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Abstract

The influence of the maximum lift-to-drag ratio
on the turning performance of an Orbital Transfer
Vehicle is analyzed. Chapman's variables are used
to formulate the equations of motion which are
valid for both atmospheric flight and flight in a
vacuum in a Newtonian gravitational field. Of the
six adjoint variables involved in the variational
formulation we obtain four exact integrals and two
approximate relations. This leads to an approxi-
mate but explicit control law for the 1lift and
bank control. The control law is tested numerically
for a whole range of entry speeds from parabolic
entry to near circular entry with several values
of maximum lift-to-drag ratio. The extensive
numerical results, which are very accurate as
compared to the exact optimal values, show that the

maximum plane change for any speed ratio Ventry/

Vfinal is simply proportional to the maximum 1lift-

to-drag ratio and depends solely on this parameter.

Nomenclature

A,B,C = functions as defined in Eq. (25)

CD = drag coefficient

CD* = drag coefficient at maximum 1lift-to-drag
ratio

CD = zero-lift drag coefficient

o

C = 1lift coefficient

CL* = lift coefficient at maximum lift-to-drag
ratio

ey = constants of integration

E* = maximum lift-to-drag ratio

g = gravitational acceleration

H = Hamiltonian

h = altitude

i = inclination

J = performance index

K = induced drag factor

k = Chapman's atmospheric parameter
(k = 30 for Earth's atmosphere)

ki = constant parameters in bank control

m = mass of the vehicle

P = adjoint variable associated to state
variable x

R = radial distance to entry altitude
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= radial distance to vehicle

= reference area

= dimensionless arc length

= time

= square of dimensionless speed, Eq. (1)
= speed

= dimensionless density of atmosphere used
as altitude variable, Eq. (1)

inverse of scale height in exponential
atmosphere

= flight path angle

= longitude

= CL/CL*, 1lift control

NS t®m R
[

™w
I

= density of atmosphere
bank angle

latitude

= heading

Subscripts

e = entry condition
f final condition

€6 Q0 > o<
I

Introduction

During the past two decades, considerable effort
has been expended to convincingly prove that the
use of aerodynamic forces to assist in the orbital
transfer can significantly reduce the fuel con-
sumption as compared to the pure propulsive mode.
An excellent review of aeroassisted orbit transfer
covering an extensive literature has been presented
by Walberg.l As is usually the case for pioneering
work, up to now the authors have concentrated their
efforts on the cases where the use of atmospheric
passages is clearly advantageous. These are the
cases of transfer from a high orbit to a low
orbit, and of transfer between non coplanar circu-
lar orbits with large plane change.

Future research will certainly cover the general
case of transfer from an arbitrary elliptic orbit
to another non coplanar orbit using atmospheric
turning in the middle portion of the trajectory to
reduce the total characteristic velocity (which is
a measure of the fuel consumption for high-thrust
propulsion system). The overall optimization is a
complex problem because there is coupling between
the space maneuver and the atmospheric maneuver as
shown in Fig. 1.

The initial phase of aeroassisted maneuver is
the deorbit phase in which one or two impulses can
be used to bring about entry of the Orbital
Transfer Vehicle (OTV) into the atmosphere at a
certain speed Ve and entry angle Ye' In this phase

a plane change can be achieved. With the two-



impulse deorbit scheme (which may be required
because of the geometric configuration of the
initial and final orbits) the first impulse is
usually used to boost the OTV into a higher orbit
where some orbital plane change can be efficiently
accomplished during the application of the second
impulse. This maneuver is also designed to in-
crease the entry speed for achieving more atmo-
spheric plane change.

ASCENT

Fig. 1. Aeroassisted maneuver. Nomenclature.

The second phase is the atmospheric turning.
In this phase the OTV, which has stored kinetic
energy due to high entry speed, can use lift and
bank modulation to achieve a major part of the
plane change required in the orbital transfer and
to exit at a position and with a velocity vector

most appropriate for ascending into the final orbit.

The final phase is accomplished propulsively with
one or two impulses to put the OTV into the final
orbit.

