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It is well known that three momentum wheel actuators can be used to control the attitude of a rigid spacecraft and
that arbitrary reorientation maneuvers of the spacecraft can be accomplished using smooth feedback. If failure
of one of the momentum wheel actuators occurs, we demonstrate that two momentum wheel actuators can be
used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can
be accomplished. Although the complete spacecraft equations are not controllable, the spacecraft equations are
controllable under the restriction that the total angular momentum vector of the system is zero. The spacecraft
dynamics under such a restriction cannot be asymptotically stabilized to any equilibrium attitude using a time-
invariant continuous feedback control law, but discontinuous feedback control strategies are constructed that
stabilize any equilibrium attitude of the spacecraft in finite time. Consequently, reorientation of the spacecraft can
be accomplished using discontinuous feedback control.

I. Introduction

W E consider the attitude control of a spacecraft modeled as
a rigid body. It is well known that three actuators, either

gas jets or momentum wheels, can be used to control the attitude
of a rigid spacecraft and that arbitrary reorientation maneuvers of
the spacecraft can be accomplished using smooth feedback.1"7 If
failure of one of the actuators occurs, then one is left with only two
actuators. In this paper, the attitude stabilization problem of a rigid
spacecraft using only two control torques supplied by momentum
wheel actuators is considered. Since we are considering a space-
based system, the problem considered here, namely, the attitude
stabilization of a spacecraft operating in an actuator failure mode, is
an important control problem. It is assumed that the center of mass
of the system consisting of the spacecraft and the momentum wheel
actuators is fixed in space.

Attitude stabilization of a rigid spacecraft using two momentum
wheel actuators is not a mature subject in the literature. Controlla-
bility results for a rigid spacecraft controlled by momentum wheel
actuators are presented in Ref. 8. We mention that most of the previ-
ous researchers have considered the problem of controlling a rigid
spacecraft using less than three gas jet actuators.8"23 Attitude stabi-
lization of a rigid spacecraft using two gas jet actuators is considered
in Refs. 8-13. References 14-23 consider the stabilization of the an-
gular velocity equations of a rigid spacecraft using less than three
gas jet actuators. In Ref. 19, an expression is given for the geo-
metric phase24 of the attitude of a rigid body with two momentum
wheel actuators under the assumption that the total angular momen-
tum vector of the system is zero. It is mentioned that the geometric
phase can be used to compensate for the attitude drift of the rigid
body. However, explicit control methods are not presented. Related
work on spacecraft control appears in Refs. 25 and 26, but they do
not consider the same problem being studied in this paper.

We consider the attitude stabilization of a spacecraft using con-
trol torques supplied by two momentum wheel actuators about axes
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spanning a two-dimensional plane orthogonal to a principal axis of
the spacecraft. The first-order linearization of the complete space-
craft dynamic equations at any equilibrium attitude has an uncon-
trollable eigenvalue at the origin. Consequently, controllability and
stabilizability properties of the spacecraft cannot be inferred using
classical linearization ideas. The complete spacecraft dynamics is,
in fact, not controllable. Under the assumption that the total angular
momentum vector of the system is zero, the spacecraft dynamics
is locally controllable at any equilibrium attitude. The spacecraft
dynamics under such a restriction cannot be asymptotically sta-
bilized to any equilibrium attitude using time-invariant continu-
ous feedback. Nevertheless, two different discontinuous feedback
control strategies are constructed that achieve reorientation of the
spacecraft in finite time. Using the concept of geometric phase,24 a
discontinuous feedback control strategy is presented based on the
nonholonomic control theory in Ref. 27. An alternate discontinuous
feedback control strategy, based on the fact that rigid-body rotations
do not commute, is also presented.

This paper is based on our earlier work presented in Ref. 10 and is
a companion to Refs. 11 and 12, which treat the attitude stabilization
of a rigid spacecraft using two gas jet actuators.

