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ABSTRACT 

Detonations through an explosive of finite width a r e  curved and propagate a t  a lower 

velocity than an ideal one-dimensional plane wave. A theory relating the velocity decre- 

ment and curvature of a gaseous detonation to the conditions a t  the explosive inert inter- 

face is developed. A two-dimensional detonation bounded on one side by a solid wall 

and on the other by an  inert gas is considered. 

derived by expanding the flow variables i n  powers of a small parameter proportional to 

the ratio of reaction zone thickness to radius of curvature. 

equations are the same as for  one-dimensional flow with increasing area and heat addi- 

tion, the rate  of increase depending on the local wave curvature and the density vaTia- 

tion through a plane detonation. Using Fay's result that the relative detonation velocity 

decrease is proportional to the fractional increase in the reaction zone streamtube a rea  

an ordinary differential equation for variation of the wave'angle is developed. Approxi- 

mate ~ o l ~ t i o n s  of the above equation yielded velocity decrements which agreed with 

experimental results. 

Approximate reaction Zone equations are 

Locally the reaction zone 

L Introduction 

Detonations traveling through an explosive medium of finite width a re  curved and 

propagate at a lower velocity than an  ideal one-dimensional plane wave. Since the extent 

*This work was supported by the U. S. Army Research Office in Durham, North Carolina 
under Grant DA-ARO(D)-31-124-G345. 

of this effect, which is a resul t  of the interaction between the dctonation and the inert 

material bounding the explosive, depends upon the wave structure and thickness it has, in 

recent years, been the subject of a number of theoretical investigations attempting to re- 

late measured velacity decrements to details of detonation structure. The present paper 

presents an analysis of detonations propagating through finite gaseous explosives, which 

hopefully avoids some of the difficulties of earlier theories. 

It is generally agreed that the lass i n  velocity and the curvature of the wave are  

caused by the divergence of the streamlines within the reaction Zone. 

divergence depends upon the nature of the refraction at the interface between the expla- 

sive and the inert bounding mater ia l  

depend upon whether the charge is uncased or  cased and on whether the case is thick or  

t h i q  for gaseous explosives the acoustic impedance of the inert relative to the explosive 

gas appears to be the determining factor. 

gaseous explosives bounded by an  infinite region of inert gas, which, as Sommers has 

pointed out', is analogous to a solid explosive with a v e q  thick case. 

The extent of this 

In solid explosives conditions at the interface 

In the present paper we are concerned wi th  

1 

One of the earliest treatments of the finite charge problem is due to Jones" '. 
Rather than computing the details of the diverging flow within the reaction zone Jones 

ignored the curvature of the wave and approximated the reaction zone by an inner region 

of one-dimensional diverging flow. The actual expansion within the reaction zone is ap- 

proximated by reaction products expanding through a Prandtl-Meyer wave a t  the outer 

edge of the region of one-dimensional flow, the streamline Separating the two regions 

being determined by a pressure  matching condition The situation is shown in Fig. 1, 

'Numbers refer  to the bibliography a t  the end of the paper. 

2 



which also shows the oblique shack induced in the boundary by the expanding charge. 

Jones theory thus ignores wave curvature and must therefore depend 0; a theoretical 

model which is f a r  removed from the actual conditions within the reaction zone of the 

curved detonation. 

3 

The 

Eyring e t  al. , m their treatment of the problem took Wave curvature into account 

and computed the wave shape in a finite cylindrical charge by replacing the curved de- 

tonation by a se r i e s  of spherical detonation segments. It is shown that the divergence of 

the flow within the reaction zone, which is also responsible for the decrease in detona- 

tion velocity, depends upon the ratio of reaction zone thickness to the radius of curva- 

ture. The curvature of each wave segment is chosen so that the reduced detonation 

velocity equals the normal component of the oncoming flow. 

edge of the charge is established by requiring the flow angle and pressure behind the 

detonation and behind the oblique shock which propagates into the case to be equal. In 

the theory of Eyring et  al., i t  is assumed that the flow is steady relative to the spherical 

detonation segments, which is self-contradictory Since spherical detonations are in- 

4 herently unsteady . Since it is the flow within the reaction zone which determines the 

wave curvature and velocity, it also appears inconsistent to use Conditions behind the 

detonation to establish the interface boundary condition 

The detonation angle a t  the 

5 Wood and Kirkwood determined the effect of wave curvature upon the propagation 

velocity of steady detonations in an analysis which was based upon the inviscid conserva- 

tion equations applied to the reaction zone. However, their analysis did not consider 

the finite charge problem and so they do not establish any relation between the curva- 

ture of the wave and the conditions at the explosive inert interface, 

Both from an experimental and theoretical standpoint gaseous detonations a r e  much 

simpler to study than detonations 5. in solid and liquid explosives, and this fact  provided 

the impetus for the experimental investigation of gaseous detonations in the presence of 

inert compressible boundaries by Sommers 1 and Dabora 6 . To explain his results Dabora 

used a one-dimensional theory s i m i l x  to that of Jones; however, rather than introducing 

the artificial concept of an outer Prandtl-Meyer expansion the flow divergence within the 

one-dimensional reaction zone is determined by matching the flow behind the detonation 

to that behind the oblique shock in the inert boundary as in the theory of Eyring e t  al. 3 . 

