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Stability of Plane Poiseuille Flows of
Viscoelastic Liquids: An Asymptotic Solution
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Virginia Polytechnic Institute and State University, Blacksburg, Va.
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The Orr-Sommerfeld equation, modified to include viscoelastic effects, is solved asymp-
totically. The method of inner and outer expansions is used to determine the characteristic
equation. The present results are found to be in fairly good agreement with the results
obtained numerically by Chun and Schwarz. However, the present results do not agree
with those obtained in an earlier asymptotic solution by Chan Man Fong and Walters. It
is shown that the effect of the viscoelasticity is stabilizing.

Introduction

AS a result of the increased interest in non-Newtonian
-L~m. flows, there have been two recent studies of the stability
of plane Poiseuille flow of viscoelastic liquids. In the first of
these studies, Walters/ using an integral constitutive equa-
tion of the type proposed by Oldroyd,2 developed a modified
version of the Orr-Sommerfeld equation, and later Chan Man
Fong and Walters3 published two asymptotic solutions. In
the second study, Chun and Schwarz,4 using the differential
constitutive equation of a second-order liquid derived by
Coleman and Noll,5 also developed a modified version of the
Orr-Sommerfeld equation and, in the same paper, published
a numerical solution. The two versions of the stability
equation are the same (see the Appendix), and in both solu-
tions the same boundary conditions and primary velocity
profile were used. Thus, it would be interesting to compare
the two sets of results directly; however, this is not possible
for reasons to be given later. In fact, the two asymptotic
solutions of Chan Man Fong and Walters cannot be quanti-
tatively compared.

The purpose of this paper is to present an asymptotic solu-
tion to the same problem for which the results can be com-
pared quantitatively with those of Chun and Schwarz as well
as with one set of the results of Chan Man Fong and Walters.

Although the present asymptotic solution is essentially a
perturbation of the solutions obtained by Tollmien6 and Lin,7
the characteristic equation is derived in a somewhat different
manner. The approach used here is due, with slight modifi-
cations, to Graebel8 and it explains the roles of the viscous
and inviscid solutions in terms of inner and outer expansions.
Moreover, the approximations for both the Newtonian as
well as the non-Newtonian case are precisely established in
the sense that the method is general and could be used to
take higher-order terms into consideration.

Stability Problem

For the remainder of this paper, the flow is taken to be in
the ^-direction and the plates to be located at y = ±1.

Walters, as well as Chun and Schwarz, found the stability
of infinitesimal, two-dimensional,9 in-plane disturbances in
parallel flows to be governed by

= { [I/fa - /3(U - c)} X
(1)

(U - c)(D2 - o:2)4> -

in which Re is a Reynolds number based on the speed at the
midpoint; /3 a non-Newtonian parameter (see the Appendix) ;
U(y) the primary flow speed; D indicates differentiation in
the y direction; and a is the (real) wave number, c the (com-
plex) wave speed and <j>(y) the amplitude of the disturbance.
For the details of the derivation of Eq. (1) and any further
explanation of the symbols, the reader is referred to the
papers by Walters, Chun, and Schwarz. It turns out that

U = 1 - (2)
as in the case of flows of Navier-Stokes liquids. Even with
the addition of the non-Newtonian term to the stability
equation, <j> can still be divided into independent even and
odd parts, and here, as in the Navier-Stokes case, it is assumed
that only the even disturbances need to be considered. Thus,
the boundary conditions are

D<KO) = 0, Z>'0(0) = 0, (K-l) - 0, D0(-l) = 0 (3)

When a set of four independent solutions to Eq. (1) are sub-
stituted into Eq. (3), one can obtain a characteristic equation
of the form F(a,Re,c,/3) = 0. For given values of ft and c,
this equation provides a relationship between a and Re.
Of paramount interest is the relationship for a = 0, the
graphical representation being the so-called neutral stability
curve.
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Determination of the Asymptotic
Form of the Characteristic Equation

Since the procedure used to determine the characteristic
equation, with slight modifications, is due to Graebel, some
of the results are just stated, and in these instances the
reader is referred to GraebePs paper.

The explanation is believed to be simplest when the char-
acteristic equation for ft = 0 is obtained first and then the
modification that is necessary when ft is not zero is discussed.
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It is anticipated that aR will be large. Consequently,
from Eq. (1) it appears that <p approximately satisfies

(U - = 0 (4)

everywhere except near the points where U = c, the so-
called critical points. (It should be noted that interest here
is focused on the neutral stability condition for which c» =
0.) That a critical point lies in or near the flowfield is in-
ferred from the fact that one cannot, in general, satisfy
all four conditions in Eq. (3) with any pair of linearly inde-
pendent solutions to Eq. (4). In the following develop-
ment, the critical points are assumed to lie in the flowfield
near the plates. The previous presumptions, as in any such
approximate technique, are considered correct if an asymp-
totic solution can be developed that is entirely consistent
with them.

