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Abstract
An improved technique for matching the asymptotic

solutions of non-linear differential equations is presented
and successfully applied to the three-dimensional
atmospheric skip trajectories. The classical method of
matched asymptotic expansions (MAE) is generally
applied to two-point-boundary value problems. When we
apply the MAE method to initial value problems, due to
error propagation, the resulting accuracy usually depends
on the physical problems. In the proposed technique, the
second-order solutions are obtained by first generating a
set of equations for the small perturbations which are the
discrepancies between the uniformly valid first-order
solutions and the exact solutions. Then, the equations of
the small perturbations are integrated separately near the
outer and inner boundaries to obtain the perturbed outer
and inner expansion solutions, respectively, for a second-
order matching. In addition, in this improved technique
the end-point boundaries are artificially extended or
constructed to strengthen the physical assumptions on the
outer and inner expansions for the matching while in the
evaluation of the constants of integration in the uniformly
valid first-order solutions, the prescribed end-points are
effectively enforced.

In this paper, to show the applicability of the
improved technique, we first apply it to the rectilinear
restricted three-body problem. We men consider the three-
dimensional skip trajectory. Compared to the solutions
obtained by numerical integration over a wide range of
entry conditions, the second-order solutions obtained by
this improved technique are very accurate. The trajectory
elements at the lowest altitude and at exit as well as their
accuracy are evaluated.

Introduction
With the advent of manned space explorations and the

establishment of permanent space stations, the safe
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recovery of an orbiting aerospace vehicle, or its orbital
maneuver with minimum fuel consumption has been one
of the most challenging technologies in space flight
dynamics. During the atmospheric passage, there is a
tremendous change in speed, kinetic energy, dynamic
pressure and heating rate. It is then of interest to have
explicit analytical solutions for the variations of the
elements of the three-dimensional entry trajectory, since
the heading change due to three-dimensional motion has
promising applications in aeroassisted orbital transfer. A
powerful method for analyzing dynamic systems governed
by equations with the dominant forces varying widely
between the two end-points is the method of matched
asymptotic expansions (MAE). This technique, initiated
by aerodynamicists1'2, has been successfully applied to
problems in astrodynamics3-4. By using this method,
some analytical solutions for atmospheric re-entry
problems have been obtained, but they are restricted to the
first-order solutions5'6'7. In this paper, we propose an
improved technique to go beyond the first-order solutions
reported previously. In this improved technique, the
perturbation equations are generated by considering the
small discrepancies between the exact solutions and the
uniformly valid first-order solutions. Then, the equations
for the small perturbations arc integrated separately near
the outer and inner boundaries to obtain the perturbed
outer and inner expansion solutions, respectively, for a
second-order matching.

To illustrate the applicability of the improved
method of matched asymptotic expansions (iMAE), the
proposed technique was first applied to the rectilinear
restricted three-body problem. Then, by using it to
analyze the three-dimensional atmospheric re-entry
problem, we obtain, besides the usual solutions for the
altitude, speed and flight path angle variables, the second-
order solutions for the heading, latitude and longitude in
explicit form with excellent accuracy. The explicit
second-order solutions are compared with the pure
numerical solutions and the errors incurred are assessed to
show the region of validity for the application of the
technique.

212



Rect i l inear Restricted Three-Body Problem
We first consider an example in the restricted three-

body problem. The motion of a space vehicle of mass m
in (he gravitational field of two fixed mass-centers, Ml

and M-, is shown in Fig. I.

m Space Vehicle

Fig. 1 Geometry of the restricted three-body problem

The mass of the vehicle is much smaller than the other
two bodies, and the mass Ml is much larger than the
mass M2. The equations of motion with respect to the
rectangular Cartesian coordinate system in dimensionless
form are

•1d^x_
dt2 = -(l-^W-,u:

r (I)

(7)

where a, fi > 0, and te is the time elapsed to reach x=l.
It can be shown by an analysis of the order of magnitude
of the various terms in the equations that a = 1 and fl =
1. With the new variables, x-(l-x)/^i and y = y//J.,
the original equations can be rewritten in terms of the
inner variables as

