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Adaptive-Grid Computation of Compressible Flows
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Abstract

A criterion for adaptive mesh refinement  or
compressible-flow calculations is presented. 11 ool
terion is based on a two-dimensional wave-nydod for
the BEuler equations, and can separately derest v
gions in which acoustic waves are tmportant. ol
regions in which shear waves are important.  {his
ability to detect regions of compressibility ..nd o
tationality separately gives better resolution f foa.
tures of disparate strength. Results for repro-orra
tive test cases are presented, and compared to reailis
from a grid-aligned wave-model-based eriterion. (o
more classical criteria, such as undivided differmnees
of pressure or density.

Introduction

Computation of the inviscid compressible o
around a body requires discretization of the con
putational domain into a mesh of points. Wi ther
structured or unstructured, body-fitted or Curr =la,
the mesh must satisly two conditions:

1. it must be appropriately refined aronnd iie
body;

2. it must be appropriately refined in regions in
which the solution is changing rapidly in space.
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A straightforward, but computationally oxpensive,
wav to achiove this resolution is to use global mesh
sefinement, Lo, Lo reduce the mesh-spacing aniformly
over the domain until the resolution near the body
and i high-gradient flow reglons is satisfactory. A
more sophisticated and efficlent way is to use an
ndaptive-refinement method, in which the mesh is
ieined only in regions where added resolution is
deenpad necessary. The primary added diffienity in
wdepting an adaptive-refinement approach is the ne-
ceanity of 4 more =ophisticated data structure: con-

1

rectivity information must he stored, and updatad

as Hire uesh s adapted.

Apperopriate resoluntion of the body may be assured
Lo eli-tering boundary points in high-curvatnre pe-
cinis ol the hadys This mayv be done from the start,
by olieeretizing the body in wosmtisfactory manner and
Beteadacing those points into the initial mesh. Adter.
analvelvo it may be done inoa separate step, by he-
shiing with a very coarse mesh of tie flow domain,
s v lindng celis in o the vielnity of high-curvatnre
regians of the body antit o <arisfactory mesh 13 ob-
tatned. A quadtres-bazed ganeration of a bodyv-cnt
Cartesian mesh, for example, is carvied out in three
steps, First, a quadrilateral that encloses the entipe
How domain is generated, and enongh levels of ehil-
dren colls are spawned that a nser-specified cell size
is reached throughout the flow domain. The inter-
sections of this coarse mesh with the hody are con-
puted. Next, all of the celis which are cut by the body

apawn children eelfs, nntil a nser-specifiod maximnm

«



Double Ellipsotd Grid Plot.
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Figure 1: Example Initial Mesh

cell size on the body is reached. Iinally, slopes of
neighboring faces on the body are compared, with
children cells spawned until the differences in slopes
between cach pair of neighboring faces on the body
fall below a user-specified value. The resulting mesh,
generated with only three simple criteria set by the
user, is shown in Figure 1.

Appropriate resolution of the flow-field requires an
adaptation criterion, i.e. some method of detecting
regions in which the flow is nnder- (or over-) resolved.
Idcally, this adaptation criterion should have the [ol-
lowing properties:

1. it should be inexpensive to compute;

2. it should be able to detect a variety of flow fea-

tures (e.g. shocks, wakes, rapid expansions);

. it should be sensitive enough to detect weak fea-
tures, and should not exclusively refine discon-
tinuous regions of the solution at the expense of
simooth high-gradient regions.

The first requirement, that the adaptation crite-
rion be inexpensive to compute, is particularly vital
in unsteady-flow calculations, in which the “refine-
ment front” must follow (or, actually, precede) the
propagation and evolution of flow features at cach
iteration of the solver. Tn steady-flow calculations,
refinement is typically carried out infrequently, and

the cost of the calculation of the adaptation criterion,
relative to the cost of one iteration of the solver, be-
comes less vital. In this work, a very inexpensive
adaptation criterion, and a fairly inexpensive thresh-
olding technique, are described.

The second requirement, that the adaptation e
terion be able to detect a variety of flow featnres,
requires an understanding of what flow features ran
arise in the solution of a given set of governing cqua-
tions, and of the way in which the various flow fea-
tures manifest themselves in the solution. In inviseld
compressible flows, there are two types of disconti-
nuities:

s shorks, across which

(o]
[1,]
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[1ee]
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o and shear layers/contact contact discontinuities
across which

[r]
{1n]

{1]

0
0
0
[p] 0
?
where the symbol = denotes that a quantity
might or might not change across the discon-
tinuity.

