Stability of Tank Truck Combinations
 On Curved Road Segments In the Yukon

Robert D. Ervin
Arvind Mathew

February, 1987

UMTRI
The University of Michigan Transportation Research Institute

Technical Report Documentation Page

1. Roporin No. UMTRI-87-9	2. Govemment Accossion No.		3. Recipient's Cotolog No.	
4. Tiite end SubliteSTABILITY OF TANK TRUCK COMBINATIONS ON CURVED ROAD SEGMENTS IN THE YUKON			5. Repori Date February 1987	
			6. Partorming Orgoni zotion Code	
7. Author's) Robert D. Ervin and Arvind Mathew			8. Performing Orgenization Report No. UMTRI-87-9	
op Portoming Oromi zotion Nome and AdororsThe University of Michigan Transportation Research Institute			10. Work Unit No. (TRAIS)	
			11. Controct or Gront No.none	
			13. Type of Reportit and Pariod Covererd Final $12 / 86-2 / 87$	
12. Sponsaring Agency Name and Address Yukon Community \& Transportation Services Box 2703 Whitehorse, Yukon Y1A 2C6				
			14. Spontoring Agoner Code	
15. Supplementary Notes				
16. Abstract Computerized analyses were conducted to evaluate roll stability issues involving the operation of heavy tanker combinations on two segments of curved roadway. Two vehicle configurations were examined, representing a tanker currently in service in the Yukon Territory of Canada and a reference tanker used in many parts of the U.S. and Canada for transporting petroleum products. The analyses show the comparison in static stability between the selected vehicles and the performance of these vehicles on an existing and a proposed road segment. Recommendations are offered for setting maximum speed values for trucks operating on the subject curves.				
17. Kor Words truck roll stability, safety, highway curve design		18. Distribution Statement UNLIMITED		
19. Security Classif. (of this repert) NONE	2. Sourity Clespif. (of mis papo) NONE		$\begin{gathered} \text { 21. No. of Pager } \\ 104 \\ \hline \end{gathered}$	22. Price

TABLE OF CONTENTS
1.0 INTRODUCTION. 1
2.0 METHODOLOGY 2
3.0 RESULTS 5
4.0 CONCLUSIONS AND RECOMMENDATIONS 8
5.0 REFERENCES. 9
APPENDIX A: COMPREHENSIVE INPUT DATA REPRESENTING THE YUKON TANKER AND THE EXISTING ROADWAY IN UMTRI'S PHASE IV SIMULATION 10
APPENDIX B: COMPREHENSIVE INPUT DATA REPRESENTING THE REFERENCE TANKER AND THE PROPOSED ROADWAY IN UMTRI'S PHASE IV SIMULATION 28
APPENDIX C: INPUT AND RESULTS FOR STATIC ROLL COMPUTATION 46
APPENDIX D: PLOTTED RESPONSE OF VEHICLE ON THE EXISTING AND PROPOSED ROADWAYS 59

1.0 INTRODUCTION

This document constitutes the final report on a study sponsored by the Yukon Community and Transportation Services. The study sought to examine the dynamic stability of fuel-carrying tanker truck combinations at a specific roadway intersection in the vicinity of Whitehorse, Yukon. This project involved the conduct of computerized simulation of vehicle dynamic response, using detailed descriptions of the vehicles and the road geometries of interest. The results of the study provide specific guidance for highway engineering practice in the Yukon, and generally serve to illustrate the remarkably low tolerance level which loaded truck combinations have for overspeeding in tight-radius turns.

The report presents the study methodology in Section 2.0 and results and conclusions in Sections 3.0 and 4.0, respectively. Appendices are provided to document vehicle-descriptive data as well computed performance.

2.0 METHODOLOGY

The methodology employed in this project involved the application of computer simulation techniques and existing parametric data which have been developed at The University of Michigan Transportation Research Institute (UMTRI) over a period of fifteen years. The effort involves, primarily, the determination of parametric data describing the vehicle and its components and the computation of vehicle performance by means of a digital computer. Two computer models were employed here; namely, the UMTRI Static Roll Model [1] which determines a basic rollover threshold measure for the vehicle, assuming a steady turn, and a comprehensive simulation program called the UMTRI Phase IV Model [2] which represents the instantaneous motion responses of the vehicle while it travels over the specific road segment in question.

Vehicles

A particular design of 5-axle tractor-semitrailer combination was defined through drawings and specifications provided by the sponsor. The mechanical properties of this vehicle were then determined by hand calculation and through identification of components such as tires, suspensions, and steering systems, by brand name, whose properties had been previously measured by UMTRI. The Yukon vehicle of immediate interest incorporated a relatively short (8.2 m) semitrailer having an abnormally high center of gravity (2.49 m for height of the composite sprung mass center of the loaded semitrailer above the ground). The gross weight of the combination vehicle was 38.6 m -tons. The full set of parameters used to represent this vehicle in the Phase IV program are listed in Appendix A.

A second vehicle was also selected to serve as a "reference" 5-axle tanker-having a roll stability threshold of 0.32 g 's-such as is common in the U.S. and certain parts of Canada. This vehicle was represented with a gross weight of 36.4 m -tons. The height of the composite sprung mass of the loaded semitrailer in this configuration is 2.1 m . Although both of the selected vehicles were configured as tankers, the tank vessel was assumed to be sufficiently full that the liquid load was non-sloshing (although roll moments of inertia of the trailer were determined recognizing that the tank can rotate in the roll direction without significantly rotating the fluid mass). The full set of parametric values used to represent this vehicle in the Phase IV program are presented in Appendix B.

Roadways

Two right-turn intersection roadways were represented. The first of these road sections is shown in Figure 1, representing an existing T-type intersection between Industrial Road and the Alaska Highway, in the Yukon Territory of Canada. At this site, the Alaska Highway is on a steep upgrade toward the right side of the figure and is curved

away from the intersecting road. The intersection was of interest because of truck rollover accidents which suggested an unusually high level of cornering severity, given the advisory speed of $50 \mathrm{~km} / \mathrm{h}$. The Figure shows the superelevation and grade values (with numbers layed out laterally and longitudinally to the roadway, respectively) at selected stations along the right-turning lane. Because the right-turning lane merges with the Alaska Highway along the outside of a curve, this turning lane becomes reverse-superelevated near the merge point in order to eventually match the superelevation value of the major highway. The right-turn lane also comprises a slightly compounded curve, with an initial radius of 34 m and a final radius of 30 m . This road segment was represented in the computer simulation with superelevation values, as shown, although the grade condition was omitted, for simplicity, as inconsequential to roll stability.

A second road segment was examined as a prospective alternative to the existing right-turning lane. This proposed design involved a curve of 75 m radius which was transitioned by 40 m -long spirals at each end. The maximum superelevation rate of this curve was 0.06 . Both of the selected curve layouts were studied by computing the dynamic response of both the Yukon and reference tanker configurations using the Phase IV simulation model.

3.0 RESULTS

The computed results will be presented in terms of the static roll stability of the two vehicles, themselves, and then using the simulated responses of these vehicle on each of the two road segments.

Static Stability of the Tanker Configurations

Appendix C presents a listing of the input parameters employed in the computation of the static roll stability of both tankers. The Appendix also includes a detailed explanation of each parameter. The reader will note that the data needed to describe each vehicle in the static roll computation is considerably less than that employed in the comprehensive simulation.

The roll behavior of the vehicle, up to its point of roll instability, is computed by the static roll program so as to reveal the maximum steady level of lateral acceleration which the vehicle can tolerate without rollover. The results for both vehicles are as follows:

Vehicle	Rollover Threshold	Roll Angle at Threshold
Yukon Tanker	0.28 g 's	9.5 degrees
Reference Tanker	0.32 g 's	11.0 degrees

These data show that the Yukon vehicle is substantially lower in roll stability than is the reference tanker. The observed difference in performance levels (that is, 0.28 vs. 0.32 g 's) derives from the net difference in two distinctions between the vehicles. Namely, we see that the Yukon vehicle has (a) a higher profile tank layout, yielding a considerably higher placement of the center of gravity, but (b) a substantially stiffer set of suspensions at the tractor and trailer tandem sets, thus accounting for the lower roll angle at the point of instability. Although the stiffer suspensions tend to improve the stability of the Yukon tanker, the high placement of the mass center overpowers this benefit such that a net lower static stability level is achieved relative to the selected reference case.

Vehicle Response on the Selected Road Segments

The Yukon tanker was studied in simulated travel over the existing right-turning roadway at each of five speeds, shown below together with the nominal value of lateral acceleration which is implied at each speed.

Speed (Kmh)	Lateral Acceleration (G's)
50.0	0.58
41.6	0.40
32.9	0.25
29.4	0.20
25.5	0.15

Since the represented roadway employs a small level of superelevation (less than 0.02 , at its maximum) and since the superelevated condition vanishes and even reverses slightly toward the end of the curve, the nominal values of lateral acceleration shown above closely approximate the so-called "side friction factor" which rates the geometric design of the curve. The first speed value, $50 \mathrm{~km} / \mathrm{h}$, represents the speed which had been posted at the right-turning lane of the existing intersection at the time that truck rollover accidents had occurred. Successively lower values of speed were examined in order to illustrate the degree of improvement in vehicle response that would accompany a speed reduction. The computed results for the existing roadway show the following:

At $50 \mathrm{~km} / \mathrm{h}$, the Yukon vehicle rolls over very quickly in the turn, with the inboard tires on both tandem axle sets lifting off of the ground when the tractor has gone only 12 meters into the turn (that is, with the tractor's mass center 12 meters beyond the point of curvature, TC). The roll response then builds up such that the tank body strikes the ground an estimated 20 to 30 meters further along the turn. The roll response of the vehicle beyond the liftoff point is only estimated here, however, since the Phase IV model does not produce an accurate portrayal of vehicle motions at high roll angles. Moreover, a $50 \mathrm{~km} / \mathrm{h}$ speed on this turn is patently excessive since the nominal 0.58 g level of lateral acceleration dramatically exceeds the stability thresholds of most loaded commercial vehicles.