(8)

d2y

To illustrate the improved method, we simply consider the
one-dimensional case. If we set y = 0 and integrate (1)
with the total energy equals to zero, we have

- + -
2dt x l-x'

or in the new form

(10)

where

and

)-=V-)U-=V

r2 = (x-\)2+y2

<" = • A/

(2)

(3)

(4)

F> di
V2 — -

dx
1 JC(I-X)

\(\-x) + n(2x-\)
p r(2*-n
2 \ l-x J ' ^

We anticipate the outer expansion

2 3 /jpx-l
8 V "̂  I 1 ,,\ 1 — X,

in the form

The position vector (x, y) was normalized by the distance
d between the two mass centers. The time was made
dimensionless using the factor

(5)

where G is the universal gravitational constant. This
problem has been studied by Lagerstrom and Kevorkian^
for the initial conditions

x = 0, y = 0, = -uc and h = -p2 at / = 0 (6)
dx

where h is the total energy of the space vehicle and p * I .
When the infinitesimal mass is close to the smaller of the
two masses, the proposed stretching transformation is

(H)

(12)

By using the outer limit, /a.—>Q, with x fixed, the first-
term of the outer expansion is

(13)

where C0 is the constant of integration.

For the inner solution, that is the solution near x =
I, if we let y = 0 in the equation (8) and integrate the
resulting equation, we obtain

(14)

or in the new form
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dx
= (15)

It is clear that the first term of the inner solution is the
constant of integration because the 0(1) term in the right-
hand side of the equation (15) is zero. Therefore, we have

V2io = C0 (16)

where r0 is the first term of the inner expansion

Since the first term of the inner expansion is a constant,
the first-order composite solution is identical to the outer
solution due to a cancellation of the constant C0 which is
the common term in the matching process. Thus, we
have

V2f c=-x3 / 2 + C0 (18)c 3 o

With the initial condition t(Q) = 0, the constant C0 is
equal to zero.

We obtain the second-order composite solution by
generating the equation for the perturbation between the
first-order composite solution and the exact solution, then
integrate it by using the MAE method again. Let the
perturbation be

ff\ j / v\ . /i r\\q = -\12t — -\l2tc (19)

By substituting into the original equation (11), we have

dq
dx

r-

(20)

with the initial condition

9(0) = 0

It can be easily shown that the outer expansion is

(21)

(22)

- + Q

where Q, the constant of integration, will be determined
after matching.

To describe the inner solution near x = 1, we write
(20) in terms of inner variable

dq—dx

(23)
Again, since the right-hand side is of 0(fj), we seek an
inner expansion of the perturbation in the form

(24)

Hence, upon substituting into equation (23) and
integrating, the inner expansion is

l-2fi
(25)

where Q is a constant to be determined from matching.
To perform the matching, we use a generalized form

of the matching principle:
The inner expansion of (the outer expansion) equals

the outer expansion of (the inner expansion)

Thus, we let
(q°)' = the inner expansion of (the outer expansion)

(26)

and
(<?')° = the outer expansion of (the inner expansion)

1
2(1-2jt)

In
3/2

(27)
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By equating (26) and (27) according to the matching
principle and taking the limit, n -»0, we have

c = —1 6
The common part qm is

(28)

J_
"2

1 1-jc-
2

(29)

A composite solution for the perturbation q can be
obtained as

sinh"1

l-2n
1 , „ 1

3/2

The improved second-order composite solution (32)
denoted by iMAE is graphed in Figs. 2 and 3 for
comparison with the numerical solution and Nayfeh's
solution (33). It is seen that the improved method has
better accuracy than the classical method.