II. Kinematic and Dynamic Equations
The orientation of a rigid spacecraft can be specified using vari-

ous parametrizations of the special orthogonal group SO(3). Here
we use the 3-2-1 Euler angle convention for parametrizing the ori-
entation of the rigid spacecraft.28 Consider an inertial X\X2X3 co-
ordinate frame; let * 1*2*3 be a coordinate frame aligned with the
principal axes of the spacecraft with origin at the center of mass
of the spacecraft. If the two frames are initially coincident, a se-
ries of three rotations about the body axes performed in the proper
sequence is sufficient to allow the spacecraft to reach any orienta-
tion. The three rotations are a positive rotation of frame X\X2X^
by angle ̂  about the X3 axis (let x[x2x'3 denote the resulting coor-
dinate frame), a positive rotation of frame x(x2x'3 by angle 0 about
the x'2 axis (let x"x2x'J denote the resulting frame), and a positive
rotation of frame x'{x2x'3 by angle 0 about the x" axis (let x\X2X$
denote the final coordinate frame). The corresponding rotation ma-
trix is denoted as R(t/>, 9, (/>), where tj), 9, and </> are the Euler
angles. We assume that the Euler angles are limited to the ranges
-n < ^ < TT, -Ti/2 < 0 < n/2, -n < $ < TT. The 3-2-1
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Fig. I Spacecraft system.

Euler angle system is commonly used to represent the orientation
of aerospace systems.28 Moreover, the 3-2-1 Euler angle system has
a singularity when 9 — ±7T/2, whereas a number of other Euler
angle systems have a singularity when 0 = 0. Since it is con-
ventional in control theory to formulate the stabilization problem
about the origin, many of the Euler angle systems with singularity
at 9 = 0 would render the formulation ill posed. The Euler an-
gle system used here has no additional restrictions in comparison
to other Euler angle systems, and the control strategy developed
here can be modified to suit other Euler angle representations as
well.

Suppose a)i,co2, <&$ are the principal axis components of the ab-
solute angular velocity vector u; of the spacecraft. Then we have28

0 — co i 4- 0)2 sin 0 tan 9 H- co^ cos 0 tan 9 (1)

9 = a}2 cos (j) — COT, sin 0 (2)

VT = a>2 sin 0 sec 9 + co3 cos 0 sec 9 (3)

Next we consider the dynamic equations that describe the evolution
of the angular velocity components of the spacecraft. Consider two
momentum wheel actuators, wheels 1 and 2, spinning about axes
defined by unit vectors b\,b2 fixed in the spacecraft (see Fig. 1).
The center of mass of wheel 1 lies on the axis defined by b\, and
the center of mass of wheel 2 lies on the axis defined by £2. Control
torques —u\ and — u2 are supplied to wheels 1 and 2 about the axis
defined by b\ and £2, respectively, by motors fixed in the spacecraft.
Consequently, equal and opposite torques u\ and u2 are exerted by
wheels 1 and 2, respectively, on the spacecraft. We assume that b\
defines a principal axis for wheel 1, which is symmetric about that
axis, and Z>2 defines a principal axis for wheel 2, which is symmetric
about that axis. Further b\ and b2 span a two-dimensional plane that
is orthogonal to a principal axis of the spacecraft. Without loss of
generality, b{ and b2 are assumed to be of the form

= (b2x,b2y,Q)T

(4)

(5)

The mass of the spacecraft, wheel 1, and wheel 2 are denoted
as m0, mi, and ra2, respectively, and p0, p1? p2 denote the position
vectors of the center of mass of the spacecraft, wheel 1, and wheel 2,
respectively, with respect to the center of mass of the whole system.
Thus from the location of the wheels

p{ = (6)

(7)

where d\, d2 are constants that are the distances of wheels 1 and 2
from the center of mass of the spacecraft along the unit vectors b\
and Z»2, respectively. Since, by the definition of center of mass,

(8)

further manipulation of Eqs. (6-8) gives expressions for p0, p t, and
p2, which we denote as p, = (p /JC, p / y , 0)r, i = 0, 1, 2. The total

angular momentum vector of the system is given, in the spacecraft
body frame, by

, 9,

where

Piy

/=0 1=1

O^P/y 0

A? 0

(9)

(10)

/ =0,1,2

v = /! (u; + MO + I2(u + b202)

(11)

(12)

(13)

(14)

where /o,/i, and 72 denote the inertial tensors of the spacecraft,
wheel 1, and wheel 2, respectively, ji is the moment of inertia of
wheel 1 about the axis defined by b\, j2 is the moment of inertia
of wheel 2 about the axis defined by b2, and 0i, 92 are the angles
of rotation of wheels 1 and 2 about the axes defined by b{ and b2,
respectively. The vector v in Eq. (9), which is defined by Eq. (14),
is the sum of the angular momentum of wheels 1 and 2 relative to
the spacecraft. Here H denotes the angular momentum vector of
the system expressed in the inertial coordinate frame. The angular
momentum vector H is a constant since there is no external moment
about the center of mass of the system. Suppose MI and u2 are the
control torques; then

v = -(b\u\ -f £2i/2)

