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A HYDRODYNAMIC THEORY FOR THE INTERACTION OF A GASEOUS
DETONATION WITH A COMPRESSIBLE BOUNDARY *

Martin Sichel, Associate Professor of Aeronautical Engineering
The University of Michigan, Ann Arbor, Michigan

ABSTRACT

Detonations through an explosive of finite width are curved and propagate at a lower
velocity than an idezl one-dimensional plane wave, A theory relating the velocity decre-
ment and curvature of a gaseous detonation to the conditions at the explosive inert inter-
face is developed. A two-dimensional detonation bounded on one side by a solid wall
and on the other by an inert gas is considered. Approximate reaction zone eguations are
derived by expanding the flow varizbles in powers of a small parameter proportional to
the ratio of reaction zone thickness to radius of curvature, Locally the reaction zone
equations are the same as for one-dimensional flow with increasing area and heat addi-
tion, the rate of increase depending on the local wave curvature and the density varia-
tion through a plane detonation. Using Fay's result that the relative detonation velocity
decrease is proportional to the fractioral increase in the reaction zone streamtube area
an ordinary differential equation for variation of the wave ‘angle is developed. Approxi-
mate solutions of the above equation yielded velocity decrements which agreed with

experimental results.

L  Introduction
Detonations traveling through an explosive medium of iinite width are curved and

propagate at a lower velocity than an ideal one-dimensional plane wave. Since the extent

*This work was supported by the U. S. Army Research Office in Durham, North Carolina
under Grant DA-ARO(D)-31-124-G345,

of this effect, which is a result of the interaction between the detonation and the inert
material bounding the explosive, depends upon the wave structure and thickness it has, in
recent years, been the subject of a number of theoretical investigations attempting to re-
late measured velocity decrements to details of detonation structure, The present paper
presents an analysis of detonations propagating through finite gaseous explosives, which

hopefully avoids some of the difficulties of earlier theories.

It is generally agreed that the loss in velocity and the curvature of the wave are
caused by the divergence of the streamlines within the reaction zone. The extent of this
divergence depends upon the nature of the refraction at the interface between the explo-
sive and the inert bounding material. In solid explosives conditions at the interiace
depend upon whether the charge is uncased or cased and on whether the case is thick or
thin; for gaseous explosives the acoustic impedance of the inert relative to the explosive
gas appears to be the determining factor, In the present paper we are concerned with
gaseous explosives bounded by an infinite region of irert gas, which, as Sommers1 has
pointed out*, is analegous to a solid explosive with a very thick case,

One of the earliest treatments of the finite charge problem is due to Jonesz’ 3.
Rather than computing the details of the diverging flow within the reaction zone Jones
ignared the curvature of the wave and approximated the reaction zone by an inner region
of one-dimensiqnal diverging flow. The actual expansion within the reaction zone is ap-
proximated by reaction products expanding through a Prandtl-Meyer wave at the outer
edge of the region of one-dimensional flow, the streamline separating the two regions

being determined by a pressure matching condition, The situation is shown in Fig. 1,

*Numbers refer to the bibliography at the end of the paper.
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which also shows the oblique shock induced in the boundary by the expanding charge. The
Jones theory thus ignores wave curvature and must therefore depend on a theoretical
model which is far removed from the actual conditions within the reaction zone of the

curved detonation,

Eyring et al. 3, in their treatment of the problem took wave curvature into account
and computed the wave shape in a finite eylindrical charge by replacing the curved de-
tonation by a series of spherical detonation segments. It is shown that the divergence of
the flow within the reaction zone, which is also responsible for the decrease in detona-
tion velocity, depends upon the ratio of reaction zone thickness to the radius of curva-
ture. The curvature of each wave segment is chosen so that the reduced detonation
velocity equals the normal component of the oncoming flow. The detonation angle at the
edge of the charge is established by requiring the flow angle and pressure behind the
detonation and behind the obligque shock which propagates into the case to be equal, In
the theory of Eyring et al. , it is assumed that the flow is steady relative to the spherical
detonation segments, which is self-contradictory since spherical detonations are in-
herently unsteady4. Since it is the flow within the reaction zone which determines the
wave curvature and velocity, it also appears inconsistent to use conditions behind the

detonation to establish the interface boundary condition.

Wood and Kirlmood5 determined the effect of wave curvature upon the propagation
velocity of steady detonations in an aralysis which was based upon the inviscid conserva-
tion equations applied to the reaction zone. However, their analysis did not consider
the finite charge problem and so they do not establish any relation between the curva-

ture of the wave and the conditions at the explosive inert interface,

Both from an experimental and theoretical standpoint gaseous detonations are much
simpler to study than detona.tionssin solid and liquid explosives, and this fact provided
the impetus for the experimental investigation of gdseous detonations in the presence of
inert compressible boundaries by Somzfners1 and Daboraﬁ. To explain his results Dabora
used a one-dimensional theory similar to that of Jones; however, rather than introducing
the artificial concept of an outer Prandtl-Meyer expansion the fiow divergence within the
one-dimensional reaction zone is determined by matching the flow behind the detonation

to that behind the oblique shock in the inert boundary as in the theory of Eyring et al, 3.