0.4 0.5 0.6

x - Axis
Fig. 2 The dimensionless time as function of the distance x

in the one-dimensional restricted three-body problem
when the total energy is zero, and ̂  = 0.1

where Q is evaluated by using the initial condition
qc (0) = 0. Thus, the improved second-order composite
solution uniformly valid over [0, 1] can be formed
according to

/77. -^ 3/2 , „ fii\•\j2t = —x + q (31)

Therefore, we obtain the second-order solution

sinh"1 = (32)

l-2fi

-
L

By using classical MAE, Nayfeh^ obtained the following
solution denoted by fN

(33)

0 0.1 0.2 03 0.4 0.5 0.6 0.7

x - Axis
Fig. 3 The dimensionless time as function of the distance x

in the one-dimensional restricted three-body problem
when the total energy is zero, and £J = 0.25

Three-Dimensional Atmospheric Skip Trajectory

Fundamental Equations of Motion
We now apply the technique to the calculation of the

three-dimensional flight trajectory of a space vehicle
entering a non-rotating planetary atmosphere. Using the
standard notation as shown in Fig. 4, we have the
governing equations
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dr T/ .— = V sin y
dt

dV_
dt

pACDV2

2m
-gsmy

, dy pAC,Vi , VV-J- = -—-—cosa-(g-—
dt 2m r

,Tdw pAC,V2 . V2
y_jf__r—L.__Sinc7_—cosycos

dt 2mcosy r '
d<j) _ V cosy sin \f/
dt ~ r
dd _V cos y cos \//
dt rcos 0

For a Newtonian inverse-square gravitational field we have

8S r
where subscript s denotes the reference sea level.
We define the dimensionless variables

V , r-r,u = ——, h = ——-
or r&s' s ' s

(35)

(36)

for the speed and the altitude.

Fig. 4. Coordinate system with trajectory variables

Furthermore, we use a strictly exponential atmosphere of
the form

p = pse-"'e, e = - (37)

wheree is a small dimensionless parameter.
The lift and drag coefficients are assumed to be of the

form
C T /-!* /"3O\

L = /l(-t \J°>
and

(39)

where CL and CD are respectively the lift coefficient and
the drag coefficient at maximum lift-to-drag ratio and /I is
the normalized lift coefficient. Then, by using the
dimensionless altitude h as the independent variable to
replace the time variable, we have the dimensionless
equations of motion

du_
dh

~dh

2
(l+/z)2 eE* sin y

r i i i i ,
|_(1 + /0 «(1 +/j)2 J tan y esiny

dy
dh

d<j>
dh
d6

cos v/' tan 0

sinyf
(l + /0tany

COSl/f

BAsin(Te~W£

esinycosy

dh (l + /i)tanycos0

(40)

In the equations, we have a small dimensionless parameter
£ representing the planetary atmosphere characteristic.
For the Earth's atmosphere we have the practical value of
H = 1/900. Furthermore, the maximum lift-to-drag ratio
E* = C*LIC*D represents the performance characteristic of
the lifting vehicle, while other physical parameters are
lumped together in the coefficient B
defined as

(41)

The flight program is specified by the normalized lift
coefficient A and the bank angle a.

The system (40) constitutes the most appropriate
dimensionless system of equations for analyzing entry
into a planetary atmosphere, with lift and bank
modulation. To generate the three-dimensional entry
trajectory, it suffices to select a lift control A(/0 and a
bank angle c(h) as functions of the altitude and integrate
the equations from the initial condition
[M;, y,., I]/;, 0;, $;] at QnVj altitude ht. In subsequent
computation we shall use a constant angle-of-attack, that
is a constant A and constant bank angle a for the flight.

Integration by Matched Asymptotic Expansions
By using the matched asymptotic expansions method,

we obtain separately the outer solutions at high altitude
by retaining in the equations only the dominant
gravitational and centrifugal force and the inner solutions
at low altitude by keeping only the strong aerodynamic
force. By using appropriate matching, a composite
solution uniformly valid over the whole entry trajectory is
then obtained.
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Outer Expansions (Keplerian Region)
The outer expansions describe the behavior of the

motion in the region near the vacuum. At high altitude in
the limiting case, e~W e->0, the aerodynamic force
nearly disappears when compared with the combination of
the gravitational and centrifugal forces. Therefore, we
obtain the outer expansions by repeated application of the
outer limit, e -> 0 with the altitude variable h and other
variables held fixed. We consider the state vector
x = [u, y,y,($>, 6] and assume the following expansions