At $41.6 \mathrm{~km} / \mathrm{h}$, the Yukon vehicle rolls over decisively, with all inboard tires on the tandem axles lifting from the roadway when the tractor is 15 meters into the turn.

At $32.9 \mathrm{~km} / \mathrm{h}$, the Yukon tanker approaches rollover, with the inboard tires on the tractor tandem set reaching an essentially zero-load condition, but retains sufficient roll reaction capability at the trailer axles that complete rollover is averted. The nominal 0.25 g level of lateral acceleration is clearly so close to the 0.28 g threshold value for this vehicle, however, that a marginally stable condition is observed.

At $29.4 \mathrm{~km} / \mathrm{h}$, the Yukon tanker travels in a moderately stable manner through the intersection, with 70% of the load on the inside tires being transferred to the outside tires late in the turn. One could say that the vehicle is being operated, under these conditions, at " 70% of its performance limit."

At $25.5 \mathrm{~km} / \mathrm{h}$, the Yukon tanker transfers approximately 50% of the load on its inside tires to the outside. This nominal lateral acceleration level of 0.15 g 's, corresponding to a side friction factor of approximately 0.15 , is seen as an upper bound representative of most highway designs in North America.

At the same $25.5 \mathrm{~km} / \mathrm{h}$ speed, the reference tanker transfers some 44% of the load on its inside tires to the outside and, thus, enjoys a slightly larger margin of safety at this velocity on the subject roadway.

Appendix D contains plots of selected response variables showing the behavior of (a) the Yukon tanker on the existing roadway at speeds of 32.9 and $25.5 \mathrm{~km} / \mathrm{h}$ and (b) the reference tanker at the lower speed of $25.5 \mathrm{~km} / \mathrm{h}$. The plots serve to illustrate characteristic time histories for lateral acceleration, roll angles, and suspension and tire loads.

Regarding the proposed roadway, results were obtained for a speed value of 37.6 km / h, which yields a centripetal acceleration level of 0.15 g 's. Given the 0.06 superelevation level employed in this proposed design, the side friction factor associated with the simulated conditions was a nominal 0.09 . This condition was selected to demonstrate the higher level of conservatism that the authors deem to be advisable in designing and signing new roadways, recognizing the generally poor stability levels of commercial vehicles [3]. The simulated responses of both tankers under these conditions, which are plotted in Appendix D, indicate that only 25% of the load on the inside tires has been transferred to the outside, thus providing a substantial margin for error.

A corresponding vehicle speed of $20 \mathrm{~km} / \mathrm{h}$ would be needed on the existing roadway in order to yield this more conservative 0.09 value of side friction factor.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The computations, together with the results of prior research, support the findings that:

1) The Yukon tanker is relatively low in roll stability, although not as low as the most extreme cases of tank vehicles which are known to operate in North America. For the transportation of hazardous liquids, the high profile of the tank vessel on this vehicle constitutes a less-than-desirable layout.
2) Rollover of this vehicle will occur on the existing roadway, at the intersection of Industrial Road and the Alaska Highway, at all speeds above approximately 35 km / h.
3) The safety margin, relative to rollover risks, can be kept within the bounds of those prevailing at most curved roadways in the U.S. and Canada if speeds on the existing roadway are kept within approximately $25 \mathrm{~km} / \mathrm{h}$.
4) A safety margin which, in the opinion of the authors, is more suitable for the operation of heavy duty truck combinations, would require that speeds on the existing roadway are kept within approximately $20 \mathrm{~km} / \mathrm{h}$.
5) The proposed right-turning road segment would yield this preferable level of safety margin if speeds were kept within a value of approximately $38 \mathrm{~km} / \mathrm{h}$.

5.0 REFERENCES

1. Dill, P.A. Static Roll Model User's Manual. Transp. Research Inst., Univ. of Mich., December 1985.
2. MacAdam, C.C., et al. A Computerized Model for Simulating the Braking and Steering Dynamics of Trucks. Tractor-Semitrailers, Doubles, and Triples Combinations, User's Manual, Phase IV. Final Rept., MVMA Project 1197, Rept. No. UM-HSRI-80-58, September 1, 1980.
3. Ervin, R.D., et al. Impact of Specific Geometric Features on Truck Operations and Safety at Interchanges. Final Rept., Contract No. DTFH61-82-C-00054, Transp. Res. Inst., Univ. of Mich., Rept. No. UMTRI-85-33, August 1985.

APPENDIX A
COMPREHENSIVE INPUT DATA REPRESENTING THE YUKON TANKER AND THE EXISTING ROADWAY IN UMTRI'S PHASE IV SIMULATION

[^0]VEHICLE CONFIGURATION (NUMBER OF TRAILERS - ENTER O FOR A STRAIGHT TRUCK)
INITIAL VELOCITY (FT/SEC) Closed-loop path following mode CLOSED-LOOP PATH FOLLOWING MODE $X-Y$ PATH COORDINATES

\times

\[

$$
\begin{aligned}
& 0.0 \\
& 0.30 \\
& 18.00 \\
& 0.0
\end{aligned}
$$
\]

0.0

$\boldsymbol{\sim}$	0
\boldsymbol{n}	1

UNSPRUNG MASS

LATERAL
PAGES
BRAKE SUMMARY

| ROAD KEV $=-1:$ | USER-DEFINED ROAD SURFACE | (SUBROUTINE ROAD). | |
| :---: | :---: | :---: | :---: | :---: |
| OUTPUT PAGE OPTION KEYS: O DELETES PAGES | | | |
| SPRUNG MASS | SPRUUNG MASS | SPRUNG MASS | TIRE FORCES |
| POSITION | VELOCITY | ACCELERATION | PAGES |
| 1 | 1 | 1 | 1 |

৪৪৪৪

$$
9
$$

$$
\begin{aligned}
& 88588880
\end{aligned}
$$

LEFT SIDE	RIGHT SIDE
-101.00	-101.00
$\begin{gathered} 22.26 \\ 0.0 \end{gathered}$	$\begin{gathered} 22.26 \\ 0.0 \end{gathered}$
3700.00	
18.25	
0.0	
3824.00	
32.00	
80.00	
1200.00	
30.00	
11000.00	
11000.00	
1.00	
150000.00	
3.00	
LEFT SIDE	RIGHT SIDE
-1.00	-1.00
-51.00	-51.00
O. 0	O. 0
-1320.84	-1320.84

[^1]WHEELBASE - DISTANCE FROM FRONT AXLE TO CENTER OF REAR SUSPENSION (IN)
BASE VEHICLE CURB WEIGHT ON FRONT SUSPENSION (LB)
BASE VEHICLE CURB WEIGHT. ON REAR SUSPENSION (LB)
SPRUNG MASS CG HEIGHT (IN. ABOVE GROUND) SPRUNG MASS RGLLL MOMENT OF INOVE GROUND)
SPRUNG MASS PITCH MOMENT OF INERTIA (IN-LB-SEC**2) (IN-LB-SEC**2)
SPRUNG MASS PITCH MOMENT OF INERTIA (IN-LB-SEC**2) SPRUNG MASS YAW MOMENT OF INERTIA (IN-LB-SEC**2)
PAYLOAD WEIGHT (LB)
*** ZERO ENTRY INDICATES NO PAYLOAD ***
*** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
FIFTH WHEEL LOCATION (IN. AHEAD OF REAR SUSP. CENTER) FIFTH WHEEL HEIGHT ABOVE GROUND (IN) TRACTOR FRAME STIFFNESS (IN-LB/DEG)
TRACTOR FRAME TORSIONAL AXIS HEIGHT TRACTOR FRAME TORSIONAL AXIS HEIGHT ABOVE GROUND (IN)
TRACTOR FRONT SUSPENSION AND AXLE PARAMETERS
SUSPENSION SPRING RATE (LB/IN/SIDE/AXLE)
*** NEGATIVE ENTRY INDICATES TABLE
*** ECHO WILL APPEAR ON TABLE INDEX
*** ECHO WILL APPEAR ON TABLE INDEX PAGE ****
SUSPENSION VISCOUS DAMPING (LB-SEC/IN/SIDE/AXLE) COULOMB FRICTION (LB/SIDE/AXLE)
AXLE ROLL MOMENT OF INERTIA (IN-LB-SEC**2)
ROLL STEER COEFFICIENT (DEG. STEER/DEG. ROLL)
LATERAL DISTANCE BETWEEN SUSPENSION SPRINGS (IN) TRACK WIDTH (IN)
UNSPRUNG WEIGHT (LB)
STEERING GEAR RATIO (DEG STEERING WHEEL/DEG ROAD WHEEL)
STEERING STIFFNESS (IN-LB/DEG)
TIE ROD STIFFNESS (IN-LB/DEG)
TORSIONAL WRAP-UP STIFFNESS (IN-LB/IN)
LATERAL OFFSET OF STEERING AXIS (IN)
TRACTOR FRONT TIRES AND WHEELS
*** NEGATIVE ENTRY INDICATES TABLE ENTERED ***
*** ECHO WILL APPEAR ON TABLE INDEX PAGE ***
LONGITUDINAL STIFFNESS (LB/SLIP/TIRE)
*** NEGATIVE ENTRY INDICATES TABIE
*** NEGATIVE ENTRY INDICATES TABLE ENTERED ***
*** ECHO WILL APPEAR ON TABLE INDEX PAGE *** CAMBER STIFFNESS (LB/DEG/TIRE)
ALIGNING MOMENT (IN-LB/DEG/TIRE)
*** NEGATIVE ALIGNING MOMENT ENTRY ***
CORNERING STIFFNESS (LB/DEG/TIRE)

