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Analytical target cascading is a hierarchical multilevel multidisciplinary designmethodology. In analytical target

cascading, top-level design targets (i.e., specifications) are propagated to lower-level design problems in a consistent

and efficient manner. In this paper, a modified Lagrangian dual formulation and coordination for analytical target

cascading are developed to enhance a formulation and coordination proposed earlier in the literature. The proposed

approach guarantees all the properties established earlier and additionally offers new significant advantages. As

established previously for the convex case, the proposed analytical target cascading coordination converges to a

global optimal solution with corresponding optimal Lagrange multipliers in the dual space. The Lagrange

multipliers can be viewed as the weights for deviations in analytical target cascading formulations. Thus the

proposed coordination algorithm finds the optimal solution and the optimal weights for the deviation terms

simultaneously. The enhancement allows for target cascading between levels, for the use of augmentedLagrangian to

improve convergence of the coordination algorithm, and for prevention of unboundedness. A guideline to set the step

size for subgradient optimization when solving the Lagrangian dual problem is also proposed.

Nomenclature

Csys = children subproblem set with respect to a system
problem

c = penalty constants for the augmented terms
Rsub

sub = subsystem responses at the subsystem level
Rsys

sub = subsystem responses at the system level
Tsys = system targets
ysubsub = subsystem linking variables at the subsystem level
ysys = system linking variables
ysyssub = subsystem linking variables at the system level
�k = step size for subsystem k
�R

k = Lagrange multipliers associated with the deviations of
responses of subsystem k

�y
k = Lagrange multipliers associated with the deviations of

linking variables of subsystem k
�k = subgradient for subsystem k

1. Introduction

A NALYTICAL target cascading (ATC) [1–5] is a hierarchical,
multilevel, multidisciplinary methodology for large-scale

system design. In ATC, a large-scale system is assumed to be
hierarchically decomposed by available decomposition methods:
physics-based, aspect-based, or model-based decomposition [6].
Hierarchical decision-making (i.e., cascading targets) is then

modeled as individual design optimization problems at each level,
possibly in multiple subproblems. The focus of this paper is on
developing a Lagrangian duality-based coordination algorithm that
improves the convergence of ATC to enforce consistency between
subproblems at multiple levels.

Under the target cascading paradigm, the original large-scale
optimization problem is formulated as follows:

Poriginal:

min
x
kR�x� � Tk22 (1)

subject to

g �x� � 0; h�x� � 0

where the objective is to minimize the deviation between the targets
T and overall responsesRwith respect to design variables x, and the
deviation is measured with the squared L-2 norm denoted by k � k22,
for example,

kxk22 �
X
i

x2i

The inequality and equality design constraints are g and h,
respectively.

With the ATC approach, the original problem is decomposed into
multiple levels (two or more levels),that is, the constraints g and h
and the design variables x are decomposed into multiple levels
(supersystem, system, subsystem, etc.). In the context of
multidisciplinary design optimization (MDO), ATC can be viewed
as a hierarchical multilevel formulation [1,5] as well as a
coordination methodology [7]. Details of the ATC formulations are
presented in Sec. II. Also, Allison et al. [8] compared ATC and
collaborative optimization [9], an MDO approach, to highlight the
similarities and differences in their use and applicability. In ATC,
starting from the top-level targets, an optimization problem at the top
level is solved to find an optimal design and subtargets for the
immediate lower-level subsystems. At the next lower level, the
objective is defined as the minimum deviation from the upper-level
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targets with respect to the current responses and linking variables.
Once the lower-level problem has been solved, the adjusted
responses and linking variables are returned to the upper level so that
the overall responses are adjusted based on the feasibility of lower-
level design. This top-down and bottom-up approach follows the
decision-making process in an organization.

Because the original design problem in Eq. (1) is assumed to be
feasible [i.e., there exists a design satisfying all the constraints of
Eq. (1)], from the computational aspect, one of the objectives of ATC
is to enforce consistency between subproblem designs, indicating
zero deviations in the subproblems. Thus an optimal ATC solution
should enforce all the deviations to be less than the acceptable
tolerance except for the overall response from the target in the top-
level objective. Mathematically, the coordination sequence can have
variations, for example, top-down and bottom-up [6], however, all of
them should converge to the same optimal solution. Michelena et al.
[10] analyzed ATC in the context of hierarchical overlapping
coordination, but the repetition of the inner-loop coordination in case
of multiple levels was a drawback in computational efficiency.
Tosserams et al. [11] proposed to adopt the alternating directions
method [12] to handle the inner loop, and the efficiency has been
improved in their augmented Lagrangian formulation for the ATC.

In general, the weights associated with the deviation terms can be
used to reflect the importance of minimizing the discrepancies
between decomposed design elements. The conventional idea has
been to set the weights for the ATC-introduced deviation terms as
large values so that the deviation terms become smaller within the
acceptable tolerance. However, large weights tend to cause
numerical instability around the optimal solution as the deviation
terms can be viewed as the external penalty terms [13].Michalek and
Papalambros [14] introduced a scheme to update the weight for each
deviation term in theATCas the solution process progresses by using
the Karush–Kuhn–Tucker condition with a prespecified tolerance (i.
e., allowable inconsistency). In their approach, as the prespecified
tolerance becomes smaller, the weights become larger.

In this paper, a Lagrangian duality coordination algorithm is
developed to improve the convergence of ATC and to enforce
consistency between subproblems at multiple levels. This work
follows upon the study by Lassiter et al. [15], who placed ATC in the
historical context of Lagrangian decomposition and coordination
methods for large-scale systems [16,17], proposed an ATC-based
decomposition and coordination approach based on Lagrangian
duality theory, and established its convergence. In the current paper,
a revised Lagrangian-based ATC formulation and a solution process
are proposed. Similar to the approach of Lassiter et al., the revised
formulation guarantees that under convexity assumptions for the
original design objective and constraints, the resulting Lagrangian
coordination algorithm finds a unique global optimum as well as
(optimal) weights for the ATC deviation terms. Additionally, the
current study enhances the results in Lassiter et al. in four aspects:

1) A new decomposition scheme is proposed for the Lagrangian
primal and dual problems, which results in the enhanced
coordination algorithm.

2) In the proposed coordination algorithm, the adjacent-level
problems are solved consecutively, which allows for passing targets
between these levels and therefore is faithful to the fundamental ATC
property of target cascading. On the contrary, in the approach of
Lassiter et al. [15], the adjacent-level problems are solved
simultaneously without target cascading.