The flow region is divided into an inner and an outer re-
gion. The inner region is a strip that includes the rigid
bottom boundary at y = — 1 and the critical point, and the
outer region extends from the edge of the inner region to the
centerline between the plates at y = 0. It is assumed that
the two regions overlap. The procedure now is to obtain a
solution valid in the inner region and a solution valid in the
outer region and then to match the inner with the outer solu-
tion where the regions overlap. The inner solution is then
used to satisfy the boundary conditions at y = — 1 and the
outer solution is used at y = 0.

In the inner region, the approximate form of Eq. (1) is ob-
tained by introducing the change in variable (coordinate
stretching)

and by putting

= x(0)0?)

(5)

(6)

where ju is a function of aR, unkoown at this point, but ex-
pected to be small. (Henceforth, at the critical point y =
yc, DU = DUc, etc.) When Eqs. (5) and (6) are substi-
tuted into Eq. (1) and the coefficients of like powers of ju- set
equal to zero, it appears that the least-degenerate forms of
the equations that are to be used to determine x(0), X(1)> etc.
are

= 0 (7)

+ 2X
(0)], etc. (8)

corresponding to the choice fi = (aR)~113. Then it follows
from Eq. (7)

(9)

(10)

(U)

Xi

X2
(0) = 1

/
/* 77

^77 I di
— CO J —— CO

X4(0) = J77^ dr] J" Jrjh,[i(DUc)ll*r]}

X3

where hiM^} = f^3/2^i/3(1)'(2)(f^3/2) and #i/3
(1)'(2) are

Hankel functions of order one-third. The hi and A2 are
tabulated.10

Because HH^ increases exponentially with large positive
77, X4(0) cannot be matched with the outer solution and, thus,
is discarded at this point.

Putting Eq. (9) into Eq. (8) leads to

Xl(D = -tf/DUc (12)

From Eqs. (10) and (8), Graebel obtained the following exact

solution for X2(1):
2

X2u; = X

ds (13)

where the path of integration for s is chosen so that the in-
tegral does not grow exponentially as \rj\ approaches in-
finity. For large 77,

X2(D _ -(2/DUc)rj 2i/[3(DUc)V] (14)

where — 7-7T/6 < sugrj < 7r/6. This determines the proper
branch of In 77 to be used.

From the recursion relation,

(15)

it follows that

v.(» = %f__5_ c23x
~

(0) ,(0)

where 7 = 0.67830/Dt/c - 0.39099 + ^•(0.39160/JDC/c -
0.67896).

Since 77 is negative at the bottom plate, In rj has a complex
value there, and it appears that %2 may not be adequately
described there unless the X2(1) term is included. In fact,
Graebel obtained a characteristic equation, for which %2(1)

was neglected, that did not yield the typical loop of a neutral
stability curve. Consequently, in the inner region the solu-
tion is taken to be

c2[l - (2 In?;] (17)

The following two additional presumptions were made:
first, | 77 | is large enough to justify using the asymptotic ex-
pansion for %2(1) [in a more refined approximation, Eq. (13)
would be used in place of Eq. (14)] and second, xs(1) may be
safely neglected. The %i(1) term is included since it actually
aids in the merger with the outer expansion.

In the outer region, the following expansion for <j> is as-
sumed :

(18)

where the functions e(ju) are to be determined from the
matching. Substituting Eq. (18) into Eq. (1) gives

(U - c)(D* - a*)u«» + 2u<°> = 0 (19)

and M(O) = u(n^ for all n such that en < 0(/z3). The solutions
to Eq. (19) used in this paper are

:1«»(2/) =

= F, Inz

(20)

(21)

where A0 = 1, Ai = —l/DUc, A2 = a2/6, and An+3 =
[(n + l)(n + 4)An+2 + 2DUcAn+i - 2An]/(n + 3)(n + 4)
DUc; £0 = -DUc/2, Bl = 0, J52 = 2/DUc - o?DUc/±,
and £n+3 = [n(n + 3)5n+2 - DUc(2n + 5)An+2 + (2n +
3)An+i + ZDUcBn^ - 2Bn]/(n + 2)(n + 3)DC7c.

Thus, the outer expansion has the form

o(M
3)
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Fig. 1 A plot of the real against the imaginary part of
Eq. (29).

Replacing z by p,rj and expanding for small ju leads to

- 2/DUc + . . . )ei<°> +
(/ii? Injiii? - Z)C7c/2 + . . . )e2

(0)] + . . .