TRACTOR REAR SUSPENSION AND AXLE PARAMETERS *** NEGATIVE ENTRY INDICATES TABLE ENTERED *** SUSPENSION VISCOUS DAMPING (LB-SEC/IN/SIDE/AXLE) COULOMB FRICTION (LB/SIDE/AXLE)
TRACTOR REAR SUSPENSION AND AXLE PARAMETERS

TRAILER NO. 1 PARAMETERS
232.00
30337.45
39262.55
98.10
52500.00
757000.00
757000.00
0.0
TRAILING TANDEM AXLE
$\begin{array}{cc}-103.00 & -103.00 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ & 4100.00 \\ & 27.00 \\ 0.0 \\ & 9000.00 \\ 38.00 \\ 72.00 \\ & 1500.00 \\ \text { TRAILING TANDEM AXLE }\end{array}$
LEFT SIDE RIGHT SIDE
$\begin{array}{ccc}00 & 0 & 0 \\ 00 & 0 & 0 \\ \cdots- & - & 00 \\ -1 & 1 & ल\end{array}$
 48.00
50.00
0.0 LEFT SIDE RIGHT SIDE
*** ZERO ENTRY INDICATES NO PAYLOAD ***
*** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
WHEELBASE - DISTANCE FROM KINGPIN TO CENTER OF REAR SUSPENSION (IN) BASE VEHICLE KINGPIN STATIC LOAD (LB)
BASE VEHICLE CURB WEIGHT ON REAR SUSPENSION (LB) SPRUNG MASS CG HEIGHT (IN. ABOVE GROUND)
SPRUNG MASS ROLL MOMENT OF INERTIA (IN-LB-SEC**2) SPRUNG MASS ROLL MOMENT OF INERTIA (IN (IN-LB-SEC**2)
SPRUNG MASS PITCH MOMENT OF INERTIA (IN-LB-SEC**2) SPRUNG MASS YAW MOME
PAYLOAD WEIGHT (LB)
INPUT PAGE NO.
888

$\begin{aligned} & \text { O} \\ & \hline 8 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \widehat{0} \\ & \hline 8 \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$
0	\bigcirc	
8	8	88% 080 008
	\checkmark	
8	8	

8.0000	5.0000	$0.8000)$
	$(0.0$	
8.0000	$5.0000 \quad 0.8000)$	$(0.0$
	4500.00	4500.00
	20.00	20.00
	103.00	103.00

[^2]HSRI/MVMA braking and handling simulation of trucks. tractor-semitrailers, doubles, and triples

TRAILER NO. \quad Yukon's 3 axle tractor and tandem axie tanker.
DISTANCE FROM TRAILER SPRUNG MASS CENTER TO REAR SUSPENSION (IN)
DISTANCE FROM TRAILER SPRUNG MASS CENTER TO GROUNS (IN)
ROLL MOMENT OF INERTIIA OF TRAILER SPRUNG MASS (IN-LB-SEC**2)
PITCH MOMENT OF INERTIA OF TRAILER SPRUNG MASS (IN-LB-SEC**2)
YAW MOMENT OF INERTIA OF TRAILER SPRUNG MASS (IN-LB-SEC**2)
EMPTY
105.680
98.100
52500.000
756999.938
756999.938

DISTANCE FROM TRACTOR SPRUNG MASS CENTER TO REAR SUSPENSION (IN)
DISTANCE FROM TRACTOR SPRUNG MASS CENTER TO GROUND (IN)
ROLL MOMENT OF INERTIA OF TRACTOR SPRUNG MASS (INN-LB-SEC**2)
PITCH MOMENT OF INERTIA OF TRACTOR SPRUNG MASS (IN-LB-SEC**2)
YAW MOMENT OF INERTIA OF TRACTOR SPRUNG MASS (IN-LB-SEC**2)
TRAILER NO
the static loads on the axles are:

$\begin{array}{lc}\text { AXLE NUMBER } & \text { LOAD } \\ \text { NS }(1,1,1) & \text { OO62.293 } \\ \text { NS }(1,2,1) & 17787.578\end{array}$
$\begin{array}{ll}\text { NS }(1,2,1) & 17787.578 \\ \text { NS }(1,2,2) & 17787.578 \\ \text { NS }(2,2,1) & 19631.273\end{array}$
19631.273
89.451 INCHES BEHIND
308241.688 IN-LB-SEC**2
THE FIRST TRAILER TOTAL MASS CENTER IS 130.875 INCHES BEHIND THE KINGPIN
THE TOTAL YAW MOMENT OF INERTIA IS 852734.250 IN-LB-SEC** 2.
SPRING TABLES

NO. OF LINES
DEFLECTION (IN)

$\begin{array}{cc}-16450.00 & -2.00 \\ -300.00 & -0.25 \\ 0.0 & 0.0 \\ 700.00 & 0.25 \\ 1820.00 & 0.50 \\ 3600.00 & 0.75 \\ 6900.00 & 1.00 \\ 31593.50 & 2.25 \\ 84014.00 & 5.00 \\ \text { (SPRING EXTENSION ENVELOPE) }\end{array}$

$$
\begin{array}{llll}
& 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
- & & & 0
\end{array}
$$

$$
\begin{array}{llll}
& \text { F } & \text { F } \\
0 & \dot{0} \\
0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llll}
& \stackrel{\infty}{\infty} & \stackrel{\infty}{\infty} & \stackrel{\infty}{\infty} \\
\stackrel{n}{N} & \stackrel{0}{0} & \stackrel{0}{0} & 0 \\
0 & & & 0
\end{array}
$$

1983.00 LB
5967.00 LB
9441.00 LB
MU-Y VS ALPHA TABLES
No. of loads No. of VELOCItIES

$\underset{\text { ALPHA }}{3}=$	$\begin{aligned} & 58.70 \\ & \text { (DEG) } \end{aligned}$	$\stackrel{1}{\mathrm{FT} / \mathrm{SEC}}$	$\begin{aligned} & \text { LOAD = } \\ & \text { MU - } \end{aligned}$
	0.0		0.0
	1.00		0. 18
	2.00		0.32
	4.00		0.54
	8.00		0.77
	12.00		0.91
$\begin{array}{r} \text { VELOCITY }= \\ \text { ALPHA } \end{array}$	58.70	FT/SEC	LOAD $=$
	(DEG)		MU -
	0.0		0.0
	1.00		0. 14
	2.00		0.27
	4.00		0.47
	8.00		0.66
	12.00		0.73
$\underset{\text { ALPHA }}{\text { VELOCITY }}=$	58.70	FT/SEC	LOAD $=$
	(DEG)		MU - V
	0.0		0.0
	1.00		0. 10
	2.00		O. 19
	4.00		0.36
	8.00		0.55
	12.00		0.61

ROLL-OFF TABLE

$$
\begin{gathered}
\text { TABLE NO. } \\
\hdashline-1
\end{gathered}
$$

TABLE NO.
-51

HSRI/MVMA BRAKING AND HANDLING SIMULATION OF TRUCKS, TRACTOR-SEMITRAILERS, DOUBLES, AND TRIPLES - PHASE A

hSRI/mVMA braking and handling simulation of trucks, tractor-semitrailers. doubles. and triples - phase 4. rukon's 3 axle tractor and tandem axle tanker.

$$
\begin{array}{lllllllll}
& 0 & 0 & 0 & \grave{0} & \infty & \infty & \infty & \infty \\
\underset{\sim}{0} & - & - & 0 & \dot{0} & \dot{0} & \dot{0} & \stackrel{\infty}{0} & \stackrel{0}{0} \\
\dot{0} & & & & & & & 0 & 0 \\
0
\end{array}
$$

$\begin{gathered} \text { VELOCITY }= \\ \text { SLIP } \end{gathered}$	58.70	FT/SEC	$\begin{aligned} & \text { LOAD }= \\ & \text { MU - } \end{aligned}$	9060.00 LB
	0.0		0.0	
	0.04		0.22	
	0. 10		0.55	
	0.24		0.73	
	0.25		0.73	
	0.50		0.67	
	1.00		0.41	
$\underset{\text { SLIP }}{\text { VELOCITY }}=$	80.70	FT/SEC	$\begin{aligned} & \text { LOAD }= \\ & M U-X \end{aligned}$	9060.00 LB
	0.0		0.0	
	0.04		0.20	
	O. 10		0.52	
	0.24		0.73	
	0.25		0.73	
	0.50		0.65	
	1.00		0.36	

$$
\stackrel{n}{n}
$$

$$
\begin{array}{llllllll}
0 & 0 & 0 & \hat{0} & \hat{N} & \hat{6} & N & \bar{\nabla} \\
\hline & - & 0 & \dot{0} & 0 & \hat{0} & \dot{0} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

APPENDIX B
COMPREHENSIVE INPUT DATA REPRESENTING THE REFERENCE TANKER AND THE PROPOSED ROADWAY IN UMTRI'S PHASE IV SIMULATION
A x
ヨ79ロ1 dヨMO77

$$
\begin{aligned}
& \text { VEHICLE CONFIGURATION (NUMBER OF TRAILERS - ENTER O FOR A STRAIGHT TRUCK) } \\
& \text { INITIAL VELOCITY (FT/SEC) }
\end{aligned}
$$ － －

