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Control of Hovering Spacecraft Near Small Bodies:
Application to Asteroid 25143 Itokawa

Stephen B. Broschart∗ and Daniel J. Scheeres†
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The small gravitational forces associated with a minor celestial body, such as an asteroid or comet nucleus, allow
visiting spacecraft to implement active control strategies to improve maneuverability about the body. One form of
active control is hovering, where the nominal accelerations on the spacecraft are canceled by a nearly continuous
control thrust. We investigate the stability of realistic hovering control laws in the body-fixed and inertial reference
frames. Two implementations of the body-fixed hovering thrust solution are numerically tested and compared
with an analytical stability result presented in the previous literature. The perturbation equations for inertial
frame hovering are presented and numerically simulated to identify regions of stability. We find that body-fixed
hovering can be made stable inside a region roughly approximated by the body’s resonance radius and inertial
frame hovering is stable in all regions outside the resonance radius. A case study of hovering above Asteroid (25143)
Itokawa, target of the Hayabusa mission, is also presented.

Introduction

A T the Japanese, European, and U.S. space agencies, missions
currently exist to send spacecraft to explore minor celestial ob-

jects such as asteroids, comets, and small planetary satellites. It is
suspected that the elemental composition of these objects, relatively
uncorrupted by time, may offer scientists insight into the early his-
tory of our solar system. Thus, successful missions to such objects
are of critical importance to the ongoing goal of understanding the
formation and evolution of our solar system.

These objects are generally quite small compared to the planets
and moons that have been the targets of most space missions to
date. Because of their small size and correspondingly weak grav-
itational pull, they are also usually quite irregular in shape. These
attributes present great challenges to the traditional “orbiter-type”
control strategies used to date. Orbital trajectories about small, irreg-
ularly shaped bodies are generally quite complex and nonperiodic.1

Further, stability for close orbits above many small bodies is guar-
anteed only for a limited range of latitudes,2 possibly preventing
study of relevant regions of the body’s surface. Also, because the
gravitational forces are small, solar radiation pressure becomes an
important perturbing force, driving orbits to instability for objects
smaller than a particular size.3

These problems with orbital control strategies for missions to
small bodies necessitate a paradigm shift in the way we control
spacecraft. One solution that has been proposed is hovering.4,5 This
active control strategy uses thrusters in a nearly continuous manner
to null the nominal accelerations on the spacecraft, creating an equi-
librium point at the desired position. This approach is feasible for
operating near a small body because of the relatively weak gravita-
tional forces involved. Unlike orbital control approaches, hovering
control can be used to explore any size of body at any latitude, lim-
ited only by fuel restrictions. The perturbing forces of solar radiation
pressure and solar gravity are also less of a concern in hovering, be-
cause these forces can be actively nulled by the hovering controller.
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In this paper, we investigate two types of hovering: hovering in
the small-body-fixed frame and in the inertial frame. Hovering in
the body-fixed frame would be ideal for a spacecraft operating very
close to the body’s surface. Because body-fixed hovering fixes the
spacecraft’s position relative to the body, this control could be ad-
vantageous for obtaining high-resolution measurements of a partic-
ular area on the body’s surface. Body-fixed hovering also simplifies
descent and ascent maneuvers that may be necessary for a sample
return mission. A spacecraft visiting a small body may also be inter-
ested in hovering in the inertial frame, where the small body rotates
beneath the spacecraft. Inertial-frame hovering may be ideal for a
spacecraft mapping a body’s surface or for use as a holding orbit
from which to stage other maneuvers. For hovering to be a viable
mission option, it must be shown to be stable and robust over a range
of situations and implementable under realistic control constraints.
This paper uses analytic and numerical analysis to identify regions
of stable operation for a spacecraft subject to hovering control.

We begin by formulating the solutions of the two-body problem
corresponding to body-fixed and inertial-frame hovering. Next, we
present criteria for stability of body-fixed hovering developed in a
previous paper.5 This is followed by a discussion of the numerical
simulation tool we have developed to aid our study. We then compare
results of numerical simulation for two different implementations
of body-fixed hovering with the predictions of the analytical stabil-
ity criteria. Next, we present analytical and numerical analysis of
hovering in the inertial frame. Finally, we perform a case study of
both hovering approaches for Asteroid (25143) Itokawa (formerly
1998 SF36), the target of the Japan Aerospace Exploration Agency
(JAXA) Hayabusa (formerly MUSES-C) mission.6,7

Problem Formulation
In this analysis, we model the spacecraft dynamics near a small

body using a two-body gravitational model in which the spacecraft
has negligible mass. The equations of motion for this system in
the uniformly rotating, small-body-fixed Cartesian coordinate frame
with origin at the body’s center of mass are

ẍ − 2ω ẏ = ∂V

∂x
+ Tx + ω2x (1)

ÿ + 2ωẋ = ∂V

∂y
+ Ty + ω2 y (2)

z̈ = ∂V

∂z
+ Tz (3)
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where ω represents the rotation rate of the small body, V is its grav-
itational potential, and Tx , Ty , and Tz represent the component of
the spacecraft thrust in each respective direction. It is assumed that
the small body has constant density and is rotating uniformly about
a fixed axis (ẑ) corresponding to its maximum moment of inertia.
We further orient our coordinate frame by aligning x̂ and ŷ with
the principal axes associated with the body’s minimum and inter-
mediate moments, respectively. A position in this space, [x, y, z]T ,
is denoted by the vector r. The only forces present in this system
are gravitational forces, inertial forces, and forces from the space-
craft’s propulsion system. In this paper, we ignore third-body forces
of smaller magnitude, such as solar radiation pressure and solar
gravity. These additional perturbations will be considered in future
work.

