JOURNAL OF SPACECRAFT AND ROCKETS
Vol. 41, No. 4, July—August 2004

Engineering Notes

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes cannot exceed six
manuscript pages and three figures; a page of text may be substituted for a figure and vice versa. After informal review by the editors, they may be published
within a few months of the date of receipt. Style requirements are the same as for regular contributions (see inside back cover).

Solar-System Escape Trajectories
Using Solar Sails

Deepti N. Sharma* and D. J. Scheeres’
University of Michigan, Ann Arbor, Michigan 48109-2140

1. Introduction

HE trajectory dynamics of a solar sail using a simple guidance

strategy is studied to find zero-cost escape trajectories from the
sun in minimal time spans. We specifically focus on finding the time
to reach escape energy, € =0. We find that escape trajectories that
first maximally decrease orbit energy and then maximally increase
energy are generally more time efficient than escape trajectories
that only maximally increase energy. Our simple guidance strategy
compares well with optimized trajectories. Previous work on the
topic of solar-system escape trajectories for solar sails has generally
concentrated on high-energy trajectories designed for specific mis-
sions. Van der Ha and Modi' explored optimal solar-sail orientation
for maximum increase in the total energy and angular momentum
over one revolution of the spacecraft around the sun. Leipold and
Wagner? investigated the generation of high orbital energies for so-
lar sails using solar fly-bys. Sauer® has studied the optimization of
solar-sail trajectories to minimize the time required to reach a cer-
tain solar distance. In contrast, our work examines the dynamics of
solar-sail trajectories under simple guidance laws and focuses on
their ability to escape from the solar system. An improved under-
standing of sail dynamics under simple guidance laws might aid in
the development of sail trajectories and solar-sail missions.

We develop control laws for the angle of the solar sail with respect
to the sun that optimize the rate of change of the semimajor axis,
so that the spacecraft will decrease or increase energy at a maximal
rate. Using this control law, we analyze several different escape tra-
jectories, including escape from initially circular and elliptic orbits.
We also study escape trajectories that start with the solar sail in a
circular orbit at 1 astronomical unit (AU), spiral inward towards the
sun by decreasing the energy of its orbit, and then, at a specified
distance from the sun, switch to increasing orbit energy until es-
cape. This trajectory allows the solar sail to gather energy from the
increased solar radiation pressure near the sun and use it to achieve
escape in a shorter time span. We have examined these trajectories
in terms of their required solar-sail lightness number B and time
for escape. We only consider solar sails with lightness numbers less
than unity because a solar sail with a lightness number greater than
one can achieve direct escape by orienting the sail full on to the sun.
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For all cases escape is defined as the time at which orbital energy is
equal to zero (¢ = 0) and does not preclude generation of additional
energy increase.

From this study we have established that minimizing the time
to escape does not necessarily involve maximizing the increase in
orbit energy at every instant along the trajectory. We have also found
that relatively poor performance solar sails can achieve an escape
trajectory from the sun in less than one year.

II. Locally Optimal Control Law

To simulate the orbital mechanics of a solar sail, we assume planar
dynamics and an ideal solar sail, leading to the equations of motion
in polar coordinates (r, radial position and 6, angular position):

F=r0?—pu/r*+T, 1

(€3]

where 7, and Ty are the thrust vectors from the solar radiation pres-
sure in the radial and transverse directions, respectively, and are
defined by

6= (T, —2/0)/r

T, = Bucos®(a)/r? (3)

(C))

Alocal integration accuracy of 3 x 10™'* was used for the simulation
of the equations of motion. The development of these relations and
further discussion can be found in McInnes.* In these equations,
 is the gravitational constant G Ms,, (normalized to 1) and « is
the angle between the sail normal and the sun line. If « is 0, the
sail is directed normal to the sun and can achieve maximum thrust
(twice the momentum of incoming photons in a perfectly reflecting
solar sail). The nondimensional solar-sail lightness number 8 is
the ratio of the solar radiation pressure acceleration to the solar
gravitational acceleration. At 1 AU, a § value of 1 corresponds
to an acceleration of 5.93 mm/s?, equal to the local gravitational
acceleration. The value of g is independent of the distance between
the sun and the solar sail because both accelerations are assumed
to have an inverse square relation. Solar sails with higher 8 values
have greater acceleration and therefore better performance.