The curved front theory developed below is closely related to that of Wood and
Kirkw00d5 in that the inviscid conservation equations of the reaction zone provide the
starting point. In contrast to the theories above conditions within the reaction zone are

employed to establish the nature of the wave refraction at the explosive-inert interface.

IL _Formulation of First Order Reaction Zone Equations

' A two-dimensional detonation propagating with velocity D through an explosive gas of
width L bounded on one side by a solid wall and on the other by an inert gas is considered,.
The above corresponds to the configuration investigated experimentally by Da.loom6 and
is shown schematically in Fig. 2(a) from the point of view of an observer fixed to the
wave while Fig, 2(b) shows a typical Schlieren picture ¢f such a wave as obtained by
Dabora. The analysis is based on the Von-Neumann-Dbring model of detonation structure
in which the wave is treated as a shock of infinitesimal thickness followed by an inviscid

reaction zone,

As in the analysis of curved shock wave str-uctureT’ 8 shock based coordinates, as

shown in Fig, 3, appear to be the most natural ones {o use for the equations describing
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D,

the flow within the reaction zone. In this coordinate system the continuity equation and

the momentum equations along and normal to the detonation are

2 (pu) _ alpv) _ - 1

2 - Ky 2y Kpv =0 (1)

du du 1ap_ g
uax+(1—Ky}vay—Kuv+p—-ax—0 (2)
v v 2 (L-Ky)ép_ 3
u—hax+(1-Ky)v—ay+Ku e gy 0 | {3)

where x and ¥ and the corresponding velocities u and v are along and normal to the wave

respectively.

&Y

K = curvature =

o]
g5

where o is the wave angle defined in Fig. 3.
In the absence of viscous dissipation and conduction the energy equation is simply

2

v
h+ 5 +my=h = const (5)

&y,

where now h includes the heats of formation of the chemical species present within the

reaction zone.

In addition to the above, the chemical kinetic equations, and a thermodynamic
equation of state are required to completely specify conditions within the reaction zone.
Following the notation of Wood and Kii'kwood9 the stoichiometric equation for each

chemical reaction is written in the form

(@=1,2...n) - (6)

=¥ Kg=0

- - (3 se . -
where Xs represents g unit mass of species s and v, is the specific stoichiometric co-

efficient for species s in the oth reaction, Defining a progress variable, A & for the
ath reaction by
a_= Sria (=1 n) G
s v, A, , ) e
o
where Ky is the mass fraction of species s the reaction rates are given by
o
a o ®)

where T o the rate of the oth reaction, is taken as a function of the local thermodyna-

mic variables. In shock based coordinates the Lagrangian derivative d/dt is given by
d g 2
a()—uﬁ()+(1-1{¥)vﬁ() (9

Assuming that thermodynamic quasi-eguilibrium exists, i e., thermal and mechanical
equilibrium but not chemical equilibrium, it is possible to use the usual £he;'modynamic
equations of state with the Jla as additionzl independent variables. All thermodynamic
variables can, for example, be expressed as functions of T, p and the progress vari-

ables ).a.

If there are n reactions then with the equation of state there are n + 5 independent
equations for the n+ 7 variables '\af p, u, p, v, K, D, and h, so that the number of

unknowns exceeds the number of equations by two. Only one extra unknown, the
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propagation velocity D, appears in the formulation of the plane detonation equations,
and its value is determined by the introduction of the Chapman-.Jouguet (C-J) condition.
Now the curvature X(x) enters as an additional variable and its evaluation must in some
way be related to conditions where_ the detonation meets the inert boundary gas. Es-
sentially the variatior of K(x} must be consistent with the refraction at the explosive-
inert interface. Furthermore, the propagation velocity D and the curvature K(x) are
not independent of each other, an increase in K{x) generally resulting in é. reduction in
D, Exact -solution of the curved front problem formulated above presents formidable
difficulties; however, since the relative decrease in D due o curvature, and K Ro the
ratioc of a characteristic reaction zone length £ o to shock radius of curvature R are
usually small approximate solution of the problem becomes possible. In H2 - ()2 de-
tonaiions for example reduction of the plane wave velocity by more thé.n about 10%

generally results in quenchings.