We notice that during the space maneuver the
fuel consumption occurs at the initial and the
final phases. The initial maneuver determines the
entry position and velocity, while the final maneu-
ver depends on the exit position and velocity.
Therefore a complete analysis of the atmospheric
turning phase is required in order to optimize
the combined propulsive-atmospheric maneuver.
a three-dimensional maneuver involving a plane
change the optimal atmospheric turning consists of
finding the 1ift and bank modulation to bring the
vehicle from the initial speed Ve at entry to the

For

final speed V. at exit such that a maximum plane

f
change is achieved. It will be shown that this
turning capability depends on the maximum lift-to-
drag ratio of the vehicle. It is proposed in this
paper to provide a qualitative and quantitative
analysis of this dependence. The numerical data
obtained can be tabulated and stored for use in a
preliminary design and mission analysis of future
OTV's.
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Optimal Atmospheric Turning

For a smooth transition from atmospheric flight
to flight in the vacuum, or vice versa, it is 9
convenient to use the modified Chapman variables

*
N o
2m B » U gr

to represent the altitude and the speed variable,
and the dimensionless arc length

ty
s = é T cos Y dt (2)
to replace the time as independent variable. The
notation used is the standard notation. The drag
polar considered is the parabolic drag polar
_ 2
¢, = ¢ +KC 3

o
with the condition at maximum lift-to-drag ratio

= * = = * =
cL c CD /K, ¢y = Cp ch
(o] [o]
= * =
(L/D)max E 1/2 4f KCD 4)

o
Then with a Newtonian gravitational field and a
locally exponential atmosphere such that

do = -B pdr (5)
where the inverse of the scale height B may be
allowed to vary with the altitude, we have the
universal dimensionless equations of motion?

az 2
s - k™ Z tan ¥
2
du kZu (1+A
& T By - G wany
day _ kZ XA cos @ 1
= L AP Y 4 - =
ds cos Y u
d8 _  cos (6)
ds cos ¢
g% = sin ¢
%%’ . kz X231n S _ cos ¥ tan ¢
cos” ¥

In these equations the aerodynamic control is
represented by the bank angle ¢ and by the lift
coefficient normalized with respect to the 1lift
coefficient at maximum lift-to-drag ratio,

A o= cL/cL* (7

The equations lead to Keplerian motion in the
vacuum when Z > 0. Furthermore they clearly have
the advantage that the only physical characteristic
of the OTV involved is the maximum lift-to-drag
ratio, E*. The results obtained are general in

the sense that they are valid for any particular
vehicle having the same value for E*. For the
numerical analysis we shall take three values

E* = 0.375, 0.75, 1.5 which are typical for
vehicles with low, medium and high maximum lift-to-
drag ratio. The characterigtic of the atmosphere
is specified by the value k“ = Br called Chapman's
atmospheric parameter. For the Earth's atmosphere
we take the value k2 = 900.

é




The optimal control problem consists of finding
the aerodynamic 1ift and bank control, A and O,
as functions of the time to bring the vehicle from
the initial entry condition

8 =¢_ = We =0, z, = 0.0002, YooYy prescribed

e e
(8)
to the final exit condition
Zf = Ze > up = prescribed ¢))
such that the plane change if is maximized. Hence,
we maximize the function
J = - cos ip = - cos ¢f cos wf (10)

In this problem the final position in terms of the
longitude Gf and latitude ¢f is not prescribed.
Also we assume that the final exit angle Ye is
free. The initial value Ze of Z is taken such
that at that altitude the sensible atmosphere is
encountered.

Using the maximum principle, we introduce the
adjoint variables P, to form the Hamiltonian

2
2 kZu(1+17) _
H=-k"Z P, tany -~ P, [ Ei"EEE‘Q‘ + (2-u)tan Y]
kZlcoso 1 cosy
+ pY[~EBg_?_ +l—u]+pe cost + p¢ sin ¥ (1)
+ pw[EZAE%Eg - cos ¥ tan ¢ ]
cos” ¥y

The maximization of the Hamiltonian with respect
to the controls A and 0 leads to the optimal law

E*p E*p
A cos O = ———l-, A sin o = S (12)
2up 2up cosy
u u
which depends on the adjoint variables. These

adjoint components P satisfy the adjoint equations

Py om
ds 9%

(13)

where x is any one of the six state variables. It
is known that the problem has the following
integrals