3) The revised ATC formulation satisfies the Lagrangian
separability property and therefore allows for the use of augmented
Lagrangian, which was not possible before. Consequently,
convergence of the proposed coordination process can be improved.

4) The revised ATC formulation prevents the subproblems from
being unbounded, which, again, is not guaranteed in the approach of
Lassiter et al. [15].

Two demonstration cases show that in the proposed Lagrangian
coordination, theweights do not necessarily need to be large, and that
for a convex ATC-decomposed problem there exists a unique set of
weights to achieve the prespecified tolerance. Two aspects of the
original problem, feasibility and ATC separability, are important

assumptions for the proposed approach. The feasibility assumption is
concerned with the existence of a feasible solution that satisfies the
feasible design space, although the overall responses R may not
achieve the targets T perfectly. The separability assumption is
concernedwith the ATC-decomposed problem structure. The design
constraints g and h are ATC-separable if subproblems do not share
the same constraint. Common variables assume the form of
responses and linking variables in ATC. In this paper, the goal is to
find an ATC feasible/optimal solution while identifying the weights
for the deviation terms introduced in the ATC formulation to match
the responses and linking variables, not the weights for meeting the
overall targets [i.e., the original objective in Eq. (1)].

The paper proceeds as follows. The traditional ATC formulation is
revisited in Sec. II, whereas the Lagrangian dual ATC formulation is
presented is Sec. III. In Sec. IV, the revised Lagrangian dual
coordination for ATC is proposed and it is shown that this dual-
solution process produces a solution that is also optimal for the
original problem. The proposed algorithm is implemented in
combination with the augmented Lagrangian and the weight issue is
addressed. In Sec. V, the Lagrangian ATC formulation and
coordination are demonstrated on two examples, convex and
nonconvex, for which a global optimal solution is obtained and the
corresponding weights for the deviation terms are found. The speed
of convergence is also investigated with different step size update
formulas. The paper is summarized in Sec. VI.

II. ATC Formulation

For simplicity, ATC coordination for the bilevel formulation is
considered, however, the proposed algorithm is not limited only to
the bilevel case. In the casewhere the problem hierarchy is composed
of more than two levels, the proposed algorithm can be repeatedly
applied to any combinations of the two different sublevels of the
overall hierarchy that constitute the entire coordination. Here it is
assumed that under the ATC paradigm the original problem is
decomposed into two levels: system and subsystem subproblems.
The top system-level problem with the deviation terms in the
objective is stated as follows:

Psys:

min
xsys ;R

sys

sub
;ysys

sub

kRsys � Tsysk22 �
X
k2Csys

kwR
k � �Rsys

sub;k �Rsub
sub;k�k22

�
X
k2Csys

kwy
k � �ysyssub;k � ysubsub;k�k22 (2)

where

R sys �Rsys�xsys;Rsys
sub�

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0

where the objective is to minimize the deviation between the system
targets Tsys and the system responses Rsys that are functions of the
system design variables xsys and the subsystem responsesRsys

sub. The
deviation is measured by the squared L-2 norm. The design
constraints are gsys andhsys, and the deviation constraints are defined
with respect to the values of the subsystem responses Rsub

sub and the
subsystem linking variables ysyssub;k, where k is an element of the
children subproblem set Csys. Note that R

sys
sub refer to the subsystem

response values at the system level and Rsub
sub refer to the subsystem

response values at the subsystem level, i.e., for the same physical
entity, variables are duplicated at different levels. The deviations are
multiplied by vectors of positiveweightswR

k andwy
k. The symbol � is

used to define term-by-term multiplication of two vectors, for
example,

�a1; a2; . . . ; an� � �b1; b2; . . . ; bn� � �a1b1; a2b2; . . . ; anbn�
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(see [14]). In Eq. (2), the responses and linking variables from the
subsystem level are set as parameters with superscript sub. Also, the
subscript k appearing in the responses and linking variables
associates these vectors with subsystem k, with k 2 Csys. The bottom
subsystem-level ATC subproblem for the kth element is formulated
as follows:

Psub;k:

min
xsub;k;y

sub
sub;k

kwR
k � �Rsys

sub;k �Rsub
sub;k�k22 � kwy

k � �ysyssub;k � ysubsub;k�k22 (3)

where

R sub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k�

subject to

g sub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0; hsub;k�Rsub

sub;k;xsub;k; y
sub
sub;k� � 0

where the response and linking variable targets from the system are
set constant with superscript sys.

The all-in-one (AIO) problem obtained by assembling together the
preceding system and subsystem subproblems is stated as follows:

PAIO:

min
xsys ;R

sys

sub
;Rsub

sub
;xsub;y

sys

sub
;ysub

sub

f� kRsys � Tsysk22

�
X
k2Csys

kwR
k � �Rsys

sub;k �Rsub
sub;k�k22

�
X
k2Csys

kwy
k � �ysyssub;k � ysubsub;k�k22 (4)

where

R sys �Rsys�xsys;Rsys
sub�;

Rsub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k� 8 k 2 Csys

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0;

gsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

hsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys

Note that at optimality of PAIO, the deviation terms for the
subsystem responses and linking variables become zero if the
original problem is feasible, that is, there exists a feasible design for
which

R 	
sub;k �Rsys

sub;k �Rsub
sub;k 8 k 2 Csys

and

y 	
sub;k � ysyssub;k � ysubsub;k 8 k 2 Csys

Hence, solving thePAIO in Eq. (4) is equivalent to solving the original
problem. Because of their behavior at optimality of the PAIO, the
deviation terms can be moved from the objective function down to
the constraints as new (equality) deviation constraints in Eq. (5). At
optimality, the deviation constraints should be satisfied (the
deviations should become zero) regardless of the weights, thus the
weights in the deviation constraints can be eliminated. Note that the
norm for the deviation constraints has been dropped in the PAIO,
which is a departure from the conventional ATC formulation, but it
will be adjusted by the augmented Lagrangian formulation (see
Sec. IV.B).

PAIO:

min
xsys ;R

sys

sub
;Rsub

sub
;xsub ;y

sys

sub
;ysub

sub

f� kRsys � Tsysk22 (5)

where

R sys �Rsys�xsys;Rsys
sub�;

Rsub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k� 8 k 2 Csys

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0;

gsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

hsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

Rsys
sub;k �Rsub

sub;k � 0 8 k 2 Csys;

ysyssub;k � ysubsub;k � 0 8 k 2 Csys

Under the feasibility assumption for the original problem, there
should exist a feasible solution of the PAIO with zero deviations and
an ATC solution process should produce that solution even without
assigning large weight values to each of the deviation terms. In this
work, based on Lagrangian duality theory, an ATC solution process
is proposed to find a PAIO optimal solution with zero deviations as
well as optimal weights for the deviation terms.

