
Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

A98-37163 AIAA-98-4440

ACCELERATED CONVERGENCE OF NEURAL NETWORK SYSTEM IDENTIFICATION
ALGORITHMS VIA PRINCIPAL COMPONENT ANALYSIS

David C. Hyland
Department of Aerospace Engineering

The University of Michigan, Ann Arbor, MI

Lawrence D. Davis
Planning Systems, Inc.

Melbourne Controls Group
Melbourne, Florida

While significant theoretical and experimental progress
has been made in the development of neural network-
based systems for the autonomous identification and
control of space platforms, there remain important
unresolved issues associated with the reliable prediction
of convergence speed and the avoidance of inordinately
slow convergence. Focusing here on autonomous
identification of lightly damped space structures, we
first show that even apparently benign and simple
examples can exhibit unpredictably slow convergence
when the standard Least Mean-Square (LMS)-style
identification algorithms are applied. To speed
convergence of neural identifiers, we introduce the
preprocessing of identifier inputs using Principal
Component Analysis (PCA) algorithms. PCA is a
procedure (that is realizable via a neural network) for the
automatic generation of a transformation of the neural
identifier's external inputs that makes the correlation
matrix identity. When inputs are pre-processed in this
way, enormous improvements in the convergence speed
of the neural identifier is obtained. From a study of
several such algorithms, we developed a new PCA
approach which exhibits excellent convergence
properties, insensitivity to noise and reliable accuracy.
Numerical examples show many orders of magnitude
reduction in the time required for convergence of system
identifiers.

1. Introduction
Modern engineering technology is leading to

increasingly complex payloads with ever more
demanding performance criteria. However, currently
advocated control design approaches often require a high
fidelity dynamic model containing identified system
parameters. The methodology which calls for an
iterative process of finite element analysis and system
identification is time consuming and computationally
expensive to validate. Also, time-critical control
recovery due to catastrophic failures is often left
unresolved. The ultimate pursuit of a higher degree of

Keith K. Denoyer
Air Force Research Laboratory

Space Vehicles Directorate
Kirtland AFB, NM

autonomous behavior that provides constant health
monitoring and fault tolerance for space systems with
minimum human intervention has high priority in order
to achieve a successful flight mission [1]. To increase
the ability to accommodate anticipated as well as
unexpected dynamic variations in the complex
interrelated structures of space systems, the authors have
been engaged in the development of autonomous neural
control systems, based solely on on-board
instrumentation, that are capable of self-optimization,
on-line adaptation, and autonomous fault detection and
controller reconfiguration.

The foundation of our investigations is a new,
highly modularized processing architecture for neural
algorithms in identification (ID) and control [2] devised
some years ago. The basic capabilities of this
architecture have been thoroughly demonstrated
experimentally. For example, in the Adaptive Neural
Control Program for the USAF Phillips Lab,
autonomous control algorithms for vibration
suppression were demonstrated on the ASTREX testbed
[3,4]. These experiments showed, for the first time, not
only completely autonomous convergence to a high
performance controller but also automatic controller
reconfiguration/recovery following the disengagement
(simulated failure) of randomly selected subsets of the
actuator hardware units.

The above state-of-the-art advances and controls
experience directly suggest that the following basic
issues must be addressed in order to achieve our ultimate
aims in space system autonomous control. First there
are issues relating to system identification (ID) or
"replicator" modules. These modules are used either
directly, e.g. in scene interpretation, image
representation and machine vision or, most importantly,
are fundamental building blocks of every adaptive
controller subsystem. While there are reasonably
complete results on convergence, our ability to reliably
predict learning speed or convergence time is incomplete
and needs to be perfected. Secondly, in addition to this
predictive capability, we need further work in devising

Copyright © 1998 by the American Institute of Aeronautics and Astronautics, Inc., All rights reserved.

1585

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

algorithmic refinements to considerably speed up
convergence.

In this paper, we consider techniques for faster
convergence. The methods considered here involve the
pre-processing of the adaptive replicator inputs so as to
improve the structure of the confluence matrix (as is
explained further below). In particular, we consider
several variants of the Principal Component Analysis
(PCA) algorithm. The basic results yield a general,
broadly applicable, advance in learning/adaptation speed
since we are improving a basic module that underlies all
perceptual and control subsystems. We begin in
Section 2 by presenting the basic identification
algorithm and illustrating the convergence speed issue
by numerical results on an apparently benign, three
mode example. PCA algorithms are introduced in
Section 3 where we develop a variant of the standard
algorithm which is less sensitive to process noise and
faster to converge on higher order principal components.
The efficacy of this algorithm is illustrated by
numerical results on both the three-mode example and
on a 100-mode model of the UltraLITE large space
optics test bed of the Air Force Research Lab in
Albuquerque, New Mexico.