In addition, there are “smooth” Jow features, such
as expansion fans and vortices, which should be cap-
tured, Uhere are two approaches that can be taken
in order to detect such a varicty of smooth and non-
smooth features; either a single “catch-ali”
can be designed, or a combination of simpler crite-
ria, each of which is designed for detecting a certain
feature, can be used in conjunction with cach other.
In this work, the second approach is taken, and some
advantages of this approach are described.

criterion

Tlhe third requirement, that the criterion should
detect weak features as well as strong ones, and
smooth features as well as non-smooth ones, was
pointed out in a sobering fashion by Warren ot
al [WATKOL]. They showed an example in which



adaptation criterin geared towards detecting non-
smooth flow features could lead to a converged so-
fution with an incorrect shock location.
due to the criterion flagging the {incorrectly focuted)
shock for refinement, at the expense of the resolution

This was

of the trailing-cdge reglon, They noted that adapta-
tion criteria based on derivatives of flow quamities
hecome unbounded at a discontinuity as resoiuwiion

increases, and adaptation criteria hased on umdiviled
differences remain bounded but finite ar a dicontl-

nuity as reselution increases. To avoid the probicm
of discontinuities acting as “refinement magnets” ai
the expense of other important regions of he ilow,
the adaptation criterion must be one that 1oods o
vanish at a discontinuity as it becomes resolved. Two
wethods of ensuring that smooth regions are cot o)
nored are used in this work, and described v s
paper.

Many modern algorithms for compressible How
make 11se of an approximate sofution to the Ricmann
problem [Roe81] to define interface fluxes [or the so-
lution update. This paper outlines an adaptation
criterion based on the the wave strengths {from Roe's
approximate Riemann solver. The resulting criterion
is inexpensive to compute, and does a relatively good
job of resolving various flow features. A better cori-
terion can be designed. however, by accounting for
waves moving in arbitrary directions, throngh use of
a wave model for the Fuler equations [RoelGh]. The
resulting eriterion is simple, inexpensive, and very
effective in resolving a wide variety of flow features.

In the following sections, the framework for wave
models to the Fuler equations is described, and two
adaptation criteria resultiug from this framework are
put forward. The first is based on a grid-aligned wave
model; the second on a more general wave model. A
technique for determining refinement and coarsening
criteria is described, and results for both criteria are
presented.

Traveling Wave Solutions to the
Euler Equations

Tle Euler equations in two dimensions may be writ-
ten in primitive variables as

W, + AW, + BW, =0 (1)

where

7
W= | ¥ ‘
v
P
and
fw p 0 0]
_ 0« 0 1/p
A= 00 u 0
L0 vp 0 U
v 0 p 0]
0 v 0 0
B =
0 0 & ]_//_)
L0 0 Ap v |

Wave-like solutions, of the form
W = Wik -x-A)

W(¢)

may be sought, with k and x defined as

il

cos d
k = .
sin #
x
x =
Y

This leads to the cigenvalue problem

[Acosd + Bsing — ALW' (£) =0 (23
whirh admits non-trivial solutions only if W' (&) is
a right eigenvector of (A cos@ + Bsind). with A its
corresponding eigenvalue. These eigenvalues are, for
a given #

A = wcos@+uwsinfg

Ay = wcosf Fresind;

Ay = wucosd +vsind+oa;

Ay = ucosf +usind —a; (3N

whore @ is the acounstic speed a = /vp/p. The cor-
responding right-eigenvectors are:

ry = [0,—asind, acos 9,{]}T
ry = [/):0,(),011‘ 3
o= lpoacostasingpe?]
3 = |peacost,asing, pa ;
) . a7
ry = in, —acosf, —asinf, pu ] (1)



which represent respectively a shear wave, an entropy
wave, an acoustic wave propagating in direction #
and an acoustic wave propagating in direction # + .
The eigenvalues represent the speed of propagation
of the waves.

It is the determination of the wave angles £
that separate a grid-aligned approach from a multi-
dimensional approach. In a grid-aligned approach,
the waves are assumed to propagate normal to the
grid faces; in a multi-dimensiona! approach, the val-
ues of 4 are determined from local flow data. Adap-
tation criteria based on these two approaches are de-
scribed in the following two scctions.