We investigate two solutions to these equations. The first solu-
tion, which we call body-fixed hovering, creates a fixed equilibrium
point in the body-fixed frame at the desired position, or “hovering
point,” by enabling thrust. Under this control, the spacecraft’s posi-
tion remains fixed relative to the rotating small-body when placed
at the nominal hovering point, r0 = [x0, y0, z0]T . Enabling thrust is
defined as

T =
[
−∂V

∂x

∣∣∣∣
0

− ω2x0, −∂V

∂y

∣∣∣∣
0

− ω2 y0, −∂V

∂z

∣∣∣∣
0

]T

(4)

The second solution to Eqs. (1–3) that we study is a retrograde,
constant-latitude, circular orbit whose orbital period is equal to the
small body’s rotation period. This solution corresponds to a space-
craft hovering in the inertial reference frame, where the spacecraft
position remains fixed in inertial space while the small body rotates
beneath it. In the body-fixed frame, this solution is specified as

r0I (t) = ‖r0I (0)‖[cos λ0 cos(ωt + θ0), cos λ0 sin(ωt + θ0), sin λ0]T

(5)

where λ0 and θ0 are the initial latitude and longitude (measured from
the positive x axis), respectively. For inertial hovering, the necessary
thrust vector is defined as that necessary to make this circular orbit
a solution to the equations of motion:

T(t) =
[
−∂V

∂x

∣∣∣∣
r0I (t)

, −∂V

∂y

∣∣∣∣
r0I (t)

, −∂V

∂z

∣∣∣∣
r0I (t)

]T

(6)

Previous Work
Sawai et al.5 developed a set of criteria analytically that charac-

terize the stability of a hovering trajectory in the body-fixed frame.
Through their analysis of the problem, they determined that the
Hessian matrix of the gravitational potential at r0 determines the
stability of hovering in the body-fixed frame subject to their ideal-
ized controller:

∂2V

∂r2

∣∣∣∣
0

=




∂2V

∂x2

∂2V

∂x∂y

∂2V

∂x∂z

∂2V

∂x∂y

∂2V

∂y2

∂2V

∂y∂z

∂2V

∂x∂z

∂2V

∂y∂z

∂2V

∂z2




∣∣∣∣∣∣∣∣∣∣∣∣∣
0

(7)

The conditions for stability they developed are

3ω2v2
3z + ω2 − (

α1 + ω2
) − (

α2 + ω2
) ≥ 0 (8)

(
α1 + ω2

)(
α2 + ω2

) − ω2v2
1z

(
α2 + ω2

) − ω2v2
2z

(
α1 + ω2

) ≥ 0

(9)(
α1 − α2 − ω2

)2 + 3ω4v2
3z

(
v2

3z + 2
)

− 8ω2v2
3z

[(
α1 + ω2

) + (
α2 + ω2

)]
> 0 (10)

where α1, α2, α3 are the three eigenvalues of the Hessian matrix
at r0 and v1, v2, v3 are the corresponding eigenvectors (subscripts
x , y, and z refer to the components of these eigenvectors). The
eigenvectors and eigenvalues are arranged so that the third set refers
to the eigenvector “nearly” aligned with the gravitational attraction
direction. Of the remaining two, the eigenvector/eigenvalue pair
with the larger eigenvalue is the first set.

These stability criteria were developed by linearizing the equa-
tions of motion about r0 and assuming one-dimensional, infinitely
tight control of motion along v3, such that ṙ(t)T v3 ≡ 0. These three
criteria define a theoretical region of stability for body-fixed hov-
ering above any arbitrary-shaped body. This region roughly cor-
responds to the locus of initial hovering points inside the body’s
resonance radius. The resonance radius rr is defined as the distance
from the body’s rotation axis in the equatorial plane at which, for
a spherical body with the same gravitational parameter µ, the cen-
trifugal force is equal and opposite to the gravitational attraction:

rr = (µ/ω2)
1
3 (11)

Illustrations of the region defined by these sufficiency criteria for
various small-bodies can be seen in Ref. 5.

The assumption of infinitely tight control is not realistic, as it is
impossible for an actual spacecraft’s control system to implement.
However, similar control can be implemented by use of a dead-band
thrust control on altitude, in which the spacecraft’s movement is
confined to a finite region around a target altitude. Allowing motion
across the region defined by such a dead-band may have signifi-
cant effects on system dynamics. Thus, an analysis using the full
nonlinear equations of motion is necessary to validate these results.
We further the previous work by numerically simulating the non-
linear equations of motion to determine the stability of hovering
under realistic control constraints. We compare and contrast these
results with the previous findings to determine in which regions the
analytical stability criteria produce valid results.

Numerical Simulation Tool
Our numerical simulation package was developed to aid us in

the analysis of spacecraft trajectories near arbitrary-shaped rotating
bodies. The basic function of the code is to integrate the body-fixed
equations of motion [Eqs. (1–3)] for a spacecraft in an arbitrary
potential field subject to a chosen control law. The code for this
simulation was written using Matlab and Simulink software. The
equations of motion are integrated using Matlab’s “ode45” function
(Dormand–Prince method) with a relative tolerance of 10−6 (m) and
an absolute tolerance of 10−8 (m).

The simulation was developed to work with two different asteroid
shape and gravity models: the triaxial ellipsoid and the polyhedron.
Triaxial ellipsoids are often good approximations of real small-body
shapes. Simulations using this shape can help us to understand fun-
damental phenomena associated with this system that would be dif-
ficult to decouple from other effects in the truly arbitrary-shaped
case. More complex geometries can be specified to the simulation
as n-faced polyhedra. Polyhedra can model a much wider range of
shapes than ellipsoids, allowing depressions, ridges, cliffs, caverns,
and holes on the body. Polyhedron models currently exist for a num-
ber of real asteroids. This shape model can be very accurate, with
resolution increasing with the number of faces used. Assuming the
small body has constant density, previous works exist that exactly
define the potential around ellipsoidal8 and polyhedral9 shapes. The
methods described in these papers are implemented in our simula-
tion to calculate gravitational potential, attraction, the Hessian, and
the Laplacian.

To ensure that the simulation works as intended, we have run a se-
ries of tests with known results and compared the simulation output
to the expected answer. First, we confirmed that the spacecraft’s an-
gular momentum and energy above a spherical body were conserved
throughout the simulation if no thrust was applied. Our next test was
to verify that the simulation was computing the correct body forces
on the spacecraft. This was done by analytically solving for the
forces on the spacecraft at a given point and then adding open-loop
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thrust of equal magnitude and opposite direction to the spacecraft.
If the simulation is computing the forces on the spacecraft correctly,
this open-loop thrust should cancel those forces and the spacecraft
should not move. The simulation was found to correctly produce
this result. Our final verification test was done to ensure that the
controllers built into the simulator were working as intended. This
can be determined by examining the various simulation outputs.
Thrust should be enabled in the proper direction whenever the cri-
teria for activation of control are met. We performed this test for
many different initial conditions and found the controllers to work
as expected.