III. Dual ATC Formulation

The ATC coordination proposed in this paper is based on well-
established theorems on Lagrangian duality [18] that are briefly
reviewed in the Appendix. The local duality theorem presents the
equivalence between solving the primal problem and the Lagrangian
dual problem where local convexity is maintained. Partial duality
states that the dual problem can be defined with respect to any subset
of primal problem’s constraints in the same case. Thus, in the
proposed ATC solution process, a dual problem is formulated with
respect to only the set of deviation constraints. Then the augmented
Lagrangian is introduced by adding in the original objective function
an additional penalty term that tends to “convexify” the Lagrangian.
The penalty term can be viewed as the deviation term in the ATC
formulation. In the proposedATC coordination based onLagrangian
duality, the augmented Lagrangian approach is adopted to help
achieve convergence. In this paper, convexity/affinity is assumed for
the original design constraints g and h in the original problem.
According to the Lagrangian duality theory, and in particular, the
partial duality, the AIO problem in Eq. (5) is treated as the primal
problem for which the AIO Lagrangian problem can be formulated
by relaxing the deviation constraints, assigning Lagrangian
multipliers to them and bringing them up to the objective function.
The AIO Lagrangian problem (AIO–LP) is as follows:

AIO–LP:

min
xsys ;R

sys

sub
;Rsub

sub
;xsub ;y

sys

sub
;ysub

sub

fAIO � kRsys � Tsysk22

�
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k�

�
X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k� (6)

where

R sys �Rsys�xsys;Rsys
sub�;

Rsub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k� 8 k 2 Csys

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0;

gsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

hsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys

where �R
k and �y

k denote the vectors of Lagrange multipliers
associated with the deviations of responses and linking variables of
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subsystem k, respectively. The Lagrange multipliers are variables of
the Lagrangian dual problem (AIO–DP) of the form:

AIO–DP:

max
�

�AIO��� (7)

where

�AIO��� � min
xsys;R

sys

sub
;Rsub

sub
;xsub ;y

sys

sub
;ysub

sub

fAIO � kRsys � Tsysk22

�
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k� �

X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k�

where

R sys �Rsys�xsys;R
sys
sub�;

Rsub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k� 8 k 2 Csys

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0;

gsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

hsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys

where

�T � 
��R�T; ��y�T �;
��R�T � 
��R

k �T 8 k 2 Csys�;
��y�T � 
��y

k�T 8 k 2 Csys�

The AIO–LP problem can be decomposed into the system and
subsystems in a different way than that given in Lassiter et al. [15],
who retained the system responses and linking variables as variables
at the system level and kept their copies as variables at the
susbsystem level. On the contrary, we retain the responses and
linking variables aswell as their duplicates at each level.We treat one
of the two entities as variables and the other entity as targets of one
level and exchange the roles of the two entities at the other level. The
system and subsystem problems are as follows:

SYS–LP:

min
xsys ;R

sys

sub
;;ysys

sub

fsys � kRsys � Tsysk22 �
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k�

�
X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k� (8)

where

R sys �Rsys�xsys;Rsys
sub�

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0

The kth subsystem problem is stated as follows:
SYS–LPk:

min
Rsub

sub;k
;xsub;k;y

sub
sub;k

fsub;k � ��R
k �T�Rsys

sub;k �Rsub
sub;k�

� ��y
k�T�ysyssub;k � ysubsub;k� (9)

where

R sub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k�

subject to

gsub;k�Rsub;k;xsub;k; ysub;k� � 0;

hsub;k�Rsub;k;xsub;k; ysub;k� � 0

The corresponding Lagrangian dual problems for the system and
subsystem problems are stated as follows:

SYS–DP:

max
�

�SYS��R;�y� (10)

where

�SYS��R;�y� � min
xsys ;R

sys

sub
;ysys

sub

fsys

� kRsys � Tsysk22 �
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k�

�
X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k�

where

R sys �Rsys�xsys;Rsys
sub�

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0

SUB–DPk:

max
�k

�SUB;k��R
k ;�

y
k� (11)

where

�SUB;k��R
k ;�

y
k� � min

Rsub
sub;k

;xsub;k;y
sub
sub;k

fsub;k

� ��R
k �T�Rsys

sub;k �Rsub
sub;k� � ��y

k�T�ysyssub;k � ysubsub;k�

where

R sub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k�

subject to

gsub;k�Rsub;k;xsub;k; ysub;k� � 0;

hsub;k�Rsub;k;xsub;k; ysub;k� � 0

where

��k�T � 
��R
k �T; ��y

k�T � 8 k 2 Csys

Note that the responses and linking variables with superscript sys
become variable when solving the SYS–LP, whereas those with sub
become constant. Similarly, when solving SUB–LP, those with
superscript sub become variable, whereas those with superscript sys
become constant. In other words, when solving SYS–LP, the values
from the subsystem problems become parameters, and when solving
SUB–LP, the values from the system problem become parameters.

IV. Lagrangian Dual Coordination Algorithm
for ATC

In this section it is first shown that the proposed ATC coordination
is equivalent to solving the AIO problem within a framework of
Lagrangian duality. In this framework, the all-in-one dual problem
(AIO–DP) is solved, which implicitly solves the AIO–LP and also
the AIO problem. In the proposed ATC dual coordination, SYS–DP
and SUB–DPs are solved, which implicitly solves SYS–LP and
SUB–LPs and also theAIO problem. The coordination is achieved as
a result of an iterative process in which the Lagrange multipliers are
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updated in a systematic way [12,13,19]. As a result, the coordination
algorithm also finds the optimal weights for the deviation terms.
Subgradient optimization [12] is used for solving SYS–DP and
SUB–DPs. The deviation terms resulted from the Lagrangian
relaxation are augmented to follow the original ATC formulation
while maintaining the convergence of the coordination.