0080
$00{ }_{\mathrm{N}} 0$

$8 \div$
$\infty 0$
0.0
UNSPRUNG MASS
岂 -
Ol 0
TRACTOR PARAMETERS
WHEELBASE - DISTANCE FROM FRONT AXLE TO CENTER OF REAR SUSPENSION (IN) BASE VEHICLE CURB WEIGHT ON REAR SUSPENSION (LB) SPRUNG MASS CG HEIGHT (IN ABOVE GROUND)
SPRUNG MASS ROLL MOMENT OF INERTIA (IN-LB-SEC**2) SPRUNG MASS PITCH MOMENT OF INERTIA (IN-LB-SEC**2) SPRUNG MASS YAW MOMENT OF INERTIA (IN-LB-SEC**2)
PAYLOAD WEIGHT (LB)
PAYLOAD WEIGHT (LB)

$$
8888
$$

HT SIDE
101.00
22.26
0.0

8 N゚०8888888888

 LEFT SIDE
-1.00
-51.00
0.0
-1320.84 *** ZERO ENTRY INDICATES NO PAYLOAD ***
+** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
FIFTH WHEEL LOCATION (IN. AHEAD OF REAR SUSP. CENTER)
FIFTH WHEEL HEIGHT ABOVE GROUND (ITN)
TRACTOR FRAME STIFFNESS (IN-LB/DEG)
TRACTOR FRAME TORSIONAL AXIS HEIGHT ABOVE GROUND (IN)
OR FRONT SUSPENSION AND AXLE PARAMETERS *** ZERO ENTRY INDICATES NO PAYLOAD ***
+** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED *** ZERO ENTRY INDICATES NO PAYLOAD ***
+** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED *** ZERO ENTRY INDICATES NO PAYLOAD ***
+** FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
FIFTH WHEEL LOCATION (IN. AHEAD OF REAR SUSP. CENTER)
FIFTH WHEEL HEIGHT ABOVE GROUND (INN)
TRACTOR FRAME STIFFNESS (IN-LB/DEG)
TRACTOR FRAME TORSIONAL AXIS HEIGHT ABOVE GROUND (IN)
OR FRONT SUSPENSION AND AXLE PARAMETERS $* * *$ ZERO ENTRY INDICATES NO PAYLOAD ***
$+* *$ FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
FIFTH WHEEL LOCATION (IN. AHEAD OF REAR SUSP. CENTER)
FIFTH WHEEL HEIGHT ABOVE GPOUND (IPN)
TRACTOR FRAME STIFFNESS (IN-LB/DEG)
TRACTOR FRAME TORSIONAL AXIS HEIGHT ABOVE GROUND (IN)
TRACTUR FRONT SUSPENSION AND AXLE PARAMETERS

LEFT SIDE
-101.00
 AXLE ROLL MOMENT CF INERTIA (IN-LE-SEC**2)
ROLL CENTER HEIGHT (IN. ABOVE GROUND)
ROLL STEER COEFFICIENT (DEG. STEER/DEG. ROLL) AUXILIARY ROLL STIFFNESS (IN-LB/DEG/AXLE)
LATERAL DISTANCE BETWEEN SUSPENSION SPRINGS (IN)
TRACK WIDTH (IN)
UNSPRUNG WEIGHT (LB) (DEG STEERING WHEEL/DEG ROAD WHEEL)
STEERING GEAR RATIO (DEG
STEERING STIFFNESS (IN-LB/DEG) STEERING STIFFNESS (IN-LB/DEG)
MECHANICAL TRAIL (IN)
LATERAL OFFSET OF STEERING AXIS (IN)
TRACTOR FRONT TIRES AND WHEELS

CORNERING STIFFNESS (LB/DEG/TIRE)
*** NEGATIVE ENTRY INDICATES TABLE ENTERED ***
+** NEGATIVE ENTRY INDICATES TABLE ENTERED $* * *$
** ECHO WILL APPEAR ON TABLE INDEX PAGE ***
LONGITUDINALSTIFFNESS (LB/SLIP/TIRE)
+**NEGATIVE ENTRY INDICATES TABIE ENTERED

+ + + NEGATIVE ENTRY INDICATES TABLE ENTERED ***
CAMBER STIFFNESS (LB/DEG/TIRE)
ALIGNING MOMENT (IN-LB/DEG/TIRE)
+ + + NEGATIVE ALIGNING MOMENT ENTRY +** CAMBER STIFFNESS (LB/DEG/TIRE)
(ALIGNING MOMENT ENTRY
RIGH SIDE

$$
888
$$

O. Oin

$$
8.0000 \quad 5.0000 \quad 0.8000)
$$

$$
\begin{array}{cc}
8.0000 & 5.0000 \quad 0.80001 \\
4500.00 \\
20.00
\end{array}
$$

HSRI/MVMA BRAKING AND HANDLING SIMULATION OF TRUCKS. TRACTOR-SEMITRAILERS. DOURLES, AND TRIPLES - PHASE 4

*** ZERO LINES IN TREADLE PRESSURE TABLE INDICATES NO BRAKING ***
*** THREE BRAKE PARAMETERS PER AXLE ARE DELETED AT THIS POINT ***

WHEELBASE - DISTANCE FROM KINGPIN TO CENTER OF REAR SUSPENSION (IN)
BASE VEHICLE KINGPIN STATIC LOAD (LB)
base vehicle curb weight on rear suspension (lb)
SPRUNG MASS CG HEIGHT (IN. ABOVE GROUND)
SPRUNG MASS ROLL MOMENT OF INERTIA (IN-LB-SEC++2)
SPRUNG MASS PITCH MOMENT OF INERTIA (IN-LB-SEC**2
SPRUNG MASS YAW MOMENT OF INERTIA (IN-LB-SEC**2)
PAYLOAD WEIGHT (LE)
+** ZERO ENTRY INDICATES NO PAYLOAD ***
$++*$
$+* I V E ~ P A Y I O A D ~ D E S C R I P T ~$

+ + FIVE PAYLOAD DESCRIPTION PARAMETERS ARE NOT ENTERED ***
TRAILER NO. 1 REAR SUSPENSION AND AXLE PARAMETERS LEADING TANDEM AXLE
LEFT SIDE RIGHT SIDE
407.60 31000.00 34000.00
84.00
570.00 34570.00 2763000.00
2763000.00
0.0
TRAILING TANDEM AXLE
LEFT SIDE RIGHT SIDE

SUSPENSION KEY - O INDICATES SINGLE AXLE, 1 INDICATES FOUR SPRING. 2 WALKING BEAM TANDEM AXLE SEPARATION (IN BETWEEN LEADING AND TRAILING AXLES) TANDEM AXLE SEPARATION (IN EETWEEN LEADING AND TRA
STATIC LOAD TRANSFER (PERCENT LOAD ON LEAD AXLE)
STANAMIC LOAD TRANSFER (\% BRAKE TORQUE REACTED AS TANDEM AXLE LOAD TRANSFER)
50.00^{1}
-103.00 - 103.00
50.00

SUSPENSION SPRING RATE (LE/IN/SIDE/AXLE)
+++ NEGATIVE ENTRY INDICATES TABLE ENTERED ***
+* + NEGATIVE ENTRY INDICATES TABLE ENTERED *
*** ECHO WILL APPEAR ON TABLE INDEX PAGE ***
SUSPENSION VISCOUS DAMPING (LB-SEC/IN/SIDE/AXLE)
COULOMB FRICTION (LB/SIDE/AXLE)
AXLE ROLL MOMENT OF INERTIA (IN-LB-SEC**2)
ROLL CENTER HEIGHT (IN. ABOVE GROUND)
ROLL STEER COEFFICIENT (DEG. STEER/DEG. ROLL)
AUXILIARY ROLL STIFFNESS (IN-LB/DEG/AXLE)
LATERAL DISTANCE BETWEEN SUSPENSION SPRINGS (IN)
TRACK WIDTH (IN)
UNSPRUNG WEIGHT (LB)
13.00
$\begin{array}{ll}0.0 & 0.0 \\ 0.0 & 0.0\end{array}$
0.0
0.0
-103.00

TRAILER NO. 1 REAR TIRES AND WHEELS

DUAL TIRE SEPARATION (IN)
DUAL TIRE SEPARATION (IN)
CORNERING STIFFNESS (LB/DEG/TIRE)
CORNERING STIFFNESS (LB/DEG/TIRE)
+** NEGATIVE ENTRY INDICATES TABLE ENTERED +**
NGITUDINAI STILFNESS (LB/SIIP/TIRE) APS PAGE +*+
+++ NEGATIVE ENTRY INDICATES TABLE ENTERED +** +** NEGAT IVE ENTRY INDICATES TABLE ENTERED ***
$+* *$ ECHO WILL APPEAR ON TABLE INDEX PAGE ***
CAMBER STIFFNESS (LB/DEG/TIRE)
ALIGNING MOMENT (IN-LB/DEG/TIRE)
+* NEGATIVE ALIGNING MOMENT ENTRY +**
888

8.0000	5.0000	$0.8000)$
8.0000	5.0000	$0.8000)$
	4500.00	4500.
	20.00	20.
	103.00	103.

$5.00000 .8000)$	$(0.0$
$5.00000 .8000)$	$(0.0$
4500.00	4500.00
20.00	20.00
103.00	103.00

[^3]0
0
$\stackrel{0}{0}$
+* AI.IGNING MOMENT CURVE FIT PARAMETERS:
+** NEGATIVE ALIGNING MOMENT ENTRY +**
$++*$ ALIGNING MOMENT CURVE FIT PARAMETERS: TIRE SPRING RATE (LB/IN/TIRE)
TIRE LOADED RADIUS (IN)
POLAR MOMENT OF INERTIA (IN-LB-SEC $++2 /$ WHEEL)
HSRI/MVMA BRAKING AND HANDLING SIMULATION OF TRUCKS, TRACTOR-SEMITRAILERS. DOUBLES. AND TRIPLES - PHASE 4
hSRi/mVMA braking and handiling simulation of trucks. tractor-semitrailers, doubles, and triples - phase 4 Michigan 3 axle tractor and tandem axie tanker.

HSRI/MVMA BRAKING AND HANDLING SIMULATION OF TRUCKS, TRACTOR-SEMITRAILERS, DCUBLES, AND TRIPLES - PHASE A

SIJSPENSION DEFLECTION CONSTANTS =
NO. OF LINES

SPRING TABLES
SPRING TABLES

---.