2. Basic System Identification Algorithm and
Convergence Speed Issues

In order to more clearly motivate the subject of
this paper, we first discuss the nature of convergence
speed issues encountered with backpropagation-based
neural networks or similar LMS-style adaptive signal
processing schemes. Moreover the issues with which
we shall be mainly concerned do not depend upon
whether or not the control system or identifier is linear
or nonlinear. Therefore, for simplicity and to focus
ideas, we consider the problem of identifying a linear
plant. The structure of the neural identifier depends
upon the model form with which the plant is
represented. To address the most popular model form,
suppose the output, y(k), of a linear SISO system with
input x(k), can be represented by the ARMA model;

= WpTX(k) (La)

x(k), x(k-l), ...x(k-N+l)]T (l.b)
where (.)T denotes the transpose, N is the order , X is
the 2N dimensional "regressor vector", assumed to be
measured and Wp is the vector of ARMA coefficients.
Now, given X, the simplest neural net for representing
the above system, using the definitions in Ref. [2],
consists of an input layer, accepting X(k) at each time
k, with signals feeding into a single output neuron with
synaptic connectors having a 2N dimensional weight
vector, W(k). The output, z(k+l), is thus given by:

= W(k)TX(k) (2)
This is then subtracted from y(k+l) to obtain the output
error

e(k+l) = y(k+l)-z(k+l) (3)
Supposing that our neurons are two-way devices as in
[2], we feed e(k+l) back into the backward path of the
output neuron. Following the rules in [2] for updating
the weight of each synapse, we find that the change in
W is proportional to the dyadic formed from the forward
path input to W and the backward path input to W:

W(k+l) = W(k)+ |i(k)e(k+l)X(k) (4.a)
where:

H(k) = a/IIX(k)lP (4.b)
Here, u(k) is a time varying adaptive speed and a is a
constant. The definition of \i is one of the
distinguishing features of our work. It allows us to
choose the constant a once and for all and, under quite
general conditions, guarantee convergence. These
matters are considered in some detail in [2]. For a
general identification system, even a nonlinear system,
[2] obtained this result: If there exist weight values such
that z can duplicate y exactly and if the square of the
norm of the error , considered as a function of the
weights, is a homogeneous function of degree M, then
ct<M implies that e(k) converges to zero. In the above
linear problem, the square of the error is obviously a
quadratic function of the weights (M = 2). Hence, if y
can be represented exactly by a system of form (2) for
some value(s) of W, then cc<2 implies convergence of
le(k)l. Because it results in one- step convergence in the
one-dimensional case, we most often use a = 1.

Next, in order to say more about the rate of
convergence, we need to recast (4.a) into a more suitable
form. Define:

w(k) = Wp-W(k) (5)
Then:

e(k+l) = w(k)TX(k) (6)
Using this expression in (4.a) and replacing W in favor
of w, we get:

w(k+l)=[I-u(k)X(k)X(k)T]w(k) (7)
where I denotes the 2N dimensional identity. By the
way, equation (7) is in no way peculiar to our particular
neural net architecture - it is the basic "prototype"
equation for studying the convergence behavior of
virtually any adaptive system: controllers, identifiers,
linear or nonlinear neural networks or LMS.
Correspondingly, the convergence speed issues are
common to all these systems as well.

Equation (7) describes the evolution of the
deviation, w, of the weight vector from the values that
permit z to exactly match y. The behavior of the mean
of w or the norm of w gives some notion of the rapidity
of convergence of (4). There are very few exact results,

1586

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

particularly when a is of order unity (a not small).
However, for small a, results such as those reported in
[5] show that the expected value of w(k) asymptotically
approaches wa(k), where:

wa(k+l) = [I-aR]wa(k) (8)
where:

R = E[X(k)X((k)T/IIXII2] (9)

We see that R (often called the "confluence matrix") is
the second moment matrix of the normalized net
input, X/ IIXII. The sum of the eigenvalues of R,
trace(R), is unity. Thus the rates of geometric
convergence have the form (1 - ctX), where X is any one
of the (non-negative) eigenvalues of R. We cannot
make this factor small by increasing a indefinitely
because, in general, a<2 is necessary to ensure that
W(k) is bounded. Thus, if R is ill-conditioned, i.e., has
a set of small eigenvalues, then 11-ccXl will be nearly
unity, and convergence can be very slow. Equations (8-
9) pertain to the case a «1, but it is still arguable that
(8-9) gives the leading term in a sequence of asymptotic
approximations and adequately portrays the dominant
factors in convergence speed even when a is of order
unity.

Slowness of convergence is a problem that
depends on a very complicated way on the system
dynamic parameters, sample rate, the number of delays
in the ARMA model, etc. The sensitivity of
convergence speed to system parameters and the fact that
slow convergence can even occur for relatively low
order, apparently innocuous systems are well
illustrated by the following "three mode example".
This is a single-input, single-output system with just
three lightly damped resonances - apparently a trivial
example upon which to apply autonomous system
identification. The discrete-time model is given by:

y(k+l)=[l, 0]xl(k+l)+[l, 0]x2(k+l)+
[1,0]x3(k+l) (10)

where:

a. (11)

b.

c.

x2(k+l) = |

x3(k+l) = |

"cl -si"

"c2 -s2~
cO f»0DJ^ w^f

s3 c3

xl(k) +

x2(k) +

x3(k) +

~ 0 ~
2.0:<r
2.0_

0.5

X(k)

X(k)

X(k)

Here, ck and sk (k = 1,2,3) denote cos(0k) and sin(6k),
respectively. 0k and pk are parameters of a balanced
modal representation. The values of these parameters
are given by:

0, = 27t /50 , 62 = 27t /30, 63 = 271 710 (12.a,b,c)
p, =0.995, p2 =0.995, p3 =0.990 (13.a,b,c)

Finally, in (10) x(k) is a discrete time white noise
process that is normally distributed with unit variance.

Given the above system, we construct a
simulation T steps long in which the regressor vector,
X, is assembled and the system identification algorithm,
(2) - (4) is implemented. Although rigorous
requirements for convergence are satisfied, a typical run
with N=6, a =1 and T=1000 results in very little
decline in the output error. Figure 1 shows the
system output and the output error, e(k), versus time
steps for these values of parameters and for an initially
zero weight vector. Apparently, e(k) persists
throughout the entire 1000 steps without any evidence
of further improvement. For the same case, Figure 2
shows the time variation of the elements of the weight
vector. Again, there is no appreciable tendency toward
convergence. The standard algorithm, (2)-(4) does
converge but it would require a simulation over a much
larger time period to reveal this numerically.