A. Equivalence Between the ATC Dual Coordination and
the AIO Problem

The goal of this section is to show that the proposed ATC dual
coordination is equivalent to solving the ATC-decomposed AIO
problem, that is, the coordination leads to an optimal solution of the
AIO problem due to the partial duality. Following the theorem on
Lagrangian duality, if the AIO problem has a local optimal solution
with the optimal value f	, so does the AIO–DP, that is, there exists
�	, a local optimal solution of theAIO–DP,whose value�AIO��	� is
equal to f	. In the case where the objective and constraint functions
are convex/affine, there exists a global optimal solution of the AIO
problem and a corresponding global optimal solution (i.e., optimal
Lagrangemultipliers) of theAIO–DPwith the same objective values.

A subgradient-based solution process for solving the AIO–DP
starts with choosing an initial Lagrange multiplier vector
�0 � ��R;0;�y;0�. The AIO–LP is then solved with respect to the
design variablesxsys,R

sys
sub,R

sub
sub, xsub, y

sys
sub, and y

sub
sub for the fixed�

R;0

and �y;0. To update the Lagrange multiplier, the subgradient of
�AIO��� with respect to � is calculated according to the following:

�R;i

� y;i

� �
�

@�AIO
@�R;i

@�AIO
@�y;i

 !
� Rsys;i

sub �Rsub;i
sub

ysys;isub � ysub;isub

� �
(12)

where the index i denotes the ith iteration. Based on the subgradient
information, the Lagrange multiplier vector is updated as follows:

�R;i�1

�y;i�1

� �
� �R;i

�y;i

� �
� �

� R;i

� y;i

� �
(13)

where �, the step size, is a positive scalar.With a proper step size, the
AIO–DP should converge to an optimal solution �	 whose value
�AIO��	� is equal to f	, the optimal value of the AIO problem.
Setting a proper step size is investigated in Sec. V.

The proposed dual coordination for bilevel ATC is given by the
following algorithm.

1. Algorithm: Bilevel ATC Dual Coordination

1) Set i� 0. Choose initial Lagrange multipliers�R;i
k and�y;i

k for
the deviation terms, initial subsystem responses, and linking

variables Rsub;i
sub;k and ysub;isub;k 8 k 2 Csys.

2) Solve SYS–LPwith respect to xi
sys,R

sys;i
sub;k and y

sys;i
sub;k 8 k 2 Csys.

3) Pass optimal Rsys;i
sub;k and ysys;isub;k to SUB–LPk 8 k 2 Csys.

4) Solve SUB–LPk with respect to xi
sub;k, Rsub;i

sub;k and ysub;isub;k

8 k 2 Csys.
5) Calculate the deviations for the optimal responses and linking

variables

�R;i
k

�y;ik

� �
� Rsys;i

sub;k �Rsub;i
sub;k

ysys;isub;k � ysub;isub;k

 !
8 k 2 Csysif k��R;i

k ; �y;ik �k

< �tolerance�; stop

6) Pass optimal Rsub;i
sub;k and ysub;isub;k 8 k 2 Csys to SYS–LP.

7) Update the Lagrange multipliers

�R;i�1
k

�y;i�1
k

� �
� �R;i

k

�y;i
k

� �
� �k

�R;i
k

�y;ik

� �
8 k 2 Csys

where �k > 0 is a step size.
8) Set i� i� 1 and go to step 2.
The proposed algorithm is different from algorithm 1 proposed by

Lassiter et al. [15]. In the latter, the system and subsystem problems

are solved independently (or in parallel) for the responses and linking
variables without copying their optimal values from one problem to
the other problem. This is equivalent to solving their overall
Lagrangian dual problemwith the deviation constraints whose terms
are both of the optimization variables. These constraints cannot be
treated with the augmented Lagrangian approach because squaring
their difference makes the augmented Lagrangian nonseparable. The
newly proposed algorithm eliminates this major difficulty. Because
the system and subsystem problems are solved consecutively and the
optimal values of responses and linking variables are passed from
one system to the other, the deviation constraints in the associated
AIO–DP problem in Eq. (7) have only one term as the optimization
variable and the other term constant. These constraints therefore
produce a separable augmented Lagrangian (see Sec. IV.B).

The next result shows that solving the dual subproblems SYS–DP
and SUB–DPk 8 k 2 Csys is equivalent to solving the AIO–DP.

2. Proposition: ATC Dual Coordination Solves the AIO Problem

Proof: We first show that solving the system-level Lagrangian
problem and the subsystem-level Lagrangian subproblems with
appropriately updated Lagrange multipliers is equivalent to solving
the AIO–DP problem. In the coordination algorithm, the Lagrange
multipliers for the deviation terms in Eq. (8) are first set as �R;0 and
�y;0. The system and subsystem Lagrangian subproblems are then
solved sequentially, that is, after solving the system-level problem
SYS–LP with respect to its primal variables, the process proceeds
with solving the subsystem-level subproblems with respect to their
primal variables. In case there exists more than one subproblem, they
can be solved simultaneously as the variables at the subsystem level
are separable. After solving SYS–LP and SUB–LPs for each
susbsystem problem, the subgradient of the associated dual problem
objective function is calculated with respect to the Lagrange
multipliers. In the ith iteration, this subgradient is

� R;i
k

� y;i
k

 !
sub �

@�sub;k
@�R;i

k
@�sub;k

@�y;i
k

0
@

1
A� Rsys;i

sub;k �Rsub;i
sub;k

ysys;isub;k � ysub;isub;k

 !
(14)

where the responses and linking variables from the system level

Rsys;i
sub;k and ysys;isub;k are fixed parameters found earlier in the same

iteration as optimal solutions for the SYS–LP. The right-hand side of
Eq. (14), calculated for all subsystems, is identical to the subgradient
of the AIO–DP in Eq. (12) and to the subgradient calculated in step 5
of the algorithm. By solving the system and subsystem problems
sequentially, the subgradient is partially updated for the current
design values at each level, and the calculation in step 5 yields the
subgradient of the AIO–DP problem. Based on the subgradient, the
Lagrange multipliers are updated in step 7 of the algorithm, which is
again equivalent to the update for the AIO–DP in Eq. (13). Thus the
sequence of solving the system-level problem and the subsystem-
level subproblems is equivalent to solving the AIO–DP. Finally, by
Lagrangian duality theory, solving the AIO–DP is equivalent to
solving the AIO–LP and also the AIO, QED

B. Implementation with the Augmented Lagrangian

The ATC-introduced deviation terms for responses and linking
variables in the objective of Eq. (6) are definedwithout a norm,which
is a departure from the traditional ATC formulation. The type of
norm for the deviation terms can significantly affect the convergence
of the ATC dual coordination algorithm. Conventionally for ATC,
the squared L-2 norm has been used. In this section, it is shown that
the squared L-2 norm may cause numerical instability and at the
same time it is demonstrated that augmented deviation terms
introduced in the proposed ATC dual formulation prevent this
instability.