Differentiating Eq. (9) with respect to time, we obtain

/cj = S(u)R(i£>, 9, 0)# + biu} + b2u2

where

(15)

(16)

0 Ct>3

-W3 0
(W2 — ft>l

CD\
0

Note that

70 = diag(/oi,/02, /os)

/i = block diag(/u, 712)

12 = block diag(/2i, 722)

where/n,/2i are invertible 2 x 2 matrices, 70i, 702, /os, /i2, /22 are
nonzero real numbers, and therefore / is a positive-definite matrix
of the form

J = block diag(/, ,y2) (17)

where J\ is an invertible 2x2 matrix and J2 is a nonzero real number.

III. Controllability and Stabilization Properties
In this section we consider the controllability and stabilizability

properties of the spacecraft dynamics controlled by two momentum
wheel actuators. Define

^ ,-l
1

^2,
(18)
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From Sec. II the complete spacecraft dynamics can be rewritten as

7_i „ r w i i
J l _ t i*3^u7;/vi;(/j, c/, </;;/! i-

L o

Define the Lie bracket of two vector fields/i (x) and/2(jt) as29

;,= ' U(27 h
L°(lx2) J^ J

(19)

0 = ct>1 -f- o>2 sin 0 tan # + 0)3 cos 0 tan # (20)

0 = o)2 cos 0 — o;3 sin 0 (21)

•ft = 0)2 sin 0 sec 0 + &>3 cos 0 sec 9 (22)

where // is a constant vector.
The first-order linearization of the complete spacecraft dynamic

Eqs. (19-22) at any equilibrium attitude has an uncontrollable eigen-
value at the origin. Consequently, the controllability and stabiliz-
ability properties of the complete spacecraft dynamics cannot be
inferred using classical linearization ideas. However, from Eqs. (4),
(5), and (12-14) and the definition

c = (0,0, l)r

we have CTV — 0. Therefore from Eq. (9) we have

>, 0,

(23)

(24)

Since H is a constant vector, this equation represents a constraint on
the motion of the spacecraft irrespective of the controls applied. Thus
the complete spacecraft dynamics is not completely controllable.
Therefore we ask the following question: What restricted control
and stabilization properties of the spacecraft can be demonstrated
in this case? Our analysis begins by demonstrating that, under an
appropriate restriction of interest, the spacecraft equations have re-
stricted controllability and stabilizability properties.

Consider Eqs. (19-22) and suppose the angular momentum vector
H of the system is zero. From Eqs. (17), (23), and (24) it follows
that the angular velocity component of the spacecraft about the
uncontrolled principa' axis is identically zero, i.e., 0)3 = 0. Under
such a restriction, the reduced spacecraft dynamics are described by

= Ml

> — o)\ + ah sin 0 tan 0

0 = 0)2 COS 0

}jf = o)2 sin 0 sec 0

(25)

(26)

(27)

(28)

(29)

Notice that the first-order linearization of Eqs. (25-29) at any equi-
librium has an uncontrollable eigenvalue at the origin. Therefore
analysis of the controllability and stabilizability properties of the
reduced spacecraft dynamics requires inherently nonlinear tech-
niques. Equations (25-29) are of the form

x =f(x) + gilli Jrg2U2 (30)

where jc = (o)\, o)2, 0, 0, i/0r € M where M denotes the set

M = [x:u), e /?, / = 1,2, 0, V € [-TT, TT],

0 € (-0.57T,0.57T)} (31)

and/(jt), g\, ̂ 2 are vector fields defined appropriately on M.
Let r(p, t) denote the set of reachable states from the initial state

p in time exactly t for Eq. (30). The following definition is standard
(see Refs. 29 and 30).

Definition L Consider the system (30) and let/? e M:
1) The system is said to be accessible at p if, for any T >

0, U/< r r(p, 0 has a nonvoid interior with respect toM. If this holds
for all p <E M, then the system is said to be accessible.

2) The system is said to be small time locally controllable (STLC)
at/? if, for any T > O,/? is an interior point of Ur<r r(/7, t).

(32)

The following results follow directly based on an analysis similar
to that in Ref. 27.

Theorem L The reduced dynamics of a spacecraft controlled by
two momentum wheel actuators are STLC at any equilibrium.