Kirkwood 5 .  m that the inviscid conservation equations of the reaction zone provide the 

The curved front theory developed below is closely related to that of Wood and 

starting point. In contrast to the theories above conditions within the reaction zone are 

employed to establish the nature af the wave refraction a t  the explosive-inert interface. 

IL Formulation of First Order Reaction Zone Equations 

A two-dimensional detonation propagating with velocity D through an explosive gas of 

width L bounded on one side by a solid wall and on the other by an inert gas is considered. 

The above corresponds to the configuration investigated experimentally by Dabora 6 and 

is shown schematically in Fig. Z(a) from the point of view of an observer fixed to the 

wave while Fig. 2(b) shows a typical Schlieren picture of such a wave as obtained by 

Dabora The analysis is based on the Von-Neumann-DCring model of detonation structure 

in which the wave is treated as a shock of infinitesimal thickness followed by an inviscid 

reaction zone. 

AS in the analysis of curved shock Wave structure” * shock based coordinates, as 

shown in Fis. 3, appear to be the most natural ones to use for the equatiom describing .! 
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the flow within the reaction zone. In this coordinate system the contincity equation and 

the momentum equations along and normal to the detonation a r e  

I 

a u  a u  1 a p  
ax a y  p a x  

U-+ (1 - Ky) v- - Kuv + -- = 0 

where x and y and the corresponding velocities u and v a r e  along and normal to the wave 

respectively. 

where LY is the wave angle defined in Fig. 3. 

In the absence of viscous dissipation and conduction the energy equation is simply 

(5) 

where now h includes the heats of formation of the chemical species present within the 

reaction zone. 

In addition to the above, the chemical kinetic equations, and a thermodynamic 

equation of state a r e  required to completely specify conditions within the reaction zone. 

Following the notation of Wood and Kukwood the stoichiometric equation for each 

chemical reaction is written in the form 

9 

5 

( 6 )  
01 Zvs X s = O  , (u .1 ,  Z... n) 

s 

where Xs represents a unit mass  of species s and v," is the specific stoichiometric co- 

efficient for species s in the LYth reaction Defining a progress variable, A d  fo r  the 

0th reaction by 

dKs= zv,".\, , (u=1,  ... n) (7) 
a 

where K is the mass fraction of species s.the reaction rates  a r e  given by s 

*a _-  
dt - r ~  

where rd the rate  of the uth reaction, is taken as a function of the local thermodym- 

mic variables. In shock based coordinates the Lagrangian derivative d/dt is given by 

a a $ ( ) = u - ( ) + (1 - KY) 1L- ( 
a x  a Y  

Assuming that thermodynamic quasi-equilibrium exists, i e. ,  thermal and mechanical 

equilibrium but not chemical equilibrium, it is possible to use the usual thermodynamic 

equations of state with the A as additional independent variables. All thermodynamic 

variables can, for example, b e  expressed as functions of T, p and the progress vari-  

ables Ad 

LY 

If there are n reactions then with the equation of sate there a r e  n + 5 independent 

equations for the n t  7 variables Ad p, u, p, v, K, D, and h, so that the number of 

unknowns exceeds the number of equations by two. Only one extra unknown, the 

6 



prop.gation velocity D, appears in the formulation of the plane detonation equations, 

and its value is determined by the introduction of the Chapman-Jouguet (C-J) condition 

Now the curvature K(x) enters as an additional variable and its evaluation must in some 

way be related to conditions where the detonation meets the inert boundary gas. 
while the operator ArU is defined as 

Es- 

sentially the variatwF of K(x) must be consistent with the refraction at the explosive- 

inert interface. Furthermore, the propagation velocity D and the curvature K(x) a r e  

not independent of each other, an inwease in K(x) generally resulting in a reduction in 

D. Exact solution of the curved front problem formulated above presents formidable 

difficulties; however, since the relative decrease in D due to curvature, and K lo the 

ratio of a characteristic reaction zone length lo to shock radius of curvature R a r e  

usually small approximate solution of the problem becomes possible. 

tonations for example reduction of the plane wave velocity by more than about 10% 

6 generally results in quenching . 