Inner Expansions (Aerodynamic Predominant
Region)

Near the surface of the planet, the aerodynamic force
is dominant. The inner expansions are obtained by
repeated application of the inner limit which is defined as
the limit when e -»0 with the new altitude variable
h = h / e and the other dimensionless variables held fixed.
We assume the following expansion

(45)

x = (42)

By substituting into the system (40) and taking the outer
limit, the first-order equations for the outer expansions are

du0 =
dh

dh

dh

dh

(1+/02

1 1
(1 + h) u0(l+hY
cos \i/0 tan <j>a
(1 + h) tan J0

tanr0

(43)

+ /z)tany0

deo ^ cosy/0

dh (1 + h) tan y0 cos 0,,

These are the equations for three-dimensional Keplerian
motion in the vacuum. Upon integrating, the outer
solutions arc

cosr0

cos y0 =

+ Q

C2

A/C1(l+/i)2+2(l-

C3
COS00

sin- cos"
1-

cos- cos L

^ f'1 ~\
1 2

1+/1

^ /

+ Q

(44)

cos(00 -

where Cn, n = l, 2, • - - , 5 are the constants of integration
to be determined after matching.

By substituting into the system (40) and taking the inner
limit, the first-order equations for the inner expansions are

\7T ~~h

"dh E" sin YO

dj0 _ Bk cos ae
dh sin J0

d\jfa _ E'k sin ae~h

dh sin YO cos J0 (46)

d/z

de"

- = 0

dh
= 0

This system can also be integrated to yield the inner
solutions

«0 = Qe

cos J0 = E'k cos ae~hl£ + C2

\j/0 = tan crln(sec f 0 + tan y0 ) + C3 (47)

where Cn, n-l, 2, • • - , 5 are the corresponding constants
of integration.

First-Order Composite Solutions
To have the solutions uniformly valid over both the

outer and the inner regions, we construct the composite
solutions by taking the sum of the outer and inner
solutions and subtracting the parts they have in common.

r. = *„ + jr. - x,. (48)

where x00 is the common limit. To avoid state variables
becoming imaginary before the vehicle reaches the lowest
altitude, we require that at a certain altitude hb the
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composite solution jc and the inner solution J0 reach
zero simultaneously, that is,

(49)

Hence, for matching, we choose a modified common limit
such that equation (49) is satisfied

x00= ]imx0(h) = Jim x0(h) (50)

i. e.,

"00 = IT^+Cl"Cie AB*COS^
COS J00 = •

-i

= tan a ln[scc yOD + tan j00 ] + C3

sin <l>00 = y 1 - C\ sin a = sin C4

(51)

00 - C5 ) =

where we have defined

s cos

_

= cos(C5 - C5)

Then, according to equation (48), the first-order composite
solutions are

l+h

cos yc = -:

-if C3 1= cos —-— + _cos — — +tan<Tln(secr,{cos fa

-cos (52)

cos(0c-Cs) =
COS(j)c

From the second of the equations (52), at the lowest
altitude we have

(53)

Now, there are eleven unknowns, namely the ten
constants of integration and the lowest altitude hb. If we
set the initial conditions, [«;, y,, yt, fa, 0J at ht> in
the composite solutions (52) to be identically satisfied,
these 5 new equations, together with the equations (5 1)
and (53) constitute a system of 11 equations for 11
unknowns. Since the first two variables u and j are
independent of the other variables y, fa and 0, we can first
solve for CL, C2, Q, C2 and hh. Next, from the
relevant equations, we solve for C3, C4, C3 and C4.
Finally, the constants of integration C5 and €5 for Q can
be evaluated by satisfying the matching condition and the
initial condition for 9 at ht. With the constants
evaluated, the equations (52) are the first-order composite
solutions in terms of the altitude variable h.