Proof. The vector f ieldsg l ,g2 , fei,/], fe2,/], [fe2,/], fei,/]]
span a five dimensional space at every x e M. Thus the accessibil-
ity Lie algebraic rank condition29 is satisfied and hence the reduced
spacecraft dynamics are accessible, which is a necessary condition
for STLC. Following Ref. 30 let Br(x) denote the smallest Lie al-
gebra of vector fields containing/,g\,g2. Let B be any bracket
in Br(x). Now denote 8°(B), 51 (#), 82(B) as the number of occur-
rences of the vector fields/,gi,£2, respectively, in the bracket B.
The degree of B is equal to the value of X^o ^' (^* ̂ e Sussman
condition for small time local controllability at any equilibrium is
that the so-called bad brackets, the brackets with 5° odd and 8l, 82

even, must be a linear combination of brackets of lower degree at
that equilibrium. From the proof of accessibilty given above it is
clear that any bracket of degree greater than 4 can be expressed as
a linear combination of lower order brackets at any equilibrium.
Moreover, the degree of a bad bracket must necessarily be odd. The
bad bracket of degree 1 is /, which vanishes at any equilibrium.
The bad brackets of degree 3 are [ g \ , [g\,f]] and [g2, [g2,/]] and
both are identically zero vector fields. Thus the sufficient condition
in Ref. 30 is satisfied at any equilibrium, and therefore the reduced
spacecraft dynamics are STLC.

Theorem 2. The reduced dynamics of a spacecraft controlled
by two momentum wheel actuators cannot be asymptotically stabi-
lized to any equilibrium using a time-invariant continuous feedback
control law, but the reduced dynamics can be asymptotically sta-
bilized to any equilibrium using a piecewise continuous feedback
control law.

Proof. Brockett's neccesary condition for the existence of a
time-invariant continuous feedback control law that asymptotically
stabilizes any equilibrium of Eq. (30) is that the image of the map

(x, M I , M2) (33)

must contain a neighborhood of the origin.17-31'32 Note that the sys-
tem defined by Eqs. (25-29) is a dynamic extension31-32 of the
system defined by Eqs. (27-29) with o)\ , o)2 as its control inputs,
which can be expressed in the form

(34)

where y = (0, 0, \/f)T and/i,/2 are defined appropriately. At any
equilibrium ye — (06>, 9e, i/^)7 ',

rank{/,(y,),/2(y,)} = 2

The number of inputs in Eq. (34) is 2, whereas the dimension of
the state space is 3. Therefore from Refs. 17 and 34 the system
does not satisfy Brockett's necessary condition at any equilibrium.
From Refs. 31 and 32, it is clear that the topological obstruction
to stabilizability discovered by Brocket! is clearly preserved under
dynamic extension, i.e., if Eqs. (27-29) do not satisfy Brockett's
necessary condition at (0^, 9e, VO7> then Eqs. (25-29) do not sat-
isfy Brockett's necessary condition at (0, 0, </>e, 9e, V^)r- Thus the
reduced spacecraft dynamics cannot be asymptotically stabilized to
any equilibrium using a time-invariant continuous feedback control
law. The second part of the theorem is a consequence of a result due
to small time local controllability in Ref. 33, which states that if a
system is real analytic and STLC at any equilibrium, then there ex-
ists a piecewise continuous feedback controller that asymptotically
stabilizes the system to that equilibrium.

Note that in Theorem 2, by time-invariant feedback control law
we mean any feedback control law that does not depend explicitly
on time. Since Eqs. (25-29) are STLC at any equilibrium, from
Definition 1 it is clear that starting from any equilibrium an open
neighborhood of the equilibrium can be reached by trajectories of
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the system for any time T > 0. Since the system is real analytic,
the argument can be reversed (see Refs. 30, 31, and 33). Thus for
any T > 0 there exists an open neighborhood of any equilibrium
starting from which the equilibrium can be reached within time T.
Moreover, Theorem 2 states that the equilibrium can be asymptoti-
cally stabilized using piecewise continuous feedback. This is a local
property. However, notice that Eqs. (25-29) have a large set of equi-
librium points that are all connected. Typically any state of the form
coi = 0, 0)2 = 0, 0, 0, \/f are arbitrary is an equilibrium. Thus if
one knows how to steer any given state in M to some equilibrium,
and if one knows how to steer between equilibrium points, then the
asymptotic stabilization can be made global by patching together
the various piecewise continuous feedback control laws. In the next
section two different feedback control strategies are developed that
asymptotically stabilize the reduced spacecraft dynamics from any
initial state in M to any equilibrium attitude in M.

