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ABSTRACT

The purpose of this dissertation is to present a general study
of the modulated O-type electron-stream device. The modulations are
classified according to the frequency of the modulating signal. Low
modulation frequencies4are very much less than the carrier frequency,
while high modulation frequencies are comparable in rate to the carrier
frequency. In order to simplify the analysis, the low- and high-fre-
quency cases are investigated separately.

The O-type device undergoing a low-frequency beam modulation

1ls described by a set of quasi-static functions. These functions are
found by standard linear methods when the carrier is a low-level signal.
The analysis includes modulation effects on C, QC, b, and d, as well as
the initial wave amplitudes, and 1s valid for large modulation ampli-
tudes. The device with a large-signal carrier 1s investigated using
the nonlinear lagrangian formulation. The modulation characteristics
are used to calculate the output spectra when modulating signals having
specific wave shapes are applied.

The significant results of the low-frequency study for the
traveling-wave amplifier and the crestatron are:

A, Traveling-wave amplifier

1. An approximately linear phase modulation with a large
accompanying amplitude modulation can be produced by vary-
ing the beam potential. The phase linearity and phase-
modulation index are almost independent of the carrier
level and in some cases tend to improve as the carrier
signal is increased to the saturation level.

2. Amplitude modulation with a small degree of accompanying
phase modulation can be produced by varying the beam cur-
rent. The amplitude-modulation index decreases as the
carrier signal is increased from the smalli- to the large-
signal levels.

3. It is important to consider modulation effects on the
initial loss parameter A in the voltage-modulated, high-
C amplifier.

4, Space charge decreases the phase modulation and increases
the amplitude modulation in the voltage - modulated amplifier,
while it decreases the amplitude modulation and increases
the phase modulation in the current-modulated amplifier.

Loss increases the phase modulation and decreases the
amplitude modulation for both voltage and current modula-

tions.

\J1

-iii-



B. Crestatron

Current or voltage modulation produces a linear (in db)
amplitude variation with a small accompanying phase modula-

tion.

An analysis of the high-frequency case is also given. The non-
linearities are introduced through the ballistic equations; however,
an Eulerian analysis is used. The longitudinal-beam parametric ampli-
fier is studied as a special case of the high-frequency problem. The
first upper and lower sidebands around the pump signal are included,
whereas in previous theories only the lower sideband was considered.

It is found that the gain in db for this "multifrequency' model
is approximately one-half of the value obtained using the earlier model.
The upper sideband is very heavily excited, indicating that noise will
be carried at this frequency. The threshold pump signal required to
produce gain with a finite diameter beam is greater than the signal
required in the single-sideband case. The results obtained by using
this model are more closely correlated with experimental data than the
results obtained from previous theories. Therefore it can be concluded
that it 1s necessary to consider at least two sidebands and probably
more when analyzing the longitudinal-beam parametric amplifier.
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CHAPTER I. STATEMENT OF THE PROBLEM AND LITERATURE SURVEY

1.1 Introduction

The O-type electron-stream tube is a transit-time device which

amplifies or generates a radio-frequency signal by either a beating or
'an exponential growth of electromagnetic or space-charge waves, and in
which there are no transverse static filelds that significantly affect
the interaction mechanism. The stability of the electron stream is
maintained by a longitudinal static field, parallel to the axis of the
electron flow. The traveling-wave amplifier® (TWA) and the electron-
wave2 amplifier are examples of growing-wave interaction, while the
backward-wave oscillator® (BWO) and the crestatron?® are examples of
beating—wave interaction. The analyses of these devices are well
covered in the literature.

With the advent of improved techniques for noise reduction, the
applicability of the O-type tube for systems has been greatly enhanced.
The traveling-wave tube which is inherently a broadband amplifier has
certain narrow band features that make it very appealing as a modulator¥,
whereas its broadband capabilities contribute toward its usefulness as
a mixer. The trafeling-wavé amplifier thereby makes it possible to

accomplish modulation and mixing at high power levels.

* Modulation is the process of impresning intelligence variations on
a physiecal quantity such as on an electromagnetic wave amplitude or
frequency®. A device in which the modulation process takes place is

known as a modulator.
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The type-0 backward-wave oscillator was designed to satisfy the
systems' needs for a power source that could be continuously frequency-

tuned or modulated at fast rates by electronic methods.

1.2 Beam Modulation

The term modulation¥* as used in this dissertation is a coherent
periodic disturbance in the form of a signal placed on an electron beam
at some frequency differing from the carrier or main signal fre@uency.
The disturbance will in general produce sidebands around each harmonic
of the carrier frequency and will alter the phase and amplitude of the
carrier at the output of the device. Two distinct classes of modulation
frequency rates are to be discussed.

1.2,1 ZLow Modulation Frequencies. A low-frequency beam modu-

lation occurs when the beam velocity and current density are varied

at rates sufficiently slow so that the time of one modulation cycle

is much greater than the transit time for an electron through the tube.
A phase modulation (PM) or trénsit-time modulation (TTM) is produced
by variations of the velocity of electrons entering the interaction
region. An amplitude modulation (AM) is produced by variation of the
electron current density at the entrance to the interaction region. It
is to be noted that AM is inherent in the production of PM or TTM, and
similarly either PM or TTM is inherent in the production of AM. The
sideband frequencies around each harmonic of the carrier frequency will

be assumed to occur sufficiently close to that carrier harmonic so that

* These beam modulations are not to be confused with the r-f velocity
or density modulations in which an r-f signal '"modulates" an electron
stream and causes bunching. In this dissertation, to avoid confu-
sion, the word modulation will not be associated with the bunching
phenomena but will only be used in reference to the beam modulations

as defined above.
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its circuit properties (phase velocity, group velocity and impedance)
are identical to those of the carrier harmonic. The foregoing state-
ments concerning the output spectrum do not necessarily apply to the
voltage-tunable oscillator since in this case the modulation changes
the carrier frequency.

1.2.2. High Modulation Frequencies. A beam modulation where the

period of the modulation signal is comparable to the transit time of the
device is called a high-modulation frequency disturbance. In this case
the sideband components see different circuit properties than the carrier.
For high modulation frequencies there are differences between the output
spectra resulting from PM and TTM for the same applied modulation. It
has been shéwn6 that these differences occur in the amplitude of spectral
components; the frequency location of the components however remain

unchanged.

1.3 Literature Survey on Previous Modulation Studies

1.3.1 Low .lodulation Frequencies. ILearned’ recognized the

advantage of mixing at high power levels and utilized the effects of
modulating the transit time of a klystron to produce frequency shifting
for use in television relay systems. This modulated klystron was called
a Synchrodyne. The transit time was varied sinusoidally and the output
resonator was tuned to the desired sideband:

In recent years the traveling-wave amplifier has been used in
similar applications. There have been several modulation studies of the
TWA, however none of these were very complete and some wefe based on
rather drastic assumptions. Bray® introduced the TWA as a modulator
and proposed using it in the same manner as lLearned had used the kly-

stron. He demonstrated by a very simple small-C analysis, which neglected



L

space-charge forces, loss, nonsynchronism and nonlinear effects that the
"hot" circuit phase velocity can be made to vary almost linearly as a
function of the average beam potential in thé interaction region. By
sinusoidally varying the beam potential and using a filter to select

the desired side frequency, the TWA was made to pefform the same function
‘as the Synchrodyne.

Steele® repeated Bray's analysis for phase modulation using the
same simplifications, and also included a discussion of inherent AM.
Furthermore these analyses were limited to small excursions of the beam
potential.

Cumming® advanced the art by introducing the Serrodyne, which is
a '‘saw-tooth modulated transit-time device. This method.of modulation
is vastly superior to sinusoidal modulation for frequency shiftiﬁg ap-
plications, since by using it almost all of the energy at the carrier
frequency can be translated to one of the sidebands, while a very low-
level output is produced at each of the other sidebands and the carrier.
Cumming presented an analysis for the TWA with low-frequency beam-mod-
ulations, in which he considered most of the variables neglected in the
preceeding papers, but neglected modulation effects of the initial loss
parameter A and nonlinear effects. His work was also limited to those
excursions.of’the beam current and voltage for which the gain and trans-
it time could be described by a Taylor series approximation accurate to
two terms.

Mendel® proposed the use of a gridded gun traveling-wave tube
for the amplification of narrow pulses. A cw r-f signal was applied
to the circuit and the beam was pulsed. The envelope of the amplified
signal was detected and an amplified pulse obtained. A simplified

small-signal analysis was used for the theoretical study of this amplifier.
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Beam and Blattner*’ investigated the variations in the phase of
the r-f output caused by power supply and signal-level fluctuations.
The effect of applying a modulated signal to the variocus gun elenents was
considered. They also demonstrated experimentally that the phase of
the output signal cbuld be méde to vary wifh chahges in the magnetic
focusing field. A smali-C linear theory was used in their analytical
study and the propagation constants were épproximated by fitting curves

to Pierce's® data.

1.3.2 High Modulation Frequencies. Putzt?® presented a nonlinear

theory for the TWA in which he did not consider crossings of tréjec-
tories, space-charge forces, loss and finite C values. He then used his
results to investigate the cross modulation between two signals placed
on the circuit. Experiments by Nation and Harrison®S3 vérified some of
Putz's work.

Wade and DeGrasse®®s1° built and analyzed a traveling-wave tube
mixer constructed with two helix sections. The first helix was adjusted
“to amplify both the signal and the local-oscillator frequencies while the
second helix was operated in its dispersive region and adjusted so that
1t passed the desired i-f frequency. The analytical study included an
investigation of several beam-type mixers. The analyses were made using
a hydrodynamic beam to describe the nonlinearities necessary for mixing.

Touisell and Quatel® recently suggested that a longitudinal—beam
tube used as a fast- or slow-wave amplifier can produce parametric am-
plification of space-charge waves., This particular analysis considered
only one sideband.

In summary, the literature contains several analyses of modulated
traveling-wave tubes. However, each of the above analyses has certain

limitations. It appears that a comprehensive study of the modulated
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TWA, taking into account all of the Pierce parameters, nonlinear effects
and large excursion modulations, has not been presented. A study of this
type would be desirable if the fullymodulation capabilities of traveling-
wave amplifiers and other O-type devices are to be utilized in communi-

cation and radar systems.

1.4 Purposes of This Study

The purposes of this study are:

1. To develop a general method of determining the low-frequency
beam-modulation characteristics of O-type tubes operated under
varied conditions. The effect of beam modulations on the gain
parameter, the loss, space-charge forces, the initial wave
amplitudes, trajectory crossings and nonlinearities, as well
as large modulation amplitudes will be considered. The results
of this study will provide information for the design of O-type
tubes for modulation applications.

2. To study high-frequency beam modulations and to use the results

in an analysis of the longitudinal-beam parametric amplifier.



CHAPTER II. DERIVATION OF THE LOW MODUIATION FREQUENCY

DEVICE FUNCTIONS FOR THE TRAVELING-WAVE AMPLIFTER

2.1 Introduction

The first problem of this dissertation will be to describe the
'variation of the characteristics of a TWA when a low-frequency signal is
used to modulate the beam.

A low-frequency modulating signal can be used to phase or ampli-
tude modulate the carrier or to do both simulfaheously. In general a
phase modulation is inherent in the production of AM aﬁd vice versa.

It is possible to apply several low-frequency modulations simultaneously.
The modulation signal can be applied by one or by a combination of
several of the methods listed below.

1. The beam velocitj at the enﬁrance to the interaction region
may be varied by changing the average potential of the cir-
cuit at the modulation frequency.

2. The beam velocity may be varied by changing the average po-
tential of the electron gun anode at the ﬁodulation frequency.
This method will result in a current modulation for space-charge
limited operation. (Therefore to produce PM with little AM,
it is preferable to modulate the circuit d-c potential rather
than the anode potential, since the beam current is relative-
ly independent of circuit potential.)

3. The aVerage beam current can be varied by modulating the bias
on & grid used near the cathode. This method results in an
VAM with little inherent PM.

., The phase shift through the tube can be made to vary slightly

by changing the magnetic focusing fields'!. This suggests
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another possikle modulation scheme in which the electric

focusing field in an electrostatically focused tube can be

modulated to produce PM, althdugh a study of such a scheme

might be directed toward the detrimental effects of focusing-

supply ripple, rather than the purposeful effects of modulation.

5. The collector potential can be varied to produce amplitude

variations. This is feasible since the efficiency of the tube

is a function of the collector potential. This method would

appear to produce little PM since the modulation takes place

over a short distance,

The above methods involve the application of a modulation voltage

to directly perturb the beam. There are other modulation methods in which

the signal is not applied directly to the beam.

6. It has been shown'”’*! that variations of the r-f input signal

level can produce variations in the phase of the r-f output

signal. Therefore an amplitude-modulated r-f input can be con-

verted to an r-f output that is phase and amplitude modulated.

7. In method 1, the useful sidebands are generated by varying the

beam velocity with respect to a fixed cold-circuit velocity,

which in turn produces a variation of the phase velocity of the

growing wave. A similar effect may be produced by varying the

cold velocity of the circuit with respect to the fixed beam

velocity. This can be done by modulating the bias on a ferrite

or dielectric material surrounding the circuit.

A further discussion of methods 6 and 7 is given in Appendix A. The

remainder of this chapter will be devoted to a discussion of methods 1-3.

Before proceeding it will be necessary to make further distinction

between low-

and high-frequency beam modulations than that given previously
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in Section 1.2. A low modulation frequency must have a period which is
much greater than the transit time of an electron through the tube, and
also must satisfy the condition that the time and space derivatives of
any function at that frequency are negiigibly small compared to deriva-
tives of the same function at the carrier frequency. Therefore, all
functions of the modulation frequency are treated as constants in the
interaction equations. Under these assumptions the operation of a TWA
undergoing a low-frequency beam-modulation can be described by a set of
quasi-stationary (for modulation frequencies) equations, based on the
unmodulated operation.

The steady state fundamental r-f output signal of an electron tube
is fully described when the gain and phase shift are specified with respect
to the input signal. The functions describing the dependence of gain and
phase shift on the modulation are called the "Modulation Device Functions".
.The Modulation Device Functions are derived from the quasi-stationary set
mentioned above,

A direct but cumbersome method of finding the device functions
would be to recalculate the various stationary Pierce parameters for in-
stantaneous values of the modulation signal and then to determine the gain
and phase shift with this new set of parameters as though the tube were
unmodulated. There is a more elegant method of finding the device func-
tions which requires only one set of stationary parameters, given for
unmodulated operation. The device functions may then be found for any
modulation condition without having to recalculate a.new set of parameters.

The general model used for the analyses in this chapter is shown
in Fig. 2.1. An electron beam emanates from a gun which has a grid to

control the flow of cﬁrrent. A low-frequency signal Vg applied between
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the cathode and grid causes the beam current to vary by an amount AI.
The béam flows close to a slow-wave circuit represented by the terminated
transmission line, The cold—propagation‘phase constant of the trans-
mission line is B and the characteristic impedance is given by

2
g - = _ /L
[¢) C ’

2R=P

where E 1s the amplitude of the axially directed field at the beam radius
without the beam present, and P is the cold power flow associlated with

the field E. An r-f signal vCeJ“m’PZ

is applied at the input to the cir-
cult and propagates toward the load Zo' The circuit is at a potential
VOl + AV, where AV is the low frequency voltage modulating the beam velo-
city. The current modulation Al may contain some modulation due to AV,
as in the case of applying the signal to the anode.

Only longitudinal fields»are considered so that this problem reduces
to a one-dimensional analysis. There exists a space-charge débunching
forcé I, which results from the bunched beam. The debunching force is
again only a longitudinal force. The major assumptions made in using this
model are listed below.

1. This is a one-dimensional model. There are no transverse vari-
ations of fields, therefore the beam is, in effect, a line charge
~and is so considered in the intereaction equations. The one-
dimensional theory further assumes that the beam is constrained
only to axial motion (which implies an infinite axial magnetic
field).
2. Relativistic effects are not considered.

3. The average space charge in the beam is neutralized by a

sufficient number of positive ioms.
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L, The sideband frequencies propagate at the same rate as the
carrier and see fhe same impedance.

Further assumptions are listed as the analysis is carried on.

The device functions will be found by rederiving the equations
of motion for the beam and the circult equation for the particular. de-
vice under consideration in such a manner as to allow variations in the
d-c beam parameters. The boundary conditions must be similarly recon-
sidered in light of the aforementioned variations. Once a set of equa-
tions and the necessary boundary conditions have been found, the equations
can be integrated and the device functions determined.

The transmission-line equations fof a terminated slow-wave struc-
ture driven by an axial beam flowing close to the circuit, and supporting
a wave with its group and phase velocities in the positive z-direction

are given by

v Z JI
— = .2 _c
oz v_ ot
o
oI ov
— = .= S+ % ’ (2.1)
0z Z~v_ ot ot
oo
where VC = r-f potential of the wave on the circuit in volts,
Ic = r-f current in the circuit in amperes,
v, = phase velocity of the carrier on the circuit in meters/sec,
p = charge density of the beam exciting the circuit in
coulombs /meter, and
t = time in seconds.

The equations of motion for the one-dimensional O-type device are
found from the Newtonian Force equation and the law of continuity of charge.

These two equations are nonlinear.
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The force equation for the one-dimensional problem is given as

where u = +total velocity of an electron
n = magnitude of the charge-to-mass ratio of an electron,
E = total electric field acting on the beam and it is derived

from the potential V which is the sum of the potential due
to the circuit wave Vc and that due to the space-=charge po-
tential Vsc' The force F in Fig. 2.1 is derivable from the

potential V_ .
sc

The continuity of charge law demands the total charge must be conserved.

The boundary conditions to be imposed for the low modulation fre-
quencies are that the velocity and charge density of the electron flow
entering the interaction region contain only the average values plus the
low-frequency modulations. An r-f input signal is placed on the circult
at the beginning of the interaction region.

The solution of the above s stem will now be considered for two
levels of the applied carrier signal, In one case a low-level signal is
applied and a linearized perturbation method is used. For the second
case.larger signals are considered and the nonlinear equations must be
uséd. The two methods of solution must be consistent as the r-f signal
level is reduced from the high to the low level.

Pierce's techniques will be modified and applied to find the device
functions for the linearized amplifier while Rowe 's*” methods will be used
for the large-signal amplifier.

In order to avolid repetition, many of the generally accepted re-

sults of these two authors will be used in the analyses which follow.
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Those points which have caused controversy will be more fully discussed.

2.2 Modulation Device Functions for the Linearized TWA

The Modulation Device Functions for the small-signal TWA will
now be derived. In order to use the linearized equations, it is necessary
to introduce the following assumptions in addition to those already made
in Section 2.1.
1. All functions varying at the carrier frequency are assumed to

Jwt-T'z

have an exponential variation with time and distance, e R

therefore the distance derivatives are replaced by the operator

0/dz = -I'. Similarly the time derivatives are replaced by

3/ ot

Jw.

2. The total velocity, current, and charge density are each con-
sidered to be composed of a sum of a fixed average value, a
slowly varying component at the modulation frequency, and a
rapidly varying r-f component. The r-f component is assumed
small compared to the other two. The above assumption may be

written in mathematical form as,

f = fol + fl (z, wlt, b ... @nt) + £ (z, wt)

where £ ., = +total function,

fOl = unmodulated average value,

fl = component at the modulating frequencies,

fs = 1r-f component,

dﬁ"'ah = various modulation frequencies that are applied or

generated, and
w = carrier frequency.

Also

fo << f , f
O1 1
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The space-charge debunching force F is derivable from a
potential Vsc’ W'here'VSc represents the effect of the energy
going into the slow passive and noninteracting modes and the
fast noninteracting modes. The potential VSc is directly pro-

portional to the r-f charge density. A capacitor C can be
1

defined as a proportionality constant such that

4 = Cl Vsc ’

where
q is in coulombs/m
Cl is in farads per m
and
oV
_ sc
Fo= laf 5~

The electron stream is assumed to have the properties of hydro-
dynamical flow,
Allow the average beam potential over an r-f cycle to be varied

in accordance with

Vo o= Vo o+ AV(t,tA) s (2.3)
and the average beam current to vary as
I, = I+ AI(t,tB) s (2.k4)

where AV and AL may each be periodic functions of different

modulation frequencies, however both frequencies are much lower
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than the carrier frequency. tA and tB are used to describe
coherence and phase difference between AV, AT and the r-f
signal. Iol and VOl are the unmodulated'beam current and
potential respectively. It 1s assumed that any average values
introduced by AL and AV are negligible when compéred to the un-

modulated values.

The following modulation parameters are introduced:

AV
l+\70—l
M = Ms(t,tA,tB) = — (2.5a)
1+ —
T
o1
s\
g, = <l + V”{) s (2.5b)
oL
and
A
E_ = (}_____jlh = —21 (2.5¢)
2 MB R - g .

The circuit equation is independent of the average beam parameters.

Pierce'sl* normal-mode theory gives the circuit equation as

E=N
P\ N
Vo= [——b@——-— —ij—Ji ) (2.6)
g(rf - T2) 1
where V = +total potential seen by the beam
Pl = unforced or normal-mode propagation constant for the particular
mode which becomes the interaction mode,
I' = perturbed propagation constant,
i = forcing term or beam current.

*  Equation 7.8.
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The force equation, Eq. 2.2, may be linearized using assumption
2 of this section. After substituting the exponential variations given

in assumption 1, the linearized form of Eq. 2.2 becomes

!
1/2
{éw -u (l + é&%) P}-V = -nI'v (2.7)
01\ Vv
o1
where v. = r-f velocity amplitude, and
u,, = EnVOl

Equations 2.5 and 2.6 can be combined to give

Jowo-u & T ‘
o171
The linearized r-f current is given as the sum of the product of
the d-c charge density and the r-f velocity and the product of the d-c

velocity and the r-f charge density, hence

1+ %E— 1/2 /
. 01 AV \1/2
i = p,, e v+ uOl<1+V > o (2.9)
oL
where
-IOl - pOJ_ uOl
Again using Eq. 2.5, Eq. 2.9 becomes
o EV
. 01°2
i = Fuol'l (2.10)
143 >

The continuity of charge conditions for this one-dimensional fluid

stream is given as
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v (pv) = % = -%S

which, after introducing the operator forms, becomes

o = =j = . (2.11)

Equations 2.6, 2.8, 2.10 and 2.11 are combined to give the secular

equation for determining the propagation constant I'.