H=c¢., Py = C,s Py = C, 8in 8 - ¢, cos 6
0 8 1 0] 2 3 (14)

pw =cq sin ¢ + (c2 cos 8 + ¢, sin 8) cos ¢

3

where the c; are constants of integration. Since

the final arc length s_ and final longitude Sf are

f
not prescribed, we have the transversality condi-
tion

chn =0 , ¢, =0

0 1 15)

With the 4 integrals, we have two more adjoint
equations to be integrated. This requires guessing
two initial values. With the unknown constants

<, and cq to be chosen we have 4 arbitrary para-

meters to be selected to match the final and trans-
versality conditions. By normalizing the adjoint
variables we are left with a 3~parameter problem.
The problem has been solved in Ref. 3 with the
value E* = 1.5 for the OTV. As is well known, this

numerical method of solution is not an easy task
due to the high sensitivity of the parameters to be
selected. In the following, we will first reduce
the order of the system so that we can evaluate
approximately the two remaining adjoint variables
and obtain an approximate but explicit aerodynamic
control law containing only 2 constant parameters.
Then using this control law to integrate the

exact equations, we obtain the plane change for
each speed reduction. The results are very close
to exact solution obtained through much laborious
procedure. Furthermore, from the explicit form

of the control, its behavior can be established.

Optimal Lift and Bank Modulation

The atmospheric trajectory is essentially a
skip trajectory at small flight path angle. This
angle varies slowly so that we have dy/ds = 0.
From the equation for y 1in system (6) we obtain
the so-called equilibrium glide solution

kZ\X cos 0 = (l;u) cos Y (16)
Using this condition, we rewrite the system

2
du (AR D)A-w) o,
ds E* X cos O (2-u) tany
d8 _ cos
ds cos ¢

(17

 _
Is sin V¥
4 | _a-w

an 0 - tan
ds u cos Y t cos ¥ ©

In this system Yy has an average constant value
since the equation for Yy is satisfied identically.
With regard to the 1lift control we consider the
first term of the Hamiltonian containing A

aa?) (1-w) .

H=- u E* )\ cosoO

. (18)

The maximization of the Hamiltonian with respect to
A leads to the condition

2 82H 2pu(1-u)
Al =1, = - 3 =
E)N E¥\~cos O

2p (1-u)
- u <0
E*\ cos O

(19

In this reduced model the 1ift control is at maxi-
mum lift to drag ratio, A = + 1. We shall take

A =+ 1 and allow the bank angle to exceed 90° in
the case where the lift is pointing downward. It

is seen from the condition (19) that for P, > 0,

at supercircular speed (u>l) we must have cos 0 < 0
and 0 > 909, On the other hand, at subcircular
speed (u<l) 0 < 90° and a positive vertical com-
ponent of the 1lift, A cos o > 0, is required to
complete the turning skip.

At this point, it should be noticed that the
equilibrium glide assumption (16) and the reduced
system (17) have been solely used to deduce the
suboptimal law Ansl for the lift control. We now
return to the complete Hamiltonian (11) to obtain
the optimal modulation of the bank angle. Using
this Hamiltonian to write Eq. (13) for the adjoint
Py, we have
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dp 2
—Z -2 _ku(1H )
ds k Pz tan y + Py TE* cos Y
kAcos 0 kA sin G
=P, "eam~v ~ DBy 35— (20)
Y cos Y U] c032 ¥

Combining with the state equation (6) for Z, we
obtain

d(ZPZ) - kZu(1+Az) _ kZlcoso _ o kZ Asing
*
ds u E* cosy Y cos Y {7 cos
(21)
With the control law (12), we have the exact equa-
tion d(zp,) Kzu (1-2%)
= p (22)

ds u E* cosy

With the approximate 1ift control Az
the integral

= 1, we have

sz = ¢, (23)
We now write the Hamiltonian integral H = 0 with

the condition A = 1 and use Eqs. (12) to express

upu and pY in terms of pw. Then using the integrals

(14) and (23) and the transversality condition (15},
we obtain the equation for the optimal bank angle

Acos 0+Bsinoc +C = 0 (24)
where

A = (-u) (cos 6+ k. sin 8) cos ¢

u 1
B = (cosb + kl sin@) cos Yy cosYPsin ¢ (25)
+ (kl cos B-sinf) cosysiny + k2 siny
_ E*(2-u) R

c = R (cosf + kl sin 8) cos ¢ tan Yy
and ey k2c4

kl = - k2 = = (26)

2 2

are two arbitrary constants to be evaluated.