We conclude this section by summarizing the implications of the
properties stated above. Suppose the angular momentum vector H is
zero. Then the spacecraft controlled by two momentum wheel actu-
ators can be controlled to any equilibrium attitude, but the feedback
control law must necessarily be discontinuous. Thus reorientation
of the spacecraft can be achieved under the restriction H = 0; If
H ^ 0, reorientation of the spacecraft to an equilibrium attitude
cannot be achieved.

IV. Feedback Stabilization Algorithms
We restrict our study to the class of discontinuous feedback con-

trollers in order to asymptotically stabilize the reduced spacecraft
dynamics described by state Eqs. (25-29). An algorithm generating
a discontinuous feedback control that asymptotically stabilizes any
equilibrium can be constructed, as suggested by the controllabil-
ity properties of the system. Without loss of generality, we assume
that the equilibrium to be stabilized is the origin. We present two
different discontinuous control strategies that stabilize the origin of
Eqs. (25-29) in finite time.

A. Feedback Stabilization Based on Nonholonomic Control Theory
Consider a diffeomorphism defined by

y{ = cos 0/w(sec 0 -h tan 0) -h ̂  sin 0

y2 = o)2 sec 9 - y4y5

y3 = <t>
y4 = a)i + 0)2 sin 0 tan 9

v5 = sin 0/n(sec 0 + tan 0) — T/T cos 0

If we now define the feedback relations

[~W l 1 _ f"~ s m0 s m^ 0 ~ V5 sin0 sin0)1
L "2 J ~~ L cos ̂  ^5 cos ̂  J

K v\ \ /cos0ys sin0 sec2 9o£

J + (

(35)

(36)

(37)

(38)

(39)

—y\y\ + cos 0 ( sec 0 tan Qa>\ — y5y4 tan 9o)2) \ 1
cos 0 (v4 tan Oa)2 + sin 0 sec2 Oaify ) \

then the reduced spacecraft dynamics (25)-(29) are described in the
new variables by the normal form equations

-(
y\ =

y* = v2

ys = y*y\

(41)

(42)
(43)

(44)

(45)

Notice that Eqs. (35-39) define a global diffeomorphism, and there-
fore o)i=o)2 = (/) = 9 = \lf = 0 implies that yl = y2 = y3 = y4 =
v5 = 0 and vice versa (see Appendix). Hence asymptotic stabiliza-
tion of Eqs. (25-29) to the origin is equivalent to asymptotic stabi-
lization of the normal-form equations (41^4-5) to the origin; hence
we consider asymptotic stabilization of the normal-form equations.
The normal-form equations (41-45) are in a familiar form that has
been studied in Ref. 27 and therefore can be stabilized by the fol-
lowing discontinuous control strategy:

1) Transfer the initial state of the normal-form equations (41-45)
to the equilibrium state (0, 0, 0,0, y5

l), for some yj, in finite time.
2) Next, traverse a closed path y in the (yi, y3) space in finite

time, where the path y is selected to satisfy

(46)

This transfers the state (0, 0, 0, 0, y5
!) to the origin in finite time.

Here we consider a rectangular path y in the (yi, y3) space formed
by line segments from (0, 0) to (y*, 0), from (y*, 0) to (y*, yj), from
(y*> ^3) to (0> y3)» an(* fr°m (0, y3) to (0, 0). For such a path, the
line integral in Eq. (46) can be explicitly evaluated as y*y% so that
Eq. (46) becomes

(47)

and the parameters y* and yj specifying the particular rectangular
path are chosen to satisfy the above equation.

Throughout, assume k > 0, and define

X2\X2\ )

2k >0)° r |

2k <0}°r|
{Xi =

X2\X2\
Xl ' 2k

X2\X2\
Xl 2k

3 and x2 = 0}

= 0 and ;c2 > 0

= 0 and x2 < 0

k if

-k if

0 if

The function G(x\, #2) is the time optimal control law for a double
integrator. We use the well-known property (see Ref. 35, pp. 507-
514) that any initial state of the system

is transferred to the final state (Jci , 0) in a finite time.
We now present a specific feedback control algorithm that stabi-

lizes the spacecraft to the origin in finite time; this feedback control
algorithm implements the approach just described.