It is observed that the coordination algorithm for the AIO problem
avoids numerical instability around the optimal solution when the
norm has been dropped in the deviation terms. For example, the
squared L-2 norm makes the Lagrange multipliers associated with
the relaxed deviation constraints large. Consider a simple case of
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system-level problem with no feasibility constraint written as
follows:

min
x1

fsys � �x1 � T�2 � ��x1 � xL1 �2

where xL1 is the lower system response. The stationarity condition
comes with

@fsys
@x1

� @

@x1
�x1 � T�2 � 2��x1 � xL1 � � 0;

��� 1

2
� @

@x1
�x1 � T�2��x1 � xL1 ��1

With the zero deviation for the lower-level response, that is, x1 � xL1 ,
the Lagrange multiplier corresponding to the relaxed deviation
constraint becomes negative infinity assuming that the target T is not
attainable. On the other hand, by dropping the squared L-2 norm for
the deviation term, the system-level problem becomes

min
x1

fsys � �x1 � T�2 � ��x1 � xL1 �

The corresponding stationary condition is

@fsys
@x1

� @

@x1
�x1 � T�2 � �� 0; ��� @

@x1
�x1 � T�2

which prevents the corresponding Lagrange multiplier from
becoming infinity. However, dropping the squared L-2 norm does
not follow the traditional ATC formulation exactly and makes
subsystem-level subproblem objectives in the ATC formulation
unbounded. This difficulty will be resolved with the augmented
Lagrangian.

For the proposed Lagrangian dual coordination, the augmented
Lagrangian formulation is adopted to further convexify the
Lagrangian. The penalty constants c in the augmented terms in
Eq. (16) must be positive. One instance is to define them as

c R
k � �cRk;1; . . . ; cRk;p�k�� � �

�����������
j�R

k;1j
q

; . . . ;
���������������
j�R

k;p�k�j
q

�

and

c y
k � �cyk;1; . . . ; cyk;r�k�� � �

�����������
j�y

k;1j
q

; . . . ;
���������������
j�y

k;r�k�j
q

�

where p�k� and r�k� are the numbers of responses and linking
variables for subsystem k, respectively.

AIO–LP:

min
xsys ;R

sys

sub
;Rsub

sub
;xsub;y

sys

sub
;ysub

sub

fAIO � kRsys � Tsysk22

�
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k� �

X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k�

�
X
k2Csys

k�cRk � � �Rsys
sub;k �Rsub

sub;k�k22

�
X
k2Csys

�cyk� � �ysyssub;k � ysubsub;k�k22 (15)

where

R sys �Rsys�xsys;Rsys
sub�;

Rsub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k� 8 k 2 Csys

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0;

gsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys;

hsub;k�Rsub
sub;k;xsub;k; y

sub
sub;k� � 0 8 k 2 Csys

where the symbol k � k22 indicates the squared L-2 norm.
The modified SYS–LP and SUB–LP are shown as follows:

SYS–LP:

min
xsys;R

sys

sub
;ysys

sub

fsys � kRsys � Tsysk22 �
X
k2Csys

��R
k �T�Rsys

sub;k �Rsub
sub;k�

�
X
k2Csys

��y
k�T�ysyssub;k � ysubsub;k�

�
X
k2Csys

k�cRk � � �Rsys
sub;k �Rsub

sub;k�k22

�
X
k2Csys

�cyk� � �ysyssub;k � ysubsub;k�k22 (16)

where

R sys �Rsys�xsys;Rsys
sub�

subject to

g sys�Rsys;xsys� � 0; hsys�Rsys;xsys� � 0

SUB–LPk:

min
Rsub

sub;k
;xsub;k;y

sub
sub;k

fsub;k � ��R
k �T�Rsys

sub;k �Rsub
sub;k�

� ��y
k�T�ysyssub;k � ysubsub;k� � k�cRk � � �Rsys

sub;k �Rsub
sub;k�k22

� k�cyk� � �ysyssub;k � ysubsub;k�k22 (17)

where

R sub
sub;k �Rsub

sub;k�xsub;k; y
sub
sub;k�

subject to

g sub;k�Rsub;k;xsub;k; ysub;k� � 0; hsub;k�Rsub;k;xsub;k; ysub;k� � 0

These additional terms with the norm make the SYS–LP and
SUB–LPs follow the conventional ATC formulation by adding
squared L-2 norm terms and prevent the SUB–LPs from being
unbounded while at the same time they keep the augmented
Lagrangian of Eq. (15) separable. When updating the Lagrange
multipliers by the subgradient calculation in Eq. (14), the augmented
subgradient includes the squared term of the deviation due to the
penalty terms introduced in Eqs. (16) and (17):

�R;i
k

� y;i
k

 !
�

@�AIO
@�R;i

k

@�AIO
@�y;i

k

0
@

1
A

�
Rsys;i

sub;k �Rsub;i
sub;k

ysys;isub;k � ysub;isub;k

 !
�

r�R;i
k
�k�cRk � � �Rsys

sub;k �Rsub
sub;k�k22�

r�y;i
k
�k�cyk� � �ysyssub;k � ysubsub;k�k22�

 !

�
Rsys;i

sub;k �Rsub;i
sub;k

ysys;isub;k � ysub;isub;k

 !
8 k 2 Csys (18)

Because the deviation terms (Rsys
sub;k �Rsub

sub;k) and (ysyssub;k � ysubsub;k)
tend to become very small (i.e., close to zero), the squared terms can
be dropped in Eq. (18) in numerical implementation so that step 5 of
the algorithm remains valid.