Equation (24) can be transformed into a quadra-
tic equation for tan (0/2)

(A—C)tan2 %-— 2Btan % - (A+C) = 0 27)
with the solution
o_ 1 2,.2 2
tan 3 = 2703 (B + N a“+B°-C“] (28)

Hence the bank angle is expressed explicitly in
terms of the state variables and two constants of
integration .

Trangversality Condition

As discussed before since we only have 4 exact
integrals (14), the numerical solution of the
exact formulation requires integrating 2 adjoint
equations in addition to the state equations (6).
In theory any one of the three unknown adjoints,
Pys Py and pY can be solved in terms of the other

two by using the Hamiltonian integral. In practice,
solving for pZ is not convenient since this vari-

able is not defined when Yy = 0 at the bottom of the
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On the other hand, solving for pY or

P, from the Hamiltonian integral requires the solu-

trajectory.

tion of a quadratic equation with some difficulty
during the integration because of the square root
involved. Therefore, the approach used in Ref. 3
has been the integration of three adjoint equations
with the Hamiltonian integral used for checking the
accuracy of the numerical solution. The main dif-
ficulty in this method of solution has been the
sensitivity of the 3 constant parameters which must
be adjusted to match the final and transversality
condition.

In the present formulation we have explicit
control laws for the lift and bank modulation.
Furthermore there are only two constant parameters
kl and k2 involved, and only the state equatiomns

need to be integrated. The labor involved for the
computation of a large family of trajectories
involving several values of maximum lift-to-drag
ratio is greatly reduced. Obviously, with only 2
parameters, one transversality condition is not
satisfied. To cobtain the best trajectory we shall
neglect the least sensitive condition.

From the terminal conditions (8) and (9), and
the performance index (10), we see that for a
three-parameter problem we can use the exit con-
ditions on Ues Ye and ¢f to adjust the parameters.

In aercassisted transfer the atmospheric plane
change is usually less than 20° and as such the
lateral range ¢ is small. Then cos if ~ cos wf.

The final lateral range is not involved in the
performance index and can be considered free in

the optimization process. Furthermore for small ¢
in the state equations (6) we can make cos ¢ o 1,
and in the equation for ¥ we can neglect the
centrifugal term, cos{ tan ¢ which is small com—
pared to the aerodynamic term. Then, ¢ is ignor-
able coordinate and p¢ = ¢ = 0. This means that we

can neglect the transversality condition involving

¢f and use the condition on ug and Yf at Zf = Ze

to adjust the parameters kl and kz in our control

law for the bank angle. Since Ye is free, pY(sf)= 0.

From the control law (12), this implies that

cos Gf = 0, that is

o} = 90°

¢ (29)

Numerical Results

For the numerical computation, we specify a
value of maximum lift-to-drag ratio E* and compute
the plane change for several values of the entry
speed ug starting with u, = 2 for parabolic entry.

Ze was selected to be a value which corresponds to

atmospheric entry with an initial acceleration due
to aerodynamic force on the order of a/g ~ 0.0l.
The values for the entry flight path angle were
chosen to be small and yet provide for a large

atmospheric turning. The constant parameters k
and k2
final prescribed speed ug is matched and the trans-

1
are selected such that at exit (Zf = Ze) the

versality condition (29) satisfied. To ease the




computation we simply use k, as a scanning para-

2

meter, For each k2 the value of k

1 is adjusted

such that condition (29) is matched. The final
value u_ obtained is accepted as the prescribed
value.