Stability of Body-Fixed Hovering
We have investigated the stability of body-fixed hovering sub-

ject to two different implementations of the nominal thrust solution
[Eq. (4)]. We compare the numerical region of stability obtained with
the region defined by the stability criteria [Eqs. (8–10)] derived in
the previous work.5

Because we are working with numerical data, determining
stability characteristics of a trajectory is inherently difficult. With
finite-time simulation data, it is impossible to verify true stabil-
ity or instability. Here, we will be using a modified form of Lya-
punov stability suitable to evaluate our trajectories. Beginning with
a perturbation from equilibrium smaller than a given magnitude,
we quantify stability by the size of the region centered at the initial
hovering point that contains the entire trajectory for a given simu-
lation time. We will define instability not as unbounded motion but
as motion that extends beyond a specified region during the simula-
tion time. Because of potentially long time constants of instability,
this analysis seeks only to verify stability for a fixed duration in the
regions predicted by the analytical stability criteria and not to verify
instability in the complementary space.

Numerical Simulations of Hovering with Gravitational Direction
Thrusting and Sensing with Open Loop Control

The first body-fixed hovering controller we evaluated is a slightly
modified version of the realistic hovering controller suggested in
Ref. 5. This controller, which we call the gravitational direction
thrusting and sensing with open loop (GDTS w/OL) hovering con-
troller, is a combination of open-loop control thrust to eliminate the
spacecraft’s nominal acceleration and dead-band control on altitude
measured along v3. The dead-band controller is defined by a tar-
get altitude h0 and a tolerance factor δ. If the spacecraft’s altitude
is outside the “band” defined by h0 ± δ, thrust is enabled in order
to return the spacecraft into the dead-band. A spacecraft with an
internal model of the small body can compute the Hessian matrix
of the potential and determine v3. In Ref. 5, it is suggested that
the open-loop control need only cancel the centrifugal force on the
spacecraft. However, we have chosen to use the open-loop control
to null the full nominal acceleration on the spacecraft, as proposed
in Ref. 4, because we have found this type of control to confine the
spacecraft’s range of motion more tightly. The thrust vector T for
the GTDS w/OL controller is

T = To + Tdb (12)

where

To =
[
−∂V

∂x

∣∣∣∣
0

− ω2x0, −∂V

∂y

∣∣∣∣
0

− ω2 y0, −∂V

∂z

∣∣∣∣
0

]T

(13)

Tdb =




Tmv3, if (h0 − h) > δ

−Tmv3, if (h0 − h) < −δ

0, otherwise (14)

where Tm is the constant magnitude of the dead-band thruster and
h is the spacecraft altitude. The vector v3 should be chosen to point
away from the body. This controller mimics the ideal controller
used to derive the conditions for stability of body-fixed hovering
[Eqs. (8–10)] in the previous work. In that ideal case, the dead-band
tolerance factor δ for this controller is zero. Therefore, a comparison

of the performance of this controller with the analytical stability
conditions is a direct test of the validity of the idealized result for a
spacecraft subject to realistic control.

Using an ellipsoidal small-body shape model, we ran simulations
using the GDTS w/OL controller for random initial positions in the
body’s three symmetric planes (XY , X Z , and Y Z ). The ellipsoid
used in these simulations was 15 × 7 × 6 km, a rough approximation
of the size of Asteroid (433) Eros, which was visited during NASA’s
Near Earth Asteroid Rendezvous (NEAR) mission. A bulk density
of 3 g/cm3 and a 10-h rotation period were used, which are not
consistent those of with (433) Eros but were chosen to move the
resonance radius further from the body for clarity. (With Eros’s
true rotation period of 5.27 h and bulk density of 2.4 g/cm3, the
resonance radius is roughly 15.7 km, barely beyond the long end
of the body.) The dead-band tolerance factor δ was 10 m. For each
initial spacecraft position, the simulation was run 10 times with
different velocity error each time. Each Cartesian component of
velocity error was chosen randomly from a uniform distribution
between −1 and 1 cm/s.

Data were collected from independent simulations of two differ-
ent durations, 20,000 and 50,000 s (roughly 5.5 and 13.9 h, respec-
tively). These relatively short simulation times (on the order of one
rotation period) are justified by noting that a spacecraft operating
in the body-fixed frame very near the surface would have little rea-
son to remain in one position for long periods of time. This type
of maneuver would likely be used during a descent or a translation
across the surface, whereas longer term hovering station-keeping
maneuvers would more likely be carried out in the inertial frame.

Our simulations show that in the X Z and Y Z planes the analytical
criteria for stability were valid. There were no regions of numeri-
cally unstable motion that encroached upon the predicted region of
stability. We found that numerical stability extended to some regions
outside the area defined by the stability criteria in these planes but
these trajectories are not necessarily stable in the long term and,
therefore, do not suggest error in the stability conditions.

Figures 1 and 2 present results from simulations in the body’s XY
(equatorial) plane for durations of 20,000 and 50,000 s, respectively.
In these figures, each data point represents the average size over 10
trials of the smallest solid angle such that the entire trajectory is
contained within it. For this analysis, we will consider averages of
less than 0.4 deg to be stable. The region inside the bold line is the
locus of initial positions satisfying the analytical stability criteria.
Note that for an ellipsoidal shape model, the equations of motion
exhibit a longitudinal symmetry; that is, results are the same for any
two points 180◦ longitude apart.

We can see in these figures that the stability criteria do not hold
in the XY plane subject to the GDTS w/OL body-fixed hovering
controller. Here, instabilities arise above the body’s leading edges
in regions satisfying the stability conditions. The leading edges are
defined as the two quadrants of longitude on the body’s surface that
extend from the tip of the largest semimajor axis of the ellipsoid
to the intermediate semimajor axis in the direction of ẑ × x̂. As the
simulation duration increases from 20,000 to 50,000 s, we can see
that the area of instability encroaches further upon the region satis-
fying the stability criteria. On the other hand, the region of predicted
stability above the body’s trailing edge is unaffected and remains
stable. We also find the region of stability off the trailing edge to be
significantly expanded for shorter duration (20,000 s) hovering.