V. Demonstration Examples

In this section, two example problems are solved by the proposed
ATC Lagrangian dual coordination: a convex quadratic program-
ming problem and a nonconvex geometric programming problem. It
is demonstrated that for each problem, the solution process
converges to an optimal solution with the corresponding Lagrange
multipliers that are identical to those for the original problem.
Although the proposed method is based on the convexity
assumption, the geometric programming example demonstrates the
efficiency of the proposed method even in nonconvex cases.
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A. Convex Quadratic Programming Problem

The original convex minimization problem with a unique global
optimal solution is stated as follows:

Poriginal:

min
x1;x2;...;x18

x21 � x22 (19)

subject to

g1 ��x3 � x4 � x5 � 2 � 0; g2 � x5 � x6 � x7 � 1 � 0;

g3 � x8 � x9 � x11 � 1 � 0; g4 ��x8 � x10 � x11 � 1 � 0;

g5 � x11 � x12 � x13 � 2 � 0; g6 � x11 � x12 � x14 � 1 � 0;

h1 � x3 � x4 � x5 � x1 � 1� 0;

h2 � x5 � x6 � x7 � x2 � 1� 0;

h3 � x8 � x9 � x10 � x11 � x3 � 1� 0;

h4 � x11 � x12 � x13 � x14 � x6 � 0; 0 � x3; x4; . . . ; x18

For ATC demonstration, copies of variables x3, x6, and x11 are
introduced in the equality constraints h5; . . . ; h8. A global optimal
solution to the preceding problem is found at

x 	 � �5; 10; 4; 0; 0; 9; 0; 1; 0; 0; 2; 0; 4; 3; 4; 2; 9; 2�

and the corresponding Lagrange multipliers for the deviation
constraints h5; . . . ; h8 are �	 � �10; 20; 60; 60�. Following the
AIO–LP in Eq. (15), the deviation constraints h5; . . . ; h8 can be
relaxed and moved to the objective function as follows:

PAIO–LP:

min
x1 ;x2 ;...;x18

x21 � x22 � �1h5 � �2h6 � �3h7 � �4h8

� j�1j�h5�2 � j�2j�h6�2 � j�3j�h7�2 � j�4j�h8�2 (20)

subject to

g1 ��x3 � x4 � x5 � 2 � 0; g2 � x5 � x6 � x7 � 1 � 0;

g3 � x8 � x9 � x11 � 1 � 0; g4 ��x8 � x10 � x11 � 1 � 0;

g5 � x11 � x12 � x13 � 2 � 0; g6 � x11 � x12 � x14 � 1 � 0;

h1 � x3 � x4 � x5 � x1 � 1� 0;

h2 � x5 � x6 � x7 � x2 � 1� 0;

h3 � x8 � x9 � x10 � x11 � x3 � 1� 0;

h4 � x11 � x12 � x13 � x14 � x6 � 0; 0 � x3; x4; . . . ; x18

Following ATC formulations in Eqs. (16) and (17), the original
problem is decomposed into one system-level subproblem and two
subsystem-level subproblems as shown in Fig. 1. Two subsystems
share a linking variable that is denoted as x16 in subsystem 1 and x18
in subsystem 2, that is, x16 � x18. The linking variable is coordinated
at the system level and denoted as x11 at that level, that is, x11 �
x16 � x18 at optimality. The linking variable is duplicated in each of
the element design problems: the subsystem linking variable
coordinated at the system level takes ysyssub � x11, the subsystem

linking variable in subproblem1 takes ysub1sub � x16, and the subsystem
linking variable in subproblem 2 takes ysub2sub � x18. Similarly, the
subsystem responses at the system level are denoted as x3 and x6 and
those at the subsystem level are denoted as x15 and x17, respectively.
In other words, for the same subsystem response, a duplicate variable
is created at the system level:Rsys

sub1 � x3,R
sub
sub1 � x15,R

sys
sub2 � x6, and

Rsub
sub2 � x17.
Following the dual ATC formulation, the equality constraints

h5; . . . ; h8 are relaxed and moved to the objective function at the
system-level primal problem SYS–LP. The squared L-2 norm
deviation terms are also added in the objective function of each
subproblem according to formulations in Eqs. (16) and (17).
According to the proposed coordination algorithm, the SYS–LP is
solved with the initial values of the Lagrange multipliers. After
solving SYS–LP in Eq. (16), the values for x3; x6, and x11 are
cascaded to SUB–LP1 and SUB–LP2 in Eq. (17). The two subsystem
problems are solved to achieve the minimum deviations from the
target values from the system-level problem and the values for
x15; x16; x17, and x18, as well as for the local variables, are obtained.
After solving the subproblems at the system and subsystem levels,
the Lagrange multipliers are updated based on the subgradient
obtained according to Eq. (18).

The optimal solution obtained by the ATC Lagrangian dual
coordination is shown in Tables 1–4. The coordination algorithm
converges to the global optimal solution with the corresponding
Lagrange multipliers that are assigned as weights to the deviation
terms in the objective functions. The algorithm starts with
�0 � 
5; 15; 50; 50�, x0 � 
0; 0; . . . ; 0�, m� 5 with the step size
update following Eq. (21).

The proposed coordination algorithm is tested for several cases
with different initial Lagrange multipliers and step sizes. Each of the
cases shows different convergence history, however, they all
converge to the same optimal solution. The step size for updating the
Lagrange multipliers in step 7 of the algorithm is updated as follows
[12]:

�i
k �

1�m

i�m
� 1

k�ikk
8 k 2 Csys (21)

where i is the iteration number and m is a positive integer. In
implementing k�ikk, the L-2 norm was used. The preceding step size
update is simple and, in contrast to other update methods, does not
require prior knowledge of the final optimal objective value
�AIO��	� of the dual problem. When the final optimal objective
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Fig. 1 The ATC-decomposed problem of the original problem.

Table 1 Summary of the ATC Lagrangian dual coordination for the system-level subproblem

ATC level ATC variable/parameter Type (variable: V; parameter: P) Variable/parameter ATC optimal solution Global optimal solution

System Rsys Response (V) x1, x2 (5.0, 9.99) (5.0,10.0)
xsys Local variable (V) x4, x5, x7 (0,0,0) (0,0,0)

Rsys
sub � �Rsys

sub1; R
sys
sub2� Subsystem responses (V) x3, x6 (4.0,8.99) (4.0,9.0)

ysyssub Subsystem linking variable (V) x11 2.0 2.0
Rsub

sub � �Rsub
sub1; R

sub
sub2� Subsystem response (P) x15, x17 (4.0,8.99) (4.0,9.0)

ysubsub � �ysubsub1; y
sub
sub2� Subsystem linking variable (P) x16, x18 (2.0,2.0) (2.0,2.0)
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value is known (or can be estimated), an alternative step size update
method in Eq. (22) can be used [12].

�i
k � 
�AIO��	

k� � �AIO��i
k�� �

1

k�ikk
8 k 2 Csys (22)

Figure 2 plots the deviation vs primal objective function for theAIO–
LP problem in Eq. (15), that is, it plots the sum of all deviations in the
objective function of Eq. (15) against the objective value of the
primal problem given in Eq. (5). During the iteration process, the
deviation becomes smaller until it reaches the zero value, that is,
system and subsystem designs are consistent with zero deviation for
which the corresponding primal and dual objective value of 125 is
obtained.