The subscript[*) signifies that all progress variables are held constant while Am 

signifies that all progress variables except{AAare held constant 

The present situation is similar to the problem of finding the influence of shock 

wave curvature and thickness upon the Hugoniot conditions, as considered for example 

7 8 by Probstein and Pan , and Germain and Guiraud . In the case of the detonation both 

the effects of reaction z o n e l e t h i c k n e s s  and the variation of the wave angle LY must be 

considered To evaluate the thickness effect it is convenient to follow a procedure simi- 

lar to that of Germain and Guiraud. 

In H2 - O2 de- 

The basic equations above a r e  supplemented by the following reactive flow relation 
The coordinates x and y a r e  stretched according to 

12 
: between pressure and density as derived by Kirkwood and Wood 

where C is the frozen sound speed, 
0 

C 

frozen expansion coefficient given by 

is the frozen constant pressure specific heat, ?is the specific volume, B 0 is the 
P 

7 

so that significant changes in j t  a n d 7  will be of the Same order of magnitude within the 

reaction zone. With the introduction of these stretched coordinates the continuity, and 

the momentum equations become 

a a +  aa (1. ,-,)ao. a 7  6 p v = o  (12) 
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av - a "  2 ( i - 6 y ) a p  
ax a 7  P a i /  

6u- + (1 - 6y) v - + 6u + ~ - = 

P 

R where 6 = 

I 

(13) 

(14) 

andusually, 6 << 1 

Now as in Refs. I, and 8 it is assumed that the variables within the reaction zone 

may be expanded in the small  parameter 6 so khat 

u =I$') + tu") + O(6') 

pv = (pv)") + 6(pv)( ' )  + O(6') 

p + pv 2 = (p + pv2)(0) + 6(p + pv')'') + O(6') 

h = ,I(') + 6 h ( l )  + O(6') 

In Eq. (15) the zeroth order terms represent the plane wave solution for  which 6 = 0. 

Since in a plane wave 

which show the effect of t h i c h e s s  and curvature on the variation of mass  flow density pv, 

tangential velocity u and total momentum p + pv2, quantities which remain invariant 

ac ross  a plane wave. 

or plane wave solution 

To O(6) the above derivatives depend only upon the zeroth order 

It i s  assumed that the expansions of equation (15) are uniform, o r  in ather words 

that the ratios U ( ~ ) / U ( ~ ) ,  V ( ~ ) / V ( ~ ) ,  p(l)/p(o), etc., a r e  a l l  of O(1). It is of course, also 

possible to question whether or not the deviations from the plane detonation structure 

should be of O(6)  instead of say 0(63/2) or  O(6'/2). From relations between the  shock 

angle a and the streamline angle behind the shock 

increase in streamtube a r e a  dA/A behind a curved shock wave var ies  as 6.  Further- 

more, in simple one-dimensional flows with a small  relative area change, the result- 

ant changes in  pressure, temperature, velocity, and density all  vary linearly with 

dA/Al1, so that the expansion in 6 is certainly justified on physical grounds. 

1 0 .  It IS readily shown that the relative 

As will be seen later, it is convenient to  write the energy equation in the form 

introduction of (15) in the continuity and momentum Eqs. (12)-(14) leads io the equations 

9 10 



The magnitudes of the zeroth order quantities on the right of equations (16-19) 

depend upon the magnitude of the angle a. Thus 

u(O) = D sin a (21) 

(22) (pv)") = pm D cos a 

while immediately behind the shock 

(23) 

M 

pends upon the wave curvatwe but if it is assumed that the deviation of D from the plane 

wave propagation velocity D(O) is O(G) so that 

is the propagation Mach number of the detonation As mentioned previously, D de- 
m 

(25) (0) (1) D = D  + 6 D  

then D(O) can be used in the above expressions for the zero order quantities. The above 

assumption will be found to be consistent with the results to follow. 

Introduction of equations (21), (22), and (23) in equation (17) leads to the result  

11 

In deriving the above equation the variation of a with respect to 2 has been taken into 

account so that for example 

It has been assumed that the magnitude of a p (0) /ax at  the shock, i. e. , a p,(O)/a x is 

representative of the magnitude of this quantity throughout the reaction zone. 