A Refinement Criterion Based on
a Grid-Aligned Wave-Model

Roe’s approximate Riemann solver [Roe81, Roc8Ga]
expresses the flux difference across a face in the mesh
as the effect of four waves, all moving normal to the
ccll face. That is, the flux normal to each interface
is given by '

1 1 s .
P{UL, Ur) = 5(Pur + €np) ~ 5 >, I/\ki 2Ry,
k=1

where () and ()r denote the states right and left
of the interface. The waves are taken to he moving
normal to the cell face, in a direction 8,, with the
flux vector defined as

Dy,

& pun + pcosd,
n = . .

pUzV + psind,

pun H
where
U, = ucosf, +vsinf,

uy = ~usind, + vcosd,.

The wave speeds Az are those of Equation 3, with 4
taken to be the grid angle §,. The eigenvectors Ry,
are the conserved-variable form of the eigenvectors
given in Equation 4. They are evaluated at an aver-
age state which satisfles certain flux properties; the
Roe-average state, defined by

w = PL/(\PL + VAR)
p = \iipn

& = wupwt ur(l - w}

v = vpw+ vg(l —w)

H = Hpw 4+ Hp(l ~w)

i = \/(74) [ﬁ—%(ﬁ2+®?)}

The wave strengths (1 are given by:

2 = é-u-i
a

o = — (6*°Ap — A

2 = pa? a*Ap — Ap)
1 -

B = go(Apt pilu)
1

Q4 = ——(Ap-— pa )

These wave strengths seem to form an attractive
criterion for solution-adaptive refinement:

o they are necessary for the flux calculation, and
are therefore pre-computed;

since each wave strength is associated with a cor-
tain type of wave (shear, entropy, “fast” acous-
tic, “slow” acoustic), they should make it possi-
ble to detect regions of compressibility and rota-
tionality separately, using €y to detect regions
of rotationality, and, for instance, [Q4] + [€24] to
detect regions of compressibility.

The only apparent weakness of using these wave
strengths to form an adaptation criterion is that the
wave model is inherently one-dimensional. A pure
shear, lying oblique to the grid, will not be recog-
nized as such, but instead be interpreted as the sum
of a shear and two acoustics [RvLRO1b, RvLRO1a].
A more general wave model, which is independent of
the grid direction 8,, might be desirable,

A Refinement Criterion Based on
a More General Wave-Model

A wave-model that is less dependent on the grid ge-
ometry may be defined by solving for wave propaga-
tion directions, rather than assuming them to be nor-
mal to cell-interfaces of the grid. Roe has developed
several models which combine acoustic, entropy and
shear waves to represent the solution [Roe86b). The
most promising appears, at this point, to be made
up of:



¢ four acoustic waves, of strengths «p, g, g, 04,

propagating in orthogonal directions #.8 +
/2,8 4 7,8 4+ 37/2;
o an entropy wave of strength J propagating fn a

direction &

a shear wave of strongth o
rection fi;

propagating in oo -l

i

and solving, in each cell, for the wave strenwetis and
cdirections, in terms of local values of the contion
gradient. The equations for the derivatives of rhe

primitive variables may be written Faoation |

and the model defined ahove, as

. HSiIif.’,'

Z pagcosl; + pleoso

Pe =
=1
4
Py = Z pogsind; + pdsing
i=1
4
Uy = Z oviacos §; — oasin peos i
=1
4
u, = Z cpa cos B sin 0, — casin? i
i=1
4
vy = Z nasin @; cos 8 - ma cos? g
i=1i
v, = Z a,asin®8; + casinjcos
y E it oa: st
=1
4
Py = Z a;pat eos b,
i=1
4
Py = Z acpa sin g
=l

This set of eight equations in nine nnknowns defines
a one-parameter family of wave models. The mest
physically justifiable model of the family is the one
for which

tan 20 — M
Uy — T.'y

= 0+ =

It -

For this model, the acoustic waves propagate along

and
[¢]

the principal axes of the strain-rate tensor,
the shear wave propagates at an angle of 15
them [Roedl].

to

i

Delining

R = \/(Lr + 1)

the wave angles and strengths are given by

iy (uty — z,ry)2 ,

a = M
o)
& = arctan “)'Oy
Pz — PJ:
' = 2
d = p(62 (a2py — pe)? + (a2 Py — My)
i Vg U,
g = - arclan =" +
Uy — ¥y
Ry £ [":" Uyt - ao + M cos 8+ p,, sin #
2 24 pat
Vi, +v,— R—aoc  pysind —p,cos E}
) = —_ —_—
\2 2 2” p(Lz ]
1 [?l;, + f,j. "{" 1{%’[’.’0’ P C050+py :"”19.
R = — _
" 2 2a ol |
ny = 1 [ ‘v, — R+ ao + pysin f _,\P‘U cos #
2 20 pie |