Analysis of GDTS w/OL Controller Results
We attribute the discrepancy between the ideal region of stability

and our numerical findings to the Coriolis accelerations introduced
by relaxing the infinitely tight control in the gravitational direc-
tion assumed in the analytical work. An interaction between the
dead-band orientation, the control direction, and the Coriolis ac-
celerations causes the degradation of stability above the ellipsoid’s
leading edges and the improvement in stability above the trailing
edge that are seen in our simulations.

The orientation of the dead-band region for hovering in the XY
plane is shown in Fig. 3. We define a coordinate system for the dead-
band dynamics consisting of the normal vector to the dead-band
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Fig. 1 Stability results for GDTS w/OL body-fixed hovering controller. Angular deviation 20,000 s (XY plane).

Fig. 2 Stability results for GDTS w/OL body-fixed hovering controller. Angular deviation 50,000 s (XY plane).

boundary, ndb, the unit vector along the rotation axis, ẑ, and the vector
transverse to the dead band, tdb = ẑ × ndb. The surface normal where
the altitude-sensing-direction vector vs intersects the body’s surface
defines ndb, the local orientation of the dead band. This direction,
in general, is not aligned with the control direction vc. Therefore,
when control thrust is applied, it will have some component along
tdb. This transverse thrust component will be equal and opposite at
the two dead-band boundaries. If the spacecraft hits both boundaries
an equal number of times, this transverse acceleration will have no
net effect on the spacecraft’s motion along the dead band. However,

because of Coriolis forces, which effectively rotate the spacecraft’s
velocity vector, this may not be the case. This rotation, coupled with
the control thrust component along the dead band, can either cause
the spacecraft to repeatedly hit one boundary of the dead band or
encourage it to bounce back and forth between the boundaries.

Figure 4a illustrates the dynamics above the leading edge. Above
an ellipsoid’s leading edge subject to the GDTS w/OL hovering con-
troller, the relative orientation of ndb and vc is such that at the mini-
mum altitude boundary of the dead-band, a component of the control
thrust is applied in the negative tdb direction and at the maximum
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Fig. 3 Dead-band orientation diagram.

altitude boundary, thrust is applied in the positive tdb direction. The
Coriolis force acting on the spacecraft, Fc = −2ω(ẑ × ṙ), effectively
rotates the spacecraft’s velocity vector clockwise in the plane de-
fined by ndb and tdb. When the spacecraft reaches a boundary, the
component of control thrust along tdb will effectively rotate the re-
turn velocity vector clockwise from the direction it would have had
if there had been no thrust component along tdb. As the spacecraft
moves toward its next boundary crossing, Coriolis forces will ro-
tate the velocity in the same clockwise direction. Once transients
due to initial velocity errors wear off, the combination of these two
effects will cause the spacecraft to hit the same boundary on suc-
cessive occasions until the nonlinear effects of gravity and changes
in dead-band orientation eventually turn it around. This successive
“bouncing” motion is linearly unstable and leads to large oscilla-
tions from the nominal hovering point. Examination of numerical
simulations shows that this bouncing movement always takes over
in the steady state for hovering above the leading edge of an ellipsoid
subject to the GDTS w/OL controller.

Figure 4b illustrates the dynamics above the trailing edge. Above
the body’s trailing edge, the relative orientation of ndb and vc is op-
posite, such that at the minimum altitude boundary, a component of
the control thrust is applied in the positive tdb direction and at the
maximum altitude boundary, thrust is applied in the negative tdb di-
rection. As opposed to above the leading edge, the thrust component
along tdb in this configuration causes the velocity vector reflected off
the dead-band boundary to be rotated counterclockwise from where
it would have been if there were no transverse thrust component. In
this case, the clockwise rotation of the velocity vector caused by the
Coriolis force will counter the effect of the control thrust, encour-
aging the spacecraft to move toward the other dead-band boundary.
Again, in the steady state, this motion always takes over above an
ellipsoid’s trailing edge, causing a “chattering” effect, where the
spacecraft never hits the same boundary on successive occasions.
This chattering has a stabilizing effect that keeps the spacecraft close
to the initial hovering point.

The analysis here is done in the equatorial plane for the sake of
simplicity, but this effect occurs with weakening strength all the way
to the body’s X Z and Y Z planes. In these planes, thrust does not
directly induce motion that causes disruptive Coriolis accelerations.
This is why our numerical results in the X Z and Y Z planes agree
well with the analytical predictions, in whose derivation Coriolis
forces essentially do not exist. The strength of this Coriolis effect
above either the leading or trailing edge is determined by ω, δ, and
the angle between ndb and vc. If we define this angle as θ , the less
negative θ is (measured from ndb and positive for orientations such
that vT

c tdb > 0), the weaker the destabilizing effect of control thrust
will be above the leading edge, whereas the more positive θ is, the
stronger the focusing effect will be above the trailing edge. If we use
a symmetric, universal method of choosing control direction, such
as gravitational direction or initial acceleration, we can postulate

that some optimal control law exists that will adequately focus the
leading edge dynamics, while not weakening the focusing effect off
the trailing edge too much. This optimal control direction would be
a function of small-body parameters as well as the hovering dura-
tion. Ideally, a spacecraft would use a method of choosing control
direction above the leading and trailing edges such that the angle
θ is always positive. We have been able to show through numeri-
cal simulation that shifting the control direction above the leading
edge so that θ is positive does indeed produce the desired stabiliz-
ing effect. It should be noted that θ should never approach ±90 deg
because there would then be no thrust in the direction normal to the
dead-band to maintain the spacecraft’s altitude.

Numerical Simulations of Hovering with Initial Acceleration
Thrusting and Normal Sensing Control

We have also performed numerical simulations using another im-
plementation of the body-fixed hovering solution that we call initial
acceleration thrusting and normal sensing (IATNS) hovering con-
trol. We still use a dead-band controller based on altimeter readings,
but we eliminate the open-loop thrust that cancels the spacecraft’s
nominal accelerations. For the IATNS controller, we also change
the direction of the dead-band control thrust to be aligned with the
nominal acceleration vector to more directly counter the natural mo-
tion of the spacecraft. The direction of altitude measurement is also
changed from along v3 to measure altitude in the direction normal
to the surface at the hovering point. This is the most robust direction
in which to measure altitude because the component of altitude that
changes with the surface topology is minimized for small deviations
in spacecraft position.