0 < < 1 and for the relatively large values of M typical of detonations the continuity 

equation (26) thus can be approximated by 

For 

m 

It should he noted that the quantity (PV/P D(O)) within the brackets will be of O(1) within 

the reaction zone. Similarly introduction of equations (21)-(24) in the momentum and 

energy equations (18)-(20) leads to the results 

m 

(30) 

The quantities in bracket? on the left  side of the above equations are  all O(1) in the re-  

action zone. While the changes in u/D(O) sin a, (p + pv2)/p D(O) a r e  of order6 across  
2 

m 
12 



2 2 2 the reaction zone the change in (h + v /Z)/D(O) /2 will be of order 6 sin a, so that the 

energy equation reduces to 

2 

2 -  (31) 
V h + - - const 

for Q << 1. From equation (31) the important result  that the x momenhm equation 

for  u is uncoupled from the y momentum and energy equations follows. Clearly when 

LI << 1 the term with coefficient tan LI can be dropped from equation (29). 2 

The conservation equations fail to provide sufficient information for determining 

the propagation velocity of a detonation wave; however, it is found that unsupported 

plane waves propagate with a velocity such that the gases at the end of the reaction 

move with sonic velocity with respect to the wave, and'this is the well known Chapman- 

Jouguet condition Physically this result is justified by the argument that with sonic 

velocity behind the reaction zone downstream disturbances can no longer overtake the 

wave making steady propagation possible. If the reactions within the detonation a re  

reversible both an equilibrium and a frozen speed of sound may be defined and then 

there is some ambiguity as to which sound speed to use in the Chapman-Jouguet condi- 

tion Recently Wood and Kirlwood13, and Woad and Salsburg 

Chapman-Jouguet Condition should be based on the equilibrium rather than the frozen 

1 2  speed of sound as previously suggested . A simple physical argument for the plausi- 

bility of this conclusion14 is based upon Chu's15 result  for  near equilibrium flows that 

while the wave head of an unsteady rarefaction moves with the frozen speed of sound, 

the bulk of the disturbance will, after sufficient time has elapsed, move with the equili- 

brium speed of sound 

14 have shown that the 

Consequently the main disbrbance of the rarefaction wave that 

13 

usually follows the C-J  detonation can never overtake the detonation even when the 

equilibrium speed of sound is used to formulate the C-J condition 

In the model under consideration here the curved detonation is followed by a steady 

Prandtl-Meyer expansion rather than by an unsteady rarefaction wave. 

stream tube a rea  varies through and behind the wave due to the curvature effects. 

Consequently the nature of the curved wave Chapman-Jouguet condition is unclear, for 

the arguments used to establish the nature of the C-J condition no longer apply. In 

attempting to establish the conditions to he satisfied at the downstream edge of the 

reaction zone it is useful to eliminate the derivatives of pressure  and density by com- 

bining the momentum and continuity equations (12)-(14) with equation (10) relating to 

dp/dt to dp/dt, with the resulting equation 

Furthermore, 

a ?  a x  
6 ( 1  -%)e+ 2 (1 - 6y) (1 - L)ay 2 - 311 - 6y) a x  c 2 a ~  e 

co 0 0 

(32) 

Equation (32) is the reactive form of the "gas dynamic" equation of compressible flow. 

Introducing the expansions (15) and equations (21)-(24) and dropping terms of O(6 sin 2 4 

as well as replacing (1 - 6 7 )  by 1.0 equation (32) reduces to 

where for the present we have not expanded the left side of equation (33). For 
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convenience in the discussion below the abbreviations 

(34) 

a r e  introduced It is readily shown thata , which represents the effect of streamtube 

divergence due to detonation curvature is always positive and decreases with increasing 

y. 161 represents the effect of chemical reaction upon the velocity v. 
- 

In a plane waves= 0. At the C-J point v = c, where e is the equilibrium speed of 
2 2  

sound. Since c 5 co, always14 i t  follows that (1 - c /co ) 2 0 and at the equilibrium 

C-J point it follows that since a Ada? = 0, a v/a? = 0. Thus the plane wave equilibrium 

C-J point occurs at 7 - m where all variations have disappeared 

v always approaches c monotonically, an assumption which is supported by the reaction 

profile calculations of Duff", thenQ 2 0 in the reaction zone; however, it is difficult 

to arr ive at general conclusions regarding the behavior of&. In a curved detonation 

the divergence term8oopposes the accelerating effect of the chemical reaction t e rm 

and results in a reduction in the velocity gradient a v/a?, at least  for v < co. The 

velocity variation within the reaction zone of the curved wave will depend upon the 

relative magnitudes of 8l and a a n d  upon whether (1 - v /co ) 1s positive or negative. 

Several possible conditions at the edge of the reaction zone will now be considered. 