To find a guidance law for solar escape trajectories, we focused on
manipulating « (the angle between the sail normal and the sun line)
so that the sail is always oriented to maximize or minimize the rate
of orbital energy change. We used the following Gauss variational
equation from McInnes* relating semimajor axis and true anomaly
to maximize or minimize the rate of change in semimajor axis at

every instant along its trajectory:
(T,e sin f + T9£>
,

Here p=a(l —e?) , a = —u/2e¢ is the semimajor axis of the orbit,
e=/(142¢h?/ii?) is the eccentricity, £ = 1 (F2 +r?6%) — pu/r is
the energy, i = r26 is the angular momentum, and 7, and 7}, are the
thrust vectors defined earlier. To find the value of « that would max-
imally increase or decrease da/d f, we took the partial derivative of
da/d f with respect to «, set it equal to zero, and solved for o:

0 da_
dadf

T, = B cos’(a) sin(a) /r?

2

da 2pr

df — p(l—e)? ®

(0)
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Fig. 1 Minimum [ required for escape at a given radius, initially circular orbits.

The o control law that maximally increases (+) or decreases (—)
the semimajor axis is defined as

—37 492/ 4 /9r62i2 + 8rog4
« = arctan rﬁ\/r /H;‘ 3;2/ i i @)
r

Using these controls for «, we are able to maximally increase or
decrease the semimajor axis and therefore the orbit energy at every
instant in the trajectory. This locally optimal control can be used to
study a variety of solar-sail escape trajectories.

III. Escape Times with Maximizing Control

A. Initially Circular Orbits

We first examine the escape trajectories that result from applying
the maximizing control law to initially circular trajectories, using
the initial condition & = /(1/r?), where r varies from 0 to 1 AU.

For this analysis, we set the initial radius of the orbit and de-
termined the minimum value of the solar-sail lightness number g
required for the solar sail to achieve escape in a given time span.
Figure 1 shows the result of this analysis; the time spans in which
the sail was to escape were set at 0.32, 0.64, 8, 16, and 24 years.

We see that for smaller radii a lower value of B is required for
escape. As the sail gets closer to the sun, it gains more thrust from
the increased solar radiation pressure and needs a less efficient sail to
escape. We note that there is a large difference in the required 8 value
for escape between shorter time spans (0.32 and 0.64 years), but for
longer time spans the 8 value of the sail becomes less significant.
It is apparent from Fig. 1 that there are discontinuous changes in
as the initial radius of the sail becomes small. These discontinuities
occur in areas in which the sail becomes stranded in large elliptical
orbits for a time before they escape. The curves step down to lower
values of § as the trajectories start out closer to the sun, and the sail
is no longer trapped in such an orbit.

B. [Initially Eccentric Orbits

Escape trajectories resulting from application of the maximizing
control law to initially eccentric orbits were also studied to under-
stand the affect of eccentricity. We modeled these orbits using the

initial condition § = Wi [2r,/(1 +rp)] at r =1, which corresponds
to a variable initial radius of periapsis with the radius of apoapsis
at 1 AU. We performed a similar analysis as before, varying the
radius of periapsis of the orbit from 0 to 1 AU and determining the
minimum value of 8 that would allow escape in time spans of 0.32,
0.64, 8, 16, and 24 years. The results of this analysis are shown in
Fig. 2.

We see that for smaller radii of periapsis a lower value of § is
required for the solar sail to escape because of the increased solar
radiation pressure near the sun. But this relationship is not valid for
larger radii of periapsis. For each time span, at a certain radius, as the
radius of periapsis grows, the B values required for escape actually
decrease. From Fig. 2, we see that for a sail with a 8 value above
0.6 at a 0.32-year escape time, 0.45 at 0.64 years, and 0.4 at 8-24
years, it is always best to begin escape from a circular orbit at 1 AU.