FORCE (LB)	DEFLECTION (IN)	TABLE NO.
-20400.00	-15.00	
-1020.00	-0.75	
0.0	0.0	
1550.00	1.00	
2900.00	2.00	
4200.00	3.00	
11750.00	5.50	
21200.00	8.50	
(SPRING COMPRESSION ENVELOPE		

15000 INCHES EXTENSION.
UNIT 1 SUSP 1 AXLE 1
-102.00


```
11562.50\(-10\)
```

9
00 si
20400.00
-1020.00
0.0
1550.00
2900.00
4200.00
7700.00
17500
21200.00
21200

TABLE NO.
-10100

$$
\begin{array}{rr}
-11662.50 & -10.00 \\
-5412.50 & -5.00 \\
-100.00 & -0.75 \\
-100.00 & 0.0 \\
1050.00 & 0.50 \\
4550.00 & 1.50 \\
6950.00 & 2.00 \\
24827.00 & 6.50 \\
30821.00 & 8.00 \\
\text { (SPRING EXTENSION ENVELOPE) }
\end{array}
$$

SUSPENSION DEFLECTION CONSTANTS = 0.O5OOO INCHES COMPRESSION. $\begin{array}{lll}\text { SPRING STATIC EQUILIBRJUM CONDITION: } & 7350.00 \text { LB. } & 1.85 \text { INCHES. } \\ \text { SPRING STATIC EQUILIBRIUM CONDITION: } & 7350.00 ~ L B, & 1.85 \\ \text { INCHES. }\end{array}$

$$
\begin{array}{rr}
-34162.50 & -20.00 \\
-400.00 & -1.75 \\
0.0 & 0.0 \\
950.00 & 0.50 \\
2900.00 & 1.00 \\
5750.00 & 1.50 \\
26193.80 & 5.00 \\
\text { (CPRING EXTENCION ENVEIODE }
\end{array}
$$

 7
ELOPE)

$$
\begin{array}{lrlr}
\text { SUSPENSION DEFLECTION CONSTANTS }= & 0.03000 \text { INCHES COMPRESSION, } & \text { O.OBOOO INCHES EXTENSION. } \\
\text { SPRING STATIC EQUILIBRIUM CONDITION: } & 7750.00 \text { LB, } & 1.69 \text { INCHES. } & \text { UNIT } 2 \text { SUSP } 2 \text { AXLE } 1 \\
\text { SPRING STATIC EQUILIBRIUM CONDITION: } & 7750.00 ~ L B, ~ & 1.69 \text { INCHES. } & \text { UNIT } 2 \text { SUSP } 2 \text { AXLE } 2
\end{array}
$$

$$
\begin{array}{llll}
& 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
- & \\
0 & = & = & = \\
0 & 0 & 0 & 0 \\
0 &
\end{array}
$$

ROLL-OFF TABLE

$$
\begin{aligned}
& 0.0 \\
& 1.00
\end{aligned}
$$

$$
\begin{aligned}
& 1.00 \\
& 2.00 \\
& 4.00 \\
& 8.00
\end{aligned}
$$

$$
\begin{aligned}
& 0.0 \\
& 0.18 \\
& 0.32 \\
& 0.54 \\
& 0.77 \\
& 0.91
\end{aligned}
$$

$$
\begin{aligned}
& \text { VELOCITV }=58.70 \text { FT/SEC LOAD }= \\
& \text { ALPHA (DEG) } \text { MU } V
\end{aligned}
$$

MU-Y VS ALPHA TABLES

$$
\begin{gathered}
\text { NO. OF LOADS NO. OF VELOCITIES } \\
3 \\
\text { VELOCITY }=58.7 O \text { FT/SEC LOAD }= \\
\text { ALPHA (DEG) }
\end{gathered}
$$

$$
\begin{gathered}
0.0 \\
1.00 \\
2.00 \\
4.00 \\
8.00 \\
12.00 \\
\text { VELOCITY }= \\
\text { ALPRA } 70 \text { FT/SEC } \\
\hdashline \cdots \\
0.0 \\
1.00 \\
2.00 \\
4.00 \\
8.00 \\
12.00
\end{gathered}
$$

$$
\begin{aligned}
& \text { ALPHA } \\
& 0.0 \\
& 1.00 \\
& 2.00
\end{aligned}
$$

SLIP

$$
\begin{aligned}
& 1983.00 \mathrm{LB} \\
& 5967.00 \mathrm{LB} \\
& 9441.00 \mathrm{LB}
\end{aligned}
$$

$$
\begin{gathered}
\text { TABLE NO. } \\
-1
\end{gathered}
$$

TABLE NO

$$
\begin{array}{cccc}
& \infty \\
\stackrel{\infty}{N} & \infty & \infty & \infty \\
\sim & 0 \\
\sim & 0 & 0 & 0 \\
0 & & & 0
\end{array}
$$

$$
\begin{array}{llll}
& 0 & 0 & 0 \\
\underset{\sim}{7} & \dot{7} & 0 \\
0 & 0 & 0 & 0 \\
0 & & &
\end{array}
$$

	0	0	0
0	0	0	0
0	-		-
0			
0	0	0	0
0	0	0	0
0	-	-	
0			

$$
\begin{array}{llll}
& \hat{\infty} & \infty & - \\
0 & \infty & \infty & \infty \\
\dot{O} & 0 & 0 & 0 \\
\dot{C} & & &
\end{array}
$$

$$
\begin{array}{lllll}
0 & 5 & N & 0 & - \\
0 & \underset{0}{0} & 0 & 0 & \Gamma \\
0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllll}
n & 9 & \square & 0 & N \\
\stackrel{N}{\sim} & \infty & \infty & 0 \\
C & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllll}
\hat{\sigma} & 0 & \hat{\sigma} & \hat{\sigma} & \infty \\
0 & 0 & \dot{0} & 0 & 0
\end{array}
$$

$$
\begin{array}{r}
8 \\
8 \\
- \\
- \\
-
\end{array}
$$

$$
\begin{array}{lllll}
\circ & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\sigma & 0 & \infty & \dot{9} & \underline{0}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
0 & 0 & 9 & N & n \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllll}
\bar{\sim} & \stackrel{N}{N} & \underset{N}{0} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
&
\end{aligned}
$$

3020.00 LB
3020.00 LB
3020.00 LB

MU-X VS. SLIP TABLES
No. of loads no. of VElocities
VELOCITV
SLIP

$$
\begin{array}{ll}
0.0 & 0.0 \\
0.04 & 0.58 \\
0.10 & 0.81 \\
0.21 & 0.86 \\
0.25 & 0.86 \\
0.50 & 0.79 \\
1.00 & 0.62
\end{array}
$$

= avol 23s/L」 OL
ITV $=58.7$
SLIP
$\begin{array}{ll}0.0 & 0.0 \\ 0.04 & 0.51 \\ 0.10 & 0.79 \\ 0.21 & 0.85 \\ 0.25 & 0.85 \\ 0.50 & 0.77 \\ 1.00 & 0.56\end{array}$
LOAD $=$
MU $-x$

trucks. tractor-semitrailers, doubles, and tryples - phase

∞	∞
$ـ$	\circ
0	\circ
0	0
0	0
0	0
0	0

$$
\begin{gathered}
\text { VELOCITY }=29.30 \mathrm{FT} / \mathrm{SEC} \begin{array}{l}
\text { LOAD }= \\
\text { SLIP } \\
\text { MU }-x
\end{array},
\end{gathered}
$$

$$
9060.00 \mathrm{LB}
$$

$\begin{gathered} \text { VELOCITY }= \\ \text { SLIP } \end{gathered}$	58.70	Ft/sec	$\begin{aligned} & \text { LOAD }= \\ & \text { MU }-x \end{aligned}$
	0.0		0. 0
	0.04		0.33
	O. 10		0.69
	0.24		0.79
	0.25		0. 79
	0.50		0.72
	1.00		O. 48

$\begin{gathered}\text { VELOCITY } \\ \text { SLIP }\end{gathered} \quad 30.70 \mathrm{FT} / \mathrm{SEC} \begin{aligned} & \text { LOAD }= \\ & \text { MU }-\mathrm{x}\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
0.0 \\
0.30 \\
0.67 \\
0.73 \\
0.78 \\
0.70 \\
0.44
\end{array}
\end{aligned}
$$

ROLL-OFF TABLE

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array} 0-0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & \infty & 0 & N & \hat{\infty} \\
0 & - & - & 0 & \dot{0} & 0 & 0 & 0 \\
0 & - & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 0 & 0 & \hat{0} & \infty & \infty & \infty \\
\sim & \infty & \infty \\
\sim & - & 0 & 0 & 0 & 0 & \stackrel{0}{0} & 0 \\
0 & & & & & & & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
& 0 & 0 & 0 & \hat{0} & \hat{N} & \hat{0} & 0 \\
0 & 0 & \bar{\nabla} \\
- & - & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & & & & & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { a } \\
\text { a } \\
\text { a }
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & \ddots & 7 & \nabla & \vec{~}
\end{array} \\
& \begin{array}{lllllllll}
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & - & n & - & 0 & 0 & 0 & 0 \\
\frac{I}{a} & & & & & & \infty & N & \ddots
\end{array}
\end{aligned}
$$

$8700 \cdot 0906$

APPENDIX C
Input and results for static roll computation
Yukon's 3 axle tractor and tandem axle tanker.