Minimization of the primal objective value and the deviation can
bemodeled as a biobjectiveminimization problem forwhichEq. (15)
represents the related weighted-sum formulation in which theweight
of the first (primal) objective is always equal to one and the weight of
the other objective (the sum of all four deviation terms) is related to
the values of Lagrange multipliers �R

k with k 2 Csys and �y
k with

k 2 Csys. Because all the Lagrangemultipliers are positive, so are the
weights used when solving the weighted-sum problem in every
iteration of the proposed algorithm. Hence, during the execution of
the algorithm, the Pareto curve of the biobjective problem is
generated (Fig. 2) and each iteration point corresponds to one of the
Pareto solutions related to the AIO–LP problem. Additionally, as the
iterations progress, the primal optimal solution with zero deviation is
obtained as a result of the proposed algorithm. The initial values are
�0 � 
1; 1; 1; 1�, x0 � 
0; 0; . . . ; 0�, m� 100.

B. Nonconvex Geometric Programming Problem

In the second example, the proposed Lagrangian coordination
based on the convexity assumption of the objective function and
constraints is expanded to a nonconvex case. Although being
nonconvex, the example has a unique solution. The original
geometric programming problem is stated as follows:

Poriginal:

min
x1;x2;...;x18

x21 � x22 (23)

Table 2 Summary of the ATC Lagrangian dual coordination for the subsystem-level subproblem 1

ATC level ATC variable/parameter Type (variable: V; parameter: P) Variable/parameter ATC optimal solution Global optimal solution

Subsystem 1 Rsys
sub1 Subsystem response target (P) x3 4.0 4.0

Rsub
sub1 Subsystem 1 response (V) x15 4.0 4.0

ysyssub1 Subsystem 1 linking variable target (P) x11 2.0 2.0
ysubsub1 Subsystem 1 linking variable (V) x16 2.0 2.0
xsub1 Subsystem 1 local variable (V) x8, x9, x10 (1.0,0,0) (1.0,0,0)

Table 3 Summary of the ATC Lagrangian dual coordination for the subsystem-level subproblem 2

ATC level ATC variable/parameter Type (variable: V; parameter: P) Variable/parameter ATC optimal solution Global optimal solution

Subsystem 2 Rsys
sub2 Subsystem 2 response target (P) x6 8.99 9.0

Rsub
sub2 Subsystem 2 response (V) x17 8.99 9.0

ysyssub2 Subsystem 2 linking variable target (P) x11 2.0 2.0
ysubsub2 Subsystem 2 linking variable (V) x18 2.0 2.0
xsub2 Subsystem 2 local variable (V) x12, x13, x14 (4,0,3.0) (0,4.0,3.0)

Table 4 Optimal Lagrange multipliers for the deviation terms

Lagrange multiplier ATC optimal solution Global optimal solution

�1 9.98 10.0
�2 20.0 20.0
�3 60.0 60.0
�4 60.0 60.0

Fig. 2 Deviation vs primal objective Pareto curve for the AIO–LP in

Eq. (15) of the example problem.
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subject to

g1 �
�x�23 � x24�

x25
� 1; g2 �

�x25 � x�26 �
x27

� 1;

g3 �
�x28 � x29�

x211
� 1; g4 �

�x�28 � x210�
x211

� 1;

g5 �
�x211 � x�212 �

x213
� 1; g6 �

�x211 � x212�
x214

� 1;

h1 �
�x23 � x�24 � x25�

x21
� 1; h2 �

�x25 � x26 � x27�
x22

� 1;

h3 �
�x28 � x�29 x�210 � x211�

x23
� 1;

h4 �
x211 � x212 � x213 � x214

x6
� 1

Notice that polynomial functions in the objective and constraints
are represented in the posynomial form, which indicates that the
original problem has a unique global minimum [20]. A global
optimal solution is found at

x� �2:84; 3:09; 2:36; 0:76; 0:87; 2:81; 0:94; 0:97;
0:87; 0:80; 1:30; 0:84; 1:76; 1:55�

Following the two-level decomposition [1], the same as the one
depicted in Fig. 1, the original problem is decomposed after
introducing the following additional equality constraints:

h5 � x15 � x3 � 0; h6 � x17 � x6 � 0;

h7 ��x11 � x16 � 0; h8 � x18 � x11 � 0
(24)

The optimal Lagrangian multipliers associated with these equality
constraints are 4.25, 5.53, 7.68, and 7.68.

According to the AIO–LP in Eq. (15), the deviation constraints
h5; . . . ; h8 can be relaxed and moved to the objective function as
follows:

PAIO–LP:

min
x1 ;x2 ;...;x18

x21 � x22 � �1h5 � �2h6 � �3h7 � �4h8

� j�1j�h5�2 � j�2j�h6�2 � j�3j�h7�2 � j�4j�h8�2 (25)

subject to

g1 �
�x�23 � x24�

x25
� 1; g2 �

�x25 � x�26 �
x27

� 1;

g3 �
�x28 � x29�

x211
� 1; g4 �

�x�28 � x210�
x211

� 1;

g5 �
�x211 � x�212 �

x213
� 1; g6 �

�x211 � x212�
x214

� 1;

h1 �
�x23 � x�24 � x25�

x21
� 1; h2 �

�x25 � x26 � x27�
x22

� 1;

h3 �
�x28 � x�29 x�210 � x211�

x23
� 1;

h4 �
x211 � x212 � x213 � x214

x6
� 1

The coordination process starts at the system level by solving the
Lagrangian primal problem, followed by solving two subsystem
Lagrangian primal problems. First, the SYS–LP is solved for the
initial values of the Lagrange multipliers. As shown in Fig. 1, after
solving SYS–LP in Eq. (23), the values for x3; x6, and x11 are
cascaded to SUB–LP1 and SUB–LP2. The two subsystem problems
are solved to achieve the minimum deviations from the target values
from the system-level problem and the values for x15; x16; x17, and
x18, as well as for the local variables, are obtained. After solving the
subproblems at the system and subsystem levels, the Lagrange
multipliers are updated based on the subgradient obtained following
Eq. (18).