Within the reaction zone i t s e l f R  >% so that v accelerates from the subsonic 

value immediately behind the shock, and it is presumed that v ultimately will reach the 

15 

If it is assumed that 

2 2 .  

equilibrium sonic speed c. If when first v = c, @+ = 0 so that ( @  -a ) < 0, it follows 

than then (a v/a 7) < o implying a velocity maximum vmax > c at some point upstream 

which conbadicts the fact that the point where v f i r s t  reaches c is under consideration 

Hence($ -a)> O w h e n v = c .  If($ - @  ) = O ,  Jv /Jy=Oandvhasamaximumor  

inflection point If a decreases with increasing ? such that (a S )  < 0, v decreases 

below c, a result  which is at variance with continued increase of v through the Prandtl- 

Meyer wave behind the reaction zone, though i t  is not entirely inconceivable that there is 

a region in which v passes through several  maxima and minim& Of course another pos- 

sibility is that (& -S ) remains at zero with increasing?. Such a condition implies v = 

const = c a n d a  = cons t  However since$ > 0 for  (a -0) = 0 chemical reactions must 

b e  occurring tending toward chemical equilibrium, which is at variance with the require- 

ment that$ = const 4 . Physically the most plausible condition is that (@ -d)  > 0 
when v = c. The assumption that the velocity continues to increase monotonically though- 

throughout the reaction zone finally leads to the requirement that (& -a) = 0 when v = c 
0' 

and this corresponds to the modified C-J condition used by Eyring , and by Wood and 

Kirkwood UI their curved front theories. In some sense it may be more meaningful to 

refer to this condition as the curved wave choking condition rather than as a C-J condi- 

tion. 

3 

6 .  

In the model under consideration here  a Prandtl-Meyer expansion propagates into 

the explosive from the edge of the wave as shown in Figs. Za, and 4 It has been 

Shown 

the disturbance l ies along the frozen wave fronts and this fact  lends further support to 

the use of the curved wave choking condition above. An important unanswered question, 

and one which was also asked by Wood and Salsburg14, is how does the transition from 

the curved wave choking condition to the equilibrium C-J condition occur as the Wave 

radius of c u v a t a r e  R approaches infinity. 

23, 24 
that near the vertex of a P-M (Prandtl-Meyer) expansion fan the bulk of 

In order to close the first order curved reaction zone equations above it becomes 

15a 



necessary to in some way introduce the conditions a t  the explosive inert interface. 

this end the f i r s t  order equations above will be used to derive a differential equation 

for  the variation of the wave angle a with the position x along the wave. 

To 

The Conservation equations (27)-(30) a r e  readily integrated with respect toy. With 

the introduction of the function 16, x) defined by 

(35) 

and letting B be the reaction zone thickness, the integrated f i rs t  order conservation 

equations become 

(36) 

(37) 

P - 

In deriving these equations the assumption that a << 1 has been used as well as the 

fact that to f i r s t  order 

(pv) 2 p, D(O' , u1 z D(O) s in a 

2 
2 

(pv + P)] : (P(0) "(0) + p(0)) 

16 

The first order C-J or ,  perhaps more appropriately, choking condition becomes 

v = c  0 '  (39b) 

The formulation of the f i r s t  order curved detonation equations is essentially com- 

plete for the conservation equations (31), (36), and (38) together with the C-J condition 

(39), the rate equation (8) and an appropriate equation of state a r e  sufficient to deter- 

mine the component of D normal to the wave front provided that the radius of curvature 

R(x) is known Clearly, then, the problem of relating R(x) to boundary conditions a t  

the edge of the Wave remains, and is considered in the section which follows. 

For fixed x equations (31), (36), (38), and (39) have the same form as the one- 

dimensional reaction zone equations used by Fay1' in h i s  analysis of the effect of the 

boundary layer upon the velocity of detonations in tubes. In the one-dimensional case 

d$ equals the fractional streamtube a r e a  increase dA/A. In the present curved front 

case the differential df can be assigned a similar interpretation Hayes and Probstein 10 

show that behind any curved hydrodynamic discontinuity with density ratio ps/pm and ,) 

such that the tangential component of velocity is conserved, the streamline angle R 

and the shock or discontinuity angle ol a r e  related by 

s 

a t  the point where a =  0, i. e., where the discontinuity is normal to the oncoming flow. 
11 



Consequently for a streamtube behind such a discontinuity 

Comparing equations (35), and (41) i t  is clear that d %  represents the local value of 

dA/A within the reaction zone of the detonation subject to the assumption o << 1. 