From the above, it can be seen that the sum of the
w’s ix directly proportional to the divergence of the
velocity:

Veou=a{ay + o+ az+ay). (6}
This, and the definition of 7, define a cell-centerad re-
regions of compressibility may he
detected by examining u, + vy; regions of rotational-
v may be detected by examining wu, — v;.

finerment criterion:

This sim-
ple eriterion can be justificd even without the wave
model deseribed aboves the divergence of the veloc-
ity is a local measure of compressibility. and the ooyl
of the velocity s a local measure of the rotational-
ity.
casily computed: v

This criterion again has the advantage of being
velocity gradients are necessary for
scheme,

any high-order

Proper Scaling of Adaptation Cri-
teria

Ciradient-based ceiteria will tend to inerease at a dis-
continuily as it hecomes more resabveds criteria based

on undivided dilferences will remain bounded bhut fi-

nite at a discontinuily as it becomes more resolved,

Fither of these situations will canse discontinuitios to
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act as “refinement magnets,” with the discontinuity
being resolved at the expense of other regions of the
flow. As pointed out by Warren et al [A\WATK91], this
situation can lead to erroneous results.

To prevent this from happening, two steps are
taken. First, criteria based on undivided differences
(as in the grid-aligned wave model) are muitiplied
by VL, where L is a length scale for a coll (e.g.
Vv Aen); criteria based on gradients (as in the general
wave model) are multiplied L32 This acts to de-
cmphasize the importance of the shocks and shears
as they become more and more resolved. Second, a
minimum length scale for a cell is set; vcolls of scale
I < L are refined no further. The minimum
length scale L, is based on a global jength seale
for the problem.

Setting the Threshold

For each computational cell, the rotationality crite-
rion, 7., and the compressibility criterion, 7., are cal-
culated, using either the grid-aligned wave model or
the general wave model. Then the standard devia-
tion about zero for both criteria, o, and o, are calcu-
lated using only those cells which have a Jength scale
L > Lnin. Thus, if a cell is already at its smallest
allowable size, it will not he used in determining the
standard deviations of the adaptation criteria. The
cffect of this is that, once a flow feature has heen re-
solved, the refinement will look for other, weaker fea-
tures to resolve, The cell may, however, be flagged for
coarsening, since the flow feature that was once there
may have moved or disappeared. Cells that have a
length scale L > L,,;, are refined if either the rota-
tionality or compressibility criterion lie more than
one standard deviation away from zero, the value
for uniform flow. Cells are flagged for coarsening if
both the compressibility and rotationality criteria lie
within one-tenth of a standard deviation from zero.

For the general wave model, for exaraple, o, and

o, are determined by
no2
Zi::l Ts
y Tr = —t
T

= |V x UlL3

n 2
r=|V-UlL} | o = /=2 (7
n
Cells will be {lagged for refinement if
L> Lyin and (|re| >0, or |n|>0.) . (8)

)

SR

Figure 2: Jet Flow Mach Contours

Cells will be flagged for coarsening if

Ir
16

Zg

7ol < 1§

and |1 < {9}

Results of Using the Criteria

Results of using the grid-aligned criterion and the
general wave-model criterion are depicted here for
three test cases. The computations were carried out
using an adapiively-refined Cartesian mesh code that
uscs linear reconstruction to obtain high-resolution
solutions [DPY1].

The flow in the first case is the result of the in-
teraction of an axisymmetric jet A; = 2.0 with
a supersonic stream of Mach number M, = 2.0.
The total pressure ratio between the two streams is
Po,/Po, = 20; the total temperature ratio is unity.
This flow has the following features:

e 2 strong expansion out of the nozzle of the jet;

o a curved shock emanating from the lip of the
nozzle, which reflects at the axis of symmetry;

e an ohlique shiock through which the outer stream
PASSOS]

e a strong shear separating the jet and the outer
stream.

Pigure 2 shows the Mach number contours for this
flow. The solution used to produce these confours
was calculated on a moderately resolved grid, refined
twice using the divergence/curl criterion.

Figures 3-5 show grids resulting from refinement
hased on

1. difference of density across a face (Ap);
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2. difference of pressure across a face (Ap}:

difference  of flow  speed  across a [face

(Avu? + v,

3.

Thresholds were set so that the same number of cells
were refined with each criterion.  As can be scen,
the density difference (Figure 3) detects the shocks
and the expansion region, but misses most of the jet
bouadary.” The pressure difference (Figure 1) fares
even worse, detecting the external shock and the ex-
pansion region, but missing some of the shock em-
anating from the lip of the nozzle, and «ll of the
jet boundary. Only the flow-speed difference (Fig-
ure 5} detects the jet boundary sufficiently well, but
it misses much of the curved shock.