Second-Order Solutions
We construct the second-order solutions by

considering the small discrepancies between the first-order
composite solutions and the exact solutions. Let

cos Y -
= u0+u0-uao+z
+ <1 - cos y0 + cos ya - cos y00 + q

(54)

Notice that because the inner solutions 00 and 60 are
constants, they are canceled by their common limits fa,0
and 900, respectively. As a consequence, the classical
first-order composite solutions for 9 and tf> are not
sufficiently accurate since they are simply the Keplerian
solutions. By substituting equations (54) into the
dimensionless equations of motion (40) and using the
equations of outer and inner expansions for simplification,
we obtain the equations for the small perturbations

dz
dh eE siny

da I I 1

eE* sin y0

dh
>cosy

osy0
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dy _ 1 f cosy/tan (ft cosy/0tani/>0

dh ~ (1 + h) [ tan y tan y0

(BXsmae-hlE 5 A sin ge-hle }
[ e sin y cosy £siny(,cos7(, J

df _ 1 Tsini// sin^^l
dh (1 + A) [ tan y tan y, J

dp _ 1 T cos y
dA~

(55)

The initial conditions for the perturbations are trivially

Q, p(k ) = 0 (56)

We integrate the equations for the perturbations separately
first in the outer region and then in the inner region.

Second-Order Solutions for u and 7
Since the equation for u and 7are decoupled from the

system, we can integrate the first two equations by
assuming the outer expansions for the perturbations

(57)

By taking the outer limit, e->0, while keeping other
variables fixed, we obtain the outer solutions for the
perturbation z

dh
(58)

It can be shown that Q is zero. Then, upon using this
solution and integrating, the outer solutions for the
perturbation q is

C, (59)

where C7 is the constant of integration.

For the inner solution z since siny will tend to
sin YO and is very small, by inspecting the first of the
perturbation equations, it is seen that u is very close to
ua. This makes the evaluation of z very sensitive to
errors. Since the first-order composite solution for u is
sufficiently accurate, we concentrate on improving the
solution for the perturbation of the flight path angle in the
inner region. First, we anticipate the inner expansions for
the perturbations in the form

(60)

Next, we use the following limiting and approximate
conditions

u -4 ua + z = Ti0 , z « 1
cosy -» cos YO +q"cosy0, q«l (61)

By taking the inner limit, while keeping other variables
fixed, we obtain the equation for qa

(XL
dh

1 1

1
(l+eh)

(62)

Notice here in (62) we keep the integrable terms in exact
form to increase accuracy and at the same time make the
final solution form simple. Therefore, only in the second
term that eh is replaced by hb. Upon integrating it, we
have the inner solution for the perturbation q in the form

(63)

The expression for f ( h ) is much involved so that we
simply discuss its application. We use this solution (63)
and the outer solution qa in Eq. (59) to construct the
composite solution qc (h) satisfying identically the initial
condition <?(/!;) = 0. Then, the second-order solution for 7
is

cos 7° = cos YC + <7c

(64)
As compared to the first-order composite solution as given
by the second equation of Eq. (52), besides the additional
second-order term q(h), we re-evaluate all the constants of
integration to construct a modified second-order solution
in the form

-fiAcos<7e~ /1/£+^MCW

(65)
such that

(66)
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where cos7mr,
solution and q

is the modified first-order composite
c is the composite solution for q but now

denoting the difference between the cos ymc and the exact
solution. The solution for u is the modified first-order
solution with new values for the constants and the bottom
altitude.

cos~1(Blcos<TO~''''!+C,'

(67)
Equations (65) and (67) are now the improved composite
solutions for u and 7 in three-dimensional skip trajectory.
The constants of integration C(, C2, C{, C2 and the
lowest altitude h'b are evaluated from the equation (66),
together with the first two of equations (52) with the
accented constants and the two equations (65) and (67)
satisfying the initial conditions umc = ut and jc

m = yt at
the initial altitude h = h;.

For the second-order solution of v/, by inspecting the
third equation of the perturbation equations (55), we
observe that the equation for the perturbation y has the
same difficulty in sensitivity as we encountered in solving
the perturbation z. We then concentrate on solving the
second-order solution for <j> and 6.