Maneuver L Apply

v2 = -G(y3,y4)

until (yi, y2, y3, y4, y5) = (0, 0, 0, 0, y^) where y^ is arbitrary; then
go to maneuver 2.

Maneuver 2. _ If y5
[ > 0, choose y* = — yj = ^yj; else choose

i -y*,y2)

v2 = -G(y3,y4)

until (yi, y2, y3, y4, y5) = (y*, 0, 0, 0, y\)\ then go to maneuver 3.
Maneuver 3. Apply

vi = -G(y{ -y*,y2)

until (yi, y2, y3, y4, y5) = (y*, 0, yj, 0, 0); then go to maneuver 4.
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Maneuver 4. Apply

= -G(yi,y2)

until (yi, y2, ys, y4, ys) = (0, 0, yj, 0, 0); then go to maneuver 5.
Maneuver 5. Apply

vi = -G(yi,y2)

v2 = -G(y3,y4)

until (yi, y2, ys, y4, ys) = (0, 0> 0, 0, 0); then go to maneuver 2.
It can be verified that the execution of maneuver 1 transfers the

initial state of the normal-form equations to the equilibrium state
(0, 0, 0, 0^ y5

!) for some y5* in finite time. Subsequent execution of
maneuvers 2-5 then transfers the state (0, 0, 0, 0, yj) to the origin
in finite time. This control algorithm is nonclassical and involves
switching between various feedback functions. Justification that it
stabilizes the origin of the normal-form equations (41-45) in finite
time follows as a consequence of the construction procedure. Since
stabilization of the normal-form equations to the origin is equiva-
lent to stabilization of the state equations (25-29) to the origin, we
conclude that the control inputs u\ and u2 given by Eq. (40) with v\
and v2 defined by the above control algorithm stabilize the reduced
spacecraft dynamics described by Eqs. (25-29) to the equilibrium
(a)\, 0)2, 0, 0, VO = (0, 0, 0, 0, 0) in finite time. A computer im-
plementation of the feedback control strategy can be easily carried
out.

B. Feedback Stabilization Based on Rigid-Body
Rotational Characteristics

We now present an alternate discontinuous feedback control strat-
egy for stabilizing the origin of Eqs. (25-29) in finite time. This
strategy requires that the spacecraft undergo a sequence of specified
maneuvers and is based on the fact that rigid-body rotations do not
commute. The physical interpretation of the sequence of maneu-
vers that transfers any initial state of Eqs. (25-29) to the origin is as
follows:

1) Transfer the initial state of Eqs. (25-29) to any equilibrium
state in finite time; i.e., bring the spacecraft to rest.

2) Transfer the resulting state to an equilibrium state where 0 = 0
in finite time, i.e., so that the spacecraft is at rest with 0 = 0.

3) Transfer the resulting state to an equilibrium state where 0 =
0, 9 = 0 in finite time, i.e., so that the spacecraft is at rest with
0 = 0, 0 = 0.

4) Transfer the resulting state to an equilibrium state where 0 =
|TT, 0 = 0 in finite time, i.e., so that the spacecraft is at rest with
0= I7r,0 = 0.

5) Transfer the resulting state to the equilibrium state
(0, 0, ±TT, 0, 0) in finite time.

6) Transfer the equilibrium state (0, 0, ^TT, 0, 0) to the equilibrium
state (0, 0, 0, 0, 0) in finite time.

We now present a feedback control algorithm that stabilizes the
spacecraft to the origin in finite time; this feedback control algorithm
implements the approach just described.

Maneuver 1. Apply

u\ = —k sign o)\

HI — —k sign a>2

until (coi , co2) = (0, 0); then go to maneuver 2.
Maneuver 2. Apply

Maneuver 3. Apply

M I =0

u2 = — G(0, 0)2)

until (a)\ , &>2, 0, 0) = (0, 0, 0, 0); then go to maneuver 4.
Maneuver 4. Apply

= -G(0- 57T,

until (&>i, 0)2, 0, 0) = (0, 0, |TT, 0); then go to maneuver 5.
Maneuver 5. Apply

=0

until (&>i, a>2, 0, 0, VO = (0, 0, ^TT, 0, 0); then go to maneuver 6.
Maneuver 6. Apply

«2 =

until (&>i, &>2, 0) = (0, 0, 0); then go to maneuver 3.