The grid-aligned wave model does no better. Re-
fluement based on the shear wave strength is shown
in Figure 6; refinement based on the acoustic wave

o

| D 2

Pigure 6: Grid Resulting from Refinement Based o _s
Cirid-Aligned Shear Waves (15% of cells flagged for
refinement)

strength 1s shown in Figure 7. The shocks are cop-
tured by the compressibility criterion, but the shenr
is missed by the rotalionality criterion.

The general wave model behaves the best for this
case, as shown in Figure 8, which shows the grid
sulting from refinement based on divergence and curl,
Again, the threshold is set so that the same number
of cells are flagged for refinement as when using the
other criteria. All of the features are resolved, with
the curl flagging only the jei boundary, and the di-
vergence flagging the shocks and the expansion.

The way that the criterion based on the general
wave model acts to separate the effects of compress-
ibility and rotationality may be scen in the compu-
tation of the steady flow over a double-wedge, with
relative turning angles of 10° and 14°, and incoming
Mach number M, = 3.0. The Mach contours are
shown in Figure 9. There is a shock from each of t!:

—
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Figure 7: Grid Resulting from Refinement Based on
Grid-Aligned Acoustic Waves (15% of cells flagged
for refinement)
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Figure 8: Grid Resulting from Refinement Based on
Wave-Model-Based Acoustic and Shear Waves (15%
of cells flagged for refinement)

Figure 9: Mach Contours for Double Wedge Case

compression corners, and the two shocks interact, re-
sulting in a shock, a contact and an expansion. The
expansion can not be seen from the Mach contours.
The expansion reflects from the wall.

Figure 10 shows how the divergence criterion, with
a threshold set so that 20% of the cells are flagged,
detects the features associated with compressibility,
i.e. the shocks and expansion. The effects of both
divergence and curl, with the threshold set so that
[5% of the cells are flagged, are shown in Figure 11.
Adding the curl to the refinement criterion causes the
contact to be captured, as well as the shocks.

The divergence/curl criterion also behaves well for
smooth flows; the grid resulting from calculation of
a purely subsonic flow is shown in Figure 12. The
leading-edge stagnation point and expansion are de-
tected, as is the trailing-edge stagnation point.,

Concluding Remarks

Two criteria for adaptive refinement based on wave
models for the Euler equations have been proposed
and studied. In the first, the wave strengths from
Roe’s approximate Riemann solver, which constitute
a grid-aligned wave model, are used to detect regious
of compressibility and rotationality separately. In
the second, the wave strengths from a more general
wave model are used, resulting in a simple velocity-
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Figure 10: Grid Resulting from Refinement Based
on Wave-Model-Based Acoustic Waves (207
flagged for refinement)
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Figure 11: Grid Resulting from Refinement Based on
Wave-Model-Based Acoustic and Shear Waves (15%
of cells flagged for refinement)

9

I
Xt
i

H
H
0
o

Figure 12: Grid Resulting from Refinement Based on
Wave-Model-Based Acoustic and Shear Waves

divergence criterion for detection of reglons in which
compressibility is important, and a velocity-curl cri-
terion for detection of regions in which rotationality
is important. The more general wave model has beer
shown to do a better job of separating the effects of
compressibility and rotationality. A method for flag-
ging cells for refinement and coarsening, based on the
standard deviation of the divergence and curl of the
velacity, has been described, and shown to perform
very well,

It should be noted that the divergence/curl crite-
rion proposed could be deduced without the use of
a wave model. The wave model serves, however, Lo
sive physical justification for the choice of relinement
criferion, and to suggest more sophisticated criterin
in which not only the wave strengths, but the wave
directions and speeds, are used, in order to deter-
mine the propagation of flow features in unsteady-
flow computations. An cxample of the use of wave
strengths and speeds in refining for unsteady flow is
given by Chiang et al [CvLP92], for a grid-aligned
wave model,

Finally, it should be noted that the refinement cri-
terion presented in this paper is not proposed as the
be-all and end-all of refinement criteria. It would
not, for example, work well in incompressible po
tential flow. The only legitimate test for a refine -



ment criterion is whether or not it works for the
class of problems on which it is being used; there
is no one “right” criterion for a given class of prob-
lems. The divergence/curl criterion presented here
is specifically geared towards computation of steady,
compressible flow.
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