Second-Order Solutions for 0 and 6
The second-order solutions for <j> and 9 are obtained by
integrating the perturbation equations for / and p in
equations (55). The solutions in the outer region are
trivially zero. For the inner region, by changing the
independent variable to y0 for the integration, we obtain

f0 =

tan 7

(68)
where C9 and C10 are the corresponding constants of
integration. Notice that the prime for C2 and hb , which
represents the new constants of integration, is omitted for
reason of simplicity. In the solutions (68) we have
defined the following functions

in Vo) -

= - COS Yo + — (-3 COS Yo + COS3 Yo

m70)-ln(cosy0)
"J

— ir i 9 -= -ln(cos70 -C2)--\ -—cos J0 -C2cos70

+jUln(cos70-C2) + ...

> = I——-—frdYoI r*nQ V _ /j L/VJO K.J — ̂ ?

In F^u sin 70 - C2 cos J0

cos y0 - C2
+ ln2

and
(69)

(70)

where we take minus sign for descending arc and plus sign
for ascending arc in functions (69). Since the outer
solutions for the perturbations / and p are zero, the
composite solutions for/and/? are identical to the inner
solutions (68). Then, combining the fourth and fifth of
the outer solutions (44) with the inner solutions (68), the
second-order solutions for 0 and 6 are of the form

(71)

The structure of the solutions is elegant in the sense that
it reveals the physical phenomenon in terms of
mathematic description. The first term in equations (71)
represents the Keplerian motion without atmospheric
influence. On the other hand, the second term is the small
perturbations due to the effect of aerodynamic force in the
inner region.

Numerical Applications
The purpose of this section is to discuss the relative

merits and the ranges of application for the analytic
solutions obtained by using the improved method of
matched asymptotic expansions. As numerical examples,
we consider the three-dimensional motion of a space
vehicle entering the Earth's atmosphere. The vehicle has
a maximum lift-to-drag ratio of £* = 1 with physical
parameter B = 2.68, starting with the initial entry speed
V; = 1.1 Vc., i.e., «; = 1.21 and using A. = 1, cr = 30°.
Without loss of generality, we set other variables at the
initial entry altitude A; = 0.0157 to be zero, that is
[<//•;, 0;, 0;] = [0, 0, 0]. Fig. 5 and 6 plot the speed
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ratio V/^jgsrs and the flight path angle /as functions of
the altitude. The dashed lines indicate the numerical
solutions while the solid lines represent the iMAE
solutions. The accuracy of the solutions is excellent
since, as shown in Table 1, we have obtained 6 significant
digits at the lowest point. Table 1 presents the numerical
results of the trajectory variables at the bottom and at exit.
In each box the upper value is the pure numerical solution
while the lower value is computed by our analytical
solutions. From this table, we see that the relative error
for the speed is about 0.2% at the bottom while it
propagates to 0.7% at exit for the worst case of -/, = 4°.

Table 1 Comparison of the Trajectory Elements
(•\[u, y) at Bottom and at Exit for Various Entry Angles
~7;

hb

«i'2
j?
-Ye

4°
0.0084587
0.0084470
1.0516406
1.0466288
0.9901114
0.9828935
2.8186071
2.7141180

6°
0.0070730
0.0070704
1.0009038
0.9989403
0.8918307
0.8914917
3.8039602
3.8122696

8°
0.0062788
0.0062783
0.9570115
0.9562586
0.8117041
0.8137913
5.1206997
5.1839038

12°
0.0052702
0.0052708
0.8788922
0.8791299
0.6781483
0.6819361
7.9369104
8.0714158

Since the iMAE solutions are very accurate throughout
the descending phase, the solutions are competent for the
evaluation of the critical elements at the peak deceleration
and the maximum heating, which always occur before the
lowest point is reached. However, due to the basic
condition of MAE technique, the solutions are less
accurate for entry at small angles when the various forces
involved are of the same order of magnitude throughout
the trajectory. A completely different approach is
suggested to analyze the case of entry with small angles9.
Figs. 7 - 9 present the variations of the heading angle,
latitude and longitude as functions of the altitude. It is
seen that for the initial entry angle -ji = 4°, there is
some discrepancy between the numerical solution and the
MAE solution, as shown in Fig. 8. Even though the
relative error for this case is large, the difference is only
0.069° in absolute value for the latitude at exit. Table 2
provides the comparison of numerical results at exit for
various entry angles.