until (co\ , 0)2, 0, 0, VO = (0, 0, 0, 0, 0, 0); then go to maneuver 1.
It can be verified that the execution of maneuver 1 transfers the ini-

tial state of Eqs. (25-29) to the equilibrium state (0, 0, 01, 01, V1)
for some 01, 01, T/^1 in finite time. Execution of maneuver 2 then
transfers the state (0, 0, 01, 01, V1) to the state (0, 0, 0, fl1,.^1);
execution of maneuver 3 then transfers the state (0, 0, 0, 01, i/r1)
to the state (0, 0, 0, 0, T/^1); execution of maneuver 4 then trans-
fers the state (0, 0, 0, 0, V1) to the state (0, 0, ±n, 0, V1); execu-
tion of maneuver 5 then transfers the state (0,0, |TT, 0, \/fl) to
the state (0, 0, |TT, 0, 0); finally, execution of maneuver 6 trans-
fers the state (0, 0, \n, 0, 0) to the state (0, 0, 0, 0, 0). This strategy
is discontinuous and nonclassical in nature. A computer implemen-
tation of the feedback control strategy can be easily carried out.

C. Comments
We have introduced two different control laws that transfer any

initial state of Eqs. (25-29) to the origin in finite time. Both control
strategies are nonclassical and have been developed based on a care-
ful study of the dynamics of the spacecraft system. Each of these
control laws is in feedback form, since the control values depend
on the current state; and each control law is discontinuous. The first
construction procedure makes use of the nonholonomic features of
the reduced spacecraft dynamics, whereas the second construction
procedure uses physical insight about rigid-body rotations. The first
control law constructed makes use of both control actuators simul-
taneously, whereas the second control law (after maneuver 1) uses
only a single actuator at a time. The two discontinuous feedback con-
trol laws exhibited are illustrations of the class of control laws that
asymptotically stabilize Eqs. (25-29) to the origin. There are other
maneuver sequences, and corresponding feedback control laws, that
will also achieve the desired attitude stabilization of the spacecraft.
But each such strategy is necessarily discontinuous.

One of the advantages of the development in Sees. IV. A and IV.B
is that feedback control strategies are constructed that guarantee atti-
tude stabilization in a finite time. The total time required to complete
the spacecraft reorientation is the sum of the times required to com-
plete the sequence of maneuvers described. It should be clear that
the time required to complete each maneuver depends on the sin-
gle positive parameter k in the corresponding control law. There is
a trade-off between the required control levels, determined by the
selection of k, and the resulting times to complete each of the ma-
neuvers and hence the total time required to reorient the spacecraft.
In particular, the time to reorient the spacecraft from a given initial
state to the origin can be expressed as a function of the value of the
parameter k and of the initial state.
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We have demonstrated, by construction, the closed-loop proper-
ties for the special feedback control strategies presented. Our anal-
ysis was based on an ideal model assumption. Further robustness
analysis is required to determine effects of model uncertainties
and external disturbances. Unfortunately, such robustness analysis
is quite difficult since the closed-loop vector fields are necessarily
discontinuous. Perhaps, feedback control strategies that stabilize
the spacecraft attitude, different from ones presented in this paper,
would provide improved closed-loop robustness. These issues are
to be studied in future research.

The Euler angle system used in this paper has a singularity when
9 = ±^rr. Therefore the results of the feedback control strategies
are valid only in the region — n < ^ < T T , — |TT < 0 < \n, —n
< (p < n. For the stabilization problem being considered in this
paper, it is not clear how we could develop a control strategy that
may be global (i.e., free of the Euler angle singularity) by introduc-
ing other representations such as quaternions for representing the
orientation of the spacecraft. This is a subject of future research. To
the best of our knowledge, there has been no previous work where
an explicit control law is presented for reorientation of a spacecraft
with just two momentum wheel actuators. Thus there are no previous
results for comparison on the problem considered in this paper.

V. Simulation
We illustrate the results of the paper using an example. Consider

a rigid spacecraft with no control torque about the third principal
axis and two control torques, generated by momentum wheel ac-
tuators, are applied about the other two principal axes. Therefore
the vectors b\ and b2 are given by b\ — (1, 0, O)7, b2 = (0, 1, 0)r.
For our simulation, we use the spacecraft parameters used in Ref. 2.
The mass of the spacecraft, m0, is 500 kg, and the masses of the
momentum wheels, m\ and m2, are each 5 kg. The center of mass
of the momentum wheels are located at a distance 0.2 m from the
center of mass of the spacecraft, i.e., d\ — d2 = 0.2 m. The moment
of inertia of the wheels about its axis of rotation is 0.5 kg- m2, i.e.,
jl = j2 = 0.5. The inertial tensor of the spacecraft and the two
momentum wheels are given as

/o = diag(86.215, 85.07, 113.565) Kg • m2

/! = diag(0.5, 0.25, 0.25) Kg • m2

72 = diag(0.25, 0.5, 0.25) Kg • m2
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Fig. 7 Control torques.