, 52
jrer -;—>B 3 B, I2I &
1 , 1\p=P eo’2 + €0 o1°2 (5.10)
212\ (4 _ 2 : - 2
M(Fl a >\01‘Jaeo Pgl) 2Vmaﬁl(JBeo §1F>
where ﬁeo is defined as
W
Peo = &
.ol

Pierce's small-signal parameters are used in the modulation prob-

lem to define the unmodulated tube. The parameters are defined as:

I

2
Cg = —g— o1 , the gain parameter (2.13a)
B°P &8V
o1
p._C (
Q@ = —eo o, the space-charge parameter (2.13b)
0 e 2
1 2
B P
Loss in db
a 0.0183 wavelength
o = — , the loss factor (2.1%c)
o
1 u01
bo = G {j;—— - }— , the injection velocity parameter (2.13d)
© o
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v, = the cold phacse velocity of the circuit.
Following Pierce, the normal mode unforced propagation constant is
assumed to be,

=T, = =3 By, " Beo Cobs = Byl

eo e 00 ’ (2.14)

and the interaction propagation constant is assumed to be

ST = -3 B B O Bl HEL) . (2.15)

Ncte that the perturbation of the propagation constant is defined
as being a perturbation from the unmodulated beam wave number.
Equations 2.13, 2.14 and 2.15 give the normslized form of the

secular equation as

_s 2 (b -3d 5 - C 8
) ( - [1+C (b -3a )11 +cC (250 - C87)]
9 T en| - : - RSP
2 - © ' b+ 3d + 35 +C ij d + % _ 20 _ é_w
0 o) o“ o0 » D 2 |

- hqc_ 1+ C (258 - 0062)] . (2.16)

The roote of this equation describe the waves that_will propagate,
in terms of the unmodulated parameters and the modulaﬁion. For no modu-
lation, both gl and 52 become unity and Eq. 2.16 becomes the secular
equation for the unmodulated TWA.

It ‘can be seen from Eq. 2.16 that there will be four waves propa-
gating in this device. As is well known, one of the roots'represents a
-backward‘traveling—wave which is far from syvnchrorism and thus may be neg-
lected. The remaining three roots represent forward waves. They are a
slow and increasing wave, a slow and decaying wave, and a fast and un-
changing WaVe (in the absence of losé). The general solution therefore

is given as the linear sum of the three forward waves. The total potential
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at the beam is

3
Tz) = )V, exp (- 3B,z + B BiC2) - (2.17)

The initial amplitudes Vi’ are found from the input boundary conditionsz.

Equation 2.8 can be written as

° 1 j C B
L +J
— _odn - > O 1 - 3 o { 180
v(z) uOlCo | It vy exp( IBooZ EiBeoJoz), 2.18)
i=1 516 +J Co
and Eg. 2.10 can be written as
oV 02 3 1+ jC 8
o1 0 ., B T _
Tt (z) = ‘>‘ :f——————E:El , V. exp ( B2+ BiBeOCOz).
GBS T (2.19)

At a specific position, z = Zo’ Egs. 2.17, 2.18, and 2.19 represent
three linear equations for unknown amplitudes Vi' The system of linear

edquations can be written in matrix form as
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V(zo)
;uOlCOV(zO)
Jn -
- 4 21
2V01001(zo)
I015’2
| _
] B _ fr e a Y]
1 1 1 V,e Beozo“J 6160>
. t . It . 1 [ s
1+C 8! 1+JC 5! 1+JC 5! B 2o I-0C.)
A 6' E: 6! g 6! X V2e
:’l 1 1 2 1 3
. t 3 t 5 t - ) =
1+jC 5! 1+C B} 1+jC BeoZold-0LC,) (2.20)
—= — .z Vae '
é101 E162 6153
] | _
where
1-¢
A 1
1 —
61 = J + Biﬁl B
o
therefore
. 1 . 1
1+ JCOSib = (l+JCO6i)

3

1

If Zo is chosen as ZO = 0 the r-f current and velocity vanish since the
beam carries no r-f information at the input other than noise. The matrix

is then given as
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v(0) i
1
0 - A Vo (2.21)
0 v
| _ [ N

where A ic the same matrix of the coefficients as given in Eq. 2.20.
Thie matrix eguation has the same form as the unmodulated TWA with the
exception that & is replaced by &'.

It ie more useful to express Eq. 2.21 in terms of the potentials

on the circuit rather than those at the beam. Therefore rewrite Eq.

2.21 as
. — . _—
Y% 1
(z) Vo 7
c1
\
0 = |a v o2
c2 V
cz
VB
0 \Ya —
ca V., s (2.22)

where VCl is the initial amplitude of the ith component of the circuit
potential,

The ratio Vi/vci may be determined from the circuit equation.
Since Cl is a capacitance relating the space-charge potential, VSC, and

charge, Eq. 2.6 may be written as
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hence
Vv .
T o= l4= (2.23)
\
c c
The space-charge potential Vc is
. il
Vse = @ ’
1
and the circuit potential Vc is
v _ 1B g. 5
¢ 2(r?r%)

Equation 2.23 can now be evaluated for the ith component. Using the
secular equation, 2.16, after some algebraic manipulation, Eq. 2.23

becomes

Vi MQCO§2 . R RSt
7 = [1 o (1 + JCO6i> } ) (o.0h)
c1 El6i

Equation 2.24 can now be used in Eq. 2.22 and the resulting system in-

verted to find the amplitudes of the circuit waves. The result is

- — —
V(zo) a, &, 8, VCl
0 = b, b, b, X Voo (2.25)
0 c, c2 cg Vcs
L — L — L .

where

4QC 6 (1 + jcoai)z

t
sl2
1

€

Ll \V] L 0]
-



1+ JCc 8!
b = a = »
1 1
i i 61
and 1+ 3C 8!
c., = a,
i i 6}2
i

This matrix once again has the same form as that for the unmodu-
lated TWA. 'The only change is that QC - Qng/gf and & — B'.
The general form of the ith component of circuit voltage found by

inverting Eq. 2.25 is

’ . ! t st 1
Vci ) [l 1+ JC 6 61+2 Bi <61+1>
- [ 1 T 1
v Lo+ JC061+1 6i+l 6i+2 i
: 1 1 st s ro
1+3C ) 61 61+1 hQC& 1 +J3C 5
Iy JC 6' B
o i+2 1+1 1+2 1+1 1
(2.26)
where
1 —_ 1
6i+3 B -6i

A similar result for the wave amplitudes evaluated at a position zZ, £0
is given in Appendix B.
The modulation device functions for the small-signal TWA may now

be calculated. The total circult voltage is given as*

Vc(z) = Re> V,{6XP jlot - aeoz[l-coai])’ . (2.27)
i=1

* Note that at this point we put in Re( ); this was implied in all
previous equations of similar form, however we include it at this
point since the following work is dependent on it.
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The initial amplitude is a complex number given as

N\
= V i
Vs 01 EXP JUy ) (2.28)

~ .
where VCi is a real number.

Introduce several more reduced variables, a total phase angle

Ci = ¥ - Beoz<l_COYi> ’ (2.29a)
and a total amplitude
ai - VcieXp BeoCoXiZ (2.29v)
where
6i = Xi + jyi

The total line voltage can therefore be expressed in the short form

Vc(z,t) = R(z) cos [wt + S(z)] , (2.30a)
where
R%(z) = af + ai + ai + 28 &, cOS (gl-g2>
+ 2a_a. COS (Cz—CS) + 2a 8 COS (CB—CI) , (2.30p)
and

a_ sin Cl + as sin §, + a, sin ¢

S(z) = tan (2.30c)

a. cos Cl +a, cos {, + a cos CB

For the usual TWA, the output terminal is at a point sufficiently
far from the input so that the only wave present is the growing wave.

Under this condition, the amplitude and phase are given as

R (z) = a°(z)

i
U
T~

N
~—r

5(z) (2.31)
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The amplitude and phase at any position z may be expressed in

terms of the modulation by

al(z) = al(z,AN,AQ)
¢ (z) = ¢ (2,07,81)
while for the unmodulated tube
al(z) = al(z,0,0)
¢.(z) = ¢.(2,0,0)

The phase shift resulting from a modulation is therefore given as

AS

i

Cl(Z)ANJAI) - Cl(Z,O;O>

EﬂNSCO {&l(AN;AJ> - yl(0,0)}-+ Wl(AN7Al> - Wl(o;o)

(2.32)

where Ns is the number of ummodulated stream wavelengths. The amplitude

variation during a modulation is given by

QC (AT ,AV) -
re = ST gﬂcomc{glfag,ay) - xl(0,0)}» . (2.3%)

A
vCl(o,o)

Equations 2.32 and 2.33% represent the modulation device functions for
the small-signal beam-modulated TWA.

In order to calculate the device functions for a short traveling-
wave tube such as the Crestatron?, it is necessary to consider all three

waves., The form in this case becomes

XS = 8(z,N,AT) - S(z,0,0)
R(z,AV,AL)
re R(z,0,0) (2.34)

where R and S are given by Egs. 2.30.
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2.3 Taylor Series Form for the Modulastion Device Functions of the
Linear TWA

It was mentioned in Section 2.1 that a rather cumbersome way of
calculating the device functions for the linegr amplifier would be to
evaluate the small-signal parameters at many points of the modulation
cycle, determine the propagation constants corresponding to this set of
pérameters, calculate the number of stream wavelengths at each modulation
point and finally determine the phase and gain. Assume that the phase-
shift and gain have been calculated in this manner. Designate by double
primes (") the values of the propagation constants and beam wave number
‘as determined by this method. These results obviously must agree with
those found by Egs. 2.3%2 and 2.33. Therefore to satisfy the phase re-

lation it is necessary that

BooLl1-C vy, (AL, A)] = p LI1-C"y (AT,AV)]

and
W(av,aT) = y"(AV,AL) (2.35)

Substituting Eq. 2.3%5 into Eq. 2.32 gives

28 = pgLll-Cy (av,aT)] - g LI1-Cy (0,001 + &y . (3.26)

Equation 2.3%6 is recognizable as a function which can be expressed

as the Taylor Series expansion of BeL[l-Cyl(AN,AI)] + V. Hence
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2 1 n
wC >— n? [g’:/'—ﬁ {BGL[l_Cyl(AV’OH +W(AV,O)}' g
1 I
01" o1
+ Z n! [a‘;ﬁ {Bel[l-Cyl(O,AI)] + w(o,M)H . a
1 L
ol ol
= 1 — n
A Z “r [g;g;n—? {BeL{l—Cyl(AV:MH
1 r=
et e (2.57)
Vorrtor

where Cz is the binomial coefficient.

Similarly the gain can be expressed by a Taylor Series expansion in terms
of the modulating signals and the amplitude modulation. Then la is given
by

o]

T o1 (R Vl(AV,AI) / 0
Aadb = > oT {é‘g [88611L loglo—\ﬂ—b—)—— + 5)+.6CNSXl\AI,AV>] } A\
. V. LI

)
B
5

T o1 (B Vl(AV,AI)
+>~ = {5——5 [8.864 log o + 54.6CNle(AI,Av)}

I
Vol’IOl
[e9) n A
1V on 32 Vl(AV,AI)
+Z/ SRR e (8.86& log 75—
1 r=1
+ 54,6 CNle(AV,AI)] } AVEATRTE (2.38)
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Cumming® used the Taylor Series approach but did not consider the

‘variation of

N
V (aV,A1) exp gy (4V,AL)

The effect of this approximation will be discussed in Chapter ITI.
The evaluation of several of the coefficients of the Taylor Series is

given in Appendix C.

2.4 Modulation Device Functions for the large-Signal TWA

An analysis similar to that given in Section 2.2 will now be per-
formed for the large-signal TWA. When either the input r-f signal or the
length of the TWA ciréuit is increased, the strength of the field acting
on the electron increasses until saturation effects begin. The large mag-
nitude fields result in r-f velocities and charge-density amplitudes
which approach thé average values. The average beam velocity will de-
crease because of the energy being given up to the circuit wave. This is
clearly in violation of the small-signal assumption 2 made in Section 2.2.

The large velocity excursions cause crossings of electron trajec-
tories which result in the position being a multivalued function of the
interaction region entrance time fof the electrons. The multivalued func-
tions can not be described by a hydrodynamical beam. In order to handle
both the large amplitude r-f quantities and the multivalued functions,
the lagrangian or particle approach must be used in conjunction with the
nonlinear equations of motion of the beam.

In the lagrangian approach, the beam is considered to be made up
of finite discrete particles of charge. The solution 1s obtained by inte-
grating the equations of motion along the flight line of each particle.
The method employed in this section was tirst used by Nordsieckl® and then

generglized by Rowe'? to include finite C, space-charge forces and loss.
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The method will now be generalized further by including low-frequency
beam modulation. The principal assumptions for this analysis are listed
in Section 2.1.

The average beam potential and current in the interaction region
will be varied as in Egs. 2.3 and 2.4. The circuit equation is once
again independent of the average beam conditions and can be  obtained by
combining the Egs. 2.1. The result including loss is,

A o

.
2__ ¢ R7Tc _ % R, Op
-V + = v 7 + I Z 5{ . (2-59)

at2 ‘ o] 5Z2 L Bt O 0 atZ

~ The normal mode theory can not be used in this instance since we
can no longer use superposition and the linear operator-I'. The one-

dimensional force equation is given in Eq. 2.2 as

au v {avc+avsc
& - "% T "Vt (2.2)

The conservation of charge expression for a beam composed of par-
ticles7 given by stating that the charge contained in a bunch at one
position Z, arnd at time to must be conserved at some other position z

and at a later time t. Hence

p(zo,to) dz_ = p(z,t) dz . (2.40)

If zZg is chosen at the input, then for the modulsted beam,
AL L/2

I oz I I dz
p(z,t) - 01 0] \ - o1 _ _ % Q: d>
U'ol ' 2y M ? az”t

[fand

(2.541)
A complete description of the unmodulated TWA may be obtained by

integrating the path of each electron entering the interaction region
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during one cycle of the r-f signal. For the modulated tube it 1is neces-
sary to integrate over all electrons entering during one moduletion cycle.
However, when the quasi-stationary approximation is made, each point in
the modulation cycle is treated as a stationary point and once again it
becomes necessary to integrate only over one r-f cycle., The electrons
entering the interaction region may be identified by reference to an r-f
signal at the circuit input. A convenient reference is the phase of the

r-f when the electron enters,

Py = Wby , (2.42)

where toi is the arrival time of an electron at the interaction region.

Let us define a distance in texrms of toi as

e S o1 | (2.4%)
ol u,, a (l + AN \1/2
O\ V01.
Z is'actually the distance that the ith electron would travel in

o1,
time toi i; its Velocity were the unmodulated velocity Uy while zoi is
the distance the electron travels in toi at the modulated velocity.
The position variable will be replaced by a new variable y defined
in terms of the unmodulated tube.
Cowz
y = . (2.44)

u
o1

The interpretation of results can be simplified by defining the nor-
malized variables Pz and y in terms of the unmodulated tube rather than
the modulated tube. A tube of a specific length will always be repre-

sented by the same y value, independent of the modulation condition.
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The initial electron phase Qoi is assumed to be invariant with
modulation. The initial average velocity however is a function of the
modulation. This is understandable since the low-frequency modulation
does not bunch the beam, and in an unbunched beam the electrons maintain
their phase position. The Applegate diagram in Fig. 2.2 illustrates the
initial effects of the low-frequency modulation. All bunching and de-
bunching effects are neglected in this diagram.

When the effects of r-f bunching forces and space-charge debunching
forces are considered, the trajectories curve and intersect. Some fur-
ther phase variables must be introduced to describe the interaction

flight lines. Consider

ol

oz) = o -0)-0lz) = olegy) (2.45)
o1

These angles are illustrated in Fig. 2.3. It can be seen from Fig.
2.3 that @(@Oi,z) is the phase of the ith electron measured with respect
to the circuit wave. © 1is measured from the electron to the circuit wave.
0(z) is the phase of the circuit wave with respect to a fictitious wave
traveling at the unmodulated velocity of the beam and is measured from the
circuit wave to the fictitious wave.

The most appealing way of solving the equations of motion, from a
"physical picture" point of view, would be to integrate all equations with
time as the running variable; then at each time the effect of the n elec-
trons appearing during one r-f cycle would have to be considered, with each
electron being at a position z specified by its flight line. This method
is rather involved and extremely difficult to handle. Instead, the group

of n electrons entering during each r-f cycle are assumed to enter the tube

simultaneously, but each having a different phase with respect to the r-f
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wave., The equations can then be integrated with respect to distance y,
and the independent variables will be Qoi and y.

Now consider* the motion of one electron along its trajectory.
An expanded drawing of this one line in the vicinity of position z is
shown in Fig. 2.4, The total change of the sum of the angles along this

trajectory is given as,**

o0(z,9,;) , de(z)
52 dz
‘ Poi
- 11 CP<Z+AZ)¢Oi> - (P(Z;CPO]-_> 9(Z+AZ) - 9<Z>
S z T

From Fig. 2.4, define the phase difference ds as

dzs = - 06(z) - o(p_.,z)

ol
= dz - 6(z+2) - olo_,,z+2) - 4 )
where
ti
qa = 2
2 u
o1
and
u is the total velocity of the ith electron.
Therefore

oo, ,2+2) + 6(z+2) - oo

i’z> '9(Z> = AZ[&'(D_:} ’

ol ti

¥ This geometrical interpretation of the phase relation was worked out
Jjointly with J. Meeker of this laboratory.

** The subscripts are included in the partial derivatives to avoid con-
fusion as to which coordinate system is used.
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and finally, substitution into Eq. 2.46 gives

u
(%‘:) +92 - <1 -u—°i>u—‘”— . (2.47)
% Y

oi

|

Define the total electron velocity .as

AV 1/2 ¢
u,. = u01<l + v—{) Ll + 2 Cou(y,moi)] s (2.48)

ti
o1
and use the definition of y, to obtailn,
el ae(y) 1 1
(_.,¥) + o =11 -
I:Fy o . dy ‘o Ay r )}

1+ &N ey
oL K v L o Y Pos
. o1

!
OII’-‘

1
o [l ] e 1+ 200u<y,<|>oi>]:l " (2.49)

Equation 2.49 is the first working equation.
Define the potential Vé, due to the circult wave, but seen by an

electron (at the beam radius) at position y and phase ¢ as,

ZOIOl AT
Viy,0) - (2 ) al) cos olvay,). (2:50)
C ot
o1
A(y) is assumed to be the normalized amplitude of the circuit wave

at position y. For perfect beam-to-circuit coupling, the potential seen
by the electron is the same as the potential at the circuit (Vé = Vc>'

If perfect coupling is assumed, the following equation is obtained when

Eq. 2.50 is substituted into Eq. 2.39.
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o (oY 4 ¢ / AI dgAY) aly) 4 (2 - 20
o\t 01 01 4 Co dy

p - R dp
Vol 32 T T Volo 3t ) (2.51)

Bquation 2.50 can also be substituted into the force equation to

obtain

e e (2.5
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In order to use the conservation of charge expression, Eq.

dz
necessary to evaluate <}S£{>
z/%

Recall that Eq. 2.43 states

a -
g o1 N 1/o
% T % o Ll Y ]

o1

therefore,

2.41, it is

(2.53)

Evaluate the total differential of o(¢ _.,y) to obtain

ol

.- ()

oy

o}

therefore

&), &, - 5-5-@

9 1 ae
ag_ + <5§> Gy = 7 4y - gy - ol
P

After using the first working equation in the above the result is

3

oi

<?39> _ 1 1
oz o 1+Qcou(y,¢oi) < 30 :>y

(2.51)

The conservation of charge expression is therefore given as:

I
(U. ) ) - _ o1 e 1 1
PR P01 % c2 14C uly,0 ) [ o9
o ST ()
$oi/y

(2.55)
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Due to the nonlinearities, the beam will contain harmonics of
the fundamental r-f, however only the fundamental r-f is assumed to
interact with the circuit wave. The fundamental component of charge

density may be found from a Fourier expansion of the charge density.

' Io i ‘Qﬂ sin nQ \ ~)Y
plu,0 ) = - €, > {_<sin ne \/P
£
) o}

1+2C u(y,CP

+ cos no \jp e <—89i>y d?>‘} - (2.56)
o

14+2C U y,w

The fundamental component of Eg. 2.56 will be used in the circuit
equation. There will be sin ¢ and cos ¢ terms appearing on each side of
the resulting equation. Equating the sine and cosine coefficients on

each side yields two equations.

A iy (<1 _aely) W 00
dy® L Co &y Ci
14 b 2T cos ol )a
_ o0 o 1 <{ u/\ Do17Y /99,
o1
2 .
) f“ sin 9(y,0_;)d9, } (257
+ 2C a 2.57
0o l+2Cou(<poi,y>
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and 2&
d°e o 2 da(y) (aely) _ 1
Aly) [——-—(1+Cb)}+2 -
} dy2 CO oo dy dy CO
14C b 2% sin ol . ,y)do
_ e 1 <{ /’ oi’ 0
Co o uo/2 <1 AT >1/2 J 1&200u(@0i,y)
R o)
I
o1
21
cos p(9_;,¥)dp, (5.58)
- EC d. f L] 2.5 J
oo J l+200u(¢oi;Y77
where
u

1 01
bO = T {-VO— - } 7 and

o)

R
2do T ol

o

The model used to calculate the space-charge potential is a
solid beam of electrons flowing within a cylinder having perfect conduct -
ing walls. Figure 2.5 illustrates the geometry of the model. The follow-
ing assumptions are involved in calculating the space-charge potential:
1. There are no transverse fields or electrons moving transversely.
2. There are sufficient ions present to neutralize the average
space charge of the beam.
3. The beam is assumed to have a sinusoidal variation of charge
density with distance for the first solution to Poisson's
equation. The actual variation with distance 1s used in later

work.
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The space-charge potential is defined by Poisson's equation:

2 P efjﬁz
VoV, o= - (2.59)

€Oﬂb'
The sinusoidal variation of charge density is in accordance with assump-
tion 3 above. The wave number B is the cold wave number of the circuit
wave.,

Equation 2.59 can be integrated and the boundary conditions for
the geometry used. The result is the familiar space-charge field ex- -

pression as determined by several authors't?,12 in the past,

i o ~JBZ
Jo_e
B = —2 R (pb') (2.60)

s¢ crb! B

where R is the plasma-frequency reduction factor given as

RS = 1 - TSTEE%S' (Il<§b')Kb(Ba') +-IO(Ba')Ki(Bb')}

Curves of the reduction factor as a function of beam to circuit
radii ratio and Pb! are found in the literaturel!”. The dimensionless
quantity Bb' may be defined as

B 2 g

The sinusoidal variation of space-charge density is now dropped

and the actual variation is used, therefore

R 2
Jo(z)R
) 2
enb! B

E =
sc

(2.61)

When the Fourier expansion for éharge is introduced, the space-

charge field may be expressed as



“l -

27

jRn2 e_‘JmP Jno
BRI B
neb?

