson's Rule, followed by even simpler integra- 
tion schemes - the Trapezoidal Rule and the Midpoint 
Rule. Finally, we try to construct a scheme using only 
asymptotic information and the Pad6 approximation. 
These schemes of course no longer rely on knowledge of 
an exact solution. We derive the design parameters for 
each of these variants next, followed by a sampling of 
our results for the Coupled Schemes in Figure 14. 

Re(k) 

1 

1 

1 

1 

6.1 The Coupled Scheme via Simpson's 
Rule 

A straightforward application of the method of char- 
acteristics to A M F  and M B G  using version 0 results 
in 

Se(k) 
l - e - = k  
ik 

6 - 3 k + k 2  3 ( 2 + k )  

- 2 - k  
2+k  

3  0 . 1 k 6  
3 + 3 k $ k a + 0 . 2 k 7  

2 - k + k a  
2+k  

(69) 
Now, we integrate the characteristic equations, 

(Equations 21 and 22) on the stencil A B P  to get 

' [  
At 

(QP - el?) - 7' QP - qB + -(QB + ~ P G  + PP) = 0 
6 7  1 

(71) 
where we have used Simpson's Rule to evaluate the 
source terms. We can solve for Bp and qp in terms 
of values a t  A, B, F  and G. On substitution of the ex- 
pressions for q~ and q~ from Equations 68 and 69 into 
the above equations, we get explicit expressions for Bp 
and qp which give coefficients Re,  Se,  Te, R,, S, and 
T, as tabulated in Table 1. The polynomial expansion 
of the coefficients for small k is given in Table 2 while 
their asymptotic behaviour is in Table 3. 

Looking at these, we expect excellent results for small 
k but a lot of problems for large k. This is evidenced by 
our numerical results, a sample of which may be seen 
from Figure 14. 

TO (k) 
e - ' * - 1 + 2 k - 2 k a  

4 k a  

- 2  k  
3 ( 2 + k )  

-& 
k ( 1 + 0 . 2 9 5 k  

- 3 + 0 . 6 k ( 4 + k  

k  -- 
2+k  

6.2 The Coupled Scheme via the 
Trapezium Rule 

All that changes if we use the Trapezium Rule as op- 
posed to Simpson's Rule is that the integrated charac- 
teristic equations now read 

Rq (k) 
e - 2 k  

2 - k  - 
2+k  

e - 2 k  

2 - 3 k + 2 k a  
2 + k  

' [  
At 

(OP - el?) - rT qP - qB + -(QB + ~ Q G  + QP) = 0 
47  I 

(73) 
Once again, we can solve for Bp and qp to get the 

coefficients Re, Se , Ts , R, , S, and T,, their polynomial 
expansions for small k and their asymptotic behaviour, 
as tabulated in Tables 1, 2 and 3 respectively. 

Sq (k) 
I - ~ - = *  

2  k  

6 - k  
6 + 5 k + k a  

2  - 
2+k  

3 + 0 . 1 k 6  
3 + 3 k + k a + 0 . 2 k 7  

2-k 
2 + k  

Tq (k) 
l - e - a k ( 1 + 2 k + 2 k a )  

4 k a  

6%& 
E i  

k ( 4 - 0 . 1 4 0 2 k + 0 . 0 1 k b )  
l+k(1.0794+0.4191k+0.04k7) 

k ( 2 - k )  
2 ( 2 + k )  



We still expect decent results for small k, but they 
would obviously not be as good as the Simpson Rule 
integrated results. Here, too, the large k solutions are 
expected to be bad, but in every case, the asymptotic 
behaviour of the coefficients is improved, so it would 
be expected that for large k the solutions obtained 
by Trapezoidal integration would be (perhaps surpris- 
ingly) better than for integration by Simpson's Rule. 
This, too, is observed from our numerical experiments 
(Figure 14). 

Polynomial Expansion 

Coeft  

R8 

Scheme 

Optimum 

Simpson 

Trapezium 

Pade 

MidPoint 6.3 The Coupled Scheme via the Mid- 
Point Rule 

Optimum 
Here, we use the MidPoint Rule and the integrated 
characteristic equations now read Simpson 

Trapezium 

Pade 

MidPoint 

Optimum 

Simpson 

Trapezium and the solutions for B p  and q p  give us the coefficients 
Re, Se , To, Rq , Sq and Tq , their polynomial expansions 
for small k, and their asymptotic behaviour, which are 
tabulated in Tables 1, 2 and 3 respectively. 

We find that with the midpoint rule our scheme re- 
verts to second-order accuracy for small k, and that 
under asymptotic conditions the match with the opti- 

Pade 

MidPoint 

Optimum 

Simpson - - 
mum scheme deteriorates further (Figure 14). Trapezium 

Pade 

MidPoint 

In(rms error in 8) vs In(k) Coupled Schemes 
-5.5 - 3rd Order - 

,-,Optimum 
-7.0- ..---, Simpson 

Trapezium - 
+--+ Pad6 

-8.5- ..--.,Midpoint 

-16.0 l l l l l l l l I l ~  

-2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 1 
W k )  

Optimum 

Simpson 

Trapezium 

Pade 

Mid Point 

Optimum 

Simpson 

Trapezium 

Pade 

MidPoint Figure 14: rms error in 0 vs k for several Coupled 
Schemes 

Table 2: Polynomial Expansion of the coefficients of 
the Coupled schemes about k = 0. Note that terms are 
retained till the 1st error term after which we use the 
symbol 'e' 6.4 The Pad& Approximation 

In real life problems, it is unlikely that we have at our 
disposal an exact analytical solution. But it is very 

104 



Asymptotic Behaviour of Coupled Schemes Coefficients 

likely that we would have asymptotic information. In 
this section, we have only used the polynomial expan- 
sions for the exact solution and the asymptotic solution 
to create rational function approximations to  the coeffi- 
cients Re ,  So, To, R,, S, and Tq using the Pad6 approxi- 
mation. We are of the opinion that such functions could 
be generated with a little algebra (perhaps computer as- 
sisted) for real-life problems too. The coefficients, their 
polynomial expansions for small k, and their asymp- 
totic behaviour are tabulated in Tables 1, 2 and 3 re- 
spectively. And the results are very good across the 
entire spectrum of k as the coefficients vary smoothly 
with k (Figure 14). This could have tremendous poten- 
tial for practical applications. 

bances in a relaxing medium could be attacked. And 
if, as we hope, the ideas are transferable t o  more com- 
plex problems, a systematic procedure to  deal with the 
stiffness of relaxing and reacting flow computations will 
have been established. 
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