The basic equations above are supplemented by the following reactive flow relation

between pressure and density as derived by Kirkwood and Woodlz:

dp _
®°_3at P 2% (10)
where Co is the frozen sound speed,

fe] ~
o/C " A v
o =-B_(_E_G__Aah)

C!Co 'so
P

¢ ° is the frozen constant pressure specific heat, T is the specific volume, BO is the
p

frozen expansion coefficient given by

% {g_;') p,{\}

while the operator Aa is defined as

3
A =o— .
a a;\a()'r, p,{)\a\

The subscript{k] signifies that all progress variables are held constant while Aa
signifies that all progress variables except{).é are held constant.

The present situation is similar to the problem of finding the influence of shock

wave curvature and thickness upon the Hugoniot conditions, as considered for example

- by Probstein and Pan7, and Germain and Guirauda. In the case of the detonation both

the effects of reaction zone and thickness and the variation of the wave angle o must be
considered. To evaluate the thickness effect it is convenient to follow a procedure simi-

lar f{o that of Germain and Guiraud. The coordinates x and y are stretched according to

_ dx ~
E=wmy Y={— (11
o

so that significant changes in X and 'y will be of the same order of magnitude within the
reaction zone, With the introduction of these siretiched coordinates the continuity, and

the momentum eguations become



Ju - Jdu G gp
pull 1oy v 2 s+ 28R g 13
bopt (- W v dwe oo 13)
sud¥ (1o 59 v, pul, 1= 3p (14)
ax 3y P ay

)
where & = ﬁ?

and usually, 6 << 1

Now as in Refs, 7, and § it is assumed that the variables within the reaction zone

may be expanded in the small parameter § so that

(0} (1

u=u"+6u )+O(62}

v= V(O) + 6v(1) + 0(52)

p=5m+één+0®%

{15)

DV=mﬂwL*ﬂmﬂn+0w%

pr v =+ v s sp+ A 4 06D

a=a0 5 o6d

In Eq. (15) the zeroth order terms represent the plane wave solution for which & = 0.

Since in a plane wave

{0) (0)
aut’ _alev) 8 (o= pVZ)(O) _

— = — 0 (16)
3y ay 2y

introduction of (15) in the continuity and momentum Egs. (12)-(14) leads to the equations
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8u_ 3 (0). (0)  (0) 3u 1 2p 2, -

8_?"":(0_)[“ v ..u_—a-..f..._;)-za-)- 5= }+U(6) (18)

RO 2 (©)
z (pvz+p)=6[v(o){®v)(0)_ 02} @07 ©@26nT | a9

which show the effect of thic.:kness and curvature on the variation of mass flow density pv,
tangential velocity u and total momentum p + pvz, quantities which remain invariant
across a plane wave. To 0{5) the above derivatives depend only upon the zeroth order

or plane wave solution.

It is assumed that the expansions of equation (15) are uniform, or in othér words
that the ratios u(l)/u(o), v(l)/v(o), p(l)/p(o), ete., are ail of 0(1). It is of course, also
possible to question whether or not the deviations from the plane detonation structure
should be of 0(6) instead of say 0(63/2) or 0(51/2). From relations between the shock
angle @ and the streamline angle behind the shocl—c10 it is readily shown that the relative
increase in streamtube area dA/A behind a curved shock wave varies as 8, Further-
more, in simple one-dimensional flows with a small relative area change, the result-
ant changes in pressure, temperature, velocity, and density all vary lineariy with

dA/Au, so that the expansion in § is certainly justified on physical grounds.

As will be seen later, it is convenient to write the energy equation in the form

2 2

(1)
Z(nsT)e- %(“7] = - 5u® %;.- (20)



The magnitudes of the zeroth order quantities on the right of equations {16-19)

depend upon the magnitude of the angle . Thus

u(o) =D sin & {21}
(pv)(o) =Py Dcos & {22}
while immediately behind the shock
0 2
o DM
- T 3 (23)
Po  (y-1) MOo +
: cos” o

pi(O) 2y sz r:os2 a-(y-1) 2

P, = (y+ 1)

M is the propagation Mach number of the deionation. As mentioned previously, D de-
© :
pends upon the wave curvature but if it is assumed that the deviation of D from the plane

wave propagation velocity D(O) is O(5) so that

p=-p@, sp¥ (25)

then D(O) can be used in the above expressions for the zero order quantities. The above

assumption will be found to be consistent with the resulis io follow,

Introduction of equations (21), {22), and (23) in equation (17) leads to the result