=3
n
1i
|-
o
0]
FI~"]8

Inverting the order of summation and‘integration, this expression

becomes
2%
E = —2 —lpr (o-0')do! (2.62)
s 12 B
neb
o)
where
00 2
sin n@P4$’)Rn
nt') =
o) = ) —pm

1

F is the space-charge weighting factor and relates the force of an elec-
tron at phase @ and one at phase ¢@'. Curves of the space-charge weighting
function for various values of stream diameter can be found in the 1it-
17;47.

erature

The radian plasma frequency is defined by the relation

2 IOl|n|
O = Tz

o)
p nebt u
o1

and the cold wave number of the circuit as:

B = B (14050,

These two definitions along with the form for p given by Eq. 2.55 leads

to the final form for the space-charge field as

By = {n|(1+c b)) < > Jf l+2é¢u)d®,y) : (2.63)

The final form for the force equation, Eq. 2.52, is then given as
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M
C
Jo dA(y)
+ M2 dy cos- CP(CP .)Y)
1 " 27
i _ _pg>2 f F(O-0') g0t - (p.6h)
'(l+cobo)M £ (;ﬁo : l+200u(@0i,y> o

Equation 2.64 is the last working equation. Note that for no modulation,
Egs. 2.49, 2.57, 2.58 and 2.64 reduce to the usual large-signal TWA
equations.t”

It is to be noted that in the above calculation of space-charge
potential, the force exerted on a particular electron by all other elec-
trons was calculated assuming that all electrons were at a position Yy,
but in general each had a different phase. This method of calculation
is consistent with the manner in which the problem is integrated, however
it is not an exact method of calculating the force. Thé force on an elec-
tron is actually exerted by electrons disﬁributed in gpace, but we have
here assumed that it suffices to calculate the force using a distribution

in phasge or time. Figure 2.6 illustrates the possible configurations.

It is felt by this author that the assumption that the distribution in
phase is approximately equal to the distribution in space is consistent
with other agsunptions. A recent paper by Rowe*” further illustrates
the equivalence of the two distributions. In this paper Rowe obtains
good agreement between the nonlinear TWA performance calculated using
the above method and Tien's®3 method in which the space-charge field is

calculated using the space distribution.
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The small signal space-charge parameter of the unmodulated tube

is introduced through the equation

w 2
1 . R
L~ =
ok aboR
e} 1 +
LW

where R is R(Bb'), the plasma-frequency reduction factor.

In summary, Egs. 2.49, 2.57, 2.58 and 2.6L represent the working
equations for the large-signal beam modulated tube in terms of the cir-
cuit r-f voltage A(y), the electron velocity u(@oi,y), the electron phase
@(¢oi,y) and the circuit wave phase 6(y). The independent variables are
the normalized length y, the electron initial phase ®oi and the modulea-
tion AL and AV. The modulation equations reduce to the ordinary TWA
equations. It is necessary to introduce the boundary conditions at
y=0. The boundary conditions are listed below:

1. Since the electrons enter the interaction region with no r-f
disturbances, the r-f velocity is zero so that
u(¢oi,0) = 0 for i = 1...n.
2. The initial phases of the entering particles are uniformly

spaced since the beam is unbunched, therefore

Qo,i = ggi i = 1...n (32 electrons are used)

3. The phase difference between the circuit wave and the fictitious
wave (see Fig. 2.3) is zero at the origin.

4. An initial amplitude for A(0) is arbitrarily chosen but it is

still small enough so that the amplifier behaves linearly near

the input.
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5. (de/dy)o and(dA/dy)o can be evaluated using the small-
signal analysis; this was done by Rowe ™’ using all three
waves and Nordsieck'® using only the growing wave, however
this method involving the small signal—analysié further com-
plicates the modulation problem.
Congider the circuit equation given in Eq. 2.1. If loss is in-
cluded this becomes

bvc
Sz + ICR + JBOZOIC

= 0 ) (2.22)

For a matched line

<

(0)

(0
C

—

therefore after normalizing, Eq. 2.2a evaluated at the input becomes

1+ b

<§;§>o - [gdo *J _’6§‘91 v, (o) . (2.65)

Using the definition of the line potential given by Eq. 2.50 in Eq. 2.65

one obtains the boundary conditions

<g§>o = - 2dOA(O)

ao
E)() —_ (5.66)

These values are in agreement with the initial values found by Rowe using

a different method.
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If the circuit equation, Eq. 2.57, is evaluated at the input,
the integrals will vanish since the beam enters unmodulated. Therefore
in order to obtain conditions given by Eq. 2.66, it is necessary that
(d2A/dy2)o vanish. This is approximately true, in fact this term is
neglected altogether in Nordsieck's work. This is not Jjustified at a
position distant from the input.

The modulation device functions can now be calculated. _The phase

modulation is given as

A5 = 6(y,AL,AV) - 6(y,0,0) (2.67)

and the amplitude modulation

ey = A(y,AT,&V) - A(y,0,0) . (2.68)



CHAPTER ITII. NUMERICAL RESULTS FOR THE MODULATION DEVICE FUNCTIONS

The»gquations necessary for calculating the mcdulation device
functions were derived in the preceding chapter. Two distinct methods
of calculation were described, one applicable for small r-f signals in-
volved the solution of the linear equations describing the hydrodynamic
type beam while the second method was for large r-f signals and involved
the solution of the set of nonlinear equations describing the particle
type beam. In this chapter some typical modulation device functions will

be shown.

3.1 Small-Signal Modulation Device Functions

There are three distinct steps involved in the determination of
the modulation device functions for the linear amplifier, if one uses
the direct method of sclution as presented in Section 2.2. It is neces-
sary first to determine the propagation constants as functions of the
low-frequency beam modulation, secondly to calculate the effect of the
modulation on the initial loss parameter, and finally to combine these
two steps for a tube of specified length in order to determine its modu-

lation device functions.

3.1.1 Propagation Constants as Functions of the Modulation-Signal

Amplitudes. The characteristic equation for the low-frequency beam-
modulated TWA was given in Eq. 2.16. The roots of this quartic equation
are the propagation constants.  Since one of the roots represents a back-
ward traveling wave, which is far from synchronism, only the three roots
representiﬁg forward waves are considered. The roots are, in general

complex and are given as
o,(6,8) = x(6,8) + gy (6 ,8,) (3.1)

-50-
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where 1 = 1,2,3,
and
_ NN
gl = <l+\7——-
01
AT
S
b, = —/— -
2 gl

To conform to previous convention, the root corresponding to i = 1
represents the slow and growing wave, the wave corresponding to i = 2 is
the slow and declining wave and finally the wave for i = 3 is the fast

wave. Recall that the waves propagate as
exp {éBeOZ(l-COyi) + Beocoxig}

Figures 3.1 through 3.6 are curves of the propagation constants
as functions of the normalized beam-potential modulation amplitude with
constant beam current, and also as functions of the normalized beam-
current modulation amplitude for constant beam potential. 1In all curves
the gain parameter for unmodulated operation is selected to be 0.10.
The other parameter values for unmodulated operation are listed on the
curves. For all curves, the vélocity injection paraﬁeter bo is adjusted
to maximize the small-signal gain.

The voltage modulation amplitudes are kept within % 20% of the
beam voltage while the current is allowed to vary from 20% to 200% of
the unmodulated beam current. It is the author's opinion that modulation
amplitudes for system applications will fall within these limits.

The linear variation of yl(gl), the imaginary part of the propa-
gation constants of the slow and growing wave, as a function of the beam-

potential modulation with constant current has an important bearing on
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the applicability of TWA's as phase modulators. Note that good linearity
is apparently obtained for all cases considered in this report when the
voltage swing is between * 5%. The sldpe of yl(gz) as a function of the
normalized beam-current modulation amplitude, with constant potential, is
much less than that for the voltage modulatiocn.

The variation of the real part of the propagation constant, X,
during the modulation is of the same order of magnitude for both current
and potential modulation. It is now possible to calculate the phase mod-
ulation in radians per stream wavelength and the amplitude modulation in
db per stream wavelength exclusive of the‘phase and amplitude modulation
introduced by the modulation of the initial loss parameter. If the main
interaction region is defined as the region in which the signal grows
after the gfowing wave has been set up, then this phase and amplitude mod-
ulation will be that taking place in the main interaction region.

The phase modulation produced per stream wavelength in the main

interaction region can be calculated using Eq. 2.32.

AS' AS-I
Tl Voo 2nC [yl(AV,AI) -yl(0,0)} . (372)

S

The amplitude modulation produced per stream wavelength in the
main interaction region can be calculated from Eq. 2.33.

Aa'db

N
s

= 5&.600 [xl(AV,AI) - xl(0,0)} . (3.3)

Equations 3.2 and 3.3 are plotted in Figs. 3.7 and 3.10 for the
propagation constants shown in Figs. 3.1 through 3.6.

3.1.2 The Effect of Low-Frequency Beam Modulations on the Tnitial

Loss Parameter A. It can be seen from Egs. 2.32 and 2.33 that the total

phase shift and gain are each composed of a component which varies with
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the number of stream wavelengths and a component which is independent of
the number of stream wavelengths. The components dependent upon the
length of the tube have been discussed in Section 3.1.1 and were called
the phase modulation and amplitude modulation in the main interaction
region. In this section the component independent of circuit length, the
initial loss parameter, will be considered. It should be noted that the
effect of modulation upon the initial loss parameter does not affect the
overall modulation properties of a long tube as much as it would a short
tube; also for a given gain, modulation of A becomes more significant for
a high-C short tube, since the gain is proportional to CNS.

The effect of modulation on the initial loss parameter is deter-
mined from the amplitude and phase of the quantity A = VCl/V as given in
Eq. 2.26. Curves of the amplitude and phase modulations are shown in
Figs. 3.11 through 3.14. The value of the initial loss parameter with no
modulation is AO.

The initial loss parameter will vary over a much wider range dur-
ing a voltage modulation than during a current modulation. Also, the
addition of loss and space charge tends to increase the range over which
the initial loss will vary. Note that for a * 20% variation of the beam
current, the phase of A will vary * 1 radian, while for a * 80% variation
of the beam current, the phase varies only + 0.3 to - 0.5 radians. Over
a similar range of modulations, the amplitude of A can vary between O
and - 4 db for a voltage variation, while for a current modulation, it
will vary between + 0.8 and - 0.6 db. Hence, a consideration of the mod-
ulation of ‘A, during a voltage modulation is more iﬁportant than during
a current modulation. Some insight into the reason for this can be ob-

tained by referring to work published by Brewer and Birdsall®! in which



(NIVO WNWIXVN ¥04 a3lsnrav g

'0=1V ‘010=%0)'NOILYINGOW . IVILNILOd -WV38 ONI¥NA V 40 ISVHd IHL 40 NOILVINVA e 'o1d
_O> .
Ay ‘NOILVINAOW IVILN3ILOd-WV3IE A3IZITYWNON
020 910 210 800 £00 0 v00- 800- 2lo- 910~ 020-
050=20520=%00 .
DN 80-
(o] /O// 90-
~—~—__ 0=p‘0G20="20
— 070_/ /r// 0~
\ 0="P'0="00 ~_ NN
\O R
1 /A 20-
/
N .
////// : ¢0
/////
NN o
NG N 0=‘0=%0| _
NS 90

"~

. 80
050=°p .omN.o"oW /
o=°

p‘0s20="0] o]

ol-

vo

AV ‘SNVIQVYH NI NOILVIMVA 3SVHd



_65_

(NIVO WNWIXVW 804 d3alsnrav

‘0=IV ‘010="2)NOILVINAOW VILNILOd-WVY3IE ONINNG V 40 IANLINOVIW 3IHL 40 NOILVINVA 2l 914
10, |
AT CIVILNILOd WV3I8 IHL 40 NOILVINAOW Qa3ZITVWNON
020 910 210 800 00 0 £00- 800- 2I0- 910- 0z0-
B ml
\ )
/ \\ c-
%ou.ouooo
Nl
—l
-— o 0
P ‘0520="00

o/

QP—:"CIP NI 3ANLNdWY 40 NOILVIHVA

(o]



-66.

0]}

(NIVO WNWIXYW 804 a3isnrav ‘%q

ol-

‘0=AV ‘010="0)'NOILVINGOW LNIH¥NI-WVIE ONIYNG V 40 3SVHd IHL 40 NOILVIHVA eIe ‘914
_OH .
S5 LN3¥¥ND Wv3E 40 NOILVINAOW Q3IZITYWHON
80 90 0 20 0 20- v0- 90- 80-
_ | |
/| 050= ‘0520="00
Op ¢ ‘ . [o Jiman
\\ 0 =%‘0sz'0=%0
\ 7
/| \
N
\\
4 ,
Illll\\\
0= ‘0=%0
2
. 0S0= P ‘0G20= 20
0= ‘0620="00 ]

S0-

¥O-

120-

20

AV ‘SNVIQVY NI 3SVHd 40 NOILVIYVA



-67-

(NIVO WNWIXVIN 804 @gaisnrav °ad‘0=Av

‘010=0)'NOILVINAOW LNIYHNO-WV3IE ONINNA V 40 IANLINOVW IHL 40 NOILVI¥VA plI'c 914
_OH
Tv ‘NOILVINAOW LN3I¥¥NO-WV3IE A3IZITYWHON
ol 80 90 $0 20 0 2o- $0- 90- 80- o’l-
, 90-
050=° ‘0520="00
\\
.\ $0-
/

/ N
Y : ;
zo- £
0=°p ‘0=%00 y E
\\\ —
| L S
T — m
- 0=p ‘0620="00 ———F=— TN — 0 <
B
P
pust
o 2o <
/ =
N N a
_ c
/ >i>
b0 a
/ouou.ouooc o

,/ 90

0=°p ‘0520=00

80



-68-

it can be seen that ]A) varies greatly with b but does not change very
much with the other parameters.

3.1.3 Linear Modulation Device Functions. The linear modulation

device functiong are calculated from the results of Sections 3.1.1 and

3.1.2. The total phase modulation in radians is given as
AS = Ay +2xC N [y (a7V,AI) -y (0,0)] (3.4)
and the total amplitude modulation in db is given as

VCl(AI,AN)

Nag, = 20 log "Vg:(ﬁ?ﬁT’ + 54.6CONS[x(Ay,AI) - xl(o,o)] . (3.5)

The modulation device functions can be calculated therefore, only if the
tube length is specified. Several modulation device functions are shown
in Figs. 3.15 through 3.18. Each function is calculated for two stream
wavelength values.

From the curves of voltage modulations it can be seen that the
phase-modulation index and the amplitude distortion will increase as the
tube length is increased. Also, the effect of space charge tends to de-
crease the phase-modulation index. Loss, however, will increase the
phase-modulation index, and also increase the linear range. Space charge
tends to accentuate the amplitude variation, while loss might be helpful
in smoothing the amplitude variation.

The phase modulation curves show a linear phase response for a
voltage modulation of * 5% for a tube of 20 stream wavelengths. The de-
viation from a linear phase response is 9% for a 10% voltage modulation.
Note that the inherent AM during this phase modulation is about 5 db for

a * 5% voltage modulation and about 10 db for a * 10% voltage modulation.
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The current modulation curves indicate a very limited range of
linear AM, which becomes a higher than linear variation with large mod-
ulating signals. The inherent PM during current modulation is very much
smaller than that during voltage modulation. For the same percentage
modulation, the PM during voltage modulation is approximately related to

the PM during current modulation by

A%M ~= —CA%M.

3.1.4 Taylor Series Approximations to the Device Functions. The

form of the second-order Taylor series approximation for the device func-
tions was given in Section 2.3 and the coefficients were evaluated for the
simple case of QCO = do = 0. The modulation of the initial loss’parameter
A was also calculated using the Taylor series method. The results are
shown in Figs. 3.19 and 3.20 and are éompared with the results using the
previous method and those obtained using the nonlinear equations, which
will be discussed in Section 3.2. Note that the agreement for the phase
modulation is excellent between all three methods, when the initial loss
parameter variations are taken into account. The amplitude modulation
data shows that agreement between the exact modulation method and the non-
linear calculations is excellent whereas errors of about 0.5 db result
with 10% voltage modulation when the Taylor series is used. The tube
represented in Figs. 3.19 and 3.20 is a relatively short tube (of about 8
wavelengths). This short tube was used so that the effect of neglecting
the variation of A would be emphasized and also to insure that nbnlinear—
ities would not affect results. This allowed comparison of the thrée
methods gsed to analyze the modulated TWA.

It is possible to approximate the phase shift by a rather simple

formula for small-modulation amplitudes. For small variations of the
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beam potential and current, the phase shift is approximately a linear
“function of the modulation. If the tube is sufficiently long to enable

the modulation of A to be neglected, the phase shift is given as

AS 1 \ 2 _
Q“NS ~ - [-3- + 0.0407 bO ) QCO - Cg {O.833ylo + 0.278 bo
- 2 _ _2 A
0.0928 b 1.127 bodo 5 QCOH VOl . (3.6)
and
_QEL ~ ( ‘ZEE _2 QC 0.0369 3 § ¢ Qe
2n T Yo |73 9 Yo ~ ° 3 0~ 9 “o™o
2 \ AT
+ 0.0369 o - 0.06k4 bodO] T (3.7)
o1

Equation 3.6 can be compared to the approximation for the linear-
ized phase shift as a function of beam potential as determined by Beam
and Blattner!! using a curve fitting technique to approximate Pierce's

curves. Their result using the above symbols” is

- {0.29 - 020 - 0.035 (1 +¢C_b ) ac, - 0.21 bOCO} \%\1— . (3.8)
o1

NS

2nlN
g

The phase shift as computed by Egs. 3.6 and 3.8 are compared in Fig.
3.21. The figure demonstrates the closer agreement with the exact value
obtained by using Eq. 3.6 rather than 3.8.

The fact that the phase shift can be fairly well predicted using
the linear Eq. 3.6 will be useful later on in providing information for

use in TWA modulator design. Unfortunately, the amplitude modulation

* In their report Beam and Blattner define the shift in phase as the
negative of the phase angle used in this dissertation.
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cannot be given in a simple form. The equation would have to be second
order and would involve many more terms than the phase shift approxima-

tion.

3.2 Results for the Modulation Device Functions for the Large-Signal

Amplifier

The equations for obtaining the large-signal TWA modulation device
functions were given in Section 2.4. These equations were solved on an
IBM-T704 digital computer for several values of the parameters. The fech-
nique of solving the large-signal TWA equations on a digital computer has
previously been discussed by Rowe'’. Several device functions for the
large-signal tubes are shown in Figs. 3.22 through 3.29. As pointed out
in the previous section, the curves agree well with the linear calcula-
tions for short iengths where the tube is still operating linearly. A
very interesting result is that as saturation is approached it appears
that the phase modulation during a voltage modulation becomes more nearly
linear than for the unsaturated tube. Wbrking near saturation will tend
to limit the inherent AM. Note that as saturation 1s approached, the
modulation voltage at which maximum gain occurs shifts to higher values.

4 gand measurements

This 1s in line with theoretical predictions by Rowe
by Caldwell®”.

The AM characteristics during a cﬁrrent modulation were only
carried out for relatively small-modulation levels. These characteris-
tics show that a range of linear amplitude modulation 1s possible. How-
ever, near saturation, there is little change in amplitude as one might
expect.

The foregoing data indicates that it is feasible, from a theoret-

ical point of view to operate a voltage-modulated tube near saturation
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and still obtain a satisfactory operation as a phase modulator, while at

the same time minimizing the inherent AM.

3.3 Experimental Modulation Device Functions

3.3.1 Measurement Technique. The modulation device functions are

determined experimentally by measuring the phase and amplitude modulation
as a function of modulation signals. The circuit used is shown in Fig.
3.30. The gain measurements and resultant amplitude modulations are
found by using a power bridge. The phase shift is determined by first
adjusting the probe in the.slotted line for a null indication of the
voltage standing wave ratio meter at the unmodulated operation, then at
each stationary modulation amplitude, readjusting the probe to a new min-

imum. The phase shift from the unmocdulated value 1s then given by

A6 = 2Bz, (3.9)
where
NG = phase shift in radians
B = propagation in slotted line, and
Az = distance between minima.

3.3.2 Results. Measurements were made on a Hewlett-Packard 490-B

VIWA. This particular tube is a low level S-band model with a maximum
output'of 10 milliwatts. The device functions were measured at several
different frequencies across the S-band.

The phase and amplitude modulation device functions for a beam-
voltage modulated small-signal or linear type of operation are shown in
Figs. 3.31 and 3.32 and for the saturated case in Figs. 3.33 and 3.34.
It is found that an input level of O dbm drove the tube well into the

saturation region.
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The linear and nonlinear operation device functions for a current-
modulated amplifier are ;hown in Figs. 3.35 and 3.36. The inherent PM
during AM was smaller than the measurement error. In order to xeep
within operating levels as specified by the manufacturer, only negative
values of AI/IO are used so asg to avold operation with cathode current
above three milliamperes.

3.3.3 Comparison between Experimental and Theoretical Results.

The tube paramefers can be calculated from a knowledge of dimensions and
operating conditions. The tube dimensions are shown in Fig. 3.37. Note
that there are five boundaries in this tube between the sections of dif-
ferent loss. In an exact analysis the phase shift introduced at each
boundary would have to be accounted for; this however, would make the
calculations extremely tedious. 1In an attempt to simplify the calcula-
tions, an average loss Tigure was taken for the entire tube and the addi-
tional modulation introduced at each boundary was assumed to be cancelled
by the modulation introduced at the following boundary. This assumption
is validated by good agreement between measured and computed results.
-Since this is a long tube (NS a2 MO), the modulation of the initial loss
parameter is neglected.