For the above simulation of length T = 1000,
the eigenvalues of R are found to be:

A,(R) = [2.910e-09 5.813e-06 3.373e-04 1.880e-03
1.812e-03 1.607e-03 2.539e-03 3.827e-03
4.189e-03 1.308e-02 2.311e-01 7.375e-01] (14)

In view of relations (8) and (9) and the eight orders of
magnitude spread in the above eigenvalues, it is not
surprising that convergence is glacially slow.
Considering that this sort of phenomenon can occur for
such a simple example it is vital to address the root
cause of the problem in order to assure reliable
operation of neural adaptive systems for applications of
practical importance.

Basic PCA3. Pre-Processing of Identifier Inputs _ _
Algorithm and Its Limitations

The above discussion hopefully provides
convincing motivation for the present study.
Furthermore, equations (8) and (9) suggest some ways
out of our difficulty. The first possibility considered is
to make the confluence matrix well conditioned by
transforming the regressor vector before it is used by the
neural identifier. In other words, replace X(k) by Y(k)
where:

Y(k) = QX(k) (15)
Furthermore, we form the estimated system output as:

z(k+l) = W(k)TY(k) (16)
so that the output error is:

e(k+l) = y(k+l)-z(k+l) (17)
and W is updated according to:

W(k+l)=W(k)+H(k)e(k+l)Y(k) (18.a)
where:

= oc/IIY(k)ll2 (18.b)

1587

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

In this case, in place of equation (7), we have:
w(k+l) = [I - |i(k)Y(k)Y(k)T]w(k) (19)

In view of the analysis underlying (8) and (9), the idea
is to choose Q so that the correlation matrix of Y is
well-conditioned. In fact, the ideal requirement is that:

E[Y(k))Y(k)T] = I (20)
Moreover, we seek algorithms for determining

Q to satisfy (20) that can operate in real time on current
data, are adaptive and can be implemented in parallel
computations. It turns out that these basic requirements
are satisfied by the family of Principal Component
Algorithms (PCA's). What is more, PCA's can be
directly implemented as neural network algorithms. In
the following, we discuss the background of PCAs,
then briefly describe the innovative developments of the
present study.

Principal Component Analysis is discussed by
Preisendorfer [6] and Jolliffe [7]. PCA was first
introduced by Pearson [8] and later developed
independently by Retelling [9] and Karhunen [10]. It
was further generalized by Loeve [11]. The modem
version, in the form of a feedforward neural network that
extracts the desired number of eigenvalues ('principal
components") is described by Sanger [12], who also
gives a proof of convergence. This basic neural
network version is termed the Generalized Hebbian
Algorithm (GHA).

The most elementary component of GHA that
extracts the first "principal component" of an N-
dimensional vector time series, (X(k); k=l,2,...},
consists of an input layer of N neurons (which receive
the elements of X at each time step) with synaptic
connections that converge into a single hidden neuron,
the output of which fans out to N output neurons. All
neurons are linear and the weight vectors of both the
"fan-in" and the "fan-out" sets of synapses are the same
weight vector, call it w(k). Thus the net output is
(wTX)X. We form the error signal by subtracting this
output from the original input, X. The next step is to
use some algorithm for recursively adjusting w so that
the norm of X-(wTX)X is minimized. In other words,
we are trying to make the network optimally
approximate (in a least mean square sense) the time
varying vector, X(k), by a constant vector (the vector to
which w(k) converges) multiplied by a time varying
scalar. It turns out that when we succeed in doing this,
w is the eigenvector of the input second moment
matrix, E[XXT], corresponding to the largest
eigenvalue. Moreover, the time averaged square of the
hidden node output, WT X, is the largest eigenvalue of
E[XXT]. The type of learning rule that is typically used
is called "Hebbian" because the increment in w is
formed solely by multiplying the net inputs and outputs

and does not involve any explicitly backpropagated
signals.

Next, it is obvious how to generalize the
above network to construct as many principal
components as we wish. Suppose we want the second
largest eigenvalue and associated eigenvector of E[XXT].
To the first network we add a second network of
identical form but with weight vector w2 (and rename
the w of the first network by wl). We form the output
error of the second network by subtracting its output
from X- (wlT X)wl (not from X). In other words, we
require the second network to approximate what remains
of X when its "principal component" has been
subtracted off. With the correct learning rule, once the
first net converges for wl, the second net converges so
that the mean square value of (w2 T X) approaches the
second largest eigenvector of E[XXT] and w2 approaches
the corresponding normalized eigenvector (and w2
becomes orthogonal to wl). Continuing in this way,
we can build a cascaded sequence of networks that
automatically extract as many eigenvalues and
eigenvectors of E[XXT] as desired. In particular, the
complete network can generate all the information
needed to form the transformation Q in (15) such that
the correlation matrix of Y is identity (as in (20)). Here
we proceed to derive the GHA in the context of the
neural architecture defined in Ref [2], Section 1. Using
the two-way neurons and synaptic connectors defined in
that paper, we find that the neural algorithm for
determining the M largest principal components is as
follows. Let:

W = [wl, w2, ... , wM]T (21)
i.e., wkT forms the kth row of W where wk is the kth
"principal vector". Also, let:

V = WX (22)
Each element of V is seen to be the component of the
input data, X, along one of the eigenvectors. Finally,
let LT[.] denote the lower triangular matrix (including
the diagonal) formed from the matrix argument [.].
Then the Generalized Hebbian Algorithm (generalized
because it constructs an arbitrary number of principal
components) is:

= W(k) + n(k){V(k)X(k)T

-LT[V(k)VT(k)]W(k)} a. (23)
= p/X(k)TX(k) b.