(o)
% ——% =6cosadl -2+ 0[———4—(% tanzaseczoz] . {286)
¢y D Py (r-1)"M
Py ©
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In deriving the above equation the variation of o with respect to % has been taken into

account so that for example

ﬂ:ﬂg:})(o) £os agg

= D(O) cos &

& &

X X ¥

It has been assumed that the magnitude of 8 p(o)/a x at the shock, ie., 3 pl(o)/a X is
representative of the magnitude of this quantity throughout the reaction zone. For
a < <1 and for the relatively large values of Mao typical of detonations the continuity

equation (26) thus can be approximated by

(
=a(1-£p§) , (27

i( pv
2y 0
e, D

It should be noted that the quantity (pv/ P, D(O)) within the brackets will be of 0(1} within
the reaction zone, Similarly introduction of equations (21}-(24) in the momentum and

energy equations (18)-{20) leads to the resulis

d u =51 p(o) J
o Fopd R S &
2 p {0, (0 {0)
i_ CAMRR =6((%§))coszal( -p—)-ﬂw—(1+2~*)’ranzaj (29)
ay pl® P P P Py
P
Vz (
h+ 0)
g 2 .2 P
—_ =26 sin a{l-ﬂ+ 0(1)] . 30
27| 02 i {30)
2

The quantities in brackets on the left side of the above equations are all 0(1) in the re-

. 2z
action zone. While the changes in u/D(D} sine, (p+ pvz)/p D(O) are of orderd across
o0
12



D

2
the reaction zone the change in (h + v2/2)/D(0) /2 will be of order & sin2 a, so that the

energy equation reduces to

2

h+ lz- = const (31)

for @ << 1, From eguation {31) the important result that the x momentum equation
for u is uncoupled from the ¥ momentum and energy equations follows. Clearly when

a << 1 the term with coefficient tanz o ¢an be dropped from equation (29),

The conservation equations fail to provide suifficient information for determining
the propagation velocity of a detonation wave; however, it is found that unsupported
plane waves propagate with a velocity such that the gases at the end of the reaction
move with sonic velocity with respect to the wave, and-'%:his is the well known Chapman-
Jouguet condition. Physically this result is justified by the argument that with sonic
velocity behind the reaction zone downstream disturbances can no longer overtake the
wave making steady propagation possible. If the reactions within the detonation are
reversible both an equﬂibrium and a frozen speed of sound may be defined and then
there is some ambiguity as to which sound speed to use in the Chapman-Jouguet condi-
tion. Recently Wood and Kirkwoodla, and Wood and Sa_lsburg;l‘;L have shown that the
Chapman-Jouguet condition should be based on the equilibrium rather than the {rozen
speed of sound as previously suggestedlz. A simple' physical argument for the plausi-
bility of this conc:lusion14 is based upon Chu’s15 result for near equilibrium flows that
while the wave head of an unsteady rarefaction moves with the frozen speed of sound,
the bulk of the -d_isturba.nce will, after sufficient time has elapsed, move with the equili-

brium speed of sound. Consequently the main disturbance of the rarefaction wave that

13

usually follows the C-J detonation can never overtake the detonation even when the

equilibrium speed of sound is used to formulate the C-J condition.

Iﬁ the model under consideration here the curved detonation is followed by a steady
Prandtl-Meyer expansion rather than by an unsteady rarefaction wave. Furthermore,
stream tube area varies through and behind the wave due to the curvature effects.
Consequently the nature of the curved wave Chapman-Jouguet condition is unclear, for
the arguments used to establish the nature of the C-J condition no longer apply. In
attempting to establish the conditions to be satisfied at the downstream edge of the
reaction zone it is useful to eliminate the derivatives of pressure and density by com-
bining the momentum and continuity equations {12)-(14) with equation (10) relating to
dp/dt to dp/dt, with the resulting equation

2 2
6(1-%)%4—(1 -6y)(1—fv—2)a—_-lv§[(1 - 5y)§—g+6a—f =
¢ Jex e /0¥ ¢ 4y X
o o 0

(32}

2R, _ay
&V + an[ﬁu-é?+ (l—éy)v—a—?—J
o.

Equation (32) is the reactive form of the "gas dynamic™ equation of compressible flow.
Introducing the expansions {15) and equations (21)-(24) and dropping terms of 0(6 .sin2 a}

as well as replacing (1 - §y) by 1.0 equation (32) reduces to

| (
2 (0) oA
g 0
(1- )i - w5 e 5o, ¥ .
o) o

where for the present we have not expanded the left side of equation (33). For
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convenience in the discussion below the abbreviations

(0)
08' - 5V(0) (Pp_ _ ])= 5(D(0) _ V(O))
o«

(34
ax @

ﬂ = ZO’ V(O} —
[+ ] y
o
are introduced, It is readily shown that ' , which represents the effect of streamtube
divergence due to detonation curvature is always positive and decreases with increasing

. & represents the effect of chemical reaction upon the velocity v.