The IATNS controller offers advantages over the GDTS w/OL
controller. The elimination of the open-loop thrust will result in fuel
savings because with an open-loop thrust, any inaccuracies in its ap-
plication will result in a constant push toward one side of the dead
band that must be negated with thrust from the closed-loop con-
troller, effectively causing the control to work against itself. Also,
removing the open loop causes the spacecraft’s motion to proceed
very closely along the initial acceleration direction from the initial
hovering point. This lessens the deviation from the initial hovering
point due to transient effects caused by initial velocity errors because
the spacecraft will more quickly move into steady-state motion in
the dead band. Sensing altitude in the direction normal to the surface
at the initial hovering point keeps the dead-band orientation vector
ndb closer to the control direction vc, which our analysis suggests
should improve performance above the body’s leading edge. This
controller may also offer advantages in a surface-descent scenario,
as there will exist some angle between the thruster plume and the
surface normal. This angle could help avoid contamination of the
surface regolith by the thrusters in a sample collecting mission and
allow descent imaging to be less obscured by the thruster plume.
The thrust vector for the IATNS controller is

T =




−Tm â0, if h0 − h > δ

Tm â0, if h0 − h < −δ

0, otherwise (15)

where

â0 =
[

∂V

∂x

∣∣∣∣
0

+ ω2x0,
∂V

∂y

∣∣∣∣
0

+ ω2 y0,
∂V

∂z

∣∣∣∣
0

]T /

∥∥∥∥
[

∂V

∂x

∣∣∣∣
0

+ ω2x0,
∂V

∂y

∣∣∣∣
0

+ ω2 y0,
∂V

∂z

∣∣∣∣
0

]T ∥∥∥∥ (16)

With some thought, we expect that the IATNS controller will fail
catastrophically near the resonance radius of the body. As the space-
craft hovering point approaches the resonance radius, the initial ac-
celeration vector â0 will turn 180 deg as the nominal acceleration
transitions from pointing toward the body to away. Therefore, this
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a)

b)

Fig. 4 Dead-band dynamics above an ellipsoid under GDTS w/OL control: a) leading and b) trailing edges.

controller will be limited to use inside the body’s resonance radius
or near the rotation axis.

Using the same ellipsoidal small-body and system parameters
used in our simulations for the GDTS w/OL controller, we have
simulated spacecraft trajectories subject to the IATNS controller in
the XY , X Z , and Y Z planes. Again, we ran 10 different simulations
with random velocity errors at each initial hovering point.

We found the IATNS body-fixed hovering controller to work very
well at altitudes inside the resonance radius. As expected, the con-
troller quickly becomes less stable as the initial position nears the
area where the initial acceleration rotates away from the body. In all
three planes, initial positions inside this threshold were found to be
stable. For comparison, Fig. 5 shows the results of simulations in

the XY plane after 50,000 s. In the XY plane, the analytical stability
conditions define the threshold where the initial acceleration vector
turns away from the body. The bold line in the figure outlines this
region. As we hoped, the IATNS controller reduces the deviations
associated with the Coriolis forces discussed in the preceding sec-
tion above the body’s leading edge compared to the GDTS w/OL
controller. By reducing the control thrust component along the dead
band, the instability related to Coriolis forces above the leading
edge is weakened and develops more slowly. In this 50,000-s figure,
a slight degradation of stability is just beginning to appear above the
leading edge. In the data from the 20,000-s runs, this degradation of
stability cannot be seen. Similarly, the stabilizing effect above the
trailing edge should be slightly weakened by the realignment of the



BROSCHART AND SCHEERES 349

Fig. 5 Stability results for IATNS body-fixed hovering controller. Angular deviation 50,000 s (XY plane).

vector ndb for this controller. However, the angle θ is still negative
and therefore a stabilizing effect remains, as demonstrated in our
numerical results.

Stability of Inertial Hovering
We now look at the equations of motion for inertial hovering in

the body-fixed frame [Eqs. (1–3) and (5)]. Linearizing about this
solution [Eq. (5)], we obtain the perturbation equations

�ẍ − 2ω�ẏ − ω2�x = ∂2V
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0
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0

�z (19)

This is a periodic, time-varying linear system. We can analyze
the stability of this system using Floquet theory, which suggests
that the state transition matrix is of the form � = P(t) exp(Mt),
where P(t) is a periodic matrix and M is a constant matrix. We can
evaluate the stability of the system by examining the eigenvalues
of M . This is done by evaluating the state transition matrix after
one period of motion, that is, when P is the identity matrix. We can
numerically calculate the state transition matrix using our simulation
package. Further, we note that this is a Hamiltonian system, and
thus, the eigenvalues of M , or Floquet multipliers, must come in
complex conjugate and inverse pairs. This means that for stability,
the Floquet multipliers of the system must all lie on the unit circle in
the complex plane. Multipliers with magnitude different from unity
imply instability.

Without performing any calculations, we expect that the system
will have at least two unstable multipliers corresponding to motion
in roughly the radial direction. If there are some perturbations in
this direction, the gravitational attraction the spacecraft feels will

either increase or decrease in the same way that the nominal thrust
will be inaccurate, resulting in an unchecked acceleration.

We can validate this insight by looking at the simplified case of
inertial hovering over a rotating point mass. Because this potential
field is spherically symmetric, it will remain constant throughout
the maneuver. The equations of motion in the inertial frame for this
system are

ẍ = ∂V

∂x
+ Tx = − µ

r 3
x + Tx (20)

ÿ = ∂V

∂y
+ Ty = − µ

r 3
y + Ty (21)

z̈ = ∂V

∂z
+ Tz = − µ

r 3
z + Tz (22)

where r = (x2 + y2 + z2)
1
2 is the radial distance from the point mass.