Equations (35), (36), (38), and (31) thus indicate that for a fixed value of x the flow be- 

haves as a one-dimensional flow with variable area,  the a rea  increase being a function 

of the local curvature and the density profile through the reaction zone. 

dimensional character of the curved front flow provides the basis for the approximate 

solution developed below. AS mentioned before, the tangential momentum equation is 

completely uncoupled f rom the other equations to the present order of approximation 

This one- 

m The Velocity Decrement and Wave Shape 

It has been shown above that to f i rs t  order in 6 the curved front reaction zone equa- 

tions are identical to the equations for one-dimensional flow with variable a rea  used by 

FayL7 in his analysis of the boundary layer induced velocity decrement of detonations 

in bbes.  From numerical solutiolls of these equations Fay found that for << 1 the 

relation 

i s  valid to an accuracy of a few percent 

ponent of propagation velocity normal to the wave, and E is related to the integral in 

equation (38) by 

In (42) K1 is a constant, D cos o is the com- 

18 

where 

1 < € ( . 2 .  - 

5 Wood and Kirkwood arrived at a similar result  in their curved front analysis. Fay‘s 

result  will be used directly below for  the object of the present analysls is not so much 

to compute the exact effect of curvature upon local velocity decrement as to establish 

how boundary conditions at the explosive-inert interface affect propagation. 

Inkoducing the definition of 1. i n k  equation (42) now yields the following differential 

equation for the wave angle a as a function of x 

(44) 
d a  1 - ( 1 - ? ) ) c o s a = X  1 E E  o d x  - A  

where 

In general both the reaction zone thickness P, and hence A ,  a r e  functions of x, the dis- 

tance along the wave. It is necessary to use the choking condition as expressed by 

equation (39a) to determine the variation of the reaction zone thickness P , and in view 

of equation (44) this equation can be written in the form 

19 



An approximate form of the conditions v = c has already been used by Fay in arriving 

at equation (42). 

0 

It now becomes expedient to let P equal the reaction zone thickness a t  x = 0 where 
0 

the wave front is  normal to the oncoming flow. 

A i / t  

relatively simple simullaaneous ordinary differential equations for Po and a(x). Equation 

(45) can be used to show that 

If now it is assumed that along the wave 

<< 1 so that approximately !/Po = 1, then equations (44) and (45) reduce to 
0 

+e - o ( a , F )  
0 0 

provided a one step reaction model in which h approaches its equilibrium value ex- 

ponentially is  used to evaluate the reaction rate  term. 

The wave angle equation (44) can be integrated in analytical form and upon intra- 

ducing the boundary condition a = 0 when x = 0, which implies negligible wal l  boundary 

layer effects, the following relation between a a n d  x is obtained: 

(46) 
t a n g = g t a n , w  x 7  

0 

The dimensionless velocity decrement 7 plays the role of an eigenvalue in equation (46), 

its value being determined by the interface boundary condition a= g a t  x = xT Since 

x. Z l. to quantities of higher order  in the present case, the velocity decrement q is  

20 

determined by the equation 

Equations (46) and (47) MW provide the desired link between the wave shape, the velocity 

decrement, and the conditions at the explosive-inert interface. In o r d e r  to determine 

a. the nature of the flow at  the explosive-inert interface must be studied in detail. 

The interaction at this interface, particularly a t  the point where the shock pre- 

, 1' 

ceeding the reaction zone meets the inert gas, is closely related to the refraction of 

an ordinary hydrodynamic shock, by a surface of separation between two gases. 

the angle between the interface and the incident shock, (n/2 - a i n  the present nolation) 

is sufficiently small a shock is transmitted across the interface and either a shock wave 

or  an expansion wave is reflected from the interface. The theory of such "regular" 

19 refractions is well understood18 and has been verified by experimental observations . 

Whether the reflected wave is an expansion or compression depends upon the strength 

of the incident wave and the values of y and the speed of sound in the two adjacent gases 

If 

As the angle between the incident shack and the interface increases  beyond some 

critical value, the simple configuration described above no longer can satisfy all the 

deflection and pressure conditions a t  the interface. 

irregular refraction, becomes very complex, and though extensive experimental ob- 

servations of irregular refractions were made by Jahnl', no adequate theory is avail. 

able. The nature of the interaction then depends drastically upon the relative values 

of the speed of sound and the ratio of specific heats on the two sides of the interface. 

The flow, which then is called an 

The interaction process  under consideration here falls into the class of irregular 

21 



refractions since the angle between the detonation and the interface is always very 

close to 90'. 

refraction depends in a crucial way upon whether the acoustic impedance, pa, of the 

inert gas greater o r  less than the acoustic impedance of the w e a c t e d  explosive, or 

more precisely, the refraction depends upon the acoustic impedance ratio (p5 ad/ 

(pm a,). Subscripts m and 5 re fer  to the explosive and inert  gases respectively. When 

y = y and p = p the impedance ratio reduces to, (a /a ), the ratio of Sonic veloci- m 5  m 5  m 5  

ties in the two media 

6 1 The experiments of Dabora and Sommers show that the nature of the 

When a5 <am the refraction is relatively simple for then an oblique shock with 

supersonic velocity behind it is usually transmitted into the inert gas, and it is this 

s i b t i o n  which wi l l  be considered in detail below. On the other hand when a5 > am 
6 19 

complicated interaction patterns result, and in some cases both Dabora and Jahn 

have observed transmitted waves which actually precede the incident detonation o r  shock 