The- tube parameters and operating conditions at 2 kmc are listed

below.
t —
Ve = 2.12
c = 0.061
o
QCO = 0.215
b, = 0.90 (Maximum small-signal gain)
N, = 38.79
v = 470 volts
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I
o

DILF = T0%

I

3 milliamps

The value of the small-signal velocity injection parameter listed
above 1is coﬁputed from an average dispersion curve supplied by the manu-
facturer. With this particular bo’ the calculated maximum gain did not
occur at the same voltage as the measured gain. The difference between
the calculated and experimental values may have been caused by errors in
the voltage readings, potential depression within the beam, and errors
in the dispersion curves. In order to eliminate these errors, the theo-
retical curves were shifted so that the maximum gains occurred at the
same beam potential.

The_experlmental and measured device functions for small signal
operation at 2 kmc are compared in Figs. 3.38 through 3.41. Agreement
is excellent for the beam potential modulation. There is, however, a
- difference between the theoretical énd measured amplitude modulation for
a beam-potential modulation with a large positive modulation amplitude.
The reason for this is that only one wave was accounted for in the theo-
retical resuits and that, at large amplitudes, Crestatron* action sets
in and accqunts for the additional gain.

The agreement is only fair for the beam-current modulation. This
is explained by the fact that it was not possible to measure the beam
current accurately.

No theoretical calculations were made to obtain a check on the
large-signal data; however, the results can be qualitatively analyzed.
There is definitely a shift in the maximum of the gain pattern to higher
values of modulation voltage as the signal level is raised. Furthermore
the amplitude variation does decrease as the signal level is increased.

The results for voltage modulation do not seem to indicate that operation
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near saturation increases the linear range of phase modulation, however

the range over which the linear phase shift is obtained is not any less

for saturation operation than it is for small-signal operation. The

flattening of the AM curves for a current modulation as the signal level

is increased agrees with the theory.

3.4  Summary of Results and Remarks on Traveling-Wave Amplifiers for
Modulation Applications
The important results described in this chapter are summarized be-
low. Information on the use of these results in the design of traveling-
wave amplifiers for modulation applications is provided.

An approximately linear phase modulation of the carrier can be
produced by varying the beam potential. There will be a large
accompanying amplitude modulation. The phase-linearity and
rhase-modulation index are almost independent of the carrier
level and in some cases improve as the carrier signal is in-
creased to the saturation level. It is possible to reduce the
resulting amplitude modulation when using large carrier signals.
Amplitude modulation can be produced by varying the beam current.
The accompanying phase modulation will be small. The amplitude-
modulation index decreases as the carrier signal is increased.

A linear variation of amplitude (in db) can be obtained over a
limited range of the beam current.

For a specific gain, a long low-C, modulated tube has higher
phase- and amplitude-modulation indices than the short high-C
tube.

The characteristics obtained by including the variations of the

initia = loss parameter, A, lead to less favorable results than
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those found using the approximation that A is invariant with
modulation. Space. charge and loss tend to accentuate the detri-
mental effects. It is more imporiant to consider variations of
A during voltage modulation than during current modulation. The
modulation effects on A are also more important in the short,
high-C tube than the long, low-C tube.
5. a). Voltage-Modulated Amplifier

Space charge tends to decrease the overall phase-
modulation index and increase the overall amplitude-modulation
index. Loss increases both the bverall phase-modulation index
and the range over which linearity is obtained while decreasing
the overall amplitude modulation.
b). Current-Modulated Amplifier

Both loss and space charge reduce the overall amplitude
modulation and increase the overall phase modulation.

The following remarks can be made regarding the TWA as a modula-
tor. In order to obtain large-phase modulation indices it is probably
best to use a long, low C, voltage modulated tube. Some loss should be
included not only to prevent oscillation but to increase the linear
range of phase modulation. In this case, however, there will be sub-
stantial AM introduced. The AM can be minimized by raising the r-f level
to saturation¥*; this can be done without seriously affecting the phase
linearity. If the inherent AM is still too great, the designer will have
to go to a shorter, higher C tube ( keeping CNS constant 1f a specific

gain is required) and use greater modulation amplitudes. From the shape

* Since a saturated tube without beam modulation converts carrier ampli-
tude variations to phase variations, this method cannot be used in
those cases where the input carrier is amplitude modulated.
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of the curves, 1t appears that a simultaneous voltage and current modu-
lation can be used to advantage in minimizing the inherent AM during PM.
For those cases where a large PM index is not required, a higher
C tube is a better choice if one is again to minimize the inherent AM.
The current modulated TWA operating under linear conditions will serve

as a modulator giving AM with little phase distortion.



CHAPTER IV. FREQUENCY SPECTRUM OF THE TRAVELING-WAVE AMPLIFTER

WITH A LOW-FREQUENCY BEAM MODULATION

4,1 General Modulation Theory

The output spectrum of a traveling-wave amplifier undergoing a
low-frequency beam modulation will now be obtained. This discussion is
confined to modulations of either the average beam potential or the
average beam current, but not of both simultaneously. Spurious modu-
lation effects, (AM during PM and PM during AM), will be considered,
but independent simultaneous modulations will not be discussed. The
method presented, however, is adaptable to the case of independent
modulations. The low modulation frequency assumptions listed in Section
2.1 apply for the material presented in the chapter.

The spectra calculated in this section are for signals having a
phase and amplitude which vary in accordance with a specified modulation.
Actually, modulation of the average beam potential perturbs the transit
time. Under the conditions for low modulation frequencies, the spectra
of phase modulated and of transit-time modulated devices are the same.
This is more fully discussed in Section 4.5. All modulating signals
considered will be periodic, and furthermore, it is assumed that the
modulations are applied to a tube that was in cw unmodulated operation
prior to being modulated. In view of the periodic nature of this prob-
lem, the amplitude and position of the spectral lines will be found
from a Fourler series expansion of the output signal.

An output r-f wave that has been amplitude and phase modulated

by the same signal can be represented as:
= G(&) cos [wbt + o(g)] 5 (4.1)

=
E
(0]

-105-
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where £ = periodic lower frequency modulating signal,

normalized amplitude function,

(@)
—~
ure
~—

1l

=
Il

output r-f field,

E = ummodulated output r-f field, and

o(t)

The modulating signal &€ is applied for the purpose of perturbing either

phase shift through the tube relative to the input signal.

G or ¢. This modulation simultaneously results in an inherent pertur-
bation of ¢ or G respectively. Both G and ¢ are real functions. Equa-

tion 4.1 may be written in exponential form as

Sl Fa

i
£ = 300 [om gla ()] v ew - lae))] L (.2

The output r-f signal will possibly contain harmonics of the carrier
frequency wé*, harmonics of the fundamental frequency @, of the modu-
lating signal & and combinations of the harmonics called the intermodu-
lation or crossmodulation frequencies nuk+ﬂm%. Therefore the output

r-f field can be expanded in the doubly periodic series

O [ .
5 = Z z A exp J(DLDC‘+ my, )t . (4.3)

N=~c0 M==w

‘For many traveling-wave amplifiers it can safely be assumed that
the impedance of the circuit to harmonics of the carrier will be rather
low so that the unmodulated output will contain only the carrier funda-
mental, Similarly it is assumed that the modulated tube will contain

only cross modulation frequencies with the carrier fundamental. For low

% The carrier frequency @, is not to be confused with the cyclotron
frequency.
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modulating frequencies Eq. 4.3 can be approximated as

[ee]
B \ . R -
E; ~ ), A exp J(wc + mah)t +A o exp,g(—wc + mpa)t. (4.4)
m=-=cc

Equation 4.4 can be written as

E .
E; = }J 2Re {%lm exp J(we + ng)t}‘ . (4.5)

m==cc
A comparison of Eq. 4.5 with Eq. 4.2 shows that

[oe}

Z6(e) exp Jolt) = 2 Ay e gt (4.6)
M==00
therefore
o5t
AL = % f G(e) exp jlo(t) —mwat]dwat . (4.7)
e}

From Eg. 4.5b one can see that the amplitude of the spectral line

at the sideband @, + mo is given as

2Re (Alm )

Therefore in order to find the spectrum amplitudes, it is necessary to
perform the integration indicated in Eq. L4.7. For certain forms of &,
the integration becomes rather involved. There is, however, an alternate
method for calculating the amplitudes. The integrations arising in the
second method are simpler, however they are so at the expense of having

the amplitudes given in open form.
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Consider the expression given in Eq. 4.6 and expand each term on

the left side in a Fourier series. -Therefore

1 : 1/N : \ :
5 G(g) exp J o(E) = §< 2 GZ exp Jmat><2‘ FS exp JS(Dat> 5
fmer 5= (1.8a)
where
21
L .
GE = Eﬁb[G@)(em)[-JM%tDm%t s
o
21
1 .
F, o= == L/j[exp Jlo(e) - swat)]@w t (4.8b)
o

Since the product involved in Eq. 4.8a is of two series each with

indices running from -« to 4w, the product may be expressed as

[0.9]

1 . \' :
5 G(E) exp § o(t) = }J szgh4§@®Jm%t ) (4.9)

M==c0 K==00
where the results of Appendix D have been used.
Matching similar frequency terms in Eqs. 4.9 and 4.6 gives the

open form for A as
im

(o8]
1\
Am = 3 ZL GF . (4.10)
k==c0

Note that in general the integration involved in evaluating G and T as
given in Eq. 4.8b will be simpler than that given in Eq. L.7.

The spectrum amplitudes can be calculated by either of the two
methods given above; however in order to use either method one must

have an analytical form for G(¢) and ¢(¢). Obviously G and ¢ are the
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modulation device functions. An analytical form was given for the
small-signal amplifier by using a Taylor series expansion. The errors
introduced by truncating the Taylor series are described in Chapter III.
Alternately, representation of the device functions can be obtained by
fitting a polynomial to the curves of the device functions calculated
by the exact linear method or by the nonlinear method. Additional
terms are required in the polynomial to fit the curves as the amplitude
of the modulating signal is increased. It shall now be assumed that a
quadratic approximation will suffice to describe the device functions.

Therefore the normalized device functions are approximated as

i 2
a(e) 1+ht h2§

Il

Pp(¢) Go(L + P& +p £ , (4.11)

where Dy is the ummodulated phase shift through the tube. The particular
values of h and p will depend on the unmodulated tube parameters and the

method of modulation used.
Equations 4.11 can now be. substituted into the preceding inte-

grals to obtain

o
- 1 , 2
6o = 1+ 3 f(hlﬁ + h_£%)dw, t , (k.12a)
@]
2
= 1 2 .
Gm = ox f(hlé + hgé )(eX'p [ - Jmat])d(bat s (M.lgb)
)
en
P - I = 5y fexp [3(op,& + @ p t2 - mo t)]an t , (k.12c)

o)
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and
2A_pexp [-do ) = F exp [-Jo ]
2
1 5 , -
+ 5= | (bt + ht%)exp[Ip p & + ¢ r £ - mnt)ldn t . (k.12d)
O

The spectra of particular forms of the modulating signal £ will now be

calculated.

4.2 Sinusoidal Modulation

The most common signal used in modulation theory is the sinu-

soidal signal. Assume that & is given as
£ = gqsinat . (k.13)

The evaluation of Eq. 4.12d4 becomes exceedingly difficult with
this form of & so that it is necessary to resort to the open form to
find the spectral amplitudes. When Egs. 4.13, 4,12a and 4.12b are

combined, the following results are found;

h2 s
GO = l+—2—q
by
G, = -J1=
by
G-l = J1 5
b,
G, = -1
G, = —qul;
G = 0 for|n| > 2. (L.1h)
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The sum involved in the calculation of Alm for a sinusoidal

modulation therefore is closed. The terms that must be considered are

listed below.

AL = GF =+ GlFm+l +G_ F o FGE +GF . (k.15)

Finding the Gm terms involves more difficulty than evaluating the

Fm'terms. Substitute Eq. 4.13 into Eq. 4.120, hence

%o p?
exp J ————
F exp - jo_ = = fexpj(@pqsinwt)
m o) 2n o1 a
o
NS
o2 o
- —— q" cos [Engt - ngat]daét . (4.16)

By using the Jacobi-Anger®® formula it is possible to introduce the

expansion

e “ ' PP
. O K . 0
exp [- J —> 0| - ) 3 exp (2gkat) T <- q® ——23 ,

k=ww

where Jk is the Bessel function of order k.

Substitution of this series and inversion of the order of inte-
gration and summation yields
CPOQZPKJ

r
F, exp L- J <§o + “Zf‘j/

[o0]

21
|k 2 %P2\ 1 : :
= 39, <; q '—ET{> 5 k/w exp J<é@op181n ot - (m—QR)wat:buat .
o

= =00
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The integral in the above equation is easily recognized as one

appearing in ordinary modulation theory and can be integrated®* to give

[oe]

P expi~ J(@O » 20 o >J Z aka e q;p > 3 em(-a0,0,) - (5.17)

k==

Equation L4.17 can be substituted into Eq. 4.15 to complete the
evaluation of the sideband amplitudes. Each sideband frequency has a

phase shift

q®p

2

Py T P 5 (4.18a)

and an amplitude

h
-
q” LJ4k n-2 q-(popl) T Jkenso <'q®opl)J }

h o} r
1

Equations 4.18 give the general sideband amplitudes for the quadratically
approximated TWA modulated by a sinusoidal signal. It is interesting
to study some degenerate forms of Egs. 4.18.

For the case of small-modulation amplitudes, it is possible to
approximate the phase shift with a linear function. Under this con=-
dition p2 = 0 and the summation in Egqs.4.18 vanishes for all k except

k = 0. Therefore the linear phase TWA that is sinusoidally modulated
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has sidebands with amplitudes

2
hzq

PReh = (-1)" <} e > SHEXLI

q2h2 r o -
S o l(-l)m+ Jo(-op a) + (-1)" 2Jm_2(-$OPlQ)] :

Finally the TWA with no output AM has amplitudes given by the

familiar result

m
2Rep = (-1)"3, (-9 ap,)

k.3 Pulse Modulation

Another common modulation form is by a train of pulses. The
pulse modulated tube will now be investigated. This particular case

is again for the tube in unmodulated operation when pulses are applied

to the average beam potential or current. This analysis is not to be
confused with that of the tube where the beam is cut on and off by pulses;
this would be.a purely transient analysis and would certainly not fall
under those cases describable by‘the Taylor series approximation to the
quasi-static function. The pulse modulation applied to the operating
tube however can be described to an extent by the quasi-static approach.
The modulation signal is shown in Fig. L4.1Db,

The additional assumption is now introduced, that the duty cycle
is sufficiently low so that the average value of either the beam current
or potential is unaltered from the unmodulated case. TFor the wave shape

shown in Fig. 4.1b, the signal is described as
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T
E = O for - < wét < - 5
= T n
E = g for 7 < wét < &
E = 0 for + T <at<xw (4.19)

¢t as given in Eq. 4.19 can be substituted into Egs. L4.12c and

4,124 to obtain the sideband amplitudes. The result is given by

. sin £¥1
-] i = —_— — 2 . 2
an exp[-39 ] 7| —= 1+ (1+h a+h a%)exp J (9 p a+p p_a )}‘-

T
(k.20)

The 1imits of integration were changed to -x and =.

The spectrum is seen to be composed of two sets of lines. One set
is the usual (sin x)/x distribution but it arrives at the output at the
same phase as the unmodulated signal would, and the second set similarly
has a (sin x)/x pattern but arrives with a delay dependent upon the
‘phase-modulation characteristic, and an amplitude dependent upon the

amplitude-modulation characteristics.

.4 Sawtooth Modulation

The two previous sections were concerned with modulations pri-
marily used to impart information onto an r-f wave. There are certain
applications when it becomes desirable to translate the energy at the
carrier frequency to one of the sidebands and have very little energy in
the other sidebands or at the original carrier frequency. This is pos-
sible using a TWA with a sawtooth-modulated beam velocity. This method
of frequency translation using a TWA was first devised and analyzed by
Cumming®. He named this method of frequency translation "Serrodyne"

operation. In this section a mathematical discussion of sawtooth
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modulation is given while a physical picture of how sawtooth modulation

can produce frequency shirting is given in the following section.

Rather than attempting the general solution, first a simple case
will be investigated. An ideal amplifier for frequency shifting is one
with a linear phase characteristic and no amplitude variation (p. = h

2 1

= hz = 0). An ideal sawtooth for frequency shifting is one with no fly-
back time. This signal is shown in Fig. 4.lc. The ideal signal is then
applied to the ideal amplifier.

The mathematical representation of the sawtooth signal is
= 4 - i
E o= ot m<at < . (4,21)

Using 4.21 in 4.124 with the limits going from -m to +n gives the side-

band amplitude as

3o -39 sin<plqcpo >ﬂ
oA e ° = Fe © o i . (4.22)

m m
1 <p 1<1CPO >
- It
I

If the tube length and modulation signal amplitude are adjusted so that

= n! (an integer) s

then the amplitude of the sideband at m = n' will be unity and all other
sideband amplitudes will vanish. This 1s truly the desired frequency
shifter. In practice this ideal operation is extremely difficult to
achieve. Consider now some departures from the ideal. Apply a sawtooth
with finite fly-back time as shown in Fig. 4.1d to the ideal tube. TFor

this signal, & is described as
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Qat
E = - 4 1 4+ — for - n<wt< - rx
1l-r T a

E = Lt for ~ra<wt < rm

re o a a

Wt

£ = g N for ra <wt< x (k.23)

1-r T a ) )

The sideband amplitudes are given as
3 si lQOq - T
-JCPO ri
2A m r
1 Pl@oq
r
‘ pl@oq RIS I l®oq ap, b '
sin|f{ ——— + m ¥t - ——— |- sin|{ ——— + m rx -
(1-r)x l-r L (1-r) l-r

P.%.a >
— it m )
(1l-r)m

(4.24)

Clearly the effect of finite fly-back time is to create a large number
of sidebands.
Finally apply the perfect sawtooth to the nonideal tube. The

integrals of Eq. 4.12 can be evaluated using the Fresnel integral

23

forms=,
Xl/2
c(x) = %f cos t2dt
o
and
Xl/2
2 S
S(x) = = u/\ sin t=dt

©
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These are tabulated functions;.the results are,

~Jp -Jo
A e ° = F e ©
im m

-ja? . . 1/2
gh_e . JP JP
2 <d (e P Yo (Z c(p.)-c(P_)+3s(Pp.)
onfs 2B 5 1 o/ IR,
P 1/2 P 1/2
1

JP_ ¢ JP_ r
. . 1,Q . 2 1a 2
- JS(PZ)J } + Je ["B— - '—-B?j}— Je 'B— - 62 :] .()-5—.258,)

. . 2 1/2
~Jd% e 9% [ . .
F e =~ <é> [C(Pl) - C(P,) + JSl(Pl) - JS(PZ)] . (k.25b)
where
ap_p
o1 n
7
o = R
pg2 22
q -z
a%o P,
p = =
P = B(rx + a)=
P, = B(a-n)®

and C(X) and S(X) represent the Fresnel integrals mentioned above.

4.5 Physical Description of Frequency Translation by Sawtooth

Modulation
In the preceding section, the mathematical formulation of the
Serrodyne frequency translator was presented. Since the concept of
changing the frequency of a signal while it propagates on a structure

may appear difficult to understand, it has been decided to repeat the
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physical picture given by Cumming® and others®! to explain Serrodyne
operation. This explanation will be for the ideal situation.

Consider a signal with time variation described as

cos (wct + @)

Now assume that the phase ¢ is made to vary linearly with time, there-

fore

& . constant = 2 ,

and

P = QTrdet = 2nFt+ch

The time variation of the signal can be described as
cos[(wC + 21F)t + @O]

and the frequency has been shifted F cycles. Unfortunately this type of
frequency shifting requires that the phase change indefinitely in a
linear fashion, Of course this cannot be done but it can be approx-
imated by a sawtooth wave as shown in Fig. 4.2. The necessary phase
conditions for sawtooth operation are also shown in the figure. There-
fore if the phase can be made to change 2n radians F times a second,

the frequency Will be shifted F éycles. In practice this linear change
in phase 1is obtained by a sawtooth modulating the circuit potential.

Let us now consider this shifting action from the point of view
of modulating the transit time. The transit time (as the phase) is
almost a linear function of circuit potential; by modulating the average
éircuit potential we are actually Varying the transit time. Assume
thét a large bunch of electrons enter the interaction region during each

r-f cycle. Figure 4.3 illustrates the flight lines over more than one
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a. IDEAL PHASE-MODULATION DEVICE FUNCTION.

a >
T <

A /A /
/D /
+q | /r /= /

-q

b. MODULATION VOLTAGE AND PHASE VS. TIME.

FIG. 4.2 IDEAL PHASE CONDITIONS FOR SERRODYNE.
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modulating cycle. Each flight ine represents the entire bunch of
electrons that entered during an r-f cycle. Since one bunch enters
during each r-f cycle the bunches are initially evenly spaced in time,
separated by l/fC seconds where I, 1s the carrier frequency. If the
tube is unmodulated the bunches arrive at the output still evenly spaced
at l/f_‘C seconds. The gain mechanism has taken place within each bunch
and the electrons constituting the bunch surely have changed position
but the time orientation from bunch to bunch is unchanged. When the
transit time is modulated, the bunches arrive in a different time
orientation than they had at the entrance. For a linear transit time
modulation, the bunches arrive still uniformly spaced but with a differ-
ent spacing than 1/f, seconds. Assume this new spacing is l/ft seconds,
the carrier frequency has been shifted to ft cycles per second. To

get perfect fréequency translation it is necessary to satisfy the phasing
conditions shown in Fig. 4.5, i.e., the space between the bunches must

be an integral number of l/fC periods.

4,6 Differences in Spectrum for TIM and PM

Cumming has shown that the output spectra of a transit-time
modulated device and a phase-modulated device for the same modulation
input are different. The difference is attributed to the fact that
transit-time modulation alters a time delay which follows the generation
of a periodic time function while phase modulation alters the phase
during the time that the periodic function is being generated. Using
Cumming's notation, the normalized spectral amplitude of the nth side-

band in the vicinity of a TIM is given by

I = Mn[q,(l + pc)rﬁwc] ,
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where g 1s the depth of AM factor, Ty is the peak deviation in transit
time over the modulation cycle, p, is the ratio of the lowest frequency
of the modulation signal to the r-f (aé/wc).