The procedure for determining appropriate values

for kl and k2 consists of starting with a rather

large negative value for k, and adjusting the

2

value of k., until the transversality condition (29)

1

is satisfied. values are then

2

selected which provide smaller exit velocities and
larger plane change angles. As an aid in computa-—
tion the locus of kl’ k2 values which satisfy the

transversality condition (29) may be graphed and
used to predict approximately the appropriate
value of kl (the value for which Of = 900) for any

More positive k

given value of k2. Figure 2 shows such a plot of
kl’ k2 values which satisfy the transversality

condition (29) for the case of parabolic entry
speed. Figure 3 demonstrates the relationship of
the exit speed and resulting plane change angle
to k2 values for the same entry speed.

kl
o3
E*o0z7
020
o.lof
E*|.125
s E*:15
o ] " 1 1 1 1
-1 -05 o 0.5 1 ke
Fig. 2. Plot of k, versus k, for the case of

parabolic entry (ue =2) .

Although the control laws are approximate, the
exact state equations (6) are used and therefore

we can compare the plane change if obtained from

the approximate control with the optimal value
obtained through modulating both the lift and the
bank in the exact formulation. For the value

E* = 1.5 extensive data for optimal plane change
has been compiled and summarized in Ref. 4. For
the same entry and exit speed the value if obtained

with our proposed control law agrees to within a
fraction of one degree with the optimal plane
change angles from Ref. 4, even for large plane
changes. This close agreement occurs because in
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Fig. 3. Relationship between the plane change
angle if (or final speed Vf) and the parameter

k2 for the case of parabolic entry (ue = 2).

the optimal trajectory the 1lift control A is
oscillating near the value A = 1 used in approxi-
mate control and because the behaviors of the bank
angle are quite similar to each other. This also
leads to a closeness of the trajectory variables
when we compare the suboptimal trajectory with the
optimal one.

As an example, we consider in Figs. 4 and 5 the
trajectory variables for the case of an entry for
a return from a geosynchronous orbit with
u, = 1.733 and Yo = -4% with an OTV such that

E¥ = 1.5, With the approximate control we obtain
the following results

Vf/‘\/g R 1.02827 (1.02893)
i = 20.9079° (20.9057°)
1.5089° (1.9037%)

Ye =

o, = 32.8744° (28.3869%)
b, = 7.3151° (5.9549°)
e = 19.6404° (20.0761°)

The numbers in parentheses are the final values
from the optimal solution. 1In both cases the exact
equations of motion (6) are used so that the two
trajectories are the actual trajectories flown.
Figure 4 shows the variations of the dimensionless
speed V/ v g R and the altitude drop -B A h. The
speed is simply v u with the circular speed v gR
evaluated at entry. As for the altitude drop,
from the definition (1) ofz, it is

BAh = -2n (Z/Ze) (30)
Trajectories from the optimal control are plotted
in solid lines while the small circles represent
data from trajectories with the present control.
The suboptimal trajectory is more extended in the
range but the altitude variation is the same.
This results in the same management in the speed.



Figure 5 shows the variations of the lateral

range, heading and flight path angle. It is seen
that in both cases most of the turning is made at
low altitude. It is also there that most of the
speed depletion occurs. From the figure we detect
a slight decrease of the heading near the end of
the turning. From the last equation in system (6),
it is seen that this occurs when the centrifugal
force becomes large and

k Z X sing

= cos Y tan ¢ (31)

cos” ¥

Since theoretically Z is very small at exit, we
have this feature on all skip trajectories. On

-In(Z2/2,)

-3

-4

— OPTIMAL

-5 O PRESENT soL-Alt
-6
[
1 1 1 1 1 1 1.0

) 5 10 13 20 25 30 go
Fig. 4. Variations of the speed and altitude.

Case of E* = 1.5, u = 1.733, i = 20.9°.

| $.¥° y°

—e= OPTIMAL

o PRESENT SOL.

20

5 -4
o
| 8
0 5 10 15 20 25 30
Fig. 5. Variations of the lateral range, heading

and flight path angle. Case of E*¥ = 1.5,
u, = 1.733, i = 20.9°

the other hand, since
cos ¢ cos Y (32)

we have by using the state equations (6)

cos i =

di .

E§ . kZcos ¢ siny X sin O (33)
sin i cos™ ¥

Then, it is seen that i increases continuously with

sin ¢ > 0.