The flow at the inert-explosive interface must adjust itself to contain the high pres- 

sure  behind the shock and within the reaction zone relative to the low pressure in the 

inert bounding gas. When a < a this containment, in the case of ordinary shocks, 

occurs by deflection of the interface which in turn induces an oblique shock wave in the 

inert gas, and by transmission of an expansion wave or "expansion zone" into the region 

behind the incident shock" as shown in Fig. 4. in the case of the detonation the shock 

wave is followed by a reaction zone within which the gases expand to sonic velocity 

and the pressure rapidly drops to the Chapman-Jouguet value a t  the sonic or  C-J plane. 

If the detonation is viewed as a discontinuity then, when a5 < am the deflection and pres- 

sure  conditions can be  satisfied by transmission of an oblique shock into the inert gas 

5 m  

and the propagation of a Prandll-Meyer expansion into the region behind the detonation 

This theoretical model, which has been verified experimentally by Sommers , however, 

provides no information ahout the interface flow within the reaction zone itself, which 

must be understood in order to calculate the interface angle 4 .  

1 

It is postulated that the flow at the edge of the interaction zone is as shown in 

Fig. 6. Along the interface, the pressure and flow direction in the reaction zone and 

in the.supersonic region behind the induced shock must match. Some experimental 

support for this model is provided by the schlieren photograph of a quenching detona- 

tion moving past  an inert gas as Shown in Fig. 5. Here the combustion zone lags 

considerably behind the shock with the result  that the incident and induced shock waves 

a r e  clearly visible in the region between the shock and the reaction zone. With respect 

to the inert gas the reaction zone acts as a slender body on which a tangency and pres- 

su re  condition must be satisfied while the surface shape is left free. 

ments a r e  sufficient to determine the interface angle a, though the detailed calculation 

will be quite difficult Clearly if a. is too small, for  example the extreme mi = 0, the 

induced shock will be unable to contain the pressure  in the reaction zone; on the other 

hand, with ai too large the pressure  behind the induced shock will be too large. 

Fortunately the flow in this interaction region is isolated from the downstream flow by 

the C-J or sonic plane and by the region of Supersonic flow behind the induced shock 

wave. To be  consistent with the f i r s t  order theory plane wave reaction zone pressures 

should be used to compute the flow in the above interaction region It follows that to 

first order ai will he independent of channel width and velocity decrement but will only 

depend on the properties of the explosive and inert  gases. 

These require- 

1 

1 

The formulation of the curved front theory is essentially complete. Once ai is 
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determined equation (47) provides a relation between the velocity decrement 7 ,  and the 

channel width and reaction zone thickness L, and Io. 

can be obtained from the C-J condition, (45), evaluated at a =  0, that is from the 

equation 

The reaction zone thickness I 
0’ 

Application of the above theory requires detailed knowledge of the chemical processes 

within the reaction zone as well as computation of ai. 

auxiliary problems is difficult and beyond the scope of the present work; however, to 

provide a preliminary test of the theory approximate velocity decrement calculatwns 

for stoichiometric H - 0 detonations have been made and compared with experimental 2 2  

results as described below. 

Exact solution of these two 

N. Approximate Calculation of the Velocity Decrements of a Stoichiometric H2r_02 

Detonation 

The combustion process has  been approximated by the single f i rs t  order reversible 

reaction 

A,” A2 . 

such that there is M change in molecular weight A similar scheme has been used by 

others 17’ ‘O. Then it is readily shown that 

24 

(48) 

where Q is the heat of reaction 

of the mass concentrations becomes 

For this f i rs t  order reaction the reaction rate in t e rms  

20 

(49) 

where T is a characteristic time, Leze the equilibrium mass concentration, and E the 

activation energy. 

action zone is required. If it is assumed that 

A 

Far  purposes of computing Q only the rate near the end of the r e -  
0 

integration of equation (49) yields 

11 . This result, in which A plays the role of a relaxation distance, was also used by Fay 

Following Fay it has been assumed thatg2e(0) El .  0, that (QfC T) Z 1.0, and that 

A = 0.6 mm for stoichiometric H - O2 detonations at  1 atmosphere. 
P 

2 

To computen the reaction zone density has been assumed constant and equal to the 

average of the density behind the shock and at the C-J plane so that 

(51) 

The density ratios in (51) were obtained from normal shock tables and the equilibrium 
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2 1  calculations of Moyle , For stoichiometric H2 - O2 detonations, pl(o)/p = 5.06, 

pz(o)/pm = 1. 78. 

m 

In order to compute ai it has been assumed that the interface is straight and at an 

angle 1/2(.8, + B2) where b1 and 8, are the deflection angles at the shock and at the C-J 

plane (F$. 6). Requiring the pressure behind the induced oblique shock to equal the 

pressure at the C - J  plane then resulted in a value a. = 13.3 m the stoichiometric 

H - 0 ease. Essentially it is assumed that the pressure rapidly drops to the final 2 2  

C-J value. A plane detonation velucity and Mach number of 9, 250 ft/sec and 5.20, 

W e n  from Moyle were used in the calculation of ai 

0 .  