If we linearize about a nominal position [x0, y0, z0]T and thrust
vector,
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we obtain the following perturbation equations:
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(23)

Because the gravitational field is spherically symmetric, we can
assume, without loss of generality, that the initial position is of the
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Fig. 6 Regions of instability for inertial hovering above a 15 ×× 7 ×× 6 ellipsoid for various rotation rates, radius vs latitude, TEros = 5.27 h.

form [x0, 0, 0]T . These equations then reduce to
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These are three decoupled, second-order differential equations.
The eigenvector along the radial direction is unstable with eigenval-
ues ±√

(2µ/x3
0 ) and the two eigenvectors transverse to the radial

direction have stable eigenvalues equal to ±i
√

(µ/x3
0 ).

Here, a stabilizing controller is necessary for the radial direc-
tion, as predicted, and the transverse directions are always stable.
The stability of the transverse eigenvalues will change in the more
general case, when the potential distribution varies as the body
rotates. For this discussion of stability, we will ignore the inher-
ently unstable eigenvalues, assuming existence of a stabilizing con-
troller in the radial direction (similar to the tight control assumed in
Ref. 5).

For the ellipsoidal shape case, we have numerically integrated the
perturbation equations [Eqs. (17–19)] for one period of motion and
determined the eigenvalues of the state transistion matrix. Integra-
tions were again performed using Matlab with a relative tolerance
of 10−8 (m) and an absolute tolerance of 10−11 (m). We found that
inertial-frame hovering, subject to a stabilizing controller in the ra-
dial direction, is stable at most radial distances and inclinations. The
exception to this is a region near the resonance radius that extends
around the body, forming a nearly spherical “shell” of instability.
The cross-hatched regions in Fig. 6 show the shape of this unsta-
ble region, which is axially symmetric about ẑ for different rotation
rates around an ellipsoidal body measuring 15 × 7 × 6 km with a
density of 2.3 g/cm3. The resonance radius corresponding to each
rotation rate is shown as a vertical dashed line.

It can be seen that the region of instability moves with the chang-
ing resonance radius [Eq. (11)], a function of rotation rate. As lat-
itude increases from the ellipsoid’s equator to its pole, the radius

of unstable hovering becomes smaller and the strength of the in-
stability is marginally decreased. The radial distance covered by
the instability also decreases as the rotation rate decreases. Figure 7
shows the magnitude of the four transverse eigenvalues (correspond-
ing to the two transverse directions in position space) vs the radius
in the equatorial plane for selected rotation rates. Again, the cor-
relation between the primary instability and the resonance radius
is clearly shown. This figure also shows that the magnitude of the
instability increases for faster rotation rates. We note that the mag-
nitude of the instabilities that exist near the resonance radii is small
(generally < 2). Beyond the instability at the body’s resonance ra-
dius, we have found hovering to be stable in all cases up to the
point where our assumptions break down and third-body effects of
the sun become an issue. The qualitative properties of this ellip-
soidal example are reflective of the other ellipsoidal shapes we have
tested.

One may expect there to be instabilities near other harmonics of
the rotation rate. Our data have revealed that relatively weak in-
stabilities may exist inside the resonance radius at these secondary
resonances. However, as the ratio of hovering radius to resonance
radius decreases, the condition number of the state transition matrix
that gives us our stability result increases exponentially. The sec-
ondary harmonic instabilities we have found for the ellipsoidal body
case lie too far inside the resonance radius to be considered numer-
ically accurate. Therefore, the stability of hovering well inside the
resonance radius remains unknown. We have found no secondary
harmonics outside of the resonance radius, where the result is nu-
merically tractable.

Numerical Support
The analytical result described above is supported very well by

numerical simulation. For these simulations, we used an ellipsoidal
shape model with dead-band control on distance from the plane
passing through the origin defined by the vectors ẑ and r0 × ẑ in the
inertial frame. The control direction was defined as being constant
and in the direction of the initial hovering point.

Because the control direction is constant and the dead-band con-
trol confines the motion of the spacecraft to a thin region between
two planes, we can imagine that, assuming the thrusters have ad-
equate authority, all inertial hovering trajectories will at least have
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Fig. 7 Magnitude of Floquet multipliers for inertial hovering above a 15 ×× 7 ×× 6 ellipsoid for various rotation rates. Latitude = 0◦.

bounded time responses. That is, as the spacecraft moves far from
the initial point, the gravitational attraction will increasingly pull
the spacecraft back toward center. This phenomenon is not apparent
in the linearized analysis but is ultimately true in the full nonlinear
case. However, oscillations of this magnitude generally would not
be acceptable during a mission to a small body. For the purposes
of our analysis, we will define instability not as unbounded motion
but as growth in the periodic oscillation of the spacecraft about the
nominal point. This view is consistent with the linearized stability
used in the analytical analysis.

We performed simulations of inertial hovering trajectories over
a range of radial distances along the equatorial plane. The primary
feature of the previous results, instability near the resonance ra-
dius, was clearly shown for trajectories with a target radius near
the resonance radius. Numerical simulation also confirmed that the
linear analytical stability analysis for hovering outside the reso-
nance radius produced accurate results; that is, inertial hovering is
stable at all radii beyond the resonance radius instability. The os-
cillations in the position of the spacecraft in these regions were
seen to be bounded for relatively long simulation times (35 days).
In these simulations, we also found that in regions very near the
body, oscillations from the nominal point were quite large in mag-
nitude, though bounded in the long term. In general, the bound
on the spacecraft’s oscillations about the nominal point for sta-
ble hovering radii became smaller as radius increased. Recall that
our analytical work did not yield insight to the stability of iner-
tial hovering very near the body. Our numerical results have shown
inertial hovering to be nonlinearly stable very near the body, but
with large (on the order of the small-body size) oscillations in
position.

Hovering Above Asteroid Itokawa
On 9 May 2003, JAXA successfully launched the MUSES-C

spacecraft, renamed Hayabusa after launch, toward (25143)
Itokawa.10 In this mission, the spacecraft will rendezvous with the
asteroid, spend some time in inertial hovering, and then descend to
the surface to collect regolith samples to be returned to Earth. Be-
cause of the applicability of our work to this mission, we now present
results for a spacecraft operating near Itokawa subject to our control
strategies. We have simulated motion above the 6098-vertex poly-
hedral shape model of Itokawa developed by Ostro et al.,11 using
their estimates of density (2.5 g/cm3) and rotation period (12.132 h).