Figure 6 shows the influence of the maximum
lift-to-drag ratio on the turning performance. The
entry speed is the parabolic speed u, = 2. For

E%o37s

Fig. 6.
final speed for various values of E¥*,
parabolic entry, u, = 2.0.

Maximum plane change as function of the
Case of

each value of the maximum lift-to-drag ratio E* we
have computed and plotted the maximum plane change
if for each prescribed value of the final dimension-

less speed Vf/ v gR . In a preliminary assessment,

it is seen that the maximum plane change is propor-
tional to E*, For an estimate of this performance,
we can use the first order solution

\
*
i - 180 E* en == (34)
f T Vf

This solution is plotted in dashed lines in Fig. ¢
and is within 17 of the optimal solution.

The approximate aerodynamic control, A = 1 and
o given by Eq. (24), is very accurate and shows the
correct behavior of the bank control. This behavior
is shown in Fig. 7. At the initial phase the opti-
mal bank angle is high and exceeds 90°. Hence the
lift force is directed downward and is used to pull
the OTV rapidly toward the dense atmosphere where
effective turning is made. For a supercircular
speed exit the bank angle decreases toward its final
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optimal value Op = 950°. The vehicle pulls out on

atrength of the centrifugal force. On the other
hand, for a subecircular exit speed, a positive
vertical component of the 1ift force is required

during the climbing phase of gkip turning.

Then

as shown in Fig.

7, the bank angle becomes less

than 90° to produce upward lift. It decreases to
2 minimum value and in tge terminal phase increases
to the final value of 90°.

120
o

100

80

70

Fig. 7. Variations of the optimal bank angle
for exit at: (a) supercircular speed;
(b) subcircular speed.

The numerical computation for the whole range
of entry speed from parabolic entry to near circu-
lar entry for different values of the maximum 1ift-
to drag ratio is fairly routine for supercircular
exit speed Vf/ v g R > 1. This is because, as

explained above, we need to do an iteration only

on one parameter k., while using k, as a scanning
parameter. On the other hand we éencounter some
mild difficulties for large plane change when the
exit speed becomes subcircular. This is because as
seen from Eq., (25), A is small when u 2 1 and the
discriminant

2 2 2

D = A" +B° -¢ (35)

in the quadratic formula (28) can be negative.
Along the optimal trajectory, the coefficients A, B

By eliminating ¢ between the last two equations,
we have the condition at the minimum bank angle

ac' - a'e)? + e’ - 3'0)? = @aB'-a'B)? (39)
It is easy to verify that if the two equations (36)
and (37) are satisfied, then condition (39) is also
satisfied. Then for subcircular speed exit, for

each value of k2, we first find the value of k1

such that the two conditions (36) and (37) are
satisfied at a certain point on the trajectory. At
that point, the bank angle passes through a minimunm.
We have then the limiting value of kl for the bank

angle to exhibit the behavior as shown in trajectory
(b) of Fig. 7. The optimal trajectory is found by
searching for values of kl beyond the limiting

value, and the difficulty with imaginary roots is
avoided.

Since the maximum plane change i_. is essentially

f
proportional to E*, it is possible to plot the
results of extensive numerical computation in one
single graph as shown in Fig. 8. 1In this figure
we use the square of the dimensionless speed, u,

as parameter and plot the dimensionless exit speed,
Vf/\/g R , versus the ratio if/E*. Then the graph

can be used for any value of the maximum 1ift-to-drag
ratio selected.

and C and consequently the bank angle 0 are functions Mo DU N

of the independent variable s. If D decreases to 09 A * * N s

a minimum value and then increases while remaining

positive, the trajectory can be continued until L ) . . . N

exit or until crashing. Then an iteration can be o s o s 20 25 io/E.=:
made to satisfy the transversality condition (29). ¢

If negative values of D are encountered, we have
the limiting case when the minimum value of D is

zero. Then we have at that point

p = a%2+82-¢% - o (36)
and

D'/2 = AA' +3BB'-CC' = O (37

where the prime denotes the derivative with respect
to s. On the other hand, as shown in Fig. 7, the
optimal bank angle passes through a minimum for the
case of subcircular speed exit. At that point

. + -
A cos 0+ B sing C 0 (38)
sino +¢' = 0

A' cos 0 + B!