The spectral line amplitude of a similar component with PM is

given as

I = Mn(q,rp) s

where s 1s the peak phase deviation and Mn is the same function as
above.

For low modulation frequencies, Pe << 1. The product of time
deviation and frequency is just the phase deviation, so that for low
modulation frequencies the spectrum for TIM and PM will be the same.
Furthermore, if one uses the quasi-stationary device functions, he must
not use high-modulation frequencies as previously pointed out, hence,

when conditions for the quasi-stationary approximation are valid, the

PM and TTM spectra are the same.



CHAPTER V. LOW-FREQUENCY BEAM MODUILATIONS OF OTHER O-TYPE DEVICES

It is necessary to write two sets of equations to analyze an
O-type electron tube. These are, of course, the electro-kinetic or
ballistic equations which describe the motion of electrons in the tube,
and.the electromagnetic equations which describe the wave suppdrted by
the r-f structure surrounding the beam. All O-type devices amenable to
one-dimensional analyses are characterized by the same ballistic equation
although its form may be varied in some applications for reasons of math-
ematical simplicity. The circuit equation does assume different forms as
the modes of propagation are varied from tube to tube. In a low—frequéncy
beam modulation study of O-type devices, it is possible to use quasi:
stationary ballistic equations very similar to those derived in Chapter 2
for the TWA, and in addition thée circuit equation peculiar to the device
under study.

In this chapter the modulation characterisitics of two O-type tubes,
the Crestatron and the Backward-Wave Oscillator (BWO) will be discussed.
These two devices are similar in that gain is obtained by a beating of
three waves rather than by an exponential growth of one wave as in the
TWA. The Crestatron and BWO differ by the fact that the energy flows in
the beam and the circuit are in the same direction for the Crestatron while
they are oppositely directed in the BWO. In view of the energy flow con-
siderations it can be seen that the Crestatron is stable while the BWO
is inherently unstable. Since the unmodulated operation of these devices
has been well covered in the literature, the remaining discussion will be

primarily devoted to a study of their modulation characteristics.

~12k-
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5.1 Low-Frequency Beam Modulations of a Crestatron

The Crestatron® is a shortened TWA with the electron beam injected
at a greater velocity than the cold-circuit phase velocity. For a tube
with C of 0.10 the beam velocity is about 30-40% higher than the circuit
velocity, while for a C of 0.05 the beam ve ocity is about 10% higher
than the circuit velocity. With these velocity differences there is no
exponentia growth, howevér, the circuit is not completely deéoupled from
the beam and three waves are set up which propagate with different phase
velocities and produce an interference pattern. If the tube length is
adjusted to the crest of the circuit voltage interference pattern, a net
gain is obtained. The modulation equations derived in Section 2.2 apply
to the Crestatron when all three waves are taken into account during the
computation of the amplitude and phase modulation. The modulation device
functions'for the Crestatron are given in Egs. 2.30 and 2.34k. The mod-
ulation characteristics for a hypothetical Crestatron without space charge

and loss have been computed. The following unmodulated parameters were

chosen,

C = 0.10
O

QCO = 0

d = 0
©)

b = 2.4
o

Under these operating conditions, a gain of 6.54 db was obtained with a
tube length of EnCONS = 1h4°, The variations of the modulation propea-
gation constants as functions of the beam average potential and current
modulation can be determined from the secular equation for the TWA, Eq.
2.16. Plots of the propagation constants are shown in Figs. 5.1 and 5.2.

It can'be seen from these curves that as the average beam voltage is
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reduced or as the current level is increased, the tube will go over to
normal TWA operation with growing-wave gain.

The variation of the wave amplitudes can be calculated from Eqg.
2.25. This is shown in Figs. 5.3 and 5.4. For the parameter values
chosen, the phase of the initial wave amplitudes is either O or 180° so
that Figs. 5.3 and 5.4 give a complete description of the wave amplitudes.

Finally the modulation device functions are plotted in Figs. 5.5
and 5.6. A linear amplitude-modulation is obtained over a moderate range
of both beam-potential and current modulations. The change in phase is
gregter during the beam-current modulation. It appears that the beam-
voltage modulated Crestatron might be useful as an amplitude-modulation
device with a linear amplitude variation (in db) and with little spurious
phase modulation. It must be emphasized however that only relatively low
modulation indices can be obtained since the Crestatron is a low gain

device.

5.2 Low-Frequency Beam Modulations of a Backward-Wave Oscillator

A detailed modulation study of the BWO would involve determining
the change in frequency and power level Qf the operating oscillator as
its average beam potential and current are varied. The characteristics
of the operating or umnmodulated BWO can only be determined from & nonlinear
analysis of the device since it is the nonlinearities that ultimately
determine the operation levels and frequency. Nonlinear analysis of the

® and by Rowe*®. Sedin

unmodulated BWO have been carried out by Sedin®
modified Nordsieck's?® TWA equations by changing the sign of the circuit

impedance, while Rowe* used the more general interaction equation and

* Some of Rowe's calculations with space charge present contain an error
due to a wrong sign in the space-charge term.
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PHASE MODULATION AS.IN DEGREES
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also changed the sign of the impedance. In each of these papers the
authors experienced considerable difficulty and expense in determining
operating points. The mgjor difficulty is that the boundary conditions
have to be found by a trial and error procedure. This involves integra-
ting the BWO eqgations for a series of trial boundary conditions. The
conditions that result in a zero line voltage somewhere along the tube
represent an operating point.

In a modulation study of the BWO, it is necessary to include in
addition to the variable average beam parameters a variable frequency as
a function of the average beam conditions. Allowing the freguency to
vary means that dispersion and impedance varistion effects must be account-
ed for; this implies that an r-f structure must be gspecified. After
selecting an r-f structure a set of quasi-stationary equations can ve
derived to describe the modulation characteristics. "The solution of
these equations would involve a difficult trial and error procedure which
involves not only guessing of the boundary conditions but would further
entall guessing the new frequency. In view of the difficulties that would
be encountered, it was decided not to attempt to solve the modulation
problem using the lagrangian approach. Due to the severe bunching effects
shown theoretically by Sedin®° and experimentally by Cewartowski®** it
was decided that a hydrodynamical model using nonlinear equations would
not be valid. The modulation study presented below will discuss only the

effect of modulation on the start-oscillation conditions.

5.2.1 The Effect of Modulation on the Start-Oscillation Conditions

At start oscillation, the BWO behaves as a linear device and therefore can
be investigated using the small-signal approach developed for the TWA but

with a change in the sign of the impedance terms. This method involves
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determining propagation constants, wave amplitudes and finally the
necessary conditions on tube length and velocity injection parameter b

to drive the line voltage to zero at some point along the circuit. This
is essentially the approach of Heffner*' and Johnson®*?. A more straight-
forward, but not as accurate method would be to program the differential
equations on an analog computer and determine the start-oscillation con-
ditions by a trial and error procedure. The advantage of using the analog
computer is that one can easily vary parameters by changing a potentiom-
eter setting. The latter method is the one to be used in the modulation
study. Grow*® has previously solved for the start-oscillation conditions
using an analog computer.

The model used for BWO study is shown in Fig. 5.7. The linearized
ballistic equations for the modulated BWO are the same as those given for
the linear TWA and are written below. As mentioned sbove, the frequency
is a function of the modulation conditions* and is no longer a constant

as with the TWA.

N
. A N2 av

nEq + J w(M)v + u, <l + V_%> e - 9 - (5.1)

0ol

1+ & \i/z /

T /2
ooy || @ <1 A do 4 se(M)p = 0. (5.2)

M dz o1 VOl dz

ET is the total field acting on an electron. The fundamental

space-charge field can be found using a technique similar to that used

for the large-signal TWA with the result

¥ (M) is defined as the operating frequency as a function of the applied
modulation.
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where R(M) Plasma Frequency Reduction factor

cold-circuit phase velocity of the interacting circuit mode.

VCl<M>

The circuit equation for the BWO, allowing for variable frequency

can be written as

d2Vc R (M) (M)
M

+ RNV +§ Sy — v
dz® o

= - o(Mz (0B (Mp - JR(Ma(M)p (5.1)

cold radian wave number of interacting circuit mode

=
ng
0]
=
®
w
O
=
1l

o]
I

series circuit resistance, see Fig. 5.7

N
1

characteristic circuit impedance of interacting mode.

At this point it is convenient to introduce several normalizing
factors and also to assume that the loss is constant with frequency.
This last assumption is questionable but in the BWO, the loss is usually
kept quite small so that neglecting variations of this factor which con-

tributes very little will not appreciably change the final result. Define

: < AV 1/2
_ 1+_>
1 \
ol

<1+£ 1/

Iol

uss
I

e
V)
1
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also BO(M)
C]_ - B__{(M=1)
o1l
ZO(M=1)
o = ZdZMS
M
(- “i;
PM) = RZ(M) g.
R%/M=1) =
y o= BeoCoZ (5.5)

When the factors of Eq. 5.5, and definitions of CO,QCO,bO and d -given
e

in Eq. 2.13 are introduced into Egs. 5.1 through 5.4, the following is

obtained,
dv do _ Jo _
€ & + &l iy * e = 0 . (5.6)
Lav, Y% B -y Wy X (5.7)
2 dy lgco@o 1+ b s 1 dy Co
dgv 14+C b ol
H(FE) () ve w2 o,
X 8o
= MC(lﬁfb) §§ o +J T P . (5.8)
3

The above equations are the normalized, equations representing the
modulated BWO. The solution of this set of equations on an analog com-

puter is discussed in Appendix E.
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The boundary conditions for the BWO are that the beam enters the

circuit region with no bunching,
v(0) = p(0) = 0 , (5.9)

and that the impedance seen looking into the circuit at the r-f output is

v(0)
Z, = - 1057

° (0) | (5.10)

In the linear analysis, the signal level at the r-f output is
arbitrary. For the arbitrary signal level, Egs. 5.9 and 5.10 are equi- .
valent to

1+ Db

av. .
&22y=o = - V(0) [JCZCB CZ o _ Edoizéa} (5.11)

As mentioned above, in order to solve the equations it is necessary
to specify a structure. The r-f circuit selected is the bifilar helix.
The important properties of the bifilar helix are given in the liter-

45, 46

ature and are shown in Fig. 5.8. The normalized frequency parame-

ters Ql, Cz, QS may be calculated using Fig. 5.8. The parameters ¢
1

and §2 can easily be determined in terms of the freduency parameter.

This is shown in Fig. 5.10. The frequency parameter is to be determined
by trial and error. An initial value may be estimated from the w-8
diagram for a particular unmodulétéd point. A typical ka' for an unmodu-
lated BWO is 0.3; using this ka', a series of initial guesses for the
frequency as a function of gl are shown in Fig. 5.9. The factor F is
shown in Fig. 5.11 for an annular beam. The data for the plasma fre-
quency reduction of a hollow beam was taken from a paper by Branch and

Mihran®.
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Using the above curves and the technique outlined in Appendix
E, the effect of a beam-voltage moduiation on the required normalized
start oscillation length and the normalized starting frequency of a
typical BWO was determined. The results are shown in Figs. 5.12, 5.13,
5.14 and 5.15. The final frequencies are compared with the initial es-
timates on Figs. 5.12 and 5.14, It can be seen that the initial values
are quite accurate at low modulation amplitudes, but are in error as
AV/VOl increases.

This particular method of calculating the start-oscillation con-
ditions is recommended when the.variation of starting frequency and re-
quired lengths is desired once an unmodulated operating point has been
chosen. This method has the advantage of using only one set of parameter

values.

5.2.2 Modulation of the BWO with Currents Higher than Start-

Oscillation Current. As the current or the tube length is increased

beyond the start-oscillation conditions, nonlinearities rapidly set in

to 1limit the power output for a specific d-c beam input. As mentioned
above, the Eulerian model must be abandoned in a nonlinear description of
the BWO because of the severe bunching that takes place. The ILagrangian
equat ions for the BWO can be derived in a manner similar to the derivation

of the nonlinear TWA equations.
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CHAPTER VI. HIGH-FREQUENCY BEAM MODULATIONS

6.1 Introduction

The preceding chapters dealt with beam modulations. at frequencies
much lower than the r-f signal carried by the beam. Beam modulations at
a rate comparable to the r-f will now be considered. This implies drop-
ping the low-frequency restrictions listed in Section 2.1. Therefore
time dependence of the modulations will have to be taken into account in
the equations of motion. Another distinction  that will be made is to
permit the sideband signals to propagate at different velocities and see
different impedances than the carrier.

For most applications of high-frequency modulations, the nonline-
arities of the beam are used to generate sidebands. This principle is
used in the traveling-wave tube mixer, frequency multiplier and divider,
and the longitudinal-beam parametric amplifier. In all of these cases,
two r—fbsignals are applied to the beam.

There is another type of high-frequency beam modulation in which
only one frequency is used. This is called the single-frequency modula-
tion and arises when a bunched beam enters an interaction region where
the signal on thé circuit is at the same frequency as the one producing
the bunching. Obviously this is the noise or prebunched beam problem.
Pierce® has analyzed the propagation of noise waves in a TWA where the
noise signal is assumed to originate near the cathode at the carrier fre-
quency. This noise bunches the beam and induces currents in the circuit
which then grow as the beam travels through the interaction region. The
prebunched signal may be coherent as in the case of the severed helix,
or the helix output circuit on a klystron. Another example of coherent

prebunching is the introduction of a prebunched beam into the circuit

-148-
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region to produce higher efficiency or gain. This phenomenon is present
under study by J. E. Rowe and J. G. Meeker of this laboratory.

When treating the small-signal tube, one uses the same propagation
constants as found for the unmodulated tube. The initial wave amplitudes
are different and are calculated by inverting the matrix shown in Appen-
dix B.

Similarly, prebunching in a large-signal tube can be treated by
using the same working equations as found for the unmodulated tube®, but
changing the initial conditions to conform to the prebunching. The ini-
tial phase Pos and initial velocity uoi(O) are calculated from a know-
ledge of the beam prebunching. The initial derivatives, (de/dy)o and
(dA/dy)O can be found directly from the small-signal equations or by
using the working equations. When using the working equations to find
the intial conditions, one must realize that the integrals encountered
which describe the Fourier series components of charge density, do not
vanish as they did before. It is now necessary to integrate over a cycle
of r-f at the input to evaluate the charge density.

The subject matter of interest in this chapter is the interaction
of two signals of different frequencies when both are simultaneocusly
applied to a beam. The beam nonlinearities are introduced through the
nonlinear Fulerian equations describing the hydrodynamical model of the
beam. This method is certainly open to question since in general cross-
ings of electron trajectories are apt to occur. Unfortunately the dif-
ficulties that would be encountered using a particle approach for this

problem result in unwieldy equations so that for the purpose of the

*  The unmodulated equations are found by setting AV = AT = O in Section

2.4,
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high-frequency beam modulation, the stream is treated as a fluid, al-
though nonlinearities are preserved.

In this chapter, the general form of the two-frequency beam modu-
lated case will be studied. The specific solution for the longitudinal-

beam parametric amplifier will be obtained from the general equations.

6.2 General Formulation of the Two-Frequency Problem

Consider a beam confined to axial flow within an enclosure. The
enclosure may be a circuit capable of supporting a slow electromagnetic
wave, or may be merely a drift tube which only reduces the plasma fre-
guency. Assume that the beam has been modulated simultaneously by two
different radio frequencies, and that at some point within the enclosure
the modulation 1s strong enough to produce nonlinearities. In the pres-
ence of these nonlinearities, the signals of different frequencies no
longer act orthogonally as they would if applied to a linear system. The
signals will therefore interact and produce a large number of sidebands.

If the applied frequencies are w; and W-, the intermodulation or

sideband fredquencies will appear as spectral lines at the frequencies
mlim2 2

where n and m may take on any integral value.

The electro-kinetiec variables may be ekpanded in a double Fourier
seriés of the applied frequencies: This expansion is similar to the one
given in Chapter IV for the output wave of a TWA undergoing a low-fre-
quency beam modulation. There is however a marked difference in that
the low-frequency case sidebands behave in the same manner as the carrier,
whereas each sideband in the high frequency modulations can react very

differently in the interaction process. The expansions of the variables
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are shown below.

[ee] (9]

Charge density, p(z,t) = ;i }: (z) exp j(nwi+mws)t

Nn=~c M==-0

(o]

Total beam velocity, v(z,t) = }; }: Vnm(z) exp j(nwl+mw2)t
N==c0 M==
Electric field intensity, E(z,t) = Z z Enm(z) exp J(nw,+mws)t

N==00 M==00

Convection current, i(z,t) }z }: (z) exp J(nwi+mos)t. (6.1)

N==00 M==~00

The Eulerian formulation will be used to describe the nonlinear
interaction as mentioned in Section 6.1. The ballistic equations have
been presented previously but are repeated again for reference. For a

one-dimensional beam

ov ov
StV < T nE (6.2)
di = Jp
°r . 9% _ o 6.
oz ’ ot ’ (6-3)
i = pv . (6.4)

The total electric field E, is composed of the superposition of
the space-charge ESC and an electromagnetic field EC. The space-charge
field is determined from Poisson's equation. TIn calculating the space-

charge field, the geometry shall be.considered as in previous chapters
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by introducing the plasma-frequency reduction factor.

Poisson's equation is

where 0 is the beam cross-sectional area.

The electromagnetic field is found from the forced Telegrapher's

equation
2 2
o _iaVC+Z_05_2_Q=o (6.6)
dz2 v2  Jt2 v ot2
c C
where
E = - W 5
c c

v, is the circuit velocity, and ZO the impedance. The relations between
the Fourier coefficient of Egs. 6.1 can be found by substituting the
above expansions into Egs. 6.2 through 6.6.

It must be pointed out that there are degenerate frequencies pos-
sible. There can be many combinations of n and m such that nw,; + mws
are equal to a specific frequency. In thié case, either a total vari-
able can be defined to cover all those cases or the individual compo-
nents can be found and added vectorially to obtain the resultant. A
very important degenerate case, the parametric amplifier, is considered
later on.

From the continuity Eg. 6.3,

di
DL (my 4 mo - (6.7)
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The nmth component of Poisson's equation in one dimension reads

A rm Rrglmpnm
dz T~ Toe ’ (6.8)
0

where an is the plasma-frequency reduction factor at a frequency nbq
+ mds. There exists no d-c field within a neutralized one-dimensional

beam, therefore the space-charge field can be expressed by

Sk RZ ai
snm ., nm 1 nm (6.9)
dz = €0 mojtmde  dz ) ’

Note that in Eq. 6.9 the denominator mw; + mwpe never goes to zero since
E is an a-c quantity. Equation 6.9 can be integrated to obtain the

space-charge field

Rim inm(z)
E _(z) = 3 . (6.10)
snm Oeo nw 7 +Hmde

The convection current as defined by Eq. 6.4 is the product of two in-
finite series. By virtue of the extension of the Cauchy product as

shown in Appendix D, the Fourier series amplitudes of the current are

o0
g © }2 Prs Vnor,m-s (6.11)

The summation can be separated into three terms as shown below.

n

(6.12)

[ve]

1

i = o) v +p Vv + o) v

nm rs n-r,m-s O nm ors n-r,m-s
Iryg==00 r,s

The first summation (Z') is over all terms where 1w, + swz does not van-

ish, the second term is for r,s equal to zero simultaneously and the
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third summation (") is for all other terms where rw; + sty vanishes.
The vanishing of the frequency rw{ + s indicates a d-c term in the
charge. Using the continuity relation, Eq. 6.7, permits Eq. 6.12 to be

stated as

2y : di "
. . n-r,m-s rs
‘om T }z U7 +SWso 3z " Vo * }: Pors Vn-r,m-s - (6.13)
r,s=-c
The expression for the space-charge field can be substituted into

the force equation to obtain the following relation for the nmth fre-

quency;

o]

R2 i av

v
j(IIDl+IIﬂ)2)V + Z v n-r,m-s = -3 nm nm + cnm
nm rs dz GOG( ml+nm2 ) az
r,s=-0
(6.14)

The above form of the force equation applies only for non d-c

terms. The nmth component of the circuit equation can be written as

dzvcnm (o +mm2)2 Zonm dinm
l - | = . .
ot Voo = 9 7 (Tn 1 +mows) T 0 (6.15)
cnm cnm

Equations 6.13, 6.14 and 6.15, when used with the boundary condi-
tions, describe the mixing interaction. Unfortunately this set of equa-
tions repfesents an infinite number of simultaneous nonlinear differen-
tial equations. To facilitate the solution of these equations and also
because of the very nature of mixing devices, it will be assumed that
one of the signals has a very large amplitude while the other is quite
small. The large signal is the local oscillator or pump signal and has
radian frequency w;. The smaller amplitude signal mixes with the pump

to produce sidebands, however the only sidebands to be considered will
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be those occurring at w; * ws. The sidebands around the second harmonic
of the pump 2w; * wo may certainly be significant, however they will not
be considered.

The nonlinearities shall be removed from the equations for the
signal and sideband propagation by assuming that the pump or local oscil-
lator signal propagates in the same known manner as it would if no signal
were impressed at ws. This assumption, (called the r-f linearization),
is equivalent to the linearization used in the usual small-signal TWA or
space-charge wave theory where it is assumed that the average velocity
of the beam is invariant with distance. Once again just as in the small-
signal TWA the transfer of energy is neglected.

Introduce the further assumption, (d-c 1inearization), that even
though the pump signal is large, the r-f velocity disturbance at the
pump frequency will be much less than the d-c beam velocity. Use of the
r-f and d-c linearization permits the equations for the pump of'(n=l,m=0)

frequency to be written in the form shown below.

= 32 1 + Vv
10 - 9 w, dz 1%0
av RZ av
‘0 v U 0 in 10 £ c10
J 10 o dz o€ W 10 dz
2VClO Cc1l0 ZOlO dl1O
2 . _
P = J = ® == = 0 . (6.16)
c10 c10

Equations 6.16 are easily recognized; for positive Zolo they rep-
resent a TWA, for negative ZOlo a BWO or BWA* and finally, for vanishing

ZOlO (implies VClo also vanishes), they represent the space-charge wave

*  Backward-wave amplifier.
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equations. When the solutions of Egs. 6.16 are substituted into Egs.