Again, following ref.[2], Section 1, in order to
assure reliably bounded behavior, we choose the
adaptive speed, |J., so that (i(k) = P/(WT X)2 where we
use P (instead of a) to denote the learning rate
constant to keep this distinct from the learning rate
used in the system identification algorithm. In the
present study, we typically take p<l. (23) differs from
usually considered PCA algorithms in that \i is time-

1588

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

varying according to (23. b) rather than being a constant
or some explicit , and decreasing function of time,
such as 1/k. However, if X is normalized |i is very
nearly constant anyway and there little difference
produced in the final result. The mean square
values of the elements of V are readily seen to be the
eigenvalues of E[X(k)X(k)T]. As part of our on-line
algorithm we form estimates of the mean square values
of the elements of V by means of time averaging.
Denoting these estimates by the vector X, we compute
Xn from:

X.(k+l) = X,(k) - (l/Tav)(^(k) - Vn
2) (24)

where Tav denotes the averaging time used to compute
the mean square value. Once the algorithm converges,
the desired transformation, Q, that allows (20) to be
satisfied is:

Q = [diag(V/2)]-1 W (25)
It is easily seen that after convergence, the correlation
matrix of Y = QX is:

E[YYT] = [di I/2' ' WRWT [diag(A,

But since WR = [diagtf,"2)] ' ' W and WWT =1, the
above reduces to the MxM identity.

To illustrate how GHA works, we first
simulate the three-mode example for T=1000 to
generate X(k), k+l,...,T. With this data and the
parameter values: N = 6, T = 1000, P = 0.01, Tav =
100, M=6; we run the algorithm (23)-(25). One can
monitor convergence behavior by plotting the separate
rows of W versus time. Figure 3 shows the time
variation of the elements of the first three rows of W,
i.e. the first three Principal Component vectors.
Clearly, the role of p is a reciprocal averaging time.
Larger P means quicker initial convergence but larger
steady state fluctuating or noisy error. Smaller P slows
convergence but reduces the steady state noise coming
through to W. The various rows of W are seen to
converge sequentially: the first row converges first, the
second row second, etc. The first few rowsconverge
rather quickly and the mutual orthonormality conditions
take hold after the firstseveral hundred time steps. The
higher order eigenvectors take much longer to converge
and seem to be impeded by residual errors still
remaining from the lower order eigenvectors.

As one explores the behavior of PCA trying
various values of parameters, one observes several
unsatisfactory aspects. First, the convergence of the
higher order principal component vectors (the lower
rows of W) appears to be inordinately slow. Secondly,
a large fraction of the plant disturbance noise is
transmitted through the algorithm to appear as a steady
state fluctuation error in W. Small values of beta

partially remedy this but at the cost of slow
convergence. A third difficulty is that although the
algorithm eventually makes the principal vectors
mutually orthogonal, the higher order principal vectors
still retain small components along the lower order
vectors and this seems to impede the convergence of the
higher order vectors. The next Section addresses the
remedy of these difficulties.

4. PCA Refinements: Variable Speeds. Time Averaging
and Weight Orthogonalization

Here we consider several modifications to the
GHA presented earlier designed to address the difficulties
noticed in the last Section.

The first difficulty noted in Section 3 was that
the convergence of the higher order principal vectors (
the lower rows of W) appears to be too slow. An
obvious source of this difficulty is that while GHA is
really an ordered sequence or cascade of single-
component algorithms, the adaptive speed, ji(k), is the
same for all stages of the cascade. In other words, we
have not taken advantage of the cascaded structure of
the algorithm to define larger adaptive speeds for the
higher order principal vectors. This inefficiency
accounts for at least a part of the slowness of
convergence of GHA.

First, let us explore the cascaded structure of
GHA in more detail. Using the notation in the last
Section, we may write out the algorithm in an expanded
form as:
wl(k+l)=wl(kH|i(k)[X(kMwlTX)wl](wrX) a. (26)

w2(k+l)=w2(k)+|i(k)[X(k)-(wlT X)wl
-(w2TX)w2](w2TX) b.

etc.
Clearly the algorithm is sequential in that the results for
wl,...,wk-l form the basic inputs to the computation
of wk. We can modify the above relations slightly to
make this aspect even more explicit. Recall that the
GHA, during convergence, tends to enforce the mutual
orthogonality of the wk's. Thus in (26.b) very little is
changed if, in the inner product (w2T X), we replace X
by Xl=X-(wlT X)wl. In other words, in the second
principal vector computation, the input is not X but
rather the residual error found by subtracting the first
principal component from X. Likewise, we could
modify the third principal vector computation by
replacing X by the residual signal obtained after
subtracting off the first two principal components.
Proceeding in this way, we get the following sequence
of relations:

lT X)wl](wlT X) a.
= X-(wlTX)wl b.

1589

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

w2(k+l)=w2(k)+H(k)[Xl(k)-(w2T Xl)w2](w2T XI) c.
X2 = Xl-(w2TXl)w2 d.

w3(k+l)=w3(k)+n(k)[X2(k)-(w3T X2)w3](w3T X2) e.
X3 = X2-(w3TX2)w3 f.