In a plane wavedI= 0. At the C-Jpointv = c, there ¢ is the equilibrium speed of
sound. Sincec < ¢, always14 it follows that (1 - c2/c02) > 0 and at the equilibrium
C-J point it follows that since 2 ?Lﬂ/&} =0, 3v/8y = 0. Thus the plane wave equilibrium
C-J point oceurs aty — o where all variations have disappeared. I it is assumed that
v always approaches ¢ monotonically, an assumption which is V.Supported by the reaction
profile calculations of Du.ffls, then® > 0 in the reaction zone; however, it is difficult
to arrive at general conclusions regarding the behavior off]. Ina curved detonation
the divergence term & opposes the accelerating effect of the éhemical reaction term &
and results in a reduction in the velocity gradient 2 v/3 5_1, at least for v < co. The
velocity variation within the reaction zone of the curved wave will depend upon the
relative magnitudes of & and < and upon whether (1 - v2/ coz) is positive or negative.

Several possible conditions at the edge of the reaction zone will now be considered.

Within the reaction Zone itself A - go that v accelerates from the subsonic
value immediately behind the shock, and it is presumed that v ultimately will reach the

15

equilibrium sonic speed ¢. H when first v = ¢, R, = 0 so that (R g ) < 0, it follows
than then (3 v/3 ¥} < 0 implying a velocity maximum YV ax > ¢ at some point upstream

which contradicts the fact that the point where v first reaches ¢ is under consideration.

Hence (R - &) > Owhenv=e, (R -B = 0, 3v/2y = 0 and v has a maximum or
inflection point. If ® decreases with increasing y such that (® -&) < 0, v decreases
below ¢, a result which is at variance with ¢ontinued increase of ‘v through the Prandtl-

Meyer wave behind the reaction zone, though it is not entirely inconceivable that there is

a region in which v passes through several maxima and minima. Of course another pos-
sibility is that (R - ) remains at zero with increasing y. Such a condition implies v =

const = ¢ and & = const. However since & > 0 for (® -} = 0 chemieal reactions must

be occurring tending toward chemical equilibrium, which is at variance with the require-

ment that® = const =&} . Physically the most plausiblé condition is that (& -17) >0

-whenv = ¢. The assumption that the velocity continues to increase monotonically though-

throughout the reaction zone finally leads to the requirement that (€ -7)) = 0 whenv=c

0’
and this corresponds to the modified C-J condition used by Eyrings, and by Wooc_l and

Kirkwoods in their curved front theories. In some sense it may be more meaningful fo
refer to this condition as the corved wave choking condition rather than as a C-J condi-
tion.

In the model under consideration here a Prandtl-Meyer expansion propagates into

the explosive from the edge of the wave as shown in Figs. Za, and 4. It has been

w23, 24

sho that near the vertex of a P-M {Prandtl-Meyer) expansion fan the bulk of

the disturbance lies along the frozen wave fronts and this fact lends further support to

the use of the curved wave choking condition above. An important unanswered question,

and one which was also asked by Wood and SalsburgM, is how does the transition from

the curved wave choking condition to the equilibrium C-J condition occur as the wave:
radius of curvature R approaches infinity.
In order to close the first order curved reaction zone eguations above it becomes
15a
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necessary to in some way introduce the conditions at the explosive inert interface. To
this end the first order equations above will be used to derive a differential equation

for the variation of the wave angle « with the position x along the wave.

The conservation equations {27)-(30) are readily integrated with respect toy. With

the introduction of the function l@, x) defined by
_ RGN
I(y, x):éf (—- l)dy (35)
peo
0

and letting ¢ be the reaction zone thickness, the integrated first order conservation

equations become

)y = o1+ 1) (36

uy = Uy [1+ I(f:)] (37)

L
i
" 03
2 2 ¢ ©a) -
(pv" + p)y = (ov +p)2[1+_ j’("f;)}+(;[ p agdy (38)

In deriving these equations the assumption that & << 1 has been used as well as the

fact that to first order

{(p) & o, pt® , u YD gin o

2
(o’ vy 2 00, 0
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The first order C-J or, perhaps more appropriately, choking condition becomes

{0)
oA
a4 iS g a (s58)
ay & gy
- £ o - 1
N Yor
o 0
v=e, . (39b)

The formulation of the first order curved detonation equations is essentially com-
plete for the conservation equations (31), (36), and (38) together with the C-J condition
(39), the rate equation (8) and an appropriate equation of state are sufficient to deter-
mine the component of D normal to the wave front provided that the radius of curvature
R(x) is known, Clearly, then, the problem of relating R(X) to boundary conditions at

the edge of the wave remains, and is considered in the section which follows,

For fizxed x equations (31), {36), {38), and {39) have the same form as the one-
dimensicnal reaction zone equations used by Fayl'7 in his analysis of the effect of the
boundary layer upon the ve?_locity of detonations in tubes. In the one-dimensional case
d I equals the fractional streamtube area increase dA/A. In the present curved front
case the differentiai df can be assigned a similar interpretation. Hayes and Probsteinm
show that behind any curved hydrodynamic discontinuity with density ratio ps/ ,coOD and
such that the tangential component of velocity is conserved, the streamline angle BS

and the shock or discontinuity angle o are related by

EEE=(£§-1) (40)

at the point where a= 0, i e., where the discontinuity is normal to the oncoming flow.
17