6.13, 6.14 and 6.15, a set of linear differential equations with vari-
able coefficients will be obtained.
These equations are listed below for the nondegenerate frequency

case. Note that in the equations, because of the "realness" of the vari-

ables
f = f*
-n-m nm
Upper sideband (n=1,m=1)
di v di u di
i - o1 10 10 o1 _© il Lo o (6.17a)
11 w dz o) az w_+n. 4z 11”0 ’ e
, 1 2 12
d dvll Ril .11 Vc11
o v+ —(v. v ) +u = - Jn n ’
2 ol d d
1 1 Z 10 O1 c dz eog(wlﬁbz) Z
(6.17p)
and
2Vc11 (w1+d2)2 o11 d111
v -3 (o, +w.) = 0 . (6.17¢)
=) > 2]
dz Veia ¢l ci1 T dz
Lower sideband (n=1,m=-1)
ai* u di v¥odai
i = <#1o or , 2 =1, 2 ld> +V. P, (6.18a)
1-1 -, dz a)l-a)z dz a)l dz 1-1"0
d dvl 1 i 1 il 1 dVc1 1
. o * : - _ 3 - - -
I 1 Qvi-l T Iz <Voivlo) Y Taz - J1 eoo(ml_wz) AERL-T ’
(6.18Db)
and
2Vc1 (w —w2)2 011 ai
2'1 + ; v, -y =222 (- ) ==L = 0 . (6.18¢c)
dz Vei-1 i-1 c1-1 + 2 4z
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Signal Frequency (n=0,m=1)

v.. ai v* di v ai* u_ di v¥ oai
5 - 4|l 10 1.3 10 10 i-1, 0 01, 10 11
o1 J'-wl dz w, ~ dz W, -, dz w, dz W+ dz 01°0’
(6.19a)
v RZ 1 av
- N da_ (v * v ) u °r _ _ 3n o1 o1 | 0 co1
I Vo1 Taz V11 10 1-1 10 o dz €, 0w, dz 7’
P=4
(6.19p)
dzvc01 w: Z001 d101
dz® 2 Veor TIT %@ <0 - (6.19c¢)
col col

The simultaneous solution of Egs. 6.17, 6.18 and 6.19 subject to
the sufficient boundary conditions constitutes a solution to the problem.
Even though the problem has been greatly simplified, its solution still
represents an arduous task. A further simplification can be introduced
by assuming that the coupling of the pump and signal to the sidebands is
relatively weak; therefore, the signal frequency remains unperturbed and
its propagation may be described by a set of equations similar to Egs.
6.16 with all (n=1,m=0) terms changed to (n=0,m=1) and », terms changed
to w0,

The unperturbed signal frequency variables can then be substituted
into Egs. 6.17 and 6.18 to calculate the weak sideband signals.
DeGrasse's™™ work on the traveling-wave tube mixer contains expressions
similar to the simplified set of sideband equations mentioned above.
DeGrasse makes the further approximation of neglecting the (n=1,m=1)
term in Eq. 6.17.

| Once having derived the general upper and lower sideband equations
and the signal frequency equation, one can introduce many configurations
of circuits for different applications. Then by judicious approxima-

tions, the equations can be simplified to a usable form.
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A special case will now be studied, that of the longitudinal-

beam parametric amplifier.

6.3 Longitudinal-Beam Parametric Amplifier

This particular device has promise of being a high-gain low-noise
amplifier. It was first introduced by Louisell and Quate16 and later

discussed by Haus2".

The unique feature of this amplifier is that it
does not require a circuit in the interaction region and operates on
fast-wave coupled modes. As with most parametric amplifiers, it can best
be analyzed by considering the pump at twice the signal frequency, al-
though in actual operation an improvement is obtained by working at some
other frequency. A mathematical description is given first, and then a

physical picture of the coupling and noise properties follows.

6.3.1 Mathematical Description.

6.3.1.1 Characteristic Equation. Since the pump frequency is

twice the signal frequency, the lower sideband (n=1,m=-1) and the signal
(n=0,m=1) are at the same frequency; this is then a degenerate case as
was previously mentioned. Other degeneracies occur for the second har-
monic of the signal corresponding to the fundamental of the pump and
also for the third harmonic of the signal corresponding to the upper
sideband. With these degeneracies in mind, the schedule of possible
combinations of frequency terms arising in Egs. 6.17 to 6.19 must be
revised. The components at the signal and lower sideband can be com-
bined into one term at the signal frequency denoted merely by w. The
terms are combined by adding the revised equations. The circuit volt-
age Vc is set equal to zero in view of the fact that the enclosure is

a drift tube.
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Now introduce the following parameters,

w, = QGE = 20w ,

=P

2w 5 o o= = R ,
o€ ) q go1i oL p
RlO 10 q10
— = = = !
" o 2a' ,

o1 1-1 go1i
Rll wal
—_— = = 1
= S 3b' . (6.20)

o1 go1

The upper and lower sideband equations now assume the form

Vi1 diﬁo Vi dilo V10 dii u, 4, vio di,,
1T J[-ew &z "2wm dz  ® dz @ dz | 3o dz ]+Vloo:(6-2la)
a av, wail
; e * 1
VT Tz (V11V§0 * Vivlo) t Yz J BeIo (6.210)
and
Yy di10 Vio 41 YU dill
T11 J[EE iz "o az T3 _EE_] + V1.0, (6.222a)
d. dvll 3(1)3
} — —_— = - .- 122 '
3dv . + 3> (v,ov,) + ug = = 3 51 RS (6.220)
The pump equations, Eqs. 6.16, are given as
uo di
100 T 95w Azt VP (6.23a)
dle 2,03&’2
WVio "% a2 T "9 BT tio (6.23p)
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which are recognizable as the space-charge wave equations. As is well
known, the solution of Egs. 6.23 is composed of both a fast and a slow
wave. Assume that only one wave is excited, either the fast or the slow
but not both simultaneously. Methods of exciting a single space-charge
wave are discussed in Appendix H. When the amplitude of the current per-
turbation at the pump signal i1s expressed as mIQ, where m is a depth-of-

modulation factor, the solution to Egs. 6.23 is given as

m - a'wq
1o = - IO + 5 IO exp[—236e<} - a>‘> z}
a'wq n : aﬂmq
Ve = U ot Tp— 3 Y exp[-2JBe<i - — > z} . (6.24)

Following Louisell and Quate's notation, for a slow wave, a' is
negative, while for the fast wave it is positive.

The signal and upper sideband currents can be eliminated by com-
bining the two equations in both Egs. 6.22 and 6.23. The resultant sec-

ond-order equations for velocity are:

a %
Zvl V1o dZvl 1 a2 % %
== + = + — —= (v v o)
dz UO dz uo dz 11 10 1 10
v 2 V* 2
T L SR PRI ) QU S i S Sy G
u, U, dz 11 10 1 10 u, ug Ob'2 gg2 10 1
¥ ¥ A
N Vio 1 dzvll 03B dvl 10 B dv . VlO Eg 1 dvll
U, 9b'2 g2 Pe Tz J 3 e dz J Uy 3 b2 dz

ll 10 1 1
(o]
(_DE Vll dlio
+J I 2ow dz 0 (6.25)



-161-

and
d2V11 V1o dzvl V10 a2
—_— ok 12 e 12 * ¥
azz Uy o azz ' u% b dz2 (Vllvlo + Vlvlo)
av v dv
1 a2 . 11, 10 2 1
* ug dz2 (Vlovl) + 6JBe az *+ 4 u Be9b dz
ﬁ v 12 (1)2 di
. _Eg._ _ 2 L2112 L3 __l_ 9b _aq 10
TN T @ (vldvl) 9[5e 6ib YuTd T T T @z 0(6.26)
o o 0
®

where B = ﬁg .

4 o
Assume the following forms of solutions,

. a'wq
v, = ul(z) exp[-JBe (i - ~> z}
a'wq
= -3 1 - . 6.2
v = e e 3, (3 - —52) ] (6.27)

Substitute Egs. 6.27 and 6.24 into Egs. 6.25 and 6.26, further-

more assume that the beam is not very dense, therefore

a'w
1 « 1 .
(V)

After considerable work the following simplified equations are obtained;

d2u du 2 2
1 1 |m| a'® ]ml
+2jp a' — - p2 |a'? l+———>—l+—-———-————u
dz2 JBq dz q[ ( L p'2 L 1

du_.
-{3231}(l+2a'2)u*+36a'@—6- 14+ == 21
q2 1 ¢ B 3572 | Tdz

m* ' . 1 . m?
'62'2_[14’32{1+'572}}“11'azsiﬂ_uil = 0 . (6.28)
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and.

d2ull du_, |m|2
s ! - 2 [ 52 12 - 12
ot 6JBqa T 9Bq [a <# + b —E—;> b } u

du _
+ﬁf'¥[l+%ﬂ—i-9§%[$2u+be)+Vﬂul

dz q

- 9a'2b'25§ Eﬁ uﬁ = 0 . (6.29)
The same equations have been derived in Appendix G using an extension of
the method of Louisell and Quatel®.

Equations 6.28 and 6.29 and the complex conjugates of these equa-
tions completely describe the system. The equations are a set of four
linear homogeneous differential equations with constant coefficients.

28

The solutions=® will therefore be exponentials. An operator

may be introduced. When this is done the equations assume the algebraic

form
o (u, + v (puf + ¢ (W, + & (Wl = 0
V() + ¥ (phuX + (X, + G(u)ut, = 0
P (), + vl + t(wu,, + e (puwt, = 0
vi(whu, + of(w)ut + eh(p)u  + CE(p)wt = 0O (6.30)

where @l...g* are operators. The condition that this homogeneous set
have a nontrivial solution is that the determinant of the coefficients

vanish.
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¢, (w) v, (k) ¢, (w) g (1)

() % (1) ex( 1) gx( 1)

= O
o (1) UAQTH 6(n) e (k)
() px(n) ex(1) ex(u) (6.31)

The expansion of this determinant is the characteristic equation
of the beam-type parametric amplifier. The roots of the equation will
be the propagation constants, For the parametric amplifier there will
be eight waves.

The characteristic equation may be determined in another fashion
by using the real and imaginary parts of the velocities. Once again
four equations result. The system in terms of the real and imaginary

components of the velocity is given as:

Pl ) Yo 1) ta(h) Eo(n). LIS
ATy ¥ () Eal1) £,(1) u
. = 0
o5 1) V() ts(1t) & (1) CI
Pl ) Vgl ) 6s(1) eg(1) Wy (6.32)
where
U= ue +Juy
u = u + Ju .

11 11R 11i
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The characteristic equation determined by setting the determinant of the
coefficients equal to zero is identical with that found using Eq. 6.31.

The complete characteristic equation is given in Appendix F. It
is pointed out in this appendix that the quantities a' and b' appear in
even powers therefore, the same characteristic equation holds for fast-
and slow-wave pump signals. For the case of a small radius beam,

a' = b' = 1 the characteristic equation of Appendix F reduces to

e+ u6<FO + g ]m]2> + u4<lhh + igi m|2 + %% lm|4>

v 2 |405 [nf2 + B [al* - &L [afe]

6561 |ml4 _ 2187 Imls + 81 ‘m‘S

=z 2L 256 = 0 . (6.33)

-+

For small depth of modulation levels m << 1 and the roots of Eq. 6.33

can be approximated as

By = 2]

Ho = = 2]

by = 6]

by = - 6]

ws = (0.375 + § 1.24) |m]
g = (- 0.375 - j 1.24) |n

w, = (0.375 - 3§ 1.24) |m|

g = (-0.375 + § 1.24) |m| .
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6.3.1.2 Boundary Conditions. In the preceding section it was

shown that eight waves propagate in this model of the longitudinal-beam
parametric amplifier. The amplitudes of these waves will now be deter-
mined. Two sets of four simultaneous differential equations giving the
same characteristic equation were presented in Section 6.3.1.1. The
second set, given in Eq. 6.32, will be used to find the wave amplitudes.
The real and imaginary velocity components may be stated in terms of

their wave amplitudes and propagation constants as

1R . exp Bquiz 2

=
n
Do
m .
'_I

H
[
=

c
N
oo
=
I.—I

. €XPp Bquiz 2

1i

i=1
8

Y1ar T }; Ty XP Bq_“iz' ?
i=1
8

u oy = }; T, eXp Bquiz . (6.34)
i=1

Obviously there are 32 constants to determine, however, not all
of these constants are independent. Forsyth®® points out that the num-
ber of independent constants in such a system of linear equations is
equal to>the highest power of j occurring in the characteristic or secu-
lar equation. For the parametric amplifier there are only eight inde~
pendent constants. These independent constants are determined from the
boundary conditions, that is the value of the real and imaginary velocity

components and the distance derivatives of velocity at the start of the

tube. This leaves twenty-four relations to determine the remaining



-166-

constants.
Substitute the solutions represented by Egs. 6.34 into the system

given in Eq. 6.32. The result for the first equation of Eq. 6.32 is
le,@a(Byy) + myVg(Bypy) + 7, 65(Bmy) + w8 (B k) Jexp B b,z

+[€2@3(qu2) + nzws(ﬁqug) + TZCS(Bqug) + ﬂzés(ﬁqyz)]exp ByHa?

+leaPa(Bhe) + Mgla(Bg) + Tola(Brg) + g8 (B Hs) lexp B gz
= 0

This expression must be valid for any value of z, therefore, each
coefficient must independently vanish. This can be repeated for any two
of the three remaining equations of Eq. 6.31 with similar results. The
relations of the amplitudes Nis Ty and u to the €, are expressed in the

following matrix equation.

- oaBper]  [valBgp)  talBp)  glege)| [y
- ¢4(Bq91)ei = ¢4(Bqui) 24(Bqui) 24(6qui) T
- Qs(Bqu)ei Ws(qui) CS(Bqui) &5(qui) n; |, (6.35)

which is found by using the first three equations of Eq. 6.32. Equation
6.35 applies to all values of the index i running from 1 through 8. In-
verting Eq. 6.35 for each value of the index gives the required twenty-
four relations. The expanded matrix elements are shown in Appendix D.
The eight known boundary conditions are found from the real and

imaginary velocity and current components of the sideband frequencies
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evaluated at the input. Assuming that an input is applied only at the

signal frequency®, the inputs are

Lin
il(O) = iy
vl%(O) = 0
ill(O) = 0 . (6.36a)

The eight conditions are found by separating the velocity and

current into real and imaginary parts to obtain

v,g(0) = ViR
v,;(0) = Vignl
ilR(O) = ilinR
lli(o) - lliﬁi
vop(0) = v, (0) = i (0) = i .(0) = 0. (6.36b)

The velocities can be used directly in the problem, however, the currents
must be used in calculating the velocity derivatives at the input. This
is necessary since the equations describing the propagation are in terms
of the velocity.

Both the input signal and pump waves propagate as space-charge

waves before interaction takes place. Recall that for this analysis

* A pump signal is of course also applied and its propagation is as-

sumed to be known as is indicated in Eq. 6.38.
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these space-charge waves will be either slow or fast but both will not
simultaneously be present. In a "single" space-charge wave the current

and velocity amplitudes are related through

I
i = (-1)8%& °
1(0) = (-1)%% 2v.(0) (6.37)
qg o
where s = +1 for fast wave,
s = +2 for slow wave.

The pump velocity and current amplitudes were previously introduced as

ml,
100 = &5
and
a'wq n
le(O) = - — 5 ug (6.38)

where a' > O for fast waves
a' < O for slow waves,
and m = [m’ exp jo.
Evaluate Egs. 6.21b and 6.22b at the input using the conditions given in

Egs 6.36 through Eq. 6.38. Therefore

Y 2% m RN PP Vg,
dz w 2 \dz w 2 dz
o) : o . o)

a'w
= -3 (Be + (-1)Saq> vy, 2B -;‘5( - = q>v* . (6.39)

lin

v a'w av a'w
11 ___am/7'y - _ o4 y _ q
<édz > w 2 <§z > gJﬁq? 2 < w > Vlin : (6.40)
o o
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The above equations can be simplified by introducing the form for the
velocity given in Eq. 6.27 and also the approximation that a’wqﬁb < 1;

this is then separated into real and imaginary parts to obtain:

ulR> = B (a'+-1)%) +Ba' lﬂi [v in 6 cos 6]
az /o = "4 Vint T P 7B 4R 5% Viipt

duli) |m|

= - (a'+(-1)°) v -Ba' — [v cos 8 +v. ., sin 0]

<'dz o q 114k a 2 1inR 101

u

11R - . Im] .

<édz jL = 3Bq§ 5 [vlinR sin 6 + vlini cos 6]
<éulli> = 3B a' Im] [v sin 6 - v cos 0] (6.41)

dz. o q 2 it linR

The initial values of the derivatives can be matched to the deriv-

atives of Eq. 6.34 evaluated at z = 0.

8
du; g
<dz >o = By Z Hi€y

i=1
8
du, 3
dz = By Hify
© i=1
8
du; 1R - B
&z ), T Fa HiTy
i=1
8
Au, 44
© 1=1

while the initial velocity values are
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c
‘_I
'_l
~~
(@]
p—
1}
<
'_.I
I_I
]
3
l,__l

I

O

]
Dinle

0

ullR(O)
i=]
:

0 (0) = 0 = ) m (6.13)
i=1

The n, 7, and n coefficients were expressed in terms of the €
coefficients in Eq. 6.35, therefore Eqs. 6.42 and 6.43 represent a set
of eight linear equations with eight €, as the unknowns. When the fol-

lowing normalizations are made,

My = M4&
.= T
1 11
o= A (6.44)

the matrix equation describing the 8 x 8 system can be expressed as



-171-

mw I.mimw.....mimﬁ
Ly win.....N,lN..r .
95 wiwm.....miwm T,
Ss S vren. Ty Ty
3 8y «vv.. © ._”m.h.
e T h
By c-een 2y )
| T " T .

TUT¢

[o-ups = "4+ 6 500

TUTt

UTT
A - g uTS .
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The wave amplitudes are then expressed by inverting Eq. 6.44. As men-
tioned above, the expanded matrix equations for evaluating nl...ﬁa are
shown in Appendix I.

6.3.1.3 Numerical Results for the Longitudinal-Beam Parametric

Amplifier. The eight roots of the polynomial obtained by expanding Egs.
6.31 are the propagation constants for the longitudinal-beam amplifier.
In order to evaluate the propagation constants, it is necessary to spec-
ify the geometry (ratio of beam to drift tube radius) and the pump ampli-
tude m. The plasma-frequency reduction factor for a very thin beam is a
linear function of frequency so that the constants a' and b' are unity.
An approximate form of the propagation constants as a function of pump
amplitude was given in Section 6.3.1.1 for the special case of
a' =Db' = 1.0. More accurate values of the roots were obtained by using
an IBM 7O4 computer. The propagation constants as a function of pump
amplitude for a' = b' = 1.0 are shown in Figs. 6.1 and 6.2. It can be
seen that the approximate values obtained in Section 6.3.1.1 are fairly
accurate.

The propagation constants for a thicker beam are shown in Figs.
6.3 and 6.4. The beam used for this case has a radius that is one half
of the drift tube radius. The "radian wave number" of the beam at the
signal frequency (defined as B, = w/uo) times the beam radius is assumed

to be 0.5. Under these conditions the parameters a' and b' are given as

a!

1

0.697

'bl

0.573

It can be seen from Fig. 6.4 that when a thicker beam is used,
there will be a thrieshold value of pumping amplitude. For pumping sig-

nals with amplitudes below the threshold value there will be no
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exponential growth since the roots are purely imaginary. The results
presented and discussed thus far are independent of the sign of a' and
the phase of the pump signal so that the results apply equally well to
fast- or slow-wave excitations. Boundary conditions and the sign of a'
will be considered while evaluating the amplitude of each of the eight
waves.

The wave amplitudes are determined by inverting Eq. 6.45, which
involves the inversion of the eight 3 x 3 systems given in Eqgs. 6.35 and
I.2. This indeed becomes a cumbersome problem. Because of this it was
decided to find the wave amplitudes for a limited number of cases. The

cases chosen were

a' = b' = 1 (fast-wave excitation)
m| = 0.10
7t
@ = phase of m = * 5

vl(O) 1.0

1}

The wave amplitudes for the above two cases are shown in Tables
6.1 and 6.2. In each case only two of the eight possible waves are
appreciably excited. For the pump phase of - n/2 radians, only the
declining waves are excited. The two declining waves have complex con-
Jugate amplitudes and propagation constants and can therefore be com-

bined to give

o
v, o~ 1.0511 cos[O.lQthg-+l7.8M°] exp[—0.0375qu] exp[—jﬁez<;f-ag>} .

11

- w
v = -1.822 sin[O.lEthz] exp[—0.0375BqZ] exp[-j3Bez<}u-ai>} . (6.46)
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Similarly the growing fast waves can be excited with a pump phase

of + ﬂ/2 radians. The velocity waves in this case are
~ 4
- <) - - .
v, =~ 1.0511 cos[O.lEll-qu 17.84°] exp 0.0375qu exp[ JBeZ<l ﬂ

w
v, 1.822 sin O.lQth? exp 0.03755qz exp{—3jBez<i—-5i>} . (6.47)

Obviously the pump phase is a critical factor in obtaining ampli-
fication from this device, also the length must be properly chosen. The
growth of the signal velocity wave at the first crest of the interfer-
ence pattern (O.lEMBq; - 0.311 = n) is equivalent to a gain of 9.4 db.

At this length the "gain" of the velocity of the upper sideband, that is
the velocity of the upper sideband wave compared to the signal velocity-
at the input, is equivalent to 4.04 db. The tube length can be adjusted
s0 that the output end is at a crest of the upper sideband velocity
envelope. This would occur at O.lEthz = n/2 and the upper sidéband

gain would be 9.64 db while the signal gain would be - 5.5 db. The wave
at the upper sideband is strongly excited and its effect on the growth
constant will be discussed below. The above results will now be compared
to results previously obtained by Louisell and Quatel®.

In their initial work on the longitudinal-beam parametric ampli-
fier, Louisell and Quate’® considered coupling to exist only between the
signal and lower sideband frequencies. As a result of this, the growth
factor obtained was approximately O.75|m| for the case of a' = 1.0. This
factor is twice that given above so that it can be concluded that the
effect of including the upper sideband is to reduce the gain factor by
one half. The results obtained by Louisell and Quatel® for thicker beams

indicated a threshold as mentioned above, but it was found at a lower



-181-

pump amplitude than that found by the method used in this report. The
effect‘of the pump phase on the type of wave (growing or declining) was
in agreement with the results given above.

