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This paper presents the analytical solutions for atmospheric flight in the horizontal plane.
The flight conditions considered include maximum range flight, maximum endurance
flight, chattering flight, and constant lift turn flight. They enable us to have a wide
understanding of the characteristics of flight in the horizontal plane.

I. Introduction

In general, there are five state variables and three control variables for flight in the
horizontal plane. The five state variables are two components of the position vector, two
components of the velocity vector, and mass. The three control variables are two
components of the thrust vector and the combination of flight and bank angle in order to
keep the flight at constant altitude. For gliding flight, the thrust is zero and the problem is
reduced to four state variables and one control variable. This problem had been studied
extensively in two eminent books ''2 and many published papers.3"11 The purpose of this
paper is twofold: first of all, to summarize the analytical solutions obtained before, and
secondly to elaborate possible extensions.

II. Equations of Motion

For gliding flight in the horizontal plane, the equations of motion are1'2

dX (la)
at
dY—

do
dt 2m
d y ^ L

dt 1m { }
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where X is down range, Y is lateral range, V is speed, i// is heading angle, p is
atmospheric density, S is reference area of vehicle, CD is drag coefficient, Q is lift
coefficient, m is mass of vehicle, <j is bank angle, and t is the time. In order to keep the
flight in the horizontal plane, a constraining relation between CL and a is

- pV2SCL cosa- = mg = W (2)

where Wis weight of vehicle. The drag coefficient is modeled by the parabolic polar

CD=CDo+KC2
L (3)

where CDo is zero lift drag coefficient and K is induced drag factor. By introducing the
dimensionless variables

-sL -L -iL -- --
where the subscript 0 denotes initial condition, g is gravitational acceleration, and C'L is
lift coefficient for maximum lift-to-drag ratio, we obtain the dimensionless equations of
motion2

(5a)
(5b)

(5c)u cos a

(SO
U

where the prime denotes the derivative taken with respect to the dimensionless time 9 ,
and E* is maximum lift-to-drag ratio. The constraining relation in Eq. (2) becomes

coCOS<J = TT (6)AU

where A = CL/C*L. In Eqs. (5), the four state variables are x, y, u and y/ , and a is the
sole control variable. The required lift coefficient can be calculated from Eq. (6) and C'L .
In this paper we shall assume that both CDo and K are constant and therefore
C"L = (CD(j / K)112 is also constant. The load factor is defined to be

«=F=—— <7>W cos a

It is clear that the dimensionless constraining relation described by Eq. (6) has the
limitations
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-l^coscr^-^-^1 (8)

Therefore, if the maximum and minimum values of A are assumed to be

4»x=2 (9a)
^ in=-2 (9b)

we have the maximum maneuverable domain as shown in Fig. 1.

III. Variational Formulation

For variational formulation, the Hamiltonian can be formed as2'11

"2 "'2 i tana- ,,^
—} + Pr——— (10)2E a> u cos a u

where px, py, pu, and pv are adjoint variables corresponding to x, y, u, and {//,
respectively. The variational problem has the integrals2

H = C0 (Ha)
PX=C, (lib)
Py=C2 (He)

(lid)

where Co, C\, €2, and €3 are constants of integration. When the optimal bank control is
interior, we have dH I da = 0 and

D COru

The first integral H = C0 comes from the fact that dHldO = 0 since H is not an
explicit function of the independent variable 9. In the cases the final time 9f is free, in
other words, it is neither specified nor being extremized, we have Hf=C0=0. Also, we
shall have C, = 0 if x/ is free, and C2 = 0 if _y/ is free. It happens in many cases
the final heading yf is free, and the transversality condition may result that
pv = -C2xf +C1yf + C3 = 0. Actually, one of the integrals can be eliminated as long as it
is not zero. For example when C0 * 0 , by letting
k} = C, / C0, k2=C2/C0, and k3 = C3 / C0, the following binomial equation for the bank
angle can be derived

. rk2x+k\y+k3v,,
to

(13)
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IV. Rectilinear Flight

A. Maximum Range and Maximum Endurance Glide

For rectilinear motion in the horizontal plane, we have a = 0, i// = 0 and the equations
of motion are simply

x = (I4a)

u

The two equations (14a) and (14b) can be combined to give

dx lE'corf
du u*+6)4 , ,,2 (15)

If we specify the final speed w/to be the stall speed which occurs at /lmax, then from Eq.
(6) we have

uf =

The integration from x0 = 0 and u0=l to xf= xmax and uf = ̂ (QlA^ gives the
maximum range for rectilinear flight2'11

The inverse of Eq. (14b) is

du

Its integration from 00 = 0 and MO = 1 to <9r = #max and uf

maximum endurance for rectilinear flight

(17)

gives the

(18)

For numerical computation, we shall assume the following data for the aircraft model:

CDo= 0.0125, £ = 0.05, C'D=2CDo= 0.025, C[ =

C^=1' 4. =2
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The maximum range and maximum endurance as functions of dimensional altitude are
plotted in Fig. 2. It is seen from Fig. 2 that when the altitude is too high, the rectilinear
flight in the horizontal plane does not exist. There is an altitude called ceiling where both
*max an<^ ^max 3re Z6ro- From Eqs. (16) and (18), it is easy to find the ceiling altitude is

=4»x= 2 (20)

There is a global optimal altitude for global maximum range. At that point we have
dxma]i/do) = 0 and it can be derived, so that the wmaximum x satisfies the relationma]i , maximum x

] (21)(21)

Eq. (21) provides the solution ̂ ^ , = 0.41 1 . On the other hand, there is a «maximum e

where the endurance is globally optimal. It satisfies d0maK/do) = Q and we have the
relation

(22)

With some elaborative calculation, we obtain eo^^^ e = 0.27465 from Eq. (22).