(27)

etc.
In this form, the algorithm for each principal vector is
basically an independent computation. Further, we
can consider the convergence of each component based
only on its local output error and its immediate input.
Note that in the above |i is the same for each
component, i.e.: [i = P / HXII2. However, with the
algorithm in the form of (27), the boundedness and
convergence results of Ref.[2], Section 1 would require
that, for the kth principal vector, |i is bounded by two
divided by the square of the norm of the local input, Xk-
1. Obviously, if there is any convergence at all for
components 1 through k-1, then Xk-lT Xk-1 is smaller
than X T X. Thus, for the kth principal vector
computation, we can actually use a (0. which is much
larger than what was previously defined. With this
reasoning, we replace (27) above by the relations:

Mk) = p/XTX a.
wl(k+l) = wl(k)+Mo(k)[X(k)-(wlT X)wl](wlT X) b.

Xl=X-(wl T X)wl c.
ji,(k)= pVX!TXl d

w2(k+l)=w2(k)+m(k)[Xl(k)-(w2T Xl)w2]((w2T XI) e.
X2 = Xl-(w2TXl)w2 f.

^(k)= p/X2TX2 g.
w3(k+l)=w3(k)-Hi2(k)[X2(kMw3T X2)w3](w3T X2) h.

X3 = X2-(w3TX2)w3 i.
(28)

etc.
A second difficulty noted in connection with

the basic GHA in the last section was that a large
fraction of the plant disturbance noise is transmitted
through the algorithm to appear as a steady state
fluctuation error in W. A straightforward way to address
this is to pass the wk's as defined by (27) through a
low-pass filter. In other words, if Fn denotes the
expression given in (27) for wn(k+l)-wn(k), then low-
pass filter Fk then use the output as wn(k). This
device clearly reduces the presence of noise in the
principal vectors. Also, it has the effect of time
averaging second-order products of the input, thereby
strengthening the importance of the regressor correlation
matrix, R = E[XXT]. With this modification, the first
few stages of the algorithm are as follows:

b.
c.
e.

Xl=X-(wlTX)wl
H,(k)= P/X1TX1

F2 = n,(k)[Xl(k) - (w2T Xl)w2](w2T XI)
w2av(k+l) = w2av(k) + (F2-w2av(k))/Tav

w2(k+l) = w2(k) + w2av(k)
X2 = Xl-(w2TXl)w2

etc.

g-
h.

J-
k.

(29)
where Tav denotes the averaging time selected by the
user. A third difficulty associated with the basic
algorithm is that in the course of convergence, the
higher order principal vectors become corrupted with
small components along the lower order principal
vectors. This happens because of progressively
accumulating errors and despite the fact that the
algorithm eventually tends to make the vectors
mutually orthogonal. Moreover, such errors tend to
become more and more serious for the higher order
vectors. These errors appear to significantly impede the
convergence of the high order principal vectors. A
simple remedy for this is to subtract off from each
iterate for wn the components along all the lower order
vectors. Specifically, in addition to equations of the
form (28) for each vector, wn, and just before wn(k) is
updated to wn(k+l), we have the sequence of
replacement relations:

wn(k) <r- wn(k) - (wl(k)T wn(k)) wl(k)
wn(k) <- wn(k) - (w2(k)T wn(k)) w2(k)

wn(k) <- wn(k) - (wn-l(k)T wn(k))wn-l(k)

(30)

Fl = Mo(k)[X(k) - (wlT X)wl] (wlT X)
wlav(k+l) = wlav(k) + (Fl-wlav(k))/Tav

wl(k+l) = wl(k) + wlav(k)

The modified GHA incorporates all of the
refinements described above, specifically including
relations (29) and (30). To provide a numerical
example, it is convenient to run the three-mode example
to generate X. P=0.01 is a reasonable value for the
learning rate constant and it is advisable to select an
averaging time that is consistent with beta, say Tav=l/P
or less. If one examines the behavior of the algorithm
for values of parameters comparable to the foregoing, it
becomes evident that with the new values of the
adaptive speeds, convergence is more rapid for the
higher order vectors. Also, the principal vector results
settle down more quickly and are far less noisy.
Finally, the forcible orthogonalization of the vectors via
relations of the form (30) noticeably helps convergence,
particularly of the mid-order principal vectors.

Despite the above noted positive results,
sufficient experimentation with the modified GHA can
reveal some disadvantages to both (30) and to the strict
use of modified inputs such as in (28.c, f,and i). What
can happen in the case of (30) is that due to accumulated

1590

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

errors, the repeated subtraction from a high order vector
of components along lower order vectors results in a
nearly zero vector, at which point the convergence
process for the vector in question as well as for all
higher vectors collapses. In addition, and in analogous
fashion, the precise subtraction from the input at stage
n of components along all the lower order principal
vectors can result in some Xn(k) being nearly zero. This
makes the convergence process break down. It is
especially necessary to "back off' on requirements (30).

Before concluding this section, we address the
above problem and describe how the appropriately
modified algorithm can be expressed in a completely
general form, capable of extracting an arbitrary number
of principal components. First, we do wish to subtract
off components of the input to a vector of given order
along vectors of lower order and we still wish to enforce
the orthogonality of successive vectors. The basic
motives for doing these things remain valid. However,
we do not need to carry out these steps precisely; it
suffices to impose these conditions to first order
accuracy only. Thus in place of the sequence (28.c),
(28.f), (28.i),etc.,we would specify the regressor inputs
to the several principal component stages as :

Xl=X-(wl T X)wl a (31)
X2 = X-(wlTX)wl-(w2TX)w2 b.