Fig. 8. Maximum plane change angle as function
of the exit speed for several values of the
entry speed. The graph can be used for any
value of E*.

In Fig. 8 we have also plotted Eq. (34) in
dashed lines for comparison. To obtain this equa-
tion we have used the small angle approximation and
neglected the centrifugal term to write the equa-
tions for u and ¥ in system (6) as
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du Kkzu (1412
ds E*
(40)
dv = kZXsino
ds

Furthermore, we use the approximation cos i =
cos ¢ cosP my cosP. Then using u as independent
variable, we form the equation for constant 1lift

and bank
i *
%E = - E—z)\ sin ¢ (41)
1+ u
which can be integrated to give
i . v
_£.= 2Asingo on -2 (42)
E 2 \
(I+27) f

The maximization of this plane change with respect

to the lift contgol A and bank angle ¢ 1leads to
A=1and 0 = 90 . Hence we have in radians
i v
£ _ e
gEx - 0 v, (43)

which is the same as Eq. (34) expressed in degrees.
It should be noticed that this equation is solely
used as an excellent estimate of the maximum

plane change and as such it is a useful formula to
be used in connection with a preliminary optimiza-
tion of the combined aerodynamic-propulsive maneu-
ver.

Since flight at constant 1lift coefficient and
bank angle is an attractive program, we have in-
vestigated the possibility of using this mode as
an alternate way of generating suboptimal trajec-
tories for atmospheric plane change. From the
previous analysis we consider the case of A = 1
and 0 = 90°. For the numerical analysis, we use
E*¥ = 1,5 and u, = 1.733, that is, the case of

entry for return from a geosynchronous orbit.
it should be noticed that if the entry angle is
held at a fixed value, say Ye = =49, then flexi-

First,

bility in controlling the trajectory is lost and
from the integration of the exact equations we
simply obtain if = 9,18% at an exit speed

Vf/ v gR = 1.18202. On the other hand, the optimal
program with modulation of both the 1lift coeffici-
ent and the bank angle or the present program with
lift coefficient at maximum lift-to-drag ratio and
the bank angle according to Eq. (24) allows the
control of the flight from any given entry condi-
tion, to any desired final speed with maximum

plane change angle. For constant aerodynamic
control, in order to obtain various final speeds,
and hence different plane change angles, we must
vary the entry angle Ye . This has little influence

on the total characteristic velocity in the optimi-
zation process since Yé only varies in a small

range.
1.

The comparative results are shown in Table

First, we compute the plane change angles if

obtained with the constant 1lift and bank program
for different entry angles. These are shown in the
third column. It is seen that the plane change
angle is very sensitive to change in the entry

Table 1. Comparison of the performances from
various flight programs. Case of E* = 1.5, u_=
1.733. €

. A=l . sub- .
Y, Vf/Vg R lf(o=90°) 1f(opt.) lf(opt.) 1f,Eq(34)
3.5° | 1.27971{ 2.41788°] 2.43165°| 2.41958° 2.43165°
3.8 1.23922| 5.15903 5.12048 5.07473 | 5.19485
4.0 1.18202§ 9.18030 { 9.17059 9.18196 | 9.25632
4.1 1.13346]12.7456 12.7662 12.7198 {12.8617
4.2 1.05497118.8286 18.8287 18.7311 |19.0292
4.22511.02518121.2498 21.2203 21.2204 (21.4910
4.250 1 0.98305424.7791 24.6908 24.7494 125.0979
angle. From a value of Ye = -3.5° leading to
if = 2,42°, when we increase to Yo = —4.250, we
obtain i_ = 24.78°. This value is about the maxi-

£
mum plane change angle obtained by this mode since
when we slightly increase the entry angle to
Yo = -4.255° in order to obtain a higher plane

change, we have a crashing trajectory.