Table 5.2 Comparison of the Trajectory Elements
(V/, 0, 6) at Exit for Various Initial Entry Angles

-7;

¥e
^

Qe

4°
2.9344642
3.1321319
0.5140644
0.5829793
18.603317
19.332678

6°
5.8764035
5.8789130
0.7370882
0.7557625
13.167788
13.354608

8°
8.5237840
8.4401482
0.8241616
0.8289606
10.178101
10.307469

12°
13.559225
13.382860
0.9069345
0.9037549
7.0592236
7.2076078

To study the effect of the bank angle on the three-
dimensional skip trajectory, we consider the atmospheric
entry with the same initial speed and altitude at the initial
entry angle -y; = 6° for three values of bank angles a =
30°, 45°, and 60°. The variations of the trajectory
variables as functions of the altitude for these cases are
plotted in Figs. 10 - 12. Again the dashed lines represent
the numerical solutions and the solid lines represent the
iMAE solutions. It is noted that the space vehicle fails to
skip out with the bank angle 60° and the relative error
becomes larger when the bank angle is larger.
Nevertheless, in Figs. 11 and 12, the iMAE solutions for
latitude and longitude remain in good agreement with the
numerical solutions for the three bank angles.

Conclusions
In this paper, an improved method of matched

asymptotic expansions has been proposed for deriving the
second-order solutions of non-linear differential equations
which govern dynamic systems with controlling forces
varying widely between the end-points. The improved
solutions obtained by the proposed technique are expressed
in two parts: the first-order composite solutions and the
composite solutions of the perturbations which are the
differences between the first-order composite solutions and
the exact solutions. The first-order composite solutions
and the composite solutions of the perturbations consist
of outer solutions, inner solutions, and the common
limits of the outer and inner solutions. To investigate the
applicability and the efficiency of the proposed technique,
we first applied it to the rectilinear restricted three-body
problem. Next, we applied it to analyze the three-
dimensional atmospheric re-entry problem. In the
process, for the matching we extend the end-point in the
outer region to validate the assumptions of outer
expansions with one dominant force, while we create the
boundary condition for the inner limit to strictly enforce
the strong aerodynamic force assumption of inner
expansions.

The improved MAE solutions are very accurate when
compared with the pure numerical solution of the
equations of motion. For skip trajectory with an error in
the sixth or seventh digit for the altitude, it is not
necessary to go to further higher-order terms to improve
on the final solutions. Along with the solutions for speed
and flight path angle, the analytic solutions for heading
change, latitude and longitude are obtained and tested in a
wide range of entry conditions. The accuracy of the
analytic solutions was satisfactorily assessed evaluated at
the lowest altitude and at exit. The numerical results from
the analytic solutions show an excellent agreement with
the pure numerical solutions. Since the solutions are in
explicit form and uniformly valid in both the Keplerian
and the atmospheric regions, the trajectory elements at
exit can be expressed explicitly.

In conclusion, an improved method of matched
asymptotic expansions has been developed to analyze the
three-dimensional motion of the atmospheric skip
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trajectory. The second-order solutions obtained by using
the improved method apply to all phases of flight from
the vacuum through the atmosphere to either skip out or
effective entry with a high degree of accuracy. The
numerical results clearly demonstrate the applicability and
flexibility of the improved technique.
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Fig. 6 Variation of flight path angle as function of the
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Fig. 5 Variation of speed as function of the altitude for
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Fig. 8 Variation of latitude as function of the altitude for
various entry angles in three-dimensional skip trajectory
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Fig. 9 Variation of longitude as function of the altitude for
various entry angles in three-dimensional skip trajectory
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Fig. 12 Variation of longitude as function of the altitude

for various bank angles in three-dimensional skip
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Fig. 10 Variation of heading angle as function of the

altitude for various bank angles in three-
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for various bank angles in three-dimensional skip
trajectory

223