X3 = X - (wlT X)wl - (w2T X)w2 - (w3T X)w3 c.

etc.
Likewise, in place of the restrictive relations (30), we
impose only the first order versions:

w2(k) <- w2(k) - (wlT w2)wl(k) a.(32)
w3(k) <- w3(k) - (wlT w3)wl(k) - (w2T w3)w2(k) b.

etc.
With the above changes but retaining the time
averaging operation and the basic update equations for
mun and Fn , n=l...M, the overall algorithm can be
expressed in the general form:

W « - W - C w w W , (WisMxN) (33)
Cww= [(wlT w2) 0 0 ... ;
(wlT w3) (w2Tw3) 0 ... ;
(wlTw4) (w2Tw4) (w2Tw4) ... ;

: : : 1(34)
XIT<-[XX...X]-WTCWX

T (35)
Cwx = t (wl T X) 0 0 ... ;

(wlTX) (w2TX) 0 ... ;
(wlTX) (w2TX) (w3TX) ... ;

: : :] (36)
Z = diag{ wlT X, w2T X,..., wMT X} (37)

X <- p (diag(XIXIT) + e)'' (38)
F<-X(Z(XI)-(Z2)W) (39)

Fav(k+l) = Fav(k) + (l/Tav)*[F(k) - Fav(k)] (40)

= W(k) + Fav(k) (41)

All of the above are embodied in the new
refined version of GHA. As part of this algorithm, we
also calculate the output variable "Cor". This is the
correlation matrix of Y over the whole record length.
Clearly, the resemblance of Cor to the identity indicates
the closeness of the algorithm to convergence. Some
experimentation with the refined algorithm shows that
it works quite reliably and performs up to the
limitations inherent in PCA algorithms.

In the next section, we will examine the
convergence behavior of PCA as embodied in
equations (33) - (41), using numerical results from the
three mode example discussed above. We conclude by
summarizing both the useful features and the
limitations of the PCA algorithms studied herein.

5. Performance of the Refined PCA Algorithm:
Numerical Results

An issue that should be explored further is
whether or not the neural ID and PCA algorithms
should be run sequentially or concurrently. It is easy to
combine the various algorithms given earlier to
investigate the behavior of a combined algorithm; i.e.
the Q transformation matrix is being updated every time
step while the neural identification is proceeding.
Results from such an experiment should quickly deter
one from the possibility of concurrent operation. We
have found that changing the basis of the ID weights,
which is what one is doing when Q is updated each
time step, greatly disrupts their convergence. On the
three mode example we have been unable to obtain
convergence under concurrent operation. For now the
only tenable conclusion seems to be that one should
keep Q constant in the ID algorithm, except for step-
wise changes, and that one should run PCA for
substantial blocks of time (long enough to get
reasonably accurate statistics) before updating (in step-
wise manner) the transformation Q.

Adopting the above policy it appears that the
final algorithm of Section 4 (equations (33)-(41)) can
work quite well and the difficult three mode example,
for which R exhibits an eight order-of-magnitude
spread in its eigenvalues, can be treated successfully.
This can be observed by applying the refined GHA to
the same data sequence (X(k): k = 1,...,1000} generated
for the three mode example in the case of Figure 3. In
other words, we suppose that for the first 1000 time
steps, the basic identification algorithm is run with Q
= I. The data generated for X during the first 1000 steps
is used by the refined GHA to obtain a better estimate
for the transformation Q. At some time subsequent to

1591

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

this, we reset Q equal to the value generated by the
refined GHA and continue running the identifier with
the new (constant) value of Q.

Figures 4, 5 and 6 show the time variation of
the first three Principal Components to illustrate the
operation of the refined GHA. We used the same
parameter values as in Fig. 3 but extracted all 12
Principal Components. Initially, W was set to the
identity matrix. It can be seen from these results that
high frequency fluctuations due to the training signal
stimulus are absent. Moreover the higher component
vectors converge considerably more quickly.

As the second step of the process, we now use
the Q generated by the refined GHA as described above
and run the revised identification algorithm, (15)-(18),
holding Q constant. Figure 7 shows the results in
terms of the system response and the identifier error.
This may be compared directly with Figure 1. It can be
seen that the modified ID algorithm substantially
converged within 200 time steps. This is a vast
improvement over the initial results. Also, it should be
noted good ID convergence behavior was obtained even
though the PCA convergence was far from complete at
the end of 1000 steps. In fact the correlation matrix of
the transformed regressor still had an almost order-of-
magnitude spread in the eigenvalues. This emphasizes
the fact that only approximate convergence in PCA is
needed to produce profound improvement in the
identification algorithm performance.

So far in the above, we have investigated the
effectiveness of transforming the regressor via PCA on
the apparently simple but actually challenging "three
mode model". Now it is time to see how well the more
effective of the algorithms so far evaluated work on a
problem of more representative complexity; namely one
based on the hundred mode UltraLITE model.

The original data on UltraLITE provided to this
study was in the form of the standard [A,B,C,D]
matrices for a continuous-time model. Specifically, the
200x200 A matrix was in 2x2 block diagonal modal
form, the C matrix pertains to the position sensors and
the B matrix corresponds to the co-located piezo
actuators. This continuous-time model was then
transformed into a discrete time model assuming a
200Hz sample rate. To set up a suitable identification
problem, we assume that the system represented by the
hundred-mode model is stimulated with discrete-time
white noise injected through actuator number 1. It is
also assumed that we monitor response through the (co-
located) position sensor number 1.