Work by Ashkin®% et al. on a longitudinal-beam parametric ampli-
fier indicates great discrepancies between the theoretical work of
Louisell and Quate'® and the results obtained experimentally by Ashkin®#4.
The signal gain for the experimental tube was found to be 13 db per
plasma wavelength while the theoretical value was 40 db per wavelength.
Ashkin attributed part of the error to the fact that the signal and pump
velocities were not the same. The theoretical gain obtained using the
upper sideband in addition to the lower sideband would be approximately
20 db. While this result is still in error it is certainly much closer
to the experimental value. Therefore it can be concluded that it is
essential to include at least the upper and lower sidebands in a theo-
retical analysis of the parametric-beam amplifier. The inclusion of
more sidebands and those around the various pump harmonics would yield
a still more accurate answer, however the amount of computational work

would greatly increase.

6.3.2 A Description of the Mechanics of Parametric Amplification

in a Ipngitudinal-Beam. Before proceding with a discussion of the energy

exchange which produces amplification in the parametric longitudinal-beam
amplifier, a brief review of the principles of power flow in longitudinal
beams will be given.

L. J. Chu®® introduced the kinetic poWer theorem in 1951. This
theorem was later presented in published form by several authors®9,3°,

The kinetic  power théorem gives a picture of the energy exchange in a

small-signal or linearly operating longitudinal beam device. Energy and
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power are calculated using squares and cross products of the small-
signal terms so that at first thought one might imagine that it is not
possible to describe a linearized device in terms of energy considera-
tions. Forfunately, Chu®® resolved this problem and provided the key
for the solution of many difficult and perplexing problems, among them
some basic questions on noise in beam devices.

The theorem in mathematical form 1530

%fEMmWM+%M]WA=O,

where E and H are the electromagnetic field variables and Sk(r) is a
quantity called the complex power flow; A is the area enclosing volume T.

The complex power flow is defined as
s (r) = v(r)d*(r) ,

where J(r) is the small-signal current density and V(r) is the kinetic

voltage modulation defined as
m
V( I‘) = g 'lJ.OV »

‘where v 1s the small-signal velocity.

In words the theorem states that the sum of electromagnetic power
delivered by the beam in volume T and the net real kinetic-power flow
through the volume must be zero. This statement of energy conservation
is correct within second order of the small-signal amplitudes. Both the
small-signal velocity and current density are used.

In a fast space-charge wave the r-f current and velocity are 180°
out of phase, while they are in phase for the slow wave. Since the con-

vention of opposite current and electron flow is assumed, the fast wave
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will have minimum velocity where electron buﬁches are rarefied, while

the maximum velocity occurs at dense bunches. Therefore, this fast-wave
beam will have a greater energy than the beam without a fast wave. The
fast wave is concluded to carry positive energy. By similar reasoning
the slow wave carries negative energy, which means that the beam has

less energy in the presence of the slow wave than it had without the

slow wave. This permits the definition of a positive kinetic voltage for
the fast wave and a negative one for the slow wave.

In order to satisfy Chu's theorem, it can be seen that electro-
magnetic energy has to be supplied to set up the fast wave whereas it
must be removed to set up the slow wave. In a klystron input resonator,
where to a first-order theory the fast and slow waves are equally excited
no net energy is required to excite the beam. This is consistent with
the linearization.

The conventional longitudinal beam device works on the slow wave
since from Chu's theorem it can be seen that to increase the electromag-
netic energy it is necessary to decrease the kinetic-power flow. The
decrease of the kinetic-power flow corresponds to the energy of the slow
space-charge wave becoming more negative. This implies an increasing
slow space-charge wave and an increase of electromagnetic energy. The
increased energy in the electromagnetic field comes from a decrease of
the d-c energy of the beam. It is apparent that the fast wave cannot be
used to amplify a circuit wave since it can only decrease the electro-
maghetic energy.

2 ysed the theorem to demonstrate that a lower

Haus and Robinson®
limit exists on the noise in the beam of a conventional beam amplifier.

The limit is dependent upon the conditions at the potential minimum.
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A simple explanation for this limit is that the slow-wave noise energy
is negative. In order to cancel the noise one would have to add noise
energy in the correct phase and‘amplitude to the beam. This, of course,
is impossible. The fast wave, however, has positive nolse energy, there-
fore the noise can be completely removed by exciting waves on a circuit
and dissipating the noise energy in a cool resistor. It appears that a
device using a fast wave would be very attractive if the difficulties in
obtaining amplification could be overcome. Circuits for removing fast-
wave energy from a beam are discussed in Appendix H.

Adler®2 proposed using fast cyclotron waves that were pumped
after the noise was removed to produce gain by parametric amplification.
Louisell and Quatel® proposed using the longitudinal-beam amplifier as a
parametric amplifier. Haus®?1 generalized the kinetic power theorem to
cover the case of the parametric-beam amplifier. Practically noiseless

parametric amplification®4

of space-charge waves may be accomplished by
removing the fast-wave beam noise as described above, then applying a
pump in the form of a fast wave. The pump then supplies energy to the
sidebands which in turn interact with one another. Notice that the slow-
wave nolse will not take part in the interaction process and if the pump
and signal are represented by discrete spectral lines the amplification
will give a signal with practically no noise output. The extension of
Chu's theorem for the parametric amplifier where only the upper and

lower sidebands around each harmonic of the pump are considered is given

as

S Em XH:IS + VmsJ*
Re Z f 5 1S «ds = 0.

mop. + o
I8 S

M==00

The form is closely related to the Manley—Rowe35 equations.
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It has been pointed out by Pierce®® that the electromagnetic
energy associated with the beam is much smaller than the kinetic-energy
flow of the. beam so that for a volume not enclosing any r-f structures,
the increase of the kinetic-energy flow associated with the sidebands
must be accompanied by a decrease of the kinetic energy flow of the pump.

The authors mentioned abo&e considerea coupling only between two
sidebands. In the material presented in this chapter, coupling between
the upper and lower sidebands and the signal were considered. This
coupling was brought about by the pump. The effect of neglecting the
coupling to other modes was discussed in the preceding section. The
heavy excitation of the upper sideband indicates that noise will be
carried at this frequency. In order to remove the noise from this de-
vice it is therefore necessary to terminate noise not only at the signal
frequency but at other sideband frequencies as well.

It is interesting.to consider the multimode coupling problem in
the parametric amplifier investigated in this chapter. A diagrammatic
representation is given in Fig. 6.5. The pump and the signal are as-
sumed to mix in the nonlinear element which represents the beam nonlin-
earities. The nonlinearities then generate sideband frequencies. The
sideband frequencles then can be considered as being coupled modes with
the pump supplying energy. lThe modes are then coupled. by a linear mecha-
nism, and an analogy exists between this part of the interaction and the
conventional type of coupled modes. The equations describing the linear

relations between the modes were presented in Egs. 6.28 and 6.29.
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FIG. 6.5 MULTIMODE COUPLING IN THE LONGITUDINAL-BEAM
PARAMETRIC AMPLIFIER.



CHAPTER VII. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER STUDY

7.1 Low-Frequency Modulation Study

A method of theoretically describing traveling-wave tubes under-
going low-frequency beam modulations by introducing the average beam
current and potential as variables resulted in a more accurate descrip-
tion of the effects of modulation than had been previously given. The
analysis was applied to both the small- and the large-signal modes of
operation. In the small-signal study; loss, space-charge forces, finite
values of the gain parameter C, modulation of the initial loss parameter
A, and large modulation amplitudes were considered. The amplitude»and
phase modulation was determined by expressing the gain and phase shift
as functions of a set of modulation propagation constants. The propaga-
tion constants were given in terms of the unmodulated parameters and the
modulation amplitude. Good agreement was found between theoretical and
experimental results. Beam modulations of large-signal traveling-wave
amplifiers were similarly studied using the nonlinear ballistic equations
and a lagrangian formulation.

For both the large- and small-signal amplifiers, sets of quasi-
stationary curves called the modulation device functions were presented.
These functions showed the variation of phase and amplitude as functions
of the beam average potential and current. The phase can be varied
linearly over about a lO% fange of beam potential for a C = 0.10 tube
while at the same time the amplitude would go through a 10 db variation.
The amplitude can be varied linearly over a small range of the beam aver-
age current while the phase shift changes very little.

Saturation did not tend to change the linearity of the phase as

a function of beam potential and in somé instances even tended to extend
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the linear range while at the same time limiting the resulting amplitude
modulation. The addition of loss extended the linear range of phase
modulation. Modulation effects on the initial loss parameter were shown
to be of little consequence for long, low-C tubes, however they were shown
té have a pronounced effect on the short high-C tubes and must be taken
into account when predicting the modulation behavior during linear oper-
ation. The modulation effects on A are more important during a beam-
potential modulation than during a beam-current modulation.

To obtain large phase-modulation indices it is best to use a
long, low-C, lossy voltage-modulated tube. The resulting amplitude
modulation can be minimized by increasing the r-f drive level until
saturation sets in. To decrease the amplitude modulation further, it is
necessary to resort to higher C short tubes and to use large modulation
voltages.

The modulation device functions can be described as functional
variations of the modulations elther by fitting the curves with poly-
nomials or by approximating the phase and gain with a truncated Taylor
series. The Taylor series approach limits the results to small modulation
amplitudes. Spectrum analyses were given for several common modulation
wave shapes using second-degree polynomials to approximate the device
functions.

The linear modulation analysis was extended to the Crestatron
and the BWO at start-oscillation conditions. The Crestatron was found
to be capable of producing a linear amplitude modulation with small phase
modulation when the beam average potential was varied. The amplitude
modulation however was limited to small indices. The start-oscillation
conditions of a BWO as a function of modulation were determined using an

analog computer. This appeared to be a convenient way of obtaining the



-189-

start-oscillation frequency and required starting length as a function

of the beam potential variation at start-oscillation currents.

7.2 High-Frequency Analysis

The differential equations describing a beam carrying two signals
of different frequency and passing through an arbitrary r-f structure or
drift tube were derived. The signal levels were sufficient to drive the
beam slightly into the nonlinear region so that a mixing interaction took
place and produced many sidebands. Because of the small degree of non-
linearity an FEulerian analysis was utilized. Space-charge effects as
well as coupling to more sidebands than previously had been considered
in similar published analyses, were taken intb account. The equations
were integrated for the special case of the longitudinal-beam parametric
amplifier in which a large pump signal at twice the signal frequency was
impressed on the beam. Both signal and pump were excited as fast space-
charge waves in an effort to obtain low-noise amplification. EFarlier
analyses of this device took into account only coupling between the sig-~
nal and lower sideband frequencies, with the result that the theoretical
gain obtained wés far greater than the experimental gain. The analysis
presented in this dissertation considered coupling between the signal and
lower and upper sideband frequencies. With this "multifrequency" coupling
the gain in db was found to be one half of that obtained by a consider-
ation of single-frequency coupling. This represented a gain figure much
closer to the experimental value. The upper sideband was found to be
heavily excited, indicating that in order to obtain low noise operation
it 1s necessary to remove noise not only at the signal frequency but at
other sideband frequencies as well. The threshold pump signal required

to produce gain in an amplifier with a finite diameter beam was found to



-190-
be higher than the signal required in the single-sideband case.

(.5 Suggestions for Further Study

There appear to be several aspects of the work presented above

that warrant further study. These are listed below.

7.5.1 Experiments on the Low-Frequency Beam-Modulated TWA. A

traveling-wave tube to be used for modulation purposes should be designed,
constructed and operated according to the recommendations listed above.

It would be interesting to modulate simultaneously the average current
and potential of the beam. If the phase and amplitude of the signal
applied to the circuit and the grid are properly related, it appears that
either phase modulation with little amplitude modulation or amplitude
modulation with little phase modulation could be obtained. This idea of
simultaneous modulation can be extended so that the traveling-wave tube
may be used as an envelope wave-shaping device which amplifies the

carrier.

T7.5.2 Modulation Study 9£ the Large-Signal BWO. A modulation

study of the nonlinear BWO using the lLagrangian formulation is essential
in predicting pushing and pulling characteristics of the BWO operating
at currents greater than the start-oscillation current. It would also
be interesting to study the effects of simultaneous modulations of the
beam current and potential, both experimentally and theoretically. 1In
this way 1t might be possible to obtain nearly a constant power output
across the frequency band without resorting to signal equalizers.

7.5.3 High-Frequency Modulations. At present, the major draw-

back of the high frequency analysis is that an Fulerian analysis is used.
The problem should be formulated in Lagrangian coordinates in order to

take into account more accurately the nonlinear effects. At first this



_19]_..

could be carried out for only a minimum number of sidebands and later
on applied to cases where more sldebands are considered. The Eulerian
analysis given in this dissertation can be improved by considering more
sidebands, especially those around the second harmonic of the pump. The
analysis could be carried out using the present results and estimating
the amount of second harmonic pump power either by a lagrangian analysis

or by a method similar to Pashke's®®,

Some experiments should be carried out on the.longitudinal-beam
parametric amplifier to measure the amount of power and noise in the
upper sidebands. If this amplifier is to be a low-noise device, the
noise must be removed not only at the signal frequency but also the
upper sideband frequency.

Additional calculations should be carried cut for the longitu-
dinal-beam parametric amplifier for different geometries and for

lifferent ratios of pump to signal frequency.



APPENDIX A. OTHER METHODS FOR MODULATING A TRAVELING-WAVE

AMPLIFTIER AT LOW FREQUENCIES

It was mentioned in Section 2.1 that a TWA may be modulated
without directly perturbing the beam at modulation frequencies. Two
methods in particular were mentioned and these are more fully discussed

in this Appendix.

A.T. Phase Modulation by Variations in Signal Level

In Rowe'sZ° work on the large-signal TWA, phase shift as a
function of input signal was investigated. Typical results obtained by
Rowe are shown in Figs. A.lL and A.2. A linear range of phase shift as
a function of input is indicated. Note that for the C = 0.1, zero
space-charge case, a change in input-signal level from 9 db below
COIOlVOl to 5 db below COIOlVOl, a linear change in phase shift of 0.5

radians can be obtained. Therefore in this case a phase deviation of

0.5 radians can be obtained with an inherent AM of 4 db.

A.II. Phase Modulation by Modulation of Cold Circuit Velocity

Many of the effects prodﬁced by varying the beam velocity with
respect to a fixed cold circuit velocity can be similarly produced by
varying the cold circuit velocity with respect to a fixed beam velocity.
It is possible to vary electronically the velocity of a circuilt either
by modulating the bias on a ferrite or a dielectric surrounding the
circuit. PFerrites in helices and dielectrics in waveguides have been
used in phase shifting devices. At present it is questionéble as to
whether materials exist to produce sufficient phase shift for use in
traveling-wave tube modulators, but a simple analysis is included here

for the sake of completeness.
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This discussion shall be only an approximate one limited to a
consideration of phase variations. Any impedance changes shall be neg-
lected. This of course is a questionable assumption in view of the

fact that the impedance of most structures is dependent upon the cold

phase velocity.

Approximate the phase shift through the tube as
¢ ~ BL [1-Cy (£)] (A.1)

where £ is the particular modulation function applied to the bias of
the dielectric and the ferrite. The phase shift approximated by a

first-order truncated Taylor series is given as

5]
o = CPO+<B-§§:OA§ . (A.2)

The only variations considered will be those in b. The derivative of
y with respect to b is approximately Byl/ab ~ - 1/3%, therefore the

change in phase shift is given as

C -
oo /b |
AP = -3 <¥>§=OA§ . (#:3)

The velocity parameter b is given as

1 +Cb(E) = —m—

and the phase velocity vph is
o) = u 1(0)e(0)
ph pho \[ie(e)e(e)

* See Appendix C for a verification of this approximation.
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ThereforevK. A.3 becomes

Ap = —%—jg(:;b_[(o <F>+p <>} . (A.L)

For the pure dielectric

N H
a9 = -7 (W+cp) /2y §§—>O A% (4.5)

and for the pure ferrite

AP = CPo(l C b)) “o_ (o (A.6
(P“"g' +OO -L-L-(—O—)-F&-OAE . )



APPENDIX B. WAVE AMPLITUDES FOR THE LOW-FREQUENCY BEAM-MODULATED
TRAVELING-WAVE TUBE WITH A BUNCHED BEAM

ENTERING THE INTERACTION REGION

The wave amplitudes for the low-frequency beam-modulated trav-
eling-wave tube with an unbunched beam entering the interaction region
have been presented in Eq. 2.26. There are instances when a bunched
beam must be considered. These cases arise in noise analyses, r-f
prebunching and, in general, considerations of discontinuities in
traveling-wave tubes such as attenuator sections, drift spaces, etc.
Thus in a study of the effect of discontinuities on the modulation
device functions, one would have to calculate the wave amplitudes with
a bunched beam at the entrance to the interaction region.

The general equation for evaluating these wave amplitudes has

been given in Eq. 2.20 and 1s repeated below.

v(0) 1 1 1 v,
] 1] 1 1 1 t
uOlcOv(o) ) 1+ 30051 1+ 30062 1+ 30053 v
Jn o0&, 028, 518, 2
24 : iC B¢t iC &t 1+ j5C 8¢
T T I 2 o 2 3 )
012 517, 51% 5%,
. - L — L —
1-¢,
t = 3
where 61 J CO + 5161.
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When the circuit-wave amplitudes are used, Eq. 2.20 becomes

Vl
v(0) V. ==
cL Vc1
uOlcOv(o)gl v,
J ca c2
] 2v,,C 1(0)E, . v, (5.1)
I & e3 V ’
01’2 cs_J
where
F- 1 1 1
1 3 t S 1
) 1+ 30061 1+ 30082 1+ 30063
A = 0! ot B!
1 2 3
. . . . .
1+ JCOSl 1+ JCOSé 1+ JCOS3
2 2 2
Si 6é 65
L I

The ratio of the voltage at the beam to the circuit voltage is given

as:

ey MQCOQZ

— — e —— 3 2

T 1+ T%5 12 (1 + Jcoﬁi) . _ (B.2)
1 1 i

The general expression for V, is found by inverting Eq. B.1l
i

and using Eq. B.2. The result 1is
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v
c.
i
4QC § 2
1+ ‘;2‘5:_2' (1 +3c3y)
v(0) +A - B
t 1 - . ! °5 ' '
1+ <61+1>2 ®i+2704 1 +3Cp0] <6 ®i0in A
1 ! *in ™1 ' ’
o4 51+ By T F JCo 141 P BT P
(B.3)
where 8! = 9§,
+3 1
51 ! '
A = £,u,v(0) 8,00 o Pl = e :
) jn = - T+3C 67 ~ &¢ 1+jC &
i+1 itz N i42 © i+1 i+ o
and

f

2VOlCOi(O)§l 84 112442 Ol - 1i2
1+3C O 1+JC o} '
O 141

B = I g 6.’ _6"
01”2 A+l 142 o



APPENDIX C. TAYLOR SERIES EXPANSIONS FOR THE

MODULATION DEVICE FUNCTIONS

Taylor series expansions for the amplitude and phase modulation
during a low-frequency beam modulation were given in Section 2.3. In

a general form the series can be expressed as

[oe]
n n
A=2_}76f Mn+zi’af P
n. Il’l n. Vn
n=1 v_o,I n=1 ,
[ok] ol 0ol ol
0 n n
+E—l‘-ch o f N AT (c.1)
, n r VraIn—
n=1 r=1 o1
ol ol

For the phase modulation

A > AS

and

£ = y-BLl-cCy) , (c.2)

while for the amplitude modulation,

A - Aadb

L(v,at
f = 8.864 log,_ CL—V(T)_ +54.6 CN, x, (AV,AT)

and

N = — . (C.B)

The small-signal propagation constants X, and yl can be expressed

as explicit functions of the small-signal parameters,
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e}
1l

Xl (C; QC, b, d)

«
I

Yl (C: QC, b, ) P (C.M)

and, in turn, the small-signal parameters can be expressed in terms of
the beam average potential and current. The functional relations of
the small-signal parameters and their derivatives with respect to the
beam d-c variables are listed in the table below. All quantities are

evaluated at the unmodulated point (I ’V01)’ since these are the values

o1
necessary for the Taylor expansion. The beam propagation constant
Be is included in Table C.l. Derivatives are listed only up to second
order.

Equations C.4 and Table C.1 can be used to calculate the Taylor
series coefficients in terms of the partial derivatives of the prop-
agation constants with respect to the small-signal parameters. The

second-order Taylor series for the device modulation functions are

therefore
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The derivatives of the propagation constants with respect to
the average potential and current are listed below. In the following
equations f represents any of the small-signal propagation constants.
Also, the zero (0) subscript refers to the derivative evaluated at

ANV = AT = 0.

(Q >'6QC (F“) <>

@) PSR EE - e

.2 @_i; _ % azf> 82f> ( O> <

o1 avgo 9 \Qc2 dqC2 g% T
-2 g—> &) B () - = &)
(3 ) @) o () s B
<><w> Bt (o)
-%QC°<%bO+§é—O><£E%>O+%do<gbo+flo>@%>o. (c.9)
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1 (57) - @2f G- 3e )
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R <62f> e
(o) () 3 s (s, + 5 o + ) (s
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The evaluation of the derivatives of |A| and ¥ is an extremely
cumbersome task. The initial loss parameter and its phase may be
evaluated at the zero modulation point by setting 8' = & and §l = §2 = 1.
in Eq. 2.26. The required derivatives can then be evaluated from the

resulting expression. This is indeed a long operation. As an approx-

imation, use instead of Eq. 2.26
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Vcl

o 1
R I

This approximation is equivalent to setting CO to a very small

INESAE (c.12)

2

value and "partially" neglecting QC,. "Partially" neglecting refers
to the fact that it will be used in finding &;, however it will be
neglected in determining the amplitudes. The derivatives of this
simplified form are once again found only after avlaborious computation.
The>calculation actually has been carried out for one case and the re-
sults are shown in Section 3.4, however in the material following in
this Appendix, variations of |A] eIV are neglected. From Eq. C.5 it
can be seen that neglecting the variations for a tube having a large
6eOL does not result in a serious error in the phase modulation. How-
ever the error in neglecting variations in lAl for the calculation of
the amplitude modulation is certainly more serious since there is a
C, appearing in the denominator of the terms containing derivatives of
the initial loss parameter.