Body-Fixed Hovering
To verify that the qualitative results found for the ellipsoidal case

apply to more realistic small-body shapes, we have performed sim-
ulations of body-fixed hovering above Itokawa subject to the two
controllers discussed earlier with a δ of 5 m. Our approach was to
use initial positions at a range of altitudes along various radial lines
extending from the center of the body to capture the qualitative sta-
bility properties found in the ellipsoidal case. Again, we quantify
stability by average maximum angular deviation over 20 runs with
different initial velocity errors.

Recall that in the ellipsoidal case, the GDTS w/OL controller
[Eq. (12)] agreed well with the analytical stability criteria in the
X Z and Y Z planes. In the equatorial plane, there were unstable re-
gions found above the body’s leading edge that satisfied the stability
criteria and the stable region was extended above the trailing edge
for shorter duration hovering. Our analysis has suggested that these
leading- and trailing-edge effects are present at all latitudes, weaken-
ing as the hovering point moves away from the equator. These results
are supported by numerical simulations of GDTS w/OL hovering
above Itokawa.

For the radial line extending at 30◦ latitude and 45◦ longitude
(measured from the positive x axis), we found the GDTS w/OL
controller to behave in line with the stability criteria. There is a
clearly visible increase in the average angular deviation at both
20,000 and 50,000 s when the initial radius moves beyond the region
satisfying the stability criteria. As the initial radius approaches the
limit of the analytically stable region, a slow increase in average
deviation is found, which we attribute to the weakened, out-of-plane,
leading edge effect.

Figure 8 shows angular deviation versus radius for GDTS w/OL
hovering at 5◦ latitude and 45◦ longitude, that is, above the leading
edge near the equatorial plane. The radii satisfying the analytical sta-
bility criteria are indicated with squares at the bottom of the plot. We
can see that the average deviation starts to increase somewhat inside
the region satisfying the sufficiency criteria for the 20,000-s runs.
For the 50,000-s runs, the effect is more dramatic; destabilization
occurs well inside the limit of analytical stability and causes severe
degradation in performance. These findings support the results of
the ellipsoidal analysis.

Simulations for the radial line at 0◦ latitude and −30◦ longi-
tude, that is, off the trailing edge, show a region of stability extend-
ing well beyond the threshold suggested by the analytical stability
criteria after 20,000 s. In the 50,000-s case, the angular deviation
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Fig. 8 Stability of body-fixed hovering above Asteroid (25143) Itokawa as a function of radius, GDTS w/OL controller (5◦ latitude, 45◦ longitude).

Fig. 9 Stability of body-fixed hovering above Asteroid (25143) Itokawa as a function of radius, IATNS controller (0◦ latitude, −−30◦ longitude).

begins to increase just inside the limit of the region of predicted
stability. Beyond the analytical stability threshold, deviations are
noticably smaller than in the unstable regions of the other two
cases.

We also implemented the IATNS controller [Eq. (15)] above
Itokawa. Again, we found the results to be in agreement with our
findings in the ellipsoidal case. That is, the IATNS controller is con-
sistently stable for 20,000- and 50,000-s simulations in all directions
in a region near the body extending almost to the analytical stability
threshold. Beyond this point, the controller becomes very unstable.
Figure 9 shows a typical example (0◦ latitude and −30◦ longitude).

These results for hovering above Itokawa have confirmed the
qualitative aspects of our findings for body-fixed hovering in the
ellipsoidal case subject to both the GDTS w/OL and IATNS con-
trollers. These results suggest that the qualitative properties of the
stability regions produced by these controllers can be extended to
hovering over realistic asteroid shapes.

Inertial-Frame Hovering
A large portion of the Hayabusa mission will be dedicated to iner-

tial hovering, during which instrumentation onboard the spacecraft
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Fig. 10 Magnitude of Floquet multipliers for inertial hovering above Asteroid (25143) Itokawa, 15◦ latitude.

Table 1 Asteroid (25143) Itokawa and Hayabusa
mission parametersa

Parameter Value

Orbital inclination, deg 1.728
Longitude of ascending node,◦ 70.921
Orbital eccentricity 0.280
Orbital period 1.521 Julian yr
Periapsis passage 2001 May 4.601
Argument of periapsis, deg 161.029
Orbital semimajor axis, AU 1.323
Rotation period, h (Ref. 11) 12.132
Rotation pole, deg (Ref. 12) 355, −84
Hayabusa time of arrival (s/c) 6–15–05
Hayabusa time of departure (s/c) 11–2–05

aCourtesy of “Horizons” Website,13 Japan Aerospace Explo-
ration Agency.

will be used to map the asteroid’s surface. For this phase of the
mission, the Hayabusa mission planners currently intend to imple-
ment a controller consisting of three orthogonally oriented position
dead-band controllers to maintain spacecraft position.6 This type of
control effectively forms a “box” in position space that contains the
spacecraft’s trajectory.

Our previous analysis suggests that the spacecraft can maintain
position in inertial space with only a single-dimensional controller
at altitudes outside the body’s resonance radius. If this is the case, it
should result in improved fuel efficiency and operational simplicity
for this part of the Hayabusa mission. The current plan is for the
Hayabusa spacecraft to hover at an altitude of approximately 20 km
over Itokawa.7 Our analysis predicts that inertial hovering at this
altitude is stable.

For our results to be as accurate as possible, it was necessary
to compute the appropriate latitude at which the spacecraft would
be hovering. The spacecraft will be operating in the vicinity of the
Earth–asteroid line for purposes of communication. Given the orbit
of Itokawa and the appropriate mission data (Table 1) (Refs. 11–13),
we calculate that the Earth–asteroid line will move between 14.8◦

latitude upon the spacecraft’s arrival and 16.8◦ at departure. Our
analysis is performed at 15◦ latitude.