Consequently for a streamtube behind such a discontinuity

de _dy ¢ . p
S "0 2 1\
Rde R(pno 1) v “n

)=

Comparing equations (35), and (41) it is c_lea_r that dj represents the local value of
@A/ A within the reaction zone of the detonation subject to the assumption o << 1.
Equations (35), (36), {38), and (31) thus indicate that for a fixed value of x the flow be-
haves as a one-dimensional flow with variable area, the area increase being a function
of the loeal curvature and the densi.ty profile through the reaction zone. This one-
dimensional character of the curved front flow provides the basis for the approximate
solution developed below. As mentioned before, the fangential mementum equation is

completely uncoupled from the other equations to the present order of approximation.

I, The Velocity Decrement and Wave Shape
&

It has been shown above that io first order in § the curved front reaction zone equa-

tions are identical to the equations for one-dimensional flow with variable area used by
Fay17 in his analysis of the boundary layer induced velocity decrement of detonations
in tubes. From numerical solutions of these equations Fay found that for j <<1 the

relation

50

-Dcos o £
=K, ¢ (1) (42)
@ K I,

is valid to an accuracy of a few percent. In (42) K1 is & constant, D cos «is the com-

ponent of propagation velocify normal to the wave, and € is related to the integral in

equation (38) by
18
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¢

o
FEEREEE A ﬂf{—))e (4)
’ |

where

-
A

e <2

. 5 o -
Wood and Kirkwood ™ arrived at a similar result in their curved front analysis, Fay's
result will be used directly below for the object of the present analysis is not so much
to r_:ompute the exact effect of curvature upon local velocity decrement as to establish

how boundary conditions at the explosive-inert interface affect propagation,

Infroduting the definition of j into equation (42) now yields the following differential

equation for the wave angle & as a function of x

da

1-(1—n)cosa=K1€£0TxA {44)
where
£
EO
D(0) D p(0)
0= A< f (. 1) &y
DTO) ? °,
4]

In general both the reaction zone thickness £, and hence A, are functions of x, the dis-
tance along the wave, I is necessary to use the choking condition as expressed by
equation {39a) to determine the variation of the reaction zone thickness £, and in view

%

of equationrr (44) this equation can be written in the form

19



y
(®
(0) 2a
1-(1-n)cose |3 o —-] - o
K €L Ia?of(pw 1)dyy:fz_ 2.% 7y (45}
)

An approximate form of the conditions v = <, has already been used by Fay in arriving

at equation (42).

It now becomes expedient to let ﬂo equal the reaction zone thickness at x = Q where
the wave front is normal to the oncoming flow. If now it is assumed that zlong the wave
AE/EO < < 1 go that approximately f_/io = 1, then equations {44) and {45) reduce to
relatively simple simultaneous ordinary differential equations for !20 and a{x). Equation

{45) can be used to show that

oo(on )
0 o

provided a one step reaction model in which A approaches its equilibrium value ex-

ponentially is used to evaluate the reaction rate term.

The wave angle equation {44) can be integrated in analytical form and upon intro-
ducing the boundary condition o= 0 when x = 0, which implies negligible wall boundary

layer effects, the following relation between o and x is obtained:

@ _ xVa(2-7)
wag -yl wn 2T &

The dimensionless velocity decrement 5 plays the role of an eigenvalue in equation (46),
its value being determined by the interface boundary condition a= o atx = X Since

X 2 L to guantities of higher order in the present case, the velocity decrement # is

20

determined by the equation
o,
Lo/ T L @-m)
binz 2-17an2 2K1€_/1_ (47)_

Equations (46) and {47) now provide the desired link between the wave shape, the velocity

decrement, and the conditions at the explosive-inert interface, In order to determine

a, the nature of the flow at the explosive-inert interface must be studied in detail.

The interaction at this interface, particularly at the point where fhe shock pre-
ceeding the reaction zone meets the inert gas, is closely related to the refraction of
an ordinary hydrodynamic shock, by a surface of separation between two gases. I
the angle between the interface and the incident shock, (r/2 - « in the present notation}
is sufficiently small a shock is transmitted across the interface and either a shock wave
or an expansion wave is reflected from the interface. The theory of such "regular”

1]
18 and has been verified by experimental observationsi‘

refractions is well understood
Whether the reflected wave is an expansion or compression depends upon the strength

of the incident wave and the values of ¥ and the speed of sound in the two adjacent gases

Ag the angle between the incident shock and the interface increases beyond some
critical value, the simple configuration described above no longer can satisfy all the
deflection and pressure conditions at the interface. The flow, which then 1s called an
irregular refraction, becomes very complex, and though extensive experimental ob-
servations of irregular refractions were made by Jahnlg, no adequaté theory is avail-
able. The nature of the interaction then depends drastically upon the relative values

of the speed of sound and the ratio of specific heats on the two sides of the interface.