Now if, under the above assumptions, we look
at system responses to the white noise disturbance, we
see that response is largely made up of the oscillation of
the first mode having frequency near 11 Hz. Beyond the

first mode, there is a sizable frequency gap before the
next modes start at approximately 35 Hz. There is also
a large group of "substructure" or "component" modes
from approximately 90 Hz to approximately 165 Hz,
with some ninety modes in this band. On the whole,
however, the main "global" modes, i.e. modes in which
the motion embraces all parts of the structure, not just
localized components, appear to be the first ten modes.
These extend in frequency up to approximately 90 Hz.
Consequently, we consider a model consisting of the
first ten modes in the following.

When we apply the standard algorithm
(without transformation of the regressor) to the
identification of the above system and inspect the
output signal and identification output error, we see that
there is reasonable convergence for the first mode
response (which has a level of 1.5 to 2.0) over the first
200 time steps but that there is also a persistent, higher
frequency error (with magnitude of a few tenths).
Clearly, there are slow modes of convergence in this
case. Further, when we compute the correlation matrix
of the regressor, R, using sample time averages, we see
that the eigenvalues of R range from 4.6e-19 to 0.13.
This means that R is even more poorly conditioned in
this case than in the three-mode example. Little wonder
that the standard algorithm apparently fails to converge
for this mtraLITE example.

Next, we run the refined GHA with the
parameter values |3 = 0.01, T = 500, Tav = 100 and N =
40. We monitor convergence by looking at the off-
diagonal elements of Cor, the correlation matrix of the
transformed regressor, Y. If all such elements are of
magnitude less than 0.1, we deem the algorithm to have
converged to an acceptable extent. Under these
conditions, the refined GHA extracted all 40 principal
components in approximately 4.5 minutes. This is not
an inconveniently long time considering that this initial
component extraction only has to be undertaken once
initially and subsequent system changes can be tracked
relatively quickly.

For purposes of comparison, Figure 3.1.4-8
shows a thousand time step simulation of the ten mode
UltraLITE model with no transformation of the
regressor. Although the identifier error settles down to
a magnitude approximately an order-of-magnitude less
than the system output, there is no evidence of further
significant improvement. In contrast, Figure 3.1.4-9
shows the result of the use of the regressor
transformation, Q, computed as described above. In this
case, judging from the identification error, the
identification algorithm converged in approximately 600
to 700 steps. In summary, then, the performance of
PCA on the ten mode UltraLITE example is quite

1592

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

analogous to the results obtained on the three mode
model.

6. Concluding Remarks
Our work has concentrated on the development

of effective learning algorithms for PCA networks and
the use of such networks for accelerated convergence of
neural network or LMS series-parallel system identifiers
via the appropriate transformation of the identifier
inputs (symbolized in the text by the transformation
matrix Q). After studying several major variations and
extensions of previously considered algorithms, we
have devised a new algorithm that converges rapidly, is
insensitive to disturbance or training input noise and
can preserve accuracy tolerances for the higher order
principal components. With mild constraints on the
learning rate pararmeter, the weight vectors converge to
the normalized (and mutually orthogonal) eigenvectors
of the regressor vector corelation matrix. When this
algorithm is applied to generating the Q transformation
for the "three-mode example" described in the text, the
system identifier converges to high accuracy within 200
time steps. Similar results are obtained on the much
larger model of the dynamics of the UltraLITE test bed.
Besides the many orders-of-magnitude improvement in
convergence speed, the convergence time required is
much more predictable. Specifically, with the use of
transformation Q generated by a PCA network, one can
make a reasonably accurate estimate of the convergence
time given a bound on the system order and the neural
network parameters. Finally, the approach introduced
here is, within the neural architecture of [2],
immediately applicable to nonlinear networks for
system ID.

In closing, it must be noted that PCA,
notwithstanding the above advantages, still needs to
operate over a relatively longer term time scale than the
ID algorithms. Basically, we recommend that one
should typically use a PCA module which operates
long-term in the background, constantly preparing the
ID module for fast reaction. In general, the context
within which one uses PCA assumes that input/output
statistics are roughly persistant; i.e. significant order-of-
magnitude changes are long term. This can be true, at
least in an approximate sense, even for some step
changes in system parameters. However, this is not
true for sudden changes in certain types of parameters -
e.g. the dimension of the input space changes abruptly
(an actuator fails). To handle such cases, we must
examine alternative algorithms.

Finally, we must mention that, beyond
improving the convergence speed of identification, PCA
has other, very important uses. PCA is a natural way

to assess the needed order of the model. Using PCA,
one can always truncate components associated with
eigenvalues that are below some threshold of statistical
significance. This is an essential capability if one is to
build autonomous intelligent systems that are resistant
to noise. Secondly and just as importantly, PCA gives
a tool for automatically controlling network
complexity. Analogous to Hankel norm approximation
and similar "balancing" concepts the Principal
Components give a criterion for the truncation of input
spaces and the pruning of network weights. These
features are sufficient reason for desiring to include
some form of PCA algorithm as a standard module
within any automatic system ID or intelligent control
system.

References
1. G.G. Yen, "Autonomous neural control in flexible
space structures," Control Engineering Practice, 3(4),
April 1995, pp. 471-483.

2. D. C. Hyland, "Connectionist Algorithms for
Identification and Control: System Structure and
Convergence Analysis", Paper No. AIAA 97-0686,
35th Aerospace Sciences Meeting, Reno, NV, January,
1997.

3. Hyland, D.C., Davis, L.D., Das, A., and Yen, G.
"Autonomous Neural Control for Structure Vibration
Suppression", AIAA -96-3923, AIAA Guidance,
Navigation and Control Conference, San Diego, CA,
July 1996.