LATERAL	SPRUNG	SPRUNG	SPRUNG	UNSPRG	UNSPRG	UNSPRG	v defl	\checkmark defl	\checkmark defl	\checkmark defl	v delf	v defl	\checkmark defl	\checkmark DEFL
ACC	MASS 1	MASS 2	MASS 3	MASS 1	MASS 2	MASS 3	T1 4×2	$12 \mathrm{AX2}$	13 AX2	14 AX2	T 1 A ${ }^{\text {a }}$	T2 4×3	T3 AX3	14 AX3
0.0	0.0	O. 0	0.0	0.0	0.0	0.0	0.99	0.99	0.99	0. 99	1.09	1.09	1.09	1.09
0.032	0.45	0.44	0.52	0.05	0. 17	0. 15	0.87	0.90	1.07	1.11	0.98	1.01	1.17	1. 20
0.064	0.93	O. 89	1.04	O. 10	0.33	0.31	0. 74	0.82	1. 16	1.23	0.86	0.93	1. 25	1.32
0.096	1.45	1.33	1.56	0. 16	0.50	0.46	0.62	0.73	1. 24	1. 36	0.75	0.86	1.33	1.43
0.127	1.96	1.79	2.08	0.21	0.65	0.61	0.51	0.65	1.32	1. 47	0.64	0.78	1. 40	1.54
0. 158	2.48	2.24	2.60	0. 27	0.81	0.77	0.39	0.57	1.40	1.59	0.52	0.70	1.48	1.66
0. 184	2.98	2.70	3. 12	0.32	0.94	0.91	0. 29	0. 51	1.47	1.68	0.42	0.62	1.56	1.76
0.209	3.48	3. 17	3.64	0.37	1.06	1.05	0.20	0.44	1.53	1.77	0.32	0.55	1.63	1.87
0.230	3.97	3.64	4.16	0.41	1.17	1.17	O. 12	0.39	1.59	1.85	0.23	0.49	1.69	1.95
0. 240	4.28	3.98	4.68	0.44	1.23	1.24	0.08	0. 36	1.62	1.90	0. 17	0. 45	1.73	2.01
0.234	4.21	3.93	5.20	0.43	1.22	1.25	0.09	0.37	1.61	1.89	0. 17	0.45	1.73	2.01
0.227	4.13	3.87	5.72	0.42	1.20	1.26	0. 10	0.37	1.60	1.88	0. 16	0.45	1.73	2.02
0.221	4.06	3.82	6.24	0.41	1. 19	1.26	0. 11	0. 38	1.59	1.86	0. 16	0.45	1.73	2.02
0.214	3.98	3.77	6.76	0. 40	1.17	1.27	O. 12	0.39	1.59	1.85	0. 16	0.44	1.74	2.02
0.219	4.04	3.81	7.28	0.41	1.18	1.34	0.11	0.38	1.59	1.86	0. 10	0.40	1.78	2.08
0.232	4.42	4.21	7.80	0.44	1.25	1.43	0.06	0.35	1.63	1.91	0.03	0.36	1.82	2.15
0.246	4.88	4.69	8.32	0.48	1.33	1.56	0.00	0.31	1.67	1.97	-0.08	0. 28	1.87	2.22
0.262	5.33	5.16	8.84	0.52	1.52	1.71	-0. 18	0. 17	1.72	2.07	-0. 23	O. 16	1.91	2.30
0.278	5.78	5.62	9.36	0.56	1.71	1.87	-0. 36	0.02	1.77	2.16	-0. 38	0.04	1.95	2.37
0. 281	5.87	5.72	9.46	0.57	1.75	1.90	-0. 40	-0.00	1.78	2. 18	-0. 41	0.02	1.96	2.39
0. 281	5.97	5.84	9.58	0.57	1.88	1.93	-0.58	-0. 15	1.77	2. 19	-0. 44	-0.00	1.96	2.40

999.000

Michigan 3 axle tractor and tandem axle tanker
WUT $=$ 1200. WU2 $=$ W600. WU3 $=$ 3000. WAXL1 $=12000$. WAXL2 $=34000$. WAXL3 $=34000$
$\mathrm{T} 1=40.00 \mathrm{~A} 1=0.0 \quad \mathrm{~T} 2=29.50 \mathrm{~A} 2=13.00 \mathrm{~T}=2=29.50 \mathrm{A3}=13.00 \mathrm{~S} 1=16.00 \mathrm{~S} 2=19.00 \mathrm{s3}=19.00$
$\mathrm{ZS} 1=42.00 \mathrm{ZS2}=38.00 \mathrm{ZS3}=84.00 \mathrm{R} 1=20.00 \mathrm{R} 2=20.00 \mathrm{R3}=20.00$
HR1 $=18.25$ HR2 $=29.00$ HR3 $=29.00 Z 5=50.00 \quad Z F R=38.00$

MFR $=40000.0$ COULFR $=5000.0$ M5 $=1000000.0$ MOMSEP $=558000.0$
LASH5 $=3.0$ W5 $=31000.0$ WS2 $=1000.0$
KYT1 $=5000.0 \mathrm{KYT} 2=10000.0 \mathrm{KYT3}=10000.0$
KOVT1 $=332.2$ KOVT2 $=704.4$ KOVT3 $=704.4$

No. OF DATA POINTS IN TABLE: 9

FORCE	DEFLECTION
-20550.000	-15.000
-1170.000	-0.750
-150.000	0.0
1250.000	1.000
2550.000	2.000
3825.000	3.000
7240.000	5.500
11127.500	8.500
20076.500	15.500

SPRING TABLE.
O. DF DATA POINTS IN TABLE : 9

FORCE
-23225. 000
10725.000

- 100.000
- 100.000
2800.000
11100.000
16200.000
16200.000
58377.000
58377.000
72471.000

DEFLECTION

- 10.000
-0.750
0.750
0.50
1.500
2.000
2.000
6.500
8.000

SPRING TABLE: 3
NO. OF DATA POINTS IN TABLE : 7
FORCE DEFLECTION
-68225.000 -20.000
-1.750
250.000
2600.000
7150.000
13000.000
57943.801
0.0
0.500
1.000
1.500
5.000

DATA FROM:

LATERAL	SPRUNG	SPRUNG	SPRUNG	UNSPRG	UNSPRG	UNSPRG	\checkmark defl	\checkmark defl	\checkmark DEFL	\checkmark DEFL	\checkmark delf	\checkmark DEFL	\checkmark DEFL	\checkmark DEFL
ACC	MASS 1	MASS 2	MASS 3	MASS 1	MASS 2	MASS 3	T 1 A ${ }^{\text {a }}$	$12 \mathrm{~A} \times 2$	T3 A ${ }^{\text {a }}$	T4 AX2	T1 AX3	T2 A ${ }^{\text {a }}$	T3 AX3	T4 Ax3
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
0.028	0.49	O. 49	0. 52	0.05	O. 10	O. 12	0.87	0.89	1.00	1.02	0.86	0.88	1.01	1.03
0.055	0.98	0.98	1.04	0. 11	0.20	0.24	0.80	O. 84	1.05	1.09	0.77	0.82	1.07	1.12
0. 082	1.48	1.47	1.56	O. 16	O. 30	0. 35	O. 72	0.79	1. 10	1. 16	0.68	0.76	1. 13	1.21
0. 108	2.00	1. 96	2.08	O. 22	0.39	0. 47	0. 66	O. 74	1. 14	1.23	0.60	0.70	1. 19	1.29
O. 134	2.52	2.45	2.60	O. 27	0. 48	0. 58	O. 59	0. 70	1. 19	1. 30	0.51	0.64	1.24	1.38
O. 158	3.04	2.94	3. 12	0. 33	O. 57	0. 69	O. 52	0. 65	1.24	1.37	0.43	0.59	1. 30	1.46
0. 182	3.55	3.44	3.64	0.38	0.66	0. 80	0. 45	0.60	1.29	1.44	0.36	0.54	1.35	1.53
0. 206	4.06	3.93	4. 16	0.44	0. 76	0.90	0. 39	0. 56	1.33	1. 50	0. 28	0.48	1.41	1.61
0.226	4.54	4.41	4.68	0. 48	0.84	0.99	0. 32	0.51	1.38	1.57	0. 22	0.44	1.45	1.67
0.245	5.03	4.90	5.20	0.53	0.93	1.07	0. 26	O. 47	1.42	1.63	O. 16	0.40	1.49	1. 73
0.258	5.48	5.39	5.72	0.57	1.00	1. 12	0.21	0. 43	1.45	1.68	O. 12	0.37	1.52	1.77
0.267	5.92	5.87	6.24	0.60	1.06	1. 15	O. 16	0.40	1.49	1.73	0. 10	0.36	1.53	1.79
0.274	6.37	6.36	6.76	0.64	1. 12	1. 18	O. 12	0. 37	1.52	1.77	0.08	0.34	1.55	1.81
0.273	6.87	6.88	7.28	0.67	1. 13	1.20	O. 11	0.37	1.52	1.78	0.06	0.33	1.56	1.83
0.272	7.32	7.39	7.80	0.69	1. 14	1.21	O. 10	O. 36	1.53	1.79	0.05	0.32	1.56	1.84
0.276	7.74	7.88	8.32	0.72	1.18	1.24	0.07	0.34	1.55	1.82	0.03	0.31	1.58	1.86
0.288	8.20	8.39	8.84	0.76	1.23	1.32	0.03	0. 31	1.57	1.85	-0.04	0.26	1.61	1.91
0.299	8.66	8.89	9.36	0.80	1.29	1.43	-0.01	0.29	1.60	1.89	-0. 15	O. 18	1.64	1.96
0.309	9.11	9.39	9.88	0.83	1.38	1.54	-0.09	0.22	1.62	1.94	-0. 25	O. 10	1.67	2.02
0.319	9.57	9.89	10.40	0.87	1.46	1.65	-0. 18	O. 15	1.65	1.98	-0. 36	0.01	1.70	2.07
0.321	9.63	9.97	10.48	0.88	1.48	1.67	-0. 19	O. 14	1.65	1.99	-0.38	-0.00	1.70	2.08
0.320	9.96	10.39	10.92	0.90	1.53	2. 14	-0. 25	O. 10	1.66	2.01	-1.02	-0. 54	1.65	2.13
0.320	10.35	10.88	11.44	0.92	1.60	2.70	-0. 31	0.05	1.68	2.04	-1.79	-1.17	1.58	2.20
0.312	10.20	10.74	11.96	0.90	1.56	3.17	-0. 28	0.08	1.67	2.03	-2.43	-1.71	1.53	2.25
0. 305	10.05	10.60	12.48	0.89	1.53	3.64	-0. 24	O. 10	1.66	2.01	-3.07	-2.24	1.48	2.30
0.297	9.91	10.47	13.00	O. 87	1.49	4. 11	-0. 21	O. 13	1.65	1.99	-3.71	-2.78	1.42	2.36
0. 290	9.76	10.33	13.52	0.85	1.46	4.58	-0. 18	O. 15	1.65	1.98	-4. 35	-3.31	1.37	2.41
0. 285	9.84	10.46	14.04	0. 85	1.47	5.09	-0. 19	O. 15	1.65	1.98	-5.04	-3.88	1.31	2.47
0.285	10.23	10.95	14.56	0.88	1.53	5.65	-0. 25	O. 10	1.67	2.01	-5.80	-4.52	1.25	2.53
0.284	10.56	11.37	15.00	0.90	1.59	6.12	-0.30	0.06	1.68	2.04	-6. 44	-5.05	1.20	2.58