The interaction process under consideration here falls into the class of irregular
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refractions since the angle between the detonation and the interface is always very
close to 900. The experiments of Dabora.6 and Sommers1 show that the nature of the
refraction depends in a crucial way upon whether the acoustic impedance, pa, of the
inert gas greater or less than the acoustic impedance of the unreacted explosive, or
more precisely, the refraction depends upon the accustic impedance ratio (p5 a 5)/

_(poo a.w). Subscripts o and 5 refer to. the explosive and inert gases respectively. When
Yo =75 and P =P the impedance ratio reduces to, (a.oo/a.5), the ratic of sonic veloci-

ties in the two media.

When ag <.'=1ﬁO the refraction is relatively simple for then an cblique shock with
supersonic velocit} behind it is usually iransmitted into the inert gas, and it is this
gituation which will be considered in detail below,- On the other hand when ag > a,

' 6 19

- complicated interaction patterns result, and in some cases both Dabora™ and Jahn

have observed transmitted waves which actually precede the incident detonation or shock.

The flow at the inert-explosive interface must adjust itself to contain the high pres-
51.-1re behind the shock and within the reaction zone relative to the low pressure in the
inert bounding gas. When ag < 2, this (_:ontainment, in the c;.se of ordinary shocks,
occurs by deflection of the interface which in turn induces an oblique shock wave in the
inert gas, and by transmission of an expansion wave or "expansion zone" into the region

behind the incident shock >

as shown in Fig. 4. In the case of the detonation the shock
wave is followed by a reaction zone within which the gases expand to sonic velocity
and the pressure rapidly drops to the Chapman-Jouguet value at the sonic or C-J plane,

H the defonation is viewed as a discontinuity then, when ag < 2. the deflection and pres-

sure conditions can be satisfied by transmission of an oblique shock into the inert gas

22

and the propagation of 2 Prandtl-Meyer expansion into the region behind the detonation
This theoretical model, which has been verified experimentally by Sommersl, however,

provides no information about the interface flow within the reaction zone itself, which

must be understood in order to calculate the interface angle o.

Itis postulat;ad that the flow at the edge of the interaction zone is as shown in
Fig. 6. Along the interface, the pressure and flow direction in the reaction zone and
in the-supersonic region behind the induced shock must match, Some experimental
support for this model is provided by the schlieren photograph of 2 quenching detona-
tion moving past an inert gas as shown in Fig. 5. Here the combustion zone lags
considerably behind the shock with the result that the incident and induced shock waves
are clearly visible in the region between the shock and the reaction zone., With respect
to the inert gas the reaction zone acts as a slender body on which a tangency and pres-
sure condition must be satisfied while the surface shape is left free, These require-
ments are sufficient to determine the interface angle %, though the detailed calculation
will be quite difficult. Clearly if oti is too small, for example the exireme czi =0, the
induced shock will ﬁe unable to contain the pressure in the reaction zone; on the other
hand, with oy too large the pressure behind the induced shock will be too large.
Fbrmnately the flow in ﬁhis interaction region is isclated from the downstream flow by
the C-J or sonic plane and by the region of supersonic flow behind the induced shock
wave. To be consistent with the first order theory plane wave rea.ct.ion ZONe pressures
should be used to compute the flow in the above interaction region, It follows that to
first order ot.l will be independent of channel width and velocity decrement but will only

depend on the properties of the explosive and inert gases,

The formulation of the curved front theory is essentially complete. Once @; is
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determined equation (47) provides a relation between the velocity decrement 7, and the
channel width and reaction zone thickness L, and !20. The reaction zone thickness fo,
can be obtained from the C-J condition, {45), evaluated at o=, that is from the

equation

(m]
() Y
K-lnsﬂ ,(Ep_- >§_ - S, a"‘? | (452)

Application of the above theory requires detailed knowledge of the chemical processes
within the reaction zone as well as computation of e Exact solution of these two
auxiliary problems is difficult and beyond the scope of the present work; however, to
provide a preliminary test of the theory approximate velocity decrement calculations

for stoichiometric H2 - 02 detonations have heen made and compared with experimental

results as described below.