Thus, for the inner and outer expansions to merge e0 = 1/M>
= Clj 62(o) = o; 6! - In/z, ei(1) = 2cz/DUc, e2<» = 0; and

Then in the outer
Cl

62 = i; 6l(2> = o, c2(2) - -2c2/DUc.
region,

(22)

Now putting Eqs. (17) and (22) into Eq. (3) leads to

+ c$x2(i?i) + CsXaO?!) = 0
+

(23a)

i) / di] + c^xs^/dy = 0 (23b)

- (2c,/DUc)DF,(z0) = 0 (23c)
The subscripts zero and one correspond to the values of y
at the points where the quantities are to be evaluated. Note
that in the outer region where $ satisfies Eq. (19) it follows
that Z)0(0) being zero implies Z)3<£(0) is zero also. For a
nontrivial set of ci, 02, and c3 to exist it follows from Eq. (23)
that

(25)

In Eq. (25), xi(*?i) and XsC^i) have been approximated by
FI(ZI)/H and —2F2(zi)/DUc, respectively. Equation (25)
is essentially the characteristic equation used by Lin, although
he elected to express the outer expansion in powers of a2.

When ft is not zero, the characteristic equation is modified
as follows: since ft is small the outer solution remains un-
changed. In the inner region, however, the simplest ex-
pression for x(0) that contains the viscoelastic term is

(1 - ieDUc)d4x(Q)/dr)* = 0 (26)

where e = /-ia/3 and all other terms are defined as previously.
Since e multiplies only the fourth derivative, xi and X2 remain
unchanged. The change in xs rnay be no more than what
would result from keeping xs(1) ] hence, the results should be
interpreted more as indicating a trend than as providing an
accurate solution. For small e (i.e., slight viscoelasticity),
Xs can be approximated by setting

X3 = ^o + c^i (27)

where
iDUcd\f/i/dr}* =
(15), it follows that

r)2 = 0 and
From the recursion relation

Now combining Eqs. (28), (27), and (10) with Eq.
setting f = (DUc)1^ and X = /3(aDUc)2l*/[5(Reyt*]
to the following explicit relationship

(28)

(25),
lead

- DF,(2l)DFl(z0)
Equation (29) is the characteristic equation used to deter-
mine the neutral stability curves in this paper.

Results and Conclusions

For the integration indicated in Eq. (29), the series given
in Ref. 10 were integrated term by term for | f | -< 6. For
|f | > 6, the integration was continued numerically using
Simpson's rule and the asymptotic expression for hi.

At this point, one can either determine neutral stability
curves on which X is constant or curves on which /3 is con-
stant. Chan Man Fong and Walters calculated curves on
which \ is constant, and on the other hand, Chun and
Schwarz calculated curves on which ft is constant. Thus, a
direct quantitative comparison is impossible. The present
results contain curves of constant X as well as curves of con-
stant ft.

For the curves of constant X the left side of Eq. (29) is a
function of f only, and for a given value of c the right side is
a function of a only. Thus, Eq. (29) can be solved graph-
ically by plotting the real against the imaginary parts of the
left (curves of constant X) and right (curves of constant c)
sides on the same graph. Figure 1 shows several typical
curves.

For curves of constant ft, the solution is not so amenable
to graphical methods and so an iterative procedure was
used. Values were assigned to ft and c and then a, f , and Re
were obtained. From the definitions of /* and f , the needed
third relationship was found to be fi = (yi — yc)[(DUc/

In Fig. 2 and in Table 1, the results of Chun and Schwarz
are compared with the present results. It should be noted
that ft in the present paper is the negative of the ft used by
Chun and Schwarz. The results are all based on the present
definition of ft.

In Fig. 3 the results of Chan Man Fong and Walters are
compared with the present results. The X used in Fig. 3 is
that defined in this paper, which is \ of that defined by Chan
Man Fong and Walters. The disagreement in the two re-
sults is not understood; however, it is noted that their results
for X = 0 differ considerably from the accepted values of
Lin. On this basis, the present results are believed to be the
more accurate.

The differences in the expressions used for the inviscid
solutions may explain the slight discrepancy for a > 1 be-
tween the present results and those of Lin.

In all the results, the trend is clear and consistent. Both
Chun and Schwarz as well as Chan Man Fong and Walters
have stated that the effect of the viscoelasticity is destabiliz-
ing. A conclusion that apparently contradicts observations
made for boundary-layer flows of very dilute polymer solu-
tions. This contradiction can be explained. Markovitz
and Coleman11 have indicated that on the basis of thermo-
dynamic intuition the material constant that determines ft
must be negative, and they even give an experimental value
to substantiate their statement. It turns out that ft must



JANUARY 1971 STABILITY OF PLANE POISEUILLE FLOWS OF VISCOELASTIC LIQUIDS 23

Table 1 Critical values of a, c, and Re for various
values of j8, comparing the present results with those

of Chun and Schwarz

Re
|8 C&S Present

-0.
0.
0.
0.
1.