Using these parameters, the inertial matrix J can be calculated as

J = diag(86.7, 85.5, 114.5) Kg • m2

approximately. The complete dynamics of the spacecraft system
defined by Eqs. (19-22) is not controllable, but we consider the
restriction that the angular momentum vector H = 0. Consequently,
we are interested in stabilizing the reduced spacecraft dynamics
described by Eqs. (25-29) to the equilibrium (&> l 5 a)2, 0, 0, ̂ ) =
(0, 0, 0, 0, 0). The spacecraft is initially at rest (i.e., co0, = 0% = 0)
with an initial orientation given by the Euler angles 0 = n, 0° =
0.257T, and ̂ ° = -0.5*.

First, a computer implementation of the feedback control algo-
rithm specified in Sec. IV.A was used to stabilize the spacecraft to
the origin. The value of the gain k was chosen as 1. The time re-
sponses of the Euler angles, angular velocities, and control torques
are shown in Figs. 2, 3, and 4, respectively. After a total maneuver
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time of 11.77 s, o){ = o)2 = (/> = 0 = V = 0. Next, a com-
puter implementation of the feedback control algorithm specified
in Section IV.B was used to stabilize the spacecraft to the origin.
The value of the gain k was chosen as 1. The time responses of the
Euler angles, angular velocities, and control torques are shown in
Figs. 5, 6, and 7, respectively. After a total maneuver time of 13 s,
a)^ = o)2 = (/) = 9 = ty = 0.

VI. Conclusion
The attitude stabilization problem of a spacecraft using control

torques supplied by two momentum wheel actuators about axes
spanning a two-dimensional plane orthogonal to a principal axis
has been considered. The complete spacecraft dynamics are not
controllable. However, the spacecraft dynamics are controllable un-
der the restriction that the total angular momentum vector of the
system is zero. The spacecraft dynamics under such a restriction
cannot be asymptotically stabilized using time-invariant continuous
feedback, but discontinuous feedback control strategies have been
constructed that stabilize the spacecraft to any equilibrium attitude
in finite time. The results of the paper show that it is possible to
construct control laws based on a study of the particular spacecraft
dynamics for reorienting a spacecraft using two momentum wheel
actuators.

Appendix
From Eqs. (35-39), it is clear that col=a)2 = <l> = 0 = 'fr = Q

implies that y\ = y2 = y$ = y4 = y5 = 0. Consider the inversion
of Eqs. (35-39). From Eq. (37), we have

}>i~|
y2J

0 = 3>3

From Eqs. (35) and (39) we have

[~cos0 sin0 1 f~(/nsec0 + tan#)~l
|_ sin 0 — cos 0 J |_ V J

Inverting the above equation, we get

and

Therefore

Now

M(sec 9 + tan 6) = y\ cos y3 + ys sin y3

sec 9 + tan 9 — exp(yi cos y3 + ys sin y3)

sec 9 — tan 9 =
1

sec# +tan#
Therefore

sec 9 — tan 9 = exp(—yi cos y3 — y5 sin y3)

Thus we have

0 = tan-1{0.5[exp(yi cosy3 + y5 siny3)

- exp(-y! cosy3 - y5 siny3)]}

From Eqs. (36) and (38) we have

=y4-

sec#

sec#
sin y3 tan 9

where

tan# = 0.5[exp(;yi cosys-i-ys sin<y3)-exp(-y1 cosy3-y5 sin^3)]

and

sec 9 = 0.5[expO>i cos v3 + y5 sin y3)+exp(-y! cos y3 -y5 sin y3)]

Now it is clear that yi = y2 = y3 = y4 = ys = 0 implies that co\ =
o)2 = (f) = 9 = \l/ = 0. Moreover, the diffeomorphism is global in
the interval — n < (/) < n, — \n < 0 < \n, —n < ty < n, a>i e R
and 0)2 e R.
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