Finally Fay's values for K1 and E that is K1 = 0. 53, t = 1 ,  were used. 

With the above information it was possible to simultaneously solve equations (45a), 

and (47) for 1) and i . The computed values of 7 are compared to the measurements of 
0 

Dabora in Fig. 7 and it can be  Seen that there is reasonable agreement between theory 

and experiment. 

decreasing channel width. 

present theory. 

Figure I also indicates the decrease in reaction zone thickness with 

The results of Fig. 7 provide encouraging support for the 

V. Discussion 

The first order theory developed above provides a relationship between the ex- 

plosive-inert interface conditions and the velocity decrement and detonation curvature. 

The theory is essentially a hydrodynamic one without detailed consideration of chemical 

effects. Analysis of the problem of detonation stability and quenching l imits which is 

not considered in this paper, can undoubtedly be coupled to the present theory. 

Laminar flow within the reaction zone has been assumed, though it is well known 22 

that the structure of many C-J detonations is turbulent and that the wave surfaces may 

he  non-uniform or crinkled. If it is reasonable to use temporal averages within dis- 

tances of the order of the reaction zone thickness the theory developed here may still 

be applicable. 

The agreement between the approximate calculations and Dabora's experimental 

results is reassuring; however, further verification would be desirable. In  particular 

more precise values of p (0) / p  and the pressure variation, should he used in the com- 
m 

putation ofA and ai. Calculated values of ai and wave curvature should he compared 

with values taken from Schlieren photographs, and the comparison of theory and ex- 

periment should be extended to wider ranges of mixture ratio. 

use the present theory to obtain chemical-kinetic information f rom Schlieren photographs 

and velocity decrement data from gaseous detonations with side relief. 

It should be possible to 

Only the case in which the speed of sound in the inert is less than in the explosive 

was considered in the treatment of the interface flow. The curved front theory above 

should remain valid even in the case of higher sound speed in the inert gas. The chief 

difficulty in this more complex case lies in the calculation of the detailed interface flow. 

The n a b e  of the C-J condition requires further study, especially the nature of the 

transition from the plane to the c w e d  front case. 
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V U  Nomenclature 

L 

D 

P 

=, Y 

u, v 

K 

R 

a 

P 

h 

h0 

xs 

ha 

a 
V 

S 

r a 

x s  
C 
0 

h 
V 

C O  

80 

PO 

P 

6 

width of explosive 

detonation velocity 

density 

distance along and normal to wave 

x, y velocity components 

local wave curvature 

wave radius of curvature 

wave angle 

pressure 

static enthalpy 

total enthalpy 

unit m m s  of species s 

bbichiometric coefficient of species s in reaction a 

progress variable of a th  reaction 

rate of a th  reaction 

mass fraction of species s 

frozen speed of sound 

specific volume 

frozen constant pressure specific heat 

frozen expansion coefficient 

a characteristic reaction zone length 

to/R 

30 

- 
X = dimensionless coordinate defined by aX - &/R 

Y/io 

dimensionless velocity decrement 

reaction zone thickness 

sonic velocity of unreacted explosive and undisturbed inert gas 
respectively. 

immediately behind the shock 

at  the C-J plane 

a t  the explosive-inert interface. 
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Fig. 1: Schematic Diagram of t he  Jones Model 
of a Detonation w i th  Side Relief 
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Fig. 2a: Schematic Diagram of a Two Dimensional 
Detonation Propagating t h r o u g h  a Slab 
of Gaseous Explosive 
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Fig. 2b: Schl ieren Photo of Unquenched 60% H2-40% 02 Detonation 
Propagating in 0.25 in Channel Bounded by N2 !Taken from 
Ref. 6 ) .  Explosive and I n e r t  Separated by2M A Nitrocel lulose 
Fi lm. 
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Fig. 3. Shock Based Coordinates 
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Fig. 5 :  Schlieren Photo of Quenching 40% H2- 60% 02 
Detonation (Taken from Ref. 6 ) .  
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Fig. 6: Postulated Flow at the Edge of the Interaction Zone. 
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