Performance of the dual coordination was compared with two
other approaches in the literature to validate the proposed method
with respect to two criteria: accuracy of the solution and efficiency of

Table 5 Optimal design with the weight update scheme and with the dual coordination

Design variables Optimal design

Weight update scheme [14] Lagrangian dual coordination

Final design Error (%) Final design Error (%)

x1 2.84 2.75 �2:93 2.84 0.12
x2 3.09 2.58 �16:66 3.07 �0:49
x3 2.36 2.25 �4:43 2.36 0.19
x4 0.76 0.76 0.01 0.76 0.04
x5 0.87 0.88 1.11 0.87 �0:02
x6 2.81 2.21 �21:46 2.80 �0:60
x7 0.94 0.99 5.28 0.94 0.07
x8 0.97 0.97 �0:55 0.97 0.05
x9 0.87 0.90 4.02 0.86 �0:46
x10 0.80 0.82 3.05 0.79 �0:39
x11 1.30 1.14 �12:73 1.29 �0:68
x12 0.84 0.84 �0:08 0.84 0.00
x13 1.76 1.52 �13:59 1.75 �0:52
x14 2.84 2.75 �2:93 2.84 0.12

Function evaluations

1

10

100

1000

10000

0.1 0.05 0.04 0.03 0.02 0.01 0.005 0.003 0.001

Solution errors

F
u

n
ct

io
n

 e
va

lu
at

io
n

s

Current method

Augmented Lagrangian by Tosserams, et al. [11]

Fig. 3 Comparison of function evaluations.
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the coordination process. For the accuracy comparison, the method
was compared with the weight update scheme of Michalek and
Papalambros [14]. Table 5 reports the optimal solution of this
example obtainedwith the scheme ofMichalek and Papalambros and
the dual coordination, for which the tolerance for termination of the
coordination process was set to 0.01. Notice that the proposed
coordination outperforms the weight update scheme and that the
higher errors from the scheme are due to the discrepancy between the
weights (27.72, 14.61, 16.64, and 16.64) and the Lagrangian
multipliers (4.25, 5.53, 7.68, and 7.68) for the deviation constraints
h5; . . . ; h8. These results confirm that the current coordination
algorithm finds the optimal solution as well as the optimal weights,
which correspond to theLagrangemultipliers, with a higher accuracy
than the weight update scheme of Michalek and Papalambros.

For the efficiency comparison, the current coordination process
was compared with that recently proposed by Tosserams et al. [11]
and based on the augmented Lagrangian relaxation. They showed
that their relaxation outperforms the weight update scheme [14] with
respect to the computational effort (i.e., number of function
evaluations) by order of 10 to 100. The current coordination
algorithm presented in this paper is compared with that in Tosserams
et al. to validate the efficiency. Figure 3 shows that the numbers of
function evaluations are similar in the order of magnitude, when
using the current method as well as the augmented Lagrangian
relaxation by Tosserams et al., However, more numerical studies are
needed to compare the two approaches in more detail. Furthermore,
for an extended hierarchy of more than two levels, Tosserams et al.
proposed adopting the alternating directionmethod [11] to reduce the
inner-loop computational effort. This alternating direction method
can also be incorporated with the current coordination to maintain
computational efficiency in multilevel cases.

VI. Conclusion

In this paper, an ATC formulation and coordination earlier
proposed in the literature are conceptually and computationally
enhanced. The enhanced ATC formulation also employs Lagrange
multipliers associated with the deviation constraints as the weights
for the deviation terms whereas the Lagrangian duality theory
guarantees that the proposed algorithm successfully converges to an
optimal solution of the original convex/affine design problem.
Similarly, the coordination algorithm finds the optimal weights for
the deviation terms, which, contrary to the conventionally large
weight values for the deviation terms, need not necessarily be large.
The algorithm uses subgradient optimization to solve the Lagrangian
dual problem and also the ATC-decomposed primal problem whose
solution is proven to be identical with the all-in-one solution. Thus
the proposed algorithm encompasses two desirable features: it is
specialized for ATC-decomposed problems and maintains the
convergence characteristics of the Lagrangian dual problem.

The conceptual enhancement involves a different decomposition
scheme of the primal and dual problems, which results in target
cascading between levels and, in turn, allows for the use of
augmented Lagrangian. The latter improves computational
efficiency of the coordination algorithm as well as makes the
method suitable for nonconvex problems. A guideline to impose a
norm for the ATC-introduced deviation terms is proposed, using the
augmented Lagrangian dual formulation. The use of norm prevents
the algorithm from numerical instability around the optimal solution
due to large weights for the deviation terms.

Subgradient optimization is used to update the Lagrange
multipliers (i.e, weights for the deviation terms) as the solution
process progresses. There can be variations in the convergence
behavior depending on the step size update formula, the initial
starting values for the design variables, and the Lagrangemultipliers.
However, two demonstration cases show that the proposed algorithm
consistently converges to the optimal solution of the original
problem and either outperforms or performs at least as well as other
methods. Although the algorithm assumes convexity/affinity of the
responses and constraint functions, it can be extended to solving
realistic engineering problems in nonconvex feasible spaces as

shown in the geometric programming example problem.
Furthermore, in one of the demonstration examples, the analogy is
drawn between the coordination algorithm and generation of Pareto
optimal solutions of the biobjective problem implied by the ATC
formulation.

Future work may involve adopting different dual optimization
schemes such as cutting planemethods [12] for improving efficiency
and robustness of the algorithm.

Appendix: Local Duality and Augmented Lagrangian

I. Local Duality Theorem

Suppose that the problem
Minimize

f�x� (A1)

subject to

h �x� � 0

has a local solution at x	 with corresponding value r	 and Lagrange
multiplier �	. Suppose also that x	 is a regular point of the
constraints and that the corresponding Hessian of the Lagrangian
L	 �L�x	� is positive definite and the dual function � is defined by
the equation

���� �min
x

f�x� ��Th�x�� (A2)

Then the dual problem
Maximize

���� (A3)

has a local solution at �	 with corresponding value r	 and x	 as the
point corresponding to �	 in the definition of �.

II. Augmented Lagrangian Function

The augmented dual Lagrangian function for the equality
constrained problem given by Eq. (8) is defined as the function

lc�x;�� � f�x� ��Th�x� � 1
2
cjh�x�j2 (A4)

for some positive constant c. From the view of duality theory, the
augmented Lagrangian is simply the standard Lagrangian for the
problem

minimize

f�x� � 1
2
cjh�x�j2 (A5)

subject to h�x� � 0.
This problem is equivalent to the original problem, because the

addition of the term 1
2
cjh�x�j2 to the objective does not change the

optimal solution point or the optimal Lagrange multiplier.
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