Figure 10 shows the analytical stability results obtained by exam-
ining the eigenvalues of the state transition matrix after one period
of inertial hovering at 15◦ latitude over Itokawa for a range of radial
distances. We can see that the primary instability exists in the region
near the body’s resonance radius of 579 m. Again, we can note that
the magnitude of this instability is reasonably small. Interestingly,
we see two secondary instabilities near radius 450-m. These results
are numerically valid (as opposed to the secondary instabilities seen
in the ellipsoidal case). Without a more general result, it is difficult
to say whether these results validate the idea of secondary harmonic
instabilities suggested in the ellipsoidal case or if they exist only
because of a specific parameter of this model’s shape. Beyond the
resonance radius, all inertial hovering is stable. We can conclude
that the Hayabusa mission plan to inertially hover at an altitude of
20 km is safely within the region of stable inertial hovering subject
to one-dimensional control when solar gravitation and solar radia-
tion pressure are ignored. The effect of these perturbations will be
determined in future work.

Conclusions
Analytical stability results for hovering in the body-fixed frame

were compared to numerical simulation data with realistic hovering
control. We found that without the assumption of infinitely tight
dead-band control used in the development of the analytical sta-
bility conditions, Coriolis accelerations destabilize hovering above
the leading edges of ellipsoidal small bodies. The effect of this
destabilization depends on the angle between the direction of thrust
application and the dead-band orientation. Numerical results for a
second realistic controller that uses this knowledge to improve hov-
ering performance near the small body are presented.

Analytical and numerical analyses of hovering in the inertial
frame have been performed. We found that inertial hovering is stable
at all radii outside the region near the resonance radius up to the point
where our two-body assumption breaks down. A shell of unstable
inertial hovering positions surrounds the small body at a distance
near the body’s resonance radius. This instability is strongest in the
equatorial plane and strengthens with increasing rotation rates. In
most cases, however, the strength of this instability remains mild and
it would likely be possible for a spacecraft to move safely across the
region.
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The concepts of body-fixed and inertial-frame hovering have
been applied to Asteroid (25143) Itokawa, the target of the recently
launched Hayabusa mission. Our qualitative results for hovering
control above ellipsoidal bodies were found to transfer well to the
more general polyhedral shape of Itokawa, suggesting that the con-
trol methodologies presented here may be applied to hovering above
real small bodies.

Acknowledgments
The research described in this paper was sponsored by the Inter-

planetary Network Technology Program by a grant to the University
of Michigan from the Jet Propulsion Laboratory, California Institute
of Technology, which is under contract with NASA. S. Broschart
was also supported by the Graduate Student Researchers Program
at the Jet Propulsion Laboratory. The authors thank Shujiro Sawai
of the Japan Aerospace Exploration Agency for providing details
on the Hayabusa mission.

References
1Scheeres, D. J., Williams, B. G., and Miller, J. K., “Evaluation of the

Dynamic Environment of an Asteroid: Applications to 433 Eros,” Journal
of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp. 466–475.

2Lara, M., and Scheeres, D. J., “Stability Bounds for Three-Dimensional
Motion Close to Asteroids,” Journal of the Astronautical Sciences, Vol. 50,
No. 4, 2002, pp. 389–409.

3Scheeres, D. J., and Marzari, F., “Spacecraft Dynamics in the Vicinity
of a Comet,” Journal of the Astronautical Sciences, Vol. 50, No. 1, 2002,
pp. 35–52.

4Scheeres, D. J., “Stability of Hovering Orbits Around Small Bodies,”
Spaceflight Mechanics 1999: Advances in the Astronautical Sciences, Part II,
Vol. 102, 1999, pp. 855–875; also AAS Paper 99-159, 1999.

5Sawai, S., Scheeres, D. J., and Broschart, S. B., “Control of Hovering
Spacecraft Using Altimetry,” Journal of Guidance, Control, and Dynamics,
Vol. 25, No. 4, 2002, pp. 786–795.

6Kubota, T., Hashimoto, T., Uo, M., Maruya, M., and Baba, K., “Maneuver
Strategy for Station Keeping and Global Mapping Around an Aster-
oid,” Spaceflight Mechanics 2001: Advances in the Astronautical Sciences,
Vol. 108, 2001, pp. 769–779; also AAS Paper 01-156. 2001.

7Hashimoto, T., Kubota, T., Kawaguchi, J., Uo, M., Baba, K., and
Yamashita, T., “Autonomous Descent and Touch-down via Optical Sen-
sors,” Spaceflight Mechanics 2001: Advances in the Astronautical Sciences,
Vol. 108, 2001, pp. 469–490; also AAS Paper 01-134, 2001.

8Scheeres, D. J., “Dynamics About Uniformly Rotating Tri-Axial El-
lipsoids: Applications to Asteroids,” Icarus, Vol. 110, No. 2, 1994,
pp. 225–238.

9Werner, R. A., and Scheeres, D. J., “Exterior Gravitation of a Polyhe-
dron Derived and Compared with Harmonic and Mascon Gravitation Repre-
sentations of Asteroid 4769 Castalia,” Celestial Mechanics and Dynamical
Astronomy, Vol. 65, No. 3, 1996, pp. 313–344.

10Kawaguichi, J., Kuninaka, H., Fujiwara, A., Uesugi, T., and Ohnishi,
T., “MUSES-C Launch and Early Operations Report,” AAS Paper 03-662,
Aug. 2003.

11Ostro, S. J., Benner, L. A. M., Nolan, M. C., Magri, C., Giorgini, J.
D., Scheeres, D. J., Broschart, S. B., Kaasalainen, M., Vokrouhlicky, D.,
Chesley, S. R., Margot, J., Jurgens, R. F., Rose, R., Yeomans, D. K., Suzuki,
S., and De Jong, E.M., “Radar Observations of Asteroid 25143 Itokawa
(1998 SF36),” Meteoritics and Planetary Science, Vol. 39, No. 3, 2004,
pp. 407–424.

12Kaasalainen, M., Kwiatkowski, T., Abe, M., Piironen, J., Nakamura, T.,
Ohba, Y., Dermawan, B., Farnham, T., Colas, F., Lowry, S., Weissman, P.,
Whiteley, R. J., Tholen, D. J., Larson, S. M., Yoshikawa, M., Toth, I., and
Velichko, F. P., “CCD Photometry and Model of MUSES-C Target (25143)
1998 SF36,” Astronomy and Astrophysics, Vol. 405, 2003, pp. L29–L32.

13“JPL’s Horizons System,” URL: http://ssd.jpl.nasa.gov/horizons.html
[cited 15 Dec. 2003].