B. Chattering

The relation shown in Eq. (18) is unique. In other words, it takes the time 0max to
decelerate the aircraft from w0 = 1 to uf = ̂ a>/A.ma}. . Then, what is the #min value for
the same speed reduction? To investigate this problem, we have to go back to Eq. (7). By
letting o = 0 in Eq. (6), we have

<y = /U/2 (23)

Using the relation in Eq. (17) gives

— = -2E'(——r) (24)
du ' ' 12 v '

It is apparent that the flight time will be smaller if the right hand side of Eq. (24) is less
negative. Therefore, when the maximum lift is used, the aircraft will have maximum drag
and need minimum time for aerobraking maneuver. However, the aircraft has to bank
between +cre and -crc (where the subscript c denotes chattering) rapidly to keep the
flight rectilinear. The value of oc can be calculated from the relation
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coscrc= — - j - (25)

With A = Amxi in Eq. (24), the minimum time required in simply

- 2£*^(Uo_M/) (26)
<

The range of chattering are jcccan be obtained by integrating Eq. (15) with a> = A^u2. It
results that

„ _ max /,,2 2 \ /"77\xc~T-^—(.uo-uf) V-l)

Theoretically, the chattering between +crc and -crc must be at the rate of infinity.
However, it has been found that if the number of control switching is greater than 5, the
flight path will be a quasi-straight line and the penalty on the flight time is only several
tenth percent.

In Fig. 3, the maximum range xmax and the chattering range xc are plotted. Also
shown are the flight times. When the final range is not specified, the solutions obtained
are unique. It means that at a given altitude a, #max corresponds to ;cmax and 0ain

corresponds to xc . In the case where the final range xf is specified, further
consideration is required. When 0<xf <xc, the optimal trajectory for minimum time
flight is a two-dimensional turning in the horizontal plane.4 When xc < xf < xawi , the
optimal trajectory is simply a combination of chattering and gliding arcs. Let x\ be the
point where the two arcs join together. For minimum time flight, the aircraft glides from
XQ to x\ in shortest time. Then from x\ to Xf it chatters to reduce speed to «/, also in
shortest time. The time for glide from x0 = 0 and «0 = 1 to xl and w, , denoted by

_, ^ n+co _) + 2 tan (— —— L) _ iog(- — __ —— ) - 2 tan
2^2 IWBV -

The time for chattering from ^ and w, to xf and M^ =.

(29)

The total time is equal to the sum of ^ and 62, and is the minimum time for flight. We
can call it a kind of interior-point boundary value problem (IPBVP). The total range of
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flight is the specified x/. It is equal to the sum of the gliding part and the chattering part of
the flight. The integration of Eq. (15) form MO to u\ and then from u\ to Uf gives

2.

(30)

The only unknown in Eq. (30) is u\. Therefore, this IPBVP has complet analytic solution.

As a numerical example, let (a>, xf} = (1.0, 4.25) . With the numerical values of
E" = 20 , ;imax = 2 , a> = \, uf= 0.7071 , and xf = 4.25 insert in Eq. (30), it becomes

.Sw,2- 0.825 = 0 (31)

The solution of Eq. (31) is w, = 0.9344 . The minimum flight time can be calculated from
Eqs. (28) and (29) and is 0f=9l +02 =1.3081 + 3.6368 = 4.9449, which is 97% smaller
than the pure glide flight time of 5.4729 calculated from Eq. (18). The first term of the
right-hand side of Eq. (30) is x\ and is calculated to be xl = 1 .2652 .

V. Constant Lift Turn

By using the relation of Eq. (6) in Eqs. (5c) and (5d), we have

du_
d9
dy
d9

IE co

co

(32)

(33)

where 2. is the control variable. It requires from Eq. (33) that co2 < A2u* for the turn to
be possible, as shown in Fig. 4 for positive /L For constant lift turn, Eq. (32) can be
integrated to give

where # 0 =0 and M O = ! have been used. The combination of Eq. (32) and (33) gives
the relation

2E'
du l + A,2 u3

or

du/ = ———:i . 1 ^
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where u=u2. We can integrate Eq. (35) from the initial condition u0 = 1 and ^0 = 0
to obtain

When A = Amax, we have uf = V»/^max and

~" * ̂  '" ] (37)
/t_.,v A.max

The variation of heading angle as a function of u for constant A, turning is shown in Fig.
5.

VI. Conclusions

It is very difficult to solve flight mechanics problems analytically. The analytic solutions
are presented in this paper are focused on the cases of rectilinear flight cases. The
maximum range and maximum endurance glide problems are solved completely and
discussed extensively. Also solved are the chattering range and chattering endurance. This
is a kind of flight that is not widely investigated. For the truning flight, the only problem
solved is the constant lift turn. Nevertheless, this is still a research area that attracts many
scientists and mathematicians. We believe that some more analytic solutions can be found
somewhere at existing literature and also sometime in the future.
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