1
0
1
5
0

5775
5537
4620
3630

5623
5399
5170
4186
2662

C&S

1.
1.
1.
1.

026
026
,08
16

a
Present

1.
1.
1.
1.
1.

012
022
,033
,088
226

c
C&S Present

0.
0.
0.
0,

,2646
,2668
,2840
.3065

0.
0.
0.
0.
0.

2636
2672
2708
2886
3296

also be negative. Thus, the results indicate, since the trend
is reversed when the sign of ft (or, equivalently, A) is changed,
that the influence of the viscoelasticity is stabilizing.

Appendix

Here the relationship between a constitutive equation of
the type proposed by Oldroyd and the constitutive equation
for a second-order liquid is established. The viscoelastic
parameter ft is also defined.

The material properties of viscoelastic liquids can be
described, at least qualitatively, by constitutive equations
of the form

2500 5000 15000

Re

Fig. 2 Neutral stability curves for various values of \*
comparing the present results with those of Chun and

Schwarz.

<TH = —1

and

\//(t —

—pdij + v&ij +

—^ emndl (Al)

+ (A2)

in which t is the time; the a^ are the stress components;
en and etj the rate of deformation components, evaluated at
t and t, respectively; p the pressure; and da the Kronecker
delta. In Eq. (Al) xm represents the position at time t of the
particle which is in the position represented by xm at time
t, and \[/ is the relaxation function which is peculiar to the
material. In Eq. (A2), ju, 77, and 7 are material constants
and the o# are defined by

+ + De^/Dt (A3)

In Eq. (A3), the Vk are the components of the velocity and
D/Dt represents the material derivative. Equations having
generally the form of Eq. (Al) were proposed by Oldroyd
and Eq. (A2) was proposed by Coleman and Noll.

In order to work with Eq. (Al), one must determine the
Xi as a function of #,-, t, and t. This relationship can be ob-
tained by integrating

0 (A4)

Since the Xi can serve as material coordinates, Eq. (A4) ex-
presses the fact that the material coordinates of a given par-
ticle do not change with time.

The integral form of Eq. (Al) can be reduced to an equiva-
lent differential form as follows: a formal series solution to
Eq. (A4) is

X' —
l_ (l>Xi (A5)

This is a Taylor series expansion backwards in time, holding
the material coordinates constant. [Walters used only the
first two terms in (A5) in deriving the stability equation (1).]
Similarly, one can write

(A6)

Then from Eqs. (A5) and (A6), it follows that

[«„,- + (I - 0 ̂  (0 + . . .1x

+ (I - t) ~° (0 + .

Substituting Eq. (A7) into Eq. (Al) leads to
••] (A7)

dvrn Dei:i\
-^ ~T~ TN, Idxi Dt /

where

r
J —— C

V =

higher-
+ order (A8)

terms

- t)dt (A9)

16 18 20 22 24 26 28 30 32

Fig. 3 Neutral stability curves for various values of 0*
comparing the present results with those of Chan Man>

Fong and Walters as well as with those of Lin.
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The higher-order terms in Eq. (A8) contain factors of the
form

r (i - tw(t -
J — oo

where n, an integer, is greater than 1.
For materials for which the deformation history is im-

portant for only a short time, the higher-order terms can be
neglected. In this case, Eq. (A8) differs from Eq. (A2) only
in the term containing 77. Thus, since there are no terms
containing 77 in the stability equation for a second-order
liquid (see Chun and Schwarz), this equation is also valid for
liquids described by Eq. (Al).

InEq. (1), /3 is defined by 0 = yRe/(ph2). Re, the Reynolds
number, is based on /z and h where 2h is the distance between
the plates.

If jit is positive as thermodynamic considerations indicate,
then from Eq. (A9), 7 is apparently negative as Coleman
and Markovitz have stated.

For the two-dimensional infinitesimal disturbances corre-
sponding to velocity components of the form [u,v] = [u(y),
v(y)]E, where E = exp [ia(x — ct)], the series expression in
Eq. (A5) can be replaced by

= y - [vE(l - F)/ia(U - c)} (AlOa)

x = x - U(t - I) + {[vDU/a* X
(U - c)2] - [u/ia(U - c)]} X

E(l - F) + v(DU)(EF)(t - t)/ia(U - c) (AlOb)
where F = exp[ia(U — c)(t — t)].

Equations (A10) are valid for arbitrary finite time. Using
Eqs. (A10) rather than only the first two terms in Eq. (A5),
Mook and Graebel12 derived a stability equation and showed
that in the limit as the memory of the material fades this
equation reduces to Eq. (1).
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