4. Hyland, D.C. and Davis,L.D., "Adaptive Neural
Control Program - Final Report", A F Phillips Lab.
contractor report, February, 1997.

5. R.R. Bitmead, "Persistence of Excitation Conditions
and the Convergence of Adaptive Schemes", IEEE
Trans. On Infor. Theory, vol. IT-30, No. 2, March
1984.

6. Preisendorfer, R. W., Principal Component Analysis
in Meteorology and Oceanography. New York:
Elsevier. 1988.

7. Jolliffe, I. T., Principal Component Analysis. New
York: Springer-Verlag. 1986.

8. Pearson, K., "on lines and planes of closest fit to
systems of points in space." Philosophical Magazine
2, pp.559-572. 1901.

1593

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

9. Hotelling, H., "Analysis of a complex of statistical
variables into principal components." Journal of
Educational Psychology 24, pp.417-441, 498-520.
1933.

10. Karhunen, K., "Uber lineare methoden in der
Wahrscheinlichkeitsrechnung." Annales Academiae
Scientiarum Fennicae, Series Al: Mathematica-Physica
37, pp. 3-79 (Transl.: RAND Corp., Santa Monica,
CA, Rep. T-131, 1960).
11. Loeve. M., Probability Theory, 3rd ed. New York:
Van Nostrand. 1963.

12. Sanger, T. D. "Optimal unsupervised learning in a
single-layer linear feedforward neural network." Neural
Networks 12, pp. 459-473. 1989.

Rg.2: Elements of the weight vector, same conditions as Fig. 1

1.5

10.5

I
o 0
to
o
1-0.5
UJ

•1.5
200 400 600 800 1000

Figure 2: Elements of the weight vector of the identifier
versus time, same conditions as Fig.l.

Fiji: Fig.3.a: First Principal Component vector vs time

Figure 1: System output, y(k), and identifier output
error, e(k) versus time for the three mode example, basic
identification algorithm with N = 6, and alpha = 1. The
initial weight vector is zero.

1000

Figure 3: The first three Principal component vectors
versus time, using the GHA with N=6, beta-0.01, Tav-
100, M=6. Part a: First Principal Component; Part b:
Second Principal Component; Part c: Third Principal
Component.

1594

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

First Principal Cornp. vs. Time Third Principal Comp. vs. Time

0.8

•0.6

o
sO.4

oi 0.2

•02
200 400

lime steps
800 1000

Figure 4: Results of the refined GHA with the same
X(k) as in Fig. 3 and beta = 0.01, Tav = 100. This
shows the time variation of the elements of the first
Principal Component vector.

Second Principal Comp. vs. Time

-0.4

200 400 600
time steps

Figure 6: Time variation of the elements of the third
Principal Component vector obtained via the refined
GHA, same conditions as in Fig 4.

Rg.7: System output and ID error vs. lime

1000

Figure 5: Time variation of the elements of the second
Principal Component vector obtained via the rfined
GHA, same conditions as in Fig. 4.

Figure 7: System output and identification error - under
the same conditions as Fig.l except that the modified
ID algorithm is used with Q determined by the refined
GHA over 1000 time steps.

1595

Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

UlraUe sensor output and ID Enor, basic algorithm, ten modes

3

§ 2u

!'
I
1°
I.
I
1-2
5

•3

J

,1,. : ii .::,,,.! •
Illll Ml Mill 1
• •III HIM MII

•Ml Illll 4ll.ilililllllllllllllllllllllllMintlll»ll!

JHU r̂̂ '~iiiniit»uivbi!PiitmiiBBiiiB*iini
• 1 • • 'Hill I ir" 'II IIIUVIItlBBIIIIII
• V Uf • 1 1 |l IIBIVIIBIIIIItt

''Mil Illl 1 1 1
• M Mill 1 II

HlfllllllBIBtBIIIBBBBI

MI MI niiiiiii 1111
1 1 'fllll'Bi'l Illl
1 •

1 t 1 1 1 1

1 I'l IB ' ' II
i ! ' •« !! .
t I

1 t 1

time steps

Figure 8: System output (dashed line), y(k), and
identifier output error (solid line), e(k) versus time for
the UltraLITE model with 10 modes, T = 1000, basic
identification algorithm.

1-2
0

Illl
I III ••! I

II
. II:i miiiiniiiiiiiiiiiiiil

I. I MIIIIBIIIIIIIIIIIIIIII
II IIIBIIIIIBIBIIIIIRIIllll

I IMI I IIIIIIIMIIIIIIIIIIIIII
.1IIIII IBIIIIIMBIIIHIillllll
flllllllHIIIIIWIIIIIKIIIIill
I I IBIIIIMBBIHIHIIIBBBIMBIIII
l l imiimtllMIMDIIIIBIIBIII

lilt niBBBIBBIIllllllllllBBIBIIBlin
I III IIIIIIIBIUUIIHIIIlBBtllllHIIII
rilllllllllltlllllllMBUIIIHIIII

IIMIIIIIIIIIIIIIIIII
II tlllllltlllMIIII
I* tlllllllIlllllll
t M Illl I I III!'

I II II "II

0 100 200 300 400 500 600 700 800 900 1000

Figure 9: System output (dashed line), y(k), and
identifier output error (solid line), e(k) versus time for
the UltraLITE model with 10 modes, T = 1000. Here,
the PCA-generated transformation was used on the
regressor. The training stimulus time series is exactly
the same as that used in Figure 8.

1596