Next, using various final speeds as shown in the
second column, we evaluate the optimal plane change
angles as tabulated in Ref. 4 and also compute if

These trajectories
—4°

The results are reported in Table 1 for comparison.
Finally, in the last column we provide the estimate §
of the plane change angle as given by Eq. (34). i

using the bank control law (24).
are all computed with the same entry angle Ye =

It is seen that the results are close to each
other, with Eq. (34) giving a slight overestimated
value in each case. Rigorously speaking, of the
three control laws tested, the one providing
if(opt) must be the best. Some of the values in the

column if(subopt) obtained with the bank control

proposed in this paper appear slightly higher. This
closeness makes explicit the excellent performance
of this control law, and the small difference is
simply due to the extrapolation we use to analyze
data from Ref. 4 for a match with the required

final speed.

The constant aerodynamic control program also
provides excellent results. This is because, as
seen in Fig. 7 for supercircular speed exit, the
optimal bank angle is close to 90°. The higher
value used for ¢ in the initial phase is designed to
direct the lift downward to pull the vehicle into
the dense layer of the atmosphere where turning at
0= 900 is effectively made. In the constant bank
program, this is aided by selecting a steeper entry
angle. Some plane change angles in this mode appear
higher than the optimal values. This is because in
the optimal program we keep Yo fixed at -4°. If we

search for the best entry angle, then the value
if(opt) obtained will be the overall best value for

the same exit speed. But since this only gives a
slight improvement, and in the optimal program we
deal with the iteration on three parameters and in
the suboptimal program, two parameters are involved,
in order to obtain extensive data for various entry
speeds with different values of the maximum lift-to-
drag ratio, the entry angle has not been used as
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additional parameter in the computation.

In summary, for a prescribed entry conditiom,
optimal modulation of both the 1ift coefficient
and the bank angle is required to bring the vehicle
to the desired exit speed with maximum plane change.
As a suboptimal solution, the 1ift coefficient can
be kept at its value for maximum lift-to-drag ratio,
while the bank angle is controlled according to the
explicit formula (24) with comparable results.
Flight at maximum lift-to-drag ratio and 90° bank
angle can be used to obtain near optimal plane
change angle for any desired supercircular exit
speed and this is through the appropriate selection
of the entry angle. This would require accurate
guidance of the deorbit trajectory since in the
constant bank angle mode the plane change angle is
very sensitive to the variation of the entry angle.

As a final remark, turning at ¢ = 90° eliminates
a lift component in the normal direction in the
osculating plane, that is the (¥,V) plane. Then,
as far as the altitude, flight path angle and speed
are concerned, that is for the variables Z, Yy and
u, their equations are the same as the equations
in planar ballistic flight. This problem of ballis-
tic fly-through has been investigated in detail in
Ref. 5 and it has been found that for a given entry
speed, entry altitude and ballistic coefficient,
there exists a critical entry angle beyond which
the vehicle fails to exit. At this critical entry
angle, the ballistic trajectory leads to an exit
speed slightly subcircular. An accurate formula
for the evaluation of this critical angle has been
provided in Ref. 5. In terms of the notation used
in this paper, it is

2 2
1.67 2, [2(u-1) T [ K'u, sin” v, ]
exp

* —
E u, 2(ue 1)

- 1 _
= . 1 + n u, (44)

e

For the case in Table 1, with u, = 1.733,
0.0002 and E* = 1.5 we obtain from this formula

e

Yo 4.2549°. This is the same value we have found

in our numerical analysis. Turning at 90° bank
angle cannot be achieved beyond this entry angle

and the plane change angle with this mode is re-
stricted at i, < 24.78°, Vf/ YgR > 0.983.

Conclusion

In this paper we have analyzed the influence
of the maximum lift-to-drag ratio E* on the turning
performance of an Orbital Transfer Vehicle.
Chapman's variables are used to formulate the equa-
tions of motion which are valid for both atmospheric
flight and flight in a vacuum in a Newtonian gravi-
tational field. Using the variational method for
the six adjoint equations, we obtain four exact
integrals and two approximate relations. This leads
to an approximate but explicit control law for the
lift and bank control. The control law is tested
numerically for a whole range of entry speed from
parabolic entry to near circular entry with several
values of maximum 1lift-to-drag ratio. It is observ-
ed that the maximum plane change for any speed

ratio Ve/Vf is simply proportional to the maximum

lift-to~drag ratio and depends solely on this para-
meter. The analysis, which is summarized in an
explicitly displayed graph, should be useful for a
preliminary design and mission analysis of future
OTV's.
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