999.000

INTRODUCTION

The Static Roll Model is a computer-based model which is useful for calculating the rolloper threshold of articulated vehicles during steady turning maneuvers. The dynamics of 2011 motion are not included in the model. Instead, the roll response in a. steady turn is computed by repestedly solving, for small increments of roll angle, a set of equations which describe the static equilibrium of the vehicle in the roll plane. In reference [2], experimental efidence is used to show that the Static Roll Model is capable of predicting the rollover threshold of articulated pehicles with a high lepel of accuracy.

The likelihood that either maneuvering or accident-induced forces can cause a rollorer is strongly influenced by the steady turning rollover threshold of the pehicle.[2] Hence, if the rolloper immonity level of heafy pehicles is to be enhanced, it is essential to gain a broad understanding of the rollover process and to develop the anslitical tools that can be used for evaluating the various methods by which the rolloper threshold of a. vehicle can be improved.

ENGDEERING ONTMS AND COMPUTER REQUREMENTS

Throughout the program, the Engilish system of umits is used ill input dats are given in the umits of pounds, inches, degrees, and seconds. Masses and weights are in mits of pounds, with a gravitationsl constant of $386 \mathrm{in} / \mathrm{sec} / \mathrm{sec}$ assumed.

The Static Roll model is written for use on ang large-scale computer spsteIt, and requires only one input and one output device. The source code is written in the level-G FORTRAN IY language.

Copies of the program and documentation are apailable to the public through the Engineering Research Difision, The University of Michigan Transportation Research Institute, 2901 Baxter Road. Ann hrbor, Hichigan. 48109.

STATIC ROLL DPCTT

The input to the Static Roll Model is submitted to the madel in one text file, which is detailed below. This file is attached to the logical I/O unit 5 , and is written in fired format. (Depending on the system used, the model map also accept the data with only commas, no spaces, separating the palues.)

This model is designed to only accept input for a tractor and semi-trailer. In order to simulate a conventional (a-type) double combination, two rums of the model are necessary. The first run should include input for the tractor and the first semi-trailer. The second run should represent the second semi-trailer as a fulltrailer, with all fariables that reference the tractor rear suspension replaced with information about the dolly attached to the front of the semi. In this rum, the front end of the tractor is to be effectively ignored, so most values refering to this may remain the same as in the first rum. The exceptions are the weight of the tractor's front aile $\left(\mathrm{KM}_{1}\right)$, and the front axle load of the tractor ($\mathrm{KL}_{\mathrm{H}}^{1} 1$), which should be assigned low Felues (1 to 20 lbs). Triples may be simulated by using three rums of the model. A straight three-suspension truck mar be simulated by increasing the fifth wheel rcil stiffness (M5) and the moment of separation (MOMSEF) to to a high value (999999. 9). \& straight tro-suspension truck can be simulated by entering large palues for 15 and MOMSEP and low palues for KO_{1} and $\mathrm{Kh}_{2} \mathrm{H}_{1}$. See sample rus in appendiy for input and ouput file examples.

INPUTT DATA FTIE

Line \#1

TITLE : The title line is an alpha-numeric string of up to 80 characters in length. This title is supplied by the user to identifiz the simulation rm. The program reads the title in 20 A 4 format, and the progran variable is HFAD.

Line \#2

WEIGET OF TEE FRONT ATHE OF THF TRACTOR: This pariable indicates the weight of the front axle of the tractor in ibs. In this context, "axle weight" comprises the sum of the elements constituting the front unsprung mass. This parameter is read by the program in F10.2 format, and the program rariable is FO_{1}.

WEIGHT OF THE REAR CDIE OF THE TRACTOR: If the tractor has tandell rear azles, the weight of both axles in lbs are combined. It is read by the program in F10.2 format, and the program Fariable is min_{2}

Abstract

BEIGRT OF THE TRATHER AXUES : FOr multiple axles, combine the weight of all trailer axles in lbs. The numer is entered in F10. 2 format, and the prograll pariable is HO_{3}.

TRACTOR ERONT ATHE LOAD : This pariable is the measure of the total laad carried by ONLY whe front axle of the tractor in lhs. It is read by the program in F 10.2 format, and the program pariable is $\mathrm{H}_{\mathrm{H}}^{1} \mathrm{E} \mathrm{S}_{1}$

TRACTOR REAR LELF LOAD : If the tractor has tamem ayles, then combine the load in lbs carried by both these arles. This number is entered in F10.2 format, and the program pariable is $\mathrm{H}_{4} \mathrm{SN}_{2}$.
 carried by the trailer axles. For multiple axles, combine the load carried by all trailer axles. The format for this pariable is F10.2, and the progran pariable is Wixirs.

TRACTOR TIPE LATERAL SPACING : This pariable is half the lateral distance between the inner tires (center to center) on the tractor's front axle. For the normal simle tire installations. this pariable is equal to balf the lateral distance between the single tires. The single tire conpention is used for all the following lateral spacing parameters. This pariable is measured in inches, and is witten in F10.2 format. The program pariable is T_{1}.

TRACTOR DUA SPACING : This parameter is a measure in inches Of the sparing between dual tires, if they exist, on the front erie of the tractor. For normal single tires, this parameter is set to zero. The parameter is read by the progran in $\overline{\mathrm{F}} 10.2$ formet, and the progran Fariable is $\dot{\mu}_{1}$.

TRACTOR PEAR TIRE LATERAL SPACING : The value of this parameter is the measure in inches of balf the lateral distance between the inner tires (center to center) on the tractor rear a:les. It is written in F10. 2 format, and the program variable is T_{2}.

TRACTOR EEAR DUAL SPACING : The FElue of this parameter is a measure in inches of the spacing between dual tires, if they exist, on the rear arle of the tractor. For single tires, this parameter is set to zero. It is mritten in F10.2 format, and the program variable is A_{2}.

TRATHER TIRE LATERAL SPACING : This variable is balf the lateral distance betreen the inner tires (center to center) on the trailer axle measured in inches. The program reads this pariable in F10. 2 format, and the program pariable is T_{2}.

TRATHER DUAL SEACDNG : Trailer dual spacing is a reasure in inches of the dual tire spacing on the rear exles of the trailer. For single tires, this parameter is set to zero. It is read in F10. 2 format, and the program variable is ${ }_{3}$.

TRACTOR SPRING SPACING : This parameter is a measure in inches of half the lateral distance between the suspension springs on the front axle of the tractor. It is read in F10.2 format, end the program variable is S_{1}.

TRACTOR PEAR SPRTNG SPACING : Hialf the lateral distance between the suspension springs on the rear axles of the tractor, in inches, is represented br this Fariable. It is read in F10. 2 format. and the program pariable is S_{2}.

TRAILEP SPFTHG SPACING: This pariable is helf the lateral distance betreen the suspension springs on the axles on the trailer. It is measured in inches, and mritten in Fi0.2 format. The progray Fariahle is S_{5}

Line \#3
HEIGHTS : On this line height dimensions in inches are entered. Each entry is in F10. 2 fomat, and the order of the entries is as follows.
>Height of tractor's front sprum mass above the ground (ie. the portion of the tractor's sprum mass at the forwari end of the spring frame). This and the followirg height dimensions apply to the condition when the pehicle is loaded as desired and the trailer is coupled. The program pariable is $Z S_{1}$
$>$ Height of the tractor's rear sprung mass - (ie. the portion of the tractor's sprong mase at the aft end of the frame spring). Program variable is ZS_{2}.
$>$ Height of the trailer's sprug mass - Progran variable is ZS_{3}
$>$ Height of the tractor's front unsprung (or "axle") mass Progran variable is Z_{1}.
>Height of the tractor's rear unsprung mass - Program pariable is Z_{2}.
-Height of the trailer's unsprung mass - Program pariable is亿

PRoll Center Eieight of tractor's front suspension - Program pariable is HFi.

2F'oll Center Height of tractor's rear suspension - Prografi variable is EN_{2}.
$>$ Roll Center Eeight of trailer's suepension - Program variable is HF_{3}.
$>$ Fifth Mheel Height above the ground - Program Fariable is 25 .
$>$ Tractor Frame Height above the ground - (ie. the height of the center line of the tractor frame.) Program variable is 7 FR .

Line \#4
YERTICAL STIFFNESSES : The nert three entries are pertical stiffnesses of the tires on the vehicle. Ther are measured in lbin. and are mritten in E10. 2 format. The order of input is as followe.
>Pertical Stiffness of ORE tire on the front avle of the tractor. Note that the dual spacing parameter h_{1} must bape been set to zero in order to establish singie tire installation on this axle. Program pariable is ET_{11}.
$>$ Fertical Stiffness of ONE tire on the rear asle of the tractor, multiplied by the mumer of axles on the rear suspension. The case of dual tires is automatically accomodated in the program when pariable d2 is entered as 8 . nonzero value. Program variable is $\mathrm{ET}_{2!}$.
$>$ Pertical Stiffness of ONE tire on the trailer axles, mulipilied by the number of axles on the rear suspension. The case of dusl tires is automatically accommodated when the pariable as is nonzero. Program pariable is ET_{31}.