IV. Escape Times with Minimizing/
Maximizing Control

Wishing to capitalize on the best aspects of initially circular and
elliptic escape trajectories, we analyzed a guidance approach in
which the solar sail first spirals in toward the sun to take advan-
tage of greater solar radiation pressure and increasing eccentricity,
then spirals out to escape. In these escape trajectories the solar-sail
spacecraft begins in a circular orbit at 1 AU (which corresponds to
a low-energy escape from the Earth, perhaps using the solar sail)
and uses the minimizing control law [Eq. (7) with the — sign] to
decrease semimajor axis. At a specified distance from the sun, the
control law is switched to maximally increase the orbit energy, so
that the spacecraft increases its energy until it reaches escape. This
trajectory allows the solar sail to take advantage of the increasing
solar radiation pressure near the sun and use it to generate a faster
time to escape.

We numerically simulated these minimizing/maximizing trajec-
tories to obtain their total escape times. For a given 8, we varied the
distance at which the control law would be switched from minimiz-
ing orbit energy to maximizing orbit energy and found the resulting
total escape times. The initial conditions used in this section all cor-
respond to an initially circular orbitat 1 AU, =1,0 =0,7 =0, and
0=1.
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Fig. 2 Minimum 3 required for escape at a given radius of periapsis, initially eccentric orbits.
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Fig. 3 Escape times at different switching distances.

The results of this analysis show that the variation of total escape
time with switching distance can be highly dependent on 8. From
Fig. 3, in the plot of § =0.3, it is apparent that the best times to
switch controls are either very close to the sun (0-0.15 AU), or
between 0.3-0.8 AU. The minimum escape time for 8 = 0.3 is about
0.66 years (7.9 months) and is found at a switching radius of about
0.53 AU. The long escape times occur when the orbit is stranded
in a large elliptic orbit. For these orbits, thrust is available only for
brief periods around periapsis, and the total escape time increases.

When g is increased to 0.4, the correlation between switching
distance and escape time is very different. For 8 values of 0.4 and
0.5, the longer escape times disappear. In Fig. 3 we see that the
escape time for B = 0.4 remains almost constant between switching
distances of 0.1 to 0.9 AU. So whether the control law is switched
very early in the trajectory or after the solar sail has come close to
the sun does not affect the escape time significantly. The minimum

escape time found for 8 = 0.4 is about 0.60 years (7.2 months) and is
found at a switching distance of 0.68 AU. For 8 =0.5, we see from
Fig. 3 that the time to escape is around 0.6 years (6.9 months) for all
of the switching distances between 0 and 1 AU. The minimum escape
time of approximately 0.58 years is found at a switching distance
of 0.84 AU. In such cases where the escape times are relatively
constant, it is most beneficial to switch the control close to 1 AU as
this will be the least costly in terms of thermal constraints on the
sail. We should note that this strategy is not equivalent to beginning
from an initially circular orbit and applying the maximizing control.
When the minimizing control is applied, the radius of the spacecraft
actually increases slightly at the outset of the trajectory because of
an increase in orbit eccentricity. Then, when the trajectory crosses
1 AU the eccentricity of the orbit is not equal to 0, and more rapid
escape times are achieved than those of trajectories that begin in a
circular orbit and maximize the energy increase.
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Table 1 Time to reach 100 AU (comparison with Sauer)