IV. Approximate Calculation of the Velocity Decrements of a Stoichiometric H2 ;92

Detonation

The combustion process has been approximated by the single first order reversible

reaction

A1_7 A2

such that there is no change in molecular weight, A siimnilar scheme has heen used by

17, 20

others Then it is readily shown that

(0 )
ar ax
¢ . Q 2
% ey G, T By 9
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where Q is the heat of reaction, For this first order reaction the reaction rate in terms

of the mass concentrations become520

{0) ) ©
Ay ge My )exp_( EA)

WOy, © 220 (49

where 7 is a characteristic time, ¥ 26 the equilibrium mass concentration, and E A the

activation energy. For purposes of computing 120 only the rate near the end of the re-

action zone is required. K it is assumed that

E
1 1 A
3= 'ru(o)a{ ) exp _{@T(OD = constant
2e
integration of equation (49) yields
0) _ (@ ¥
3{32 L}Cze [l—exp-(i)}. (50}

This result, in which A plays the role of a relaxation distance, was also used by Fayw.

Following Fay it has been assumed that 3¢ 28(0) £1.0, that (/C,T) = 1.0, and that

A = 0. 6 mm for stoichiometric H, - O, detonations at 1 atmosphere.

2 2

To compute_ft the reaction zone densitj has been assumed constant and equal to the
average of the density behind the shock and at the C-J plane so that

© O
p p
A [%(1 Lo (51)

P P

The density ratios in (51) were obfained from normal shock tables and the equilibrium
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For stoichiometric H, - 02 detonations, pI(O)/pw = 5, 06,

calcutations of Moy1e21 2

”2(0)/'% = 1.78.

- In order to compute o it ha.é been assumed that the interface 15 straight and at an
angle 1/ Z(ﬁl + ,82) where ;31 and ,82 are the deflection angles at the shock and at the C-J
plane (¥ig. 6). Requiring the pressure behind the induced obligue shock to equal the
pressure at the C-J plane then resiilted in a value = 13. 37 in the stoichiometric
Hz - 02 case. Essentially if is assumed that the pressure rapidly_drOps to the final
C-J value. A plane detonation velocity and Mach number of 9, 250 ft/sec and 5. 20,

taken from Moyle were used in the calculation of ai.

1 and € that is K1 = Q. 53, € = 1, were used.

Finally Fay's values for K

With the above information it was possible to simultanecusly solve equations (45a),
and (47) for n and 120., The computed values of 7 are compared {o the measurements of
Dabora in Fig. 7 and it can be seen that there is reasonable agreement between theory
and experiment, Figure 7 also indicates the decrease in reaction zone thickness with

decreasing channel width, The results of Fig. 7 provide encouraging support for the

present theory.

V. Discussion

The first order theory developed above provides a relationship between the ex-

plosive-inert interface conditions and the velocity decrement and detonation curvature.

The theory is essentially a hydrodynamic one without detailed consideration of chemical

effects. Analysis of the problem of detonation stability and quenching limits, which is

not considered in this paper, can undoubtedly be coupled to the present theory.

26

Laminar flow within the reaction zone has been assumed, though it is well l-mown22

that the structure of many C-J detonations is turbulent and that the wave surfaces may
be non-uniform or crinkled. I it is reasonable to use temporal ayerages within dis-
tances of the order of the reaction zone thickness the theory developed here may still

be applicable,

The agreement between the approximate ‘caleulations and Dabora's experimental
results is reassuring; however, further verification would be desirable. In particular

more precise values of p(O

)/pco and the pressure variation, should be used in the com-
putation of A and @, Calculated values of oei and wave curvature should be compared
with values taken from Schlieren photographs, and the comparison of theory and ex-

periment should be extended to wider ranges of mixture ratio. It should be possible to

use the present theory to obtain chemical-kinetic information from Schlieren photographs

and velocity decrement data from gaseous detonations with side relief,

Only the case in which the speed of sound in the inert is less than in the explosive
was considered in the treatment of the interface flow. The curved front theory above
should remain valid even in the case of higher sound speed in the inert gas. The chief

difficulty in this more complex case lies in the calculation of the detailed interface flow.

The nature of the C-J condition requires further study, especially the nature of the

transition from the plane to the curved front case.
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VIL Nomenclature

=

[{]

width of explosive
detonation velocity
density

distance along and normal to wave
X, ¥ velocity components
local wave curvature
wave radius of curvature
wave angle

pressure

static enthalpy

total enthalpy

unit mass of species s

swrichiometric coefficient of species s in reaction o

progress variable of ¢th reaction
rate of ath reaction

mass fraction of species s -
frozen speed of sound

specific volume

frozen constant pressure specific heat

frozen expansion coefficient

a characteristic reaction zone length

EO/R
30

ES

|

Subscripts

0O,
)y
0,

1

dimensionless coordinate defined by dx - dx/R
v/
dimensionless velocity decrement

reaction zone thickness

sonic velocity of unreacted explosive and undisturbed inert gas

respectively.

immediately behind the shock
at the C-J plane

at the explosife-inert interface.
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R= Local radius

of curvature
K =|/R = da /dx
a = Wave angle
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