AUZILIART ROLL STIFFRESSES : The last three entries on this line are auxiliary roll stiffnesses of the suspension of the Fehicle. They are measured in in-lb/deg, and are yritten in F10. 2 formst. The order of input is as follows:
>duriliary Roll Stiffness of the tractor's front suspension Progran pariable is $E P S_{1}$.
>Combined kuxiliary Roll Stiffness of all the azles on the tractor's rear suspension. Prograin pariable is $E R S_{2}$.
$>$ Combined Auxiliary Roll Stiffness of all the a:les on the trailer. Frogram fariable is $E R S_{3}$.

Line \#5

TRACTOF FRATE TORSIONAL STIFFRESS : This wariable represents the torsional stiffness of the tractor frame in transmitting roil moments between the "front" and "rear" tractor sprong masses. It is measured in in-1b/deg, ard is written in F10.2 format. The prograir Fariable is IFR.

COULOME FRICTION: Coulomb friction in the torsional response of the tractor frame is represented by this parameter. It is measured in in-1bs, and written in F10. 2 format. The program variable is courr.

FIFTH WHEEL ROLL STIFFNESS : This variable represents the torsional stiffness of the fifth wheel coupling in transwitting roll moment froll the trailer to the frame of the tractor. It is measured in in-1b/deg, and is written in F10.2 format. The program variable is M 5 .

FIFTH WHEEL SEPARATION MOIENT: This parameter indicates the roll moment that is necessary to separate the fifth wheel from the trailer's upper coupler plate. It is measured in in-lbs, and is read by the program in F10.2 format. The program pariable is MOMSEF

FIFTM RHEEL SEPRRATION: This parameter, measured in degrees represents the anfular separation which can be achiered between the fifth wheel and the trailer's upper coupler plate. This moment is genersily equal to the fifth wheel load multiplied by the balt-width of the fifth wheel plate. It is written in F10. 2 format, and the program pariable is LaSH5.

FIFTH WHEEL LOLD: The rertical load carried by the fifth wheel is represented by this parameter. It is measured in lbs, and written in F 10.2 format. The prograiil pariable is WF .

TRACTOR REAR SPRUNG WEIGIT: This pariable indicates the sprung weight situated s.t the rear of the tractor frame spring. It is measured in lbs, and usually ranges from 500 to 1000 lbs . It is read by the program in F10.2 format, and the program pariable is HS_{2}.

Line \#E

LaTERAL STIFFNESSES: The neat three entries are the lateral stiffnesses of the tires on the vehicle. They are measured in lb/in, and written in F10.2 format. The order of the entries are as follows.
>Lateral Stiffness of ONE tire on the tractor's front ainle.
Prograil rariable is KTT $_{1}$.
sLateral Stiffness of $O N E$ tire on the tractor's rear azle multipiied by the number of resr aules. Frogram parisble is $E Y T_{2}$.

SLeteral Stiffnees of ONL tire on the trailer's axles muitiplied by the number of azles on the trailer. Frogram Fariable is ETS_{3}.

OFERTURNTNG STIEFNESSES: The next three entries are the orerturning stiffness of the tires on the Fehicle. They are measured in in-lbideg, and are written in F10. 2 format. The order oi the entries are es follows.
>Orerturaing Stiffness of ONE tire on the tractor's front axle. Frogram variable is KOFII.
sovertuming Stiftness of ofe tire on the tractor's rear asle multiplied by the number of rear ayles. Program parisble is EOPT_{2}.
>Overturaing Stiffness of ORE tire on the trailer's axle multiplied by the number of axles on the trailer. Program Fariable is ROTN.

ROL ITKREMENT: This Fariable represents the increment of trailer roll angle used for computing roll response. a typical value for this is 0.02 degrees. Large palues can result in significant errors in the computed roll response. The roll increment is measured in degrees and mritten in 510.2 format. The program pariable is DELPH.

PRINT INCRMMET: This parameter indicates the frequencer of data printed out. The print out is triggered by the roll angle, and thus a roll angle increment is entered. The palue of 0.5 degrees is usually suitable. This parameter is measured in degrees and Written in F10. 2 format. The program variable is EPRITT.

Line \#8 - To The Enc

SPRING TABLES: The last section of the data file consists of three spring tables, one each for the tractor front axle, tractor rear axle(s), and trailer aile(s). The first line of each table consists only of an integer, $N M_{1}$ in I2 format, indicating the number of lines in the table that follows. kiter this, the spring table is listed with the force [lhs]. $\mathrm{FOR}_{i j}$, in the first column, and deflection [in], $D E_{i j}$, in the second column. Both of these Falues are \quad ritten in $\mathbf{F 1 0} .3$ format. The table should start at the tensile end of the force deflection characteristic.

SIGN CONTENTION: Tensil forces, and deflections in the tensile region of the force deflection characteristic, are assumed to be negetipe.

TARDEM ATYES: OnlF one spring table is included in the input. file for each suspension. In the case of tander arles on the tractor rear or treiler, the force palues reflect the sum of the
spring loads which derive on one side of the suepension, as a function of vertical deflection. In the case of a two-axle tandem having a spring orer each amle, for example, the entered force palues would be equal to twice those measured in the deflection of a single spring.

APPENDIX D
PLOTTED RESPONSE OF VEHICLE ON THE EXISTING AND PROPOSED ROADWAYS

Yukon Tanker, Existing Roadway, 32.9 km/h

$$
\begin{aligned}
& * A_{y}=0.25 \text { gi } \\
& * \text { Existino intersection } \\
& * \text { yukons revicis } \\
& * \text { With superelerone- }
\end{aligned}
$$

Yukan's 3 axle tractar and tandem axle tanker.

Yukon's 3 axle tractor and tandern axle tanker.

Yukan's 3 axle tractor and tandem axle tanker.

Yukon's 3 axle tractor and tandem axle tanker.

Yukan's 3 axle tractor and tandem axle tanker.

Yukon's 3 axie tractor and tandem axle tanker.

Yukon's 3 axle tractor and tandem axle tanker.

Yukon Tanker, Existing Roadway, $25.5 \mathrm{~km} / \mathrm{h}$

* $A_{y}=0.15$ z's
* Existina intersect
* Yueons verecle
* with supereteror

Yukan's 3 axle tractor and tandern oxle tanker.

Yukon's 3 axle tractor and tandern axle tanker.

Yukan's 3 axle tractor and tandern axle tanker.

Yukon's 3 axle tractor and tandern axle tanker.

Yukon's 3 axle tractor and tandern axle tanker.
\square-Right side, Axle 1
$\rightarrow-$ Right side, Axle 2
$\rightarrow-$ Right side, Axle 3
1 —Right side, Axle 4
$\rightarrow \rightarrow$ Right side, Axle 5

Yukon's 3 axle tractor and tandern axle tanker.

Yukan's 3 axle tractor and tandern axle tanker.

Reference Tanker, Existing Roadway, $25.5 \mathrm{~km} / \mathrm{h}$

Jan 3', '84
*ty $=0.15$ ás
x Existerg intersection

* Rocerine tonker (rxizor)
* with Sepereleration

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandem axle tanker.
\#- - Right side, Axle 1
\rightarrow Right side, Axle 2
\rightarrow Right side, Axle 3
——Right side, Axle 4

* $*$ Right side. Axle 5

Michigan 3 axle tractor and tandem axle tanker.
$\boxplus-$ Right side, Axle 1
\rightarrow Right side, Axle 2
$\leadsto _$Right side, Axle 3

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandem axle tanker.

Yukon Tanker, Proposed Roadway, $37.6 \mathrm{~km} / \mathrm{h}$

Jan 31, '84

$$
\begin{aligned}
& \text { * Ay }=015 \mathrm{o}^{\prime} \\
& \text { * hopasear intersectio } \\
& \text { * Yifeons rehacle } \\
& \text { * Wir smpierelevoteon. }
\end{aligned}
$$

Yukan's 3 axle tractor and tandern axie tanker.

Yukon's 3 axle tractor and tandem axle tanker.

Yukan's 3 axle tractor and tandern axle tanker.
$\#$ Right side, Axle 1
\rightarrow-Right side, Axle 2
\rightarrow Right side, Axle 3

Yukon's 3 axle tractor and tandern axle tanker.
$\square-$ Right side, Axle 1
$\rightarrow-$ Right side, Axie 2
$\rightarrow-$ Right side, Axle 3
$\rightarrow-$ Right side, Axle 4
$\rightarrow \longrightarrow$ Right side, Axle 5

Yukon's 3 axle tractor and tandem axle tanker.

Yukon's 3 axle tractor and tandern axle tanker.

Yukan's 3 axle tractor and tondem axle tanker.

Yukon's 3 axle tractor and tandem axle tanker.

Reference Tanker, Proposed Roadway, $37.6 \mathrm{~km} / \mathrm{h}$

Tan 3', '87

* Ag. 0.15 g 's
* Bopored intriserrion
* Copulne terser (me 306)
* With superelevation

Michigan 3 axle tractor and tandem axle tanker.

Michigan 3 axle tractor and tandern axle tanker.

Michigan 3 axle tractor and tandem axle tanker.

Michigan 3 axle tractor and tandem axle tanker.

- - - Right side, Axle 1
\longrightarrow-Right side, Axle 2
\rightarrow Right side, Axle 3
\ldots, Right side, Axle 4
$*-$ Right side, Axle 5

Michigan 3 axle tractor and tandem axle tanker.

[^0]: SIMULATION OPERATION PARAMETERS:

[^1]: TRACTOR PARAMETERS
 TRACTOR PARAMETERS

[^2]: LOADED
 132.000
 44.000
 19999.996
 120000.000
 120000.000

[^3]: 8.0000
 8.0000