Closest distance Time to reach 100 AU, years

B from sun, AU Sauer® Our current work
0.3 0.15 10 27.88°
0.3 0.2 11 16.79°
0.3 0.3 13 15.02
0.3 0.4 16 17.53
0.4 0.1 6.5 7.09
0.4 0.15 7.5 7.72
0.4 0.2 9 8.64
0.4 0.3 11 10.66
0.4 0.4 13 12.8
0.5 0.1 55 5.19
0.5 0.15 6.5 6.24
0.5 0.2 7.5 7.21
0.5 0.3 9.5 9.02
0.5 0.4 11.5 10.77
0.59 0.1 5.0 4.63
0.59 0.15 6 5.61
0.59 0.2 7 6.50
0.59 0.3 8.5 8.11
0.59 0.4 10.5 9.65
0.79 0.1 4.0 4.00
0.79 0.15 5.0 4.83
0.79 0.2 6 5.57

2These times were estimated from Fig. 8 in Ref. 3 using characteristic
accelerations that correspond with .
bCorresponds to trajectories that are stranded in large elliptical orbits.

V. Comparison with Sauer

We have compared our results with Sauer’s time-optimal solar-
sail trajectories to reach a particular distance.> We ran our sim-
ulations beyond escape and compared the time it took for our
trajectories to reach 100 AU with those of Sauer. The results of
this comparison can be found in Table 1. Sauer’s globally optimized
trajectories are found from satisfying the necessary conditions for
optimality, whereas our trajectories follow an explicit guidance law.
Surprisingly, this difference in approach has a relatively small effect
on flight times in most cases. Although our locally optimal energy
control law was not designed to minimize time to reach 100 AU, our
flight times compare favorably with Sauer’s optimized results. We
note from Table 1 that for 8 > 0.3 the flight times of our trajectories
get close to Sauer’s and even surpass them, reaching 100 AU in less
time. (This might be caused by having to interpolate Sauer’s time-of-
flight data from a plot.) This indicates that our control methodology
is in some sense near optimal for some situations. Differences be-
tween our results arise when the trajectory following our law fails
to achieve escape before reaching a highly elliptical orbit.

VI. Conclusions

This study explores the use of simple guidance laws that minimize
or maximize orbit energy along a solar-sail trajectory to achieve es-
cape conditions. We have established that maximizing the change
in orbit energy at every instant along the trajectory does not neces-
sarily minimize the time to escape. We found in general that first
maximally decreasing energy and then maximally increasing en-
ergy leads to shorter escape times than escape trajectories that only
maximally increase energy. These trajectories not only achieved
escape in shorter time spans, but they also achieved escape using
smaller values of 8 as compared with initially circular and ellip-
tic trajectories. Using these controls, it is feasible to launch rela-
tively poor performance solar sails (8 =0.3) into escape trajecto-
ries from the sun in less than one year. For high-performance sails
(B > 0.4), the time to escape is insensitive to the energy minimizing/
maximizing control strategy. Unlike most other works, we have fo-
cused on finding a general strategy for solar escape instead of de-
signing trajectories for specific missions. Future research can begin
with these simple controls to find generally applicable optimization
strategies and can consider controls that maximize the final escape
energy of the sail.
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Simulation of Wind-Profile
Perturbations for
Launch-Vehicle Design
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Nomenclature
Aj, Bj = components of Fj;
b = parameter for biasing an empirical gamma
distribution, m/s
c = parameter in empirical model for mean normalized
power spectrum density
E = variance coefficient of power-spectrum-density

model, m?/s?

F; = Fourier series, \/[(m?/s?)/(m/s)]
n = wave number, 1/m
rl;,r2; = random number sequences that are tangents of j

uniformly distributed random phase angles in the
interval from —m /2 to +m/2
uandv = east-west and north—south wind components,
respectively, m/s; sign convention eastward and
northward wind positive
= altitude, km
parameter of a gamma distribution, s/m
parameter of a gamma distribution
= standard deviation of high-pass filtered wind profile,
m/s
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Introduction

DEALLY, a statistically representative sample of measured high-
resolution wind profiles with wavelengths as small as tens of me-
ters is required in design studies to establish aerodynamic load indi-
cator dispersions and vehicle control system capability.' > At most
potential launch sites, high-resolution wind profiles might not ex-
ist. Representative samples of relatively low-resolution Rawinsonde
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