There have been several presentations in the literature of the
propagation constants as functions of the small-signal parameters.
The derivatives may be determined graphically from Brewer and Birdsall's
results®t or Pierce's results®. There are also several explicit forms
of the propagation constants although each has its disadvantages and
limitations. The expressions that appear to be most amenable to this
analysis are those given by Sensiper®®. The disadvantage of Sensiper's
expressions is that the results are limited to QC < 1/k, and further-
more the results are given such that each propagation constant is

expressed by a long open series of the propagation constants. The



-208-

series for X and y, are given below:

_ */__—é+“£5.(5c _8QC)-%+% C+%QC><\/_5b-d>
(b2 - ) - <\f5> T e

S & Q303> + 517- (302 + 120QC + 160%¢2) N3 b + &)

—fJE (0° - 3ba%) - (d3 - 3b34) +-JB c* + 12803QC
3
) 1%?0 22c2 - 53?& 0q3c® - 2048 Q4c > c 56 02Q0>

<éc2 + 8QCQ + 120 20%) Efé (b2 - a2) - Ebd] + é% (é
+_% @§> Efé (b3 - 3bd2) - (d3 - 5b2a)J ... (C.1%)

and
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+3 de + %(c + % QC> E (b3 - 3bd3) +‘£§- (a2 - 5‘02(1)] +

(C.1k4)
Equations C.5 through C.14 can be used to determine the
modulation device functions approximated by a second-order Taylor
series. The results of a sample calculation are shown in Chapter
ITII. Approximate equations for the phase are also given in Chapter

I1T.
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APPENDIX D. EXTENSION COF THE CAUCHY PRODUCT TO SERIES

WITH INDICES RUNNING FROM =co tO 40

There have been several occasions* during the course of this
dissertation when it has become necessary to multiply two infinite
series with the indices running from -~ to 4w, therefore, it seems
desirable to develdp a form for this product analogous to the one for
the Cauchy product. The same method as used in developing the Cauchy

product will be employed.

38

The ordinary Cauchy product of two infinite series is given as

<2 ><Z > HZOKZ Kk (p.1)

This product is well adapted to the multiplication of power series and

can be stated as

[o0]

G Ao - L St - o

n=0 k=0
Consider the product
= =00

the terms resulting from this multiplication can be written in the

following array,

¥ The products mentioned above have been used in Sections 4.1 and 6.2.
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o
Z;
-Q .
.\@O .
. N
Y,
ceC,  Ca cal cd o cad ...
N
N
N
....Cd cd cd Ccd Cd .....
-2 -1 10 1 1 12
N
N
N
Cd-n ..... ca cd ca Ccd Cd ..... ca ..
(0] -2 -1 [ON®)] O\l o 2 on
N
N
..... c a4 c 4 Cd Cda C d.....
-1 -2 -1 =1 -1 O -1 1 -1 2
N
N
c .a ¢ a Cd C.d C d.os
Yoe2ro2 -2 -1 -270 -271 -2 2"t

The sum of the terms along the diagonal shown above is

cF e Cyd_ 04 +Cd +Cd +C_d

which is

[v0)

S e
n i-n

INN=-00

In general, the sum along the ith diagonal is

(0]

}2 C_d.
n i-n

n==-c0
The product under consideration is represented by the sum over all

diagonals, therefore

[ve}

<IZ_°° Cﬂ><i dn> =i Z Cidi n - (D.3)

N=-=c0 =00 ==
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When C and d are exponentials, the product is given by

<i Anejm{><i Bnejnx> =i <i Aan_rD dmx

n=-=co0 N==0c0 M==t0 N=wto

(D.4)



APPENDIX E. SOLUTION OF THE BWO MODULATION EQUATIONS

ON AN ANALOG COMPUTER

Equations describing the modulated BWO at start-oscillation
conditions were presented in Section 5.3. The solution of these equa-

tions will now be discussed. The equations to be solved are

dv dp o _

Egdy+§ldy+a—;-o. (E.1)
1av, %% S - N
2 dy 2 Db T, = 1y JCO . .

<1-20 JQC>

(0] O

d.2V l+CObO o N o ) dO

2+ C -g'— V+236—

dy o) 3 o)

8c3a

S (l+Cb)CC p+J——€—g—9-p . (E.3)
3

These above equations form a set of linear differential equa-
tions in three unknowns and can be solved by standard methods, however
since oscillation conditions are to be determined, a trial and error
type of solution will be used on an analog computer. In order to
program this set of equations it 1s necessary to separate the real and
imaginary parts: The variables V, v, and p may be split into the real

and imaginary components;

Vv = VR + JVi
A2 = VR + JVl
P = pg+dpy . (E.4)
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When Eq. E.4 is substituted into Egs. E.l through E.3 and the

real and imaginary parts separated, six equations result;

dv dp 0.
R R 1
£, ra El T - 5; = 0 , (E.5)
dv., dp. o)
i i R
t,ar tE Tt T - o, (E.6)
1 v ] ACCQCO 7 N v ) Xi (5.7)
2 dy 2 1+C Db i 7 "1 dy c_? ’
<é-eco‘JQco 514050, ©
1 dVi + lLCOQCO F o = & dvi + jﬁ (£.8)
2 2- 1+Cb ) 'R = "rdy C_ ~’ )
<1-200 JQCO> 65 (14C50,) o

d2V t g
OO O
e > <F;> - 6‘ (1 + C.b ) e vi

8c2a
O O

= ko (1 +0.p ) g o = E Pi (E.9)

and

a=v, 14C b \2 o a L.t
L (e e
dy o] ¢ o] © Cs

1 O O
= uco(l + Cobo) E;E; Pyt P .(E.10)

The scaling for this problem can be found by assuming an approx-
imate variation of circuit voltage for the unmodulated BWO. The start-

oscillation current of a small-C BWO can be calculated from
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TE2
2nCN ~ = . (B.11)

rt 5

1>

estart = Jstart

Therefore the line voltage can be approximated as

V = cos 2 exp - J

S (B.12)

I

When this value of V is substituted in Egs. E.1 through E.3 .

the following approximate amplitudes of the velocity and charge are

obtained,
o] ~ 22
Co
0.62
vl ~ = 2 (E.13)
(0]

The limits shown above are normalized to a voltage amplitude of unity.
A curve of the maximum values of |p| and |v| based on a unit voltage
is shown in Fig. E.l.

A convenient time scale to use is
p = ¢ & (BE.14)

where P is the operator representing the time derivative in computer
time. The tube analyzed in the modulation study had a gain parameter
C, = 0.05. Figure E.1l indicates that the maximum lo| and |v| for unit

voltage are about
‘pl ~ 160

|v| =~ 12.5
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The scaling used is 250 and 10 respectively. For a voltage maximum of

0.02 the scaling is

V = 0.027V
P = 50
v = 0.27v ,

where the bar quantities represent machine variables. The time scale

is chosen as

-— = 20 P

The equations to be programmed therefore are

Ei = glPER + o.ougg}?VR (E.15)
g = - E.Po,; - o.ongszi . (E.16)
_ _ _ 0.25 QC_ . _ : )
g, Pvp = v, + 0.05PV, - S - — 0y - (.17
<1-o.1o (—-—QCO> ¢ (1+0.05b_)
- - _ 0.25 QC B
£V, = - Vo + 0.05B7, + = & go = Py -(2:38)
<1-o.1o JQCO> €5 (1+0.05b,
1\2 - Clgz —
- PZ\TR = G_j (1 + 0.05100)2 Vg - O.ldo(l + o.o5bo) T v,
¢, _ 0.o125d_ _
- 0.125 —— (1 + 0.05b _ . E.1l
5 Fa (1 +0.05b_) pp + & Py (E.19)
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2 €,¢
- PV, = <§;> (1 + 0.05bo) Vi o+ O.ldo(l + 0.05bo) - Vg
1 _ 0.01254  _
- 0.125 —— (1 + 0.05b - —— . (E.20
5 L (1 +0.050_) o, £ °x ( )

The "roadmap'" of the computer elements necessary to solve this
set is shown in Fig. E.2. The potentiometer settings are given in

Table E.1.
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TABIE E.1

Potentiometer Settings

Modulated BWO Start-Oscillation Conditions CO = 0.0

9, 10

11, 12

13- 16

17, 18

Setting

=================================f======== — —

é—i—)g (1L + O.05b0)2

1C2

Cs

0.1d (1 + o.o5bo)

1 2
0.125 (1 + o.o5bo) ?Z—C;

ure

0.25 QCO F

2
<1 -.0.10 J@E;) 6oty (1 +0.050)
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The scaled boundary conditions are:

vg(0) = v;(0) = p;(0) = pp(0) = 0 . (B.21)
V(o) = VR(O) + '\71(0) (arbitrary) . (B.22)
(PVR) = (1 + 0.05b.) .t Vi(o) + o.ldogggsz(o) . (E.23)
(PVi)O = - (1 +0.050) £t '\TR(o) +0.1d_ ¢ 6.V, (0) . (B.24)

The procedure to find an unmodulated oscillating point is to
assume a value of CO(=O.O5), QCO and do; set all modulation parameters
equal to unity, arbitrarily choose V(O), and then to vary bo ahd plot
V(y). The total line voltage V(y) may be obtained by vectorially

adding V__ and Vli‘ This can be conveniently done on the computer

iR
using a resolver. If the line voltage V(y) goes through a zero at some
value of y, an oscillation condition is determined at that b, and CNg.
The results obtained are in excellent agreement with digital computer
results for start oscillation.

Once having found the unmodulated value of b, for oscillation,
modulation may be applied and the new conditions determined. The
procedure for finding a modulated start-oscillation condition is to
find the approximate value of §3 for the particular modulation specified
by'gl from Fig. 5.8, then find the gl, Cz and F corresponding to this
QS and integrate the equations. A second and third trial value of CS

may be necessary to find the correct value of Cs at which oscillations

will be initiated. Typical plots at trial { are shown in Fig. E.3.
3



AV/V,,=0

£,=10
OSCILLATES

av/ Vv, =0.250
£,=0.925
DOES NOT OSCILLATE

AV/V,,=0.250
{,=0.927
OSCILLATES
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AV/\,, =0.250
{,=0.930
DOES NOT OSCILLATE

AV/V,,=0.50
§3=0.865
DOES NOT OSCILLATE

AV/V,,=0.50
ga =0.870
OSCILLATES

FIG.E.3 TRIAL AND ERROR PROCEDURE FOR FINDING

START-OSCILLATION CONDITIONS WITH
BEAM-POTENTIAL MODULATION.



APPENDIX F. CHARACTERISTIC EQUATION FOR THE LONGITUDINAL-BEAM

PARAMETRIC AMPLIFIER

The differential equations describing the longitudinal-bean
parametric amplifier were derived in Section 6.3. These are listed

below:

T S DR A 1 WPl
dzg+ JBqa —a—Z—-—Bq a +T - +‘—‘T U.l

du
g2 12 * . '.I_I’l_f __.l -
Bq 5 <é + 2a > u¥ + JBqa 5 |1+ 7| T
-32@ 1 +a@d1 ¢ — u -a'252m2u* = 0 (F.1)
q 2 p12 11 qg ¥ 11 :
and
d2u11 dull e >
. 1 - 2 12 12 - 7!
— + 6J6q§ T 9Bq [a (1 + b'e) I 1 w,
du
. Sm 2 1 2 m 2 ' 2 2
1 = 1 —— - —— ! 1 t
+ Jqu 5 [l + 3b - 96q 5 | & (a + b'") + b u,
2
- %a®Zpe ux = o . (F.2)
a b "1

To completely describe the system the complex conjugates of
these above equations must be included. The complete set of equations
is actually four simultaneous linear differential equations. The

operator

can be introduced to describe the expected exponential solutions.

When this is done a set of homogeneous equations result;
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BEquation F.3 can be written in the simple form given in Section 6.3.

rCPl(M) v, () g () &l(u)— ~ul—

() o oex(n) o ex(e) o Ex(w) u¥

o) W 0w W] |y

) er()  ex()  tx(u) wx (F.4)

Equation F.3 or F.4 can only have a solution if the determinant
of the coefficients vanishes. An expansion of this determinant set
equal to zero defines the characteristic equation. This b x L4 deter-

minant is expanded using the LaPlace expansion®®. The result is:

o, v, 6, &, 9, ¥, £x . (
X - X
v o Ex 0% o, ¥, SIS
o, ¥, Ex Lx v o¥ 6, &,
X - X
+ |V 9, (-, &, P, Y, Ex €%
vEo¥ 6, &, %, ¥, 6, &,
bid - X = 0
- Ve X 6, Eo v ox EX (X

After some tedlous algebraic manipulation this expansion becomes:



-226-
u8 + [hOa'z -2A +0C) + % |m |2 b'2a'2D2] us + [A2 + LAC + CZ - 8ar'ZC

2
- E2 m2 7281%A + 1hkat? 4 % |m|*bt%a 14D* - % lm|4br®ar4

- -92- |m|®p12 {a'2D2(C + 12a'% + A) - 16a'®BD + Bz} J ut

2 2
+ [ua'202 - 2CA(A + C) + 2E? ﬁnul_ C + 36a'?A® - 36a'? [—,nf;l-—EZ

2
+ % |m|%pt (132 -att ﬂ‘k\_> a'2D® - % lm|*b'%a®E(B - 6a'®D)

-% jm|%bt%a'* (12a'® - A - C) - % |m |02 {Ea'zBD(QC + 6F)

2
_ a2 _ n2 ' 2 2 2n2 _ 72 lml 2
a'“DAC - B2 (C + 12a +A)}]p + AZC i

2\ 2
+%IM%A<¥_aﬁim> +%MVV%QWC'%WEW%&M
_-z- |m|20'2ACB2 = O . (F.5)

Equation F.5 1is the general form of the characteristic equation
of the longitudinal-beam amplifier. Even though it is indeed a lengthy
expression, some remarks about the general nature of the waves can be
made. Note that the magnitude but not the phase of the pumping signal
enters into the equation; also only even powers of a' enter into the
equation, therefore the waves that can propagate in such a system are
independent of the phase of the pump and also of whether the pump is a
slow or fast space-charge wave. The magnitudes of the waves is, of

course, critically dependent upon these above factors.
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It was mentioned in Section 6.3.1.1 that the same results could
be obtained by using the four equations found by postulating real and
imaginary parts of Uy and ull, substituting these into Egs. F.l and F.2
and finally equating the real and imaginary parts. It can be shown that
the expansion of the determinant of the matrix coefficients is identical

to Eq. F.3. The resulting system has the form:
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APPENDIX G. ALTERNATE DERIVATION OF THE CHARACTERISTIC EQUATION

FOR THE LONGITUDINAL-BEAM PARAMETRIC AMPLIFIER

The characteristic equation for the longitudinal-beam parametric-
amplifier was derived as a special case of the high-frequency beam
modulated tube. The result is given in Section 6.3.

It is possible to derive this same result using an extension of
the method given by Louisell and Quatel® for coupling only to the lower
sideband. The force, continuity of charge and Poisson equations can be

combined into the form'®

3% 32 [v® 2 Jo
S;E + SESE'{Té} = wq f; i (G.l)
and
ve g% = -V %% + 1 %% . (G.2)

Assume that mixing takes place and that sidebands are generated
at 3w and w and also that either the fast or slow wave is excited but
not both simultaneously. The notation given in Section 6.3 will be

used; the current and velocity can be postulated to have the form

..229 ~
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m a'wq
i = - Io + 5 IO exp [- EJBe <: - > z + QJth
% a'w
+ =5 I exp [+ 238, <1 - wq> z - 2jwt}
i r a'(Dq
+ = (2) exp L-jBe< - w>Z+Ja>’cJ
i?{ r- a'(D
+ = (z) exp |+ 3B, <1 - wq> Z - ja)t]

11 a'wq
+ (z) exp [-jBBe (} - > zZ + ijtJ

iil a'wq
+ =5 (z) exp [+ By ( " > z - Jiwt] (G.3)
and
a’wq n a'wq
Vo= oug - =5 Uy exp [- 2JBe <‘ el > z + QJwt]

a'wq m% a'wq
5 o uO exp [+ EJBe <é el > z - EJth
u_(z) - a'w
1 . q .
+ —5—exp |- B, <' - > z + Jwt}

w
u*(z) -
+ L exp +JBe <‘ -

atw
a>§> zZ - jwt}

ull(z) - a'wq
+ —=5—— exp _-3556 ( - = > z + J5<Dt]

u* (z) - a'w
+ = exp |+ J3B, <1 - — q> z + .jBa)tJ : (G.4)

When Egs. G.3 and G.4 are substituted into Egs. G.1 and G.2 equations

with many frequency terms will result. Neglect the higher frequency
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terms and make the same approximations as used in Section 6.3 and
finally require that coefficients of the upper and lower sidebands

independently vanilsh. From Eq. G.1l the lower sideband coefficient

gives
du B2 u
_* ' 3 R , ¥ ~ - 3.3 09
- + JBqa u + qug 5 uk + Jqu = U, j 5. T i, ,(G.5)

and the upper sideband gives

du,, . S m ..Bi Yo P11\ |
+ BJqu u, . + BJﬁqg s34 =~ - BE—-T—-<%; > i, - (G.6)

dz 11 1 e Lo q
From G.2 the lower sideband gives
dil m m* Io
. 1 t = oax s | Bt | 3 —
dz +'J6q? l1 + qu? 2 il + JBq? 2 111 + JBe uO ul
I T
om o m¥
- 3 — = u¥ - —_ ~ .
BT W =B, 5, ~ 0, (6.7)
o o)
while the upper sideband gives
di I I
11, 5y 55 zs et By 33 2Dy =
=t BJBqa'i;l + 338, u u,, + JBBqa 51, - 338, T2 u, 0

(¢.8)
Equations G.5 through G.8 can then be combined to give two second-order

equations. The result is
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4

dzul du, m* “3\2 du,
s |- . 1 =20
az? Qgﬁqa iz * JBqa 2 [l * 3 qu_) :, dz

- w
- Bi a2 {é + l%;i -1+ 9a'® <§;%:>2 l%}ij u

-~ [60) P
_ a2 12 m . _e2D¥) 5 12 q :
Bq 28 + l} 5 ul Bq. 5 a + 9a 3 + 1 ull
L g1l
822 I ux = 0 (G.9)
- 1 u = 5 .9

and

dzull v 65pan du, o . 3B ar . '5 4 (9L 27 _di];

dz® ¢ Taz TP 2 wy / J dz
2 q11)® _ lmlz 2 ,2_

+5q[<qu> {l Ta - Oa Jull

2 2
- 621_11 93'2 -+ ._..qa_l-l_ a'2 + _.9-_1'.'}. u
q 2 coq a)q 1

2 2
_ a2 2 gli % =
sq a’" 5 (Da)q> uX o . (G.10)

If the definition of b' given in Eq. 6.20 is used, the above equations

are identical to Egs. 6.28 and 6.29 which were derived from the general

method.



APPENDIX H. METHODS OF COUPLING TO INDIVIDUAL

SPACE-CHARGE WAVE MODES

The derivations of Chapter VI were based on the assumption that
only one space-charge wave was present., It was assumed that either the
fast or the slow wave was excited, however, both were not simultaneously
excited. A very simplified discussion of two possible methods of ex-
citing one space-charge wave will now be given, one method involves a

gridded resonant cavity and the other a helix as the exciting element.

Gridded Resonant Cavity

A resonant cavity with two sets of grids may be used as a direc-
tional coupler to excite one space-charge wave. Consider the cavity
shown in Fig. H.1l. Assume that the transit time through the grids is
negligible. A low-level r-f signal is applied to the cavity to excite
the initially unmodulated beam. With the usual small-signal assumptions,
both the fast and slow waves will be equally excited at each set of grids.
The two space-charge waves set up at the first gap will propagate to
the second gap. The waves propagating past the second gap will have
amplitudes determined by the vector sum of the waves excited at the
second gap and those set up at the first gap. The difference in phase
between the waves excited by the first and second gap is merely the

transit time in radians between the gaps. For the fast wave this phase

difference is,

(B -Bq)L ’

e

and for the slow wave the phase difference is

(B +aq)L .

e
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For a fast-wave exciter, the fast waves at the second gap should

be in phase, while the slow waves should be out of phase. Therefore,

(B - B,) L = 2n%
(Bg +B )L = (m+1)=x

which results in

1
BeL = <én + é) 7t

BL=—Z—T£ . (H.2)

It is therefore, possible to use a double gap cavity as a direc-

tional coupler to excite one wave while at the same time cancelling the

other wave.

Helix Couplers

A helix (or other slow-wave circuit) with phase velocity close to
the beam velocity results in TWA interaction and a resultant growth of
thé slow wave. The fast wave is present but to a very small extent so
that a TWA is actually a slow space-charge wave exciter.

When the TWA is operated near the Kompfner Dip Conditionso, with
the beam velocity much lower than the circuit phase velocity it is
possible to excite only the fast wave. Consider a TWA with a large

negative b value. Then for small C and in the presence of space charge,
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the propagation constants are given approximately as

5~ -2jvac
5, =~ 2] N QC
o, ~ - Jb s (H.3)

and the waves propagate as

) L g

in 2('2’336)

-{ exp—jEBeC JE&F z

exp+EJBeC JEE'Z exp-J Cbz
+ - <} 3 <> + EBE }- (H.4)
2QC,

For large negative b values Eq. H.4 is approximated as

Vin

V(2) o exp - 38,2 [1 - clbl] , (H.5)

which is of course a fast wave.



APPENDIX I. EVALUATION OF MATRIX ELEMENTS FOR DETERMINING
WAVE AMPLITUDES IN THE LONGITUDINAL-~BEAM

PARAMETRIC AMPLIFIER

The matrix elements Mys Tyo and n; were introduced in Section
6.3.1.2 in order to evaluate the wave amplitudes. These elements were
then found by inverting eight 3 x 3 matrices. The form of the matrices

was given in Eq. 6.35 as

- g (1y) v (ey) t ) e ()] [y

- o, (0y) | = [ ¥ (uy)  E () & ()| | Ty

- o (1y) Voeg) 6luy) e (ug) | |y |- (I.1)
L _ L d4 L ]

The elements @3...&5 may be evaluated by noting the elements in Eq. F.6.
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