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A Macroscopic Finite Element for a Symmetric Double

Lap Joint Subjected to Mechanical and Thermal

Loading
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A thermo-mechanical analytical model and a corresponding macroscopic bonded joint
finite element is presented for the analysis of orthotropic double lap joints subjected to
combined thermal-mechanical loads. The analytical solution offers an improvement in
accuracy over its predecessor,1,2 at the cost of increased solution complexity. However, to
facilitate the use of this solution, it has been incorporated into a macroscopic bonded joint
finite element.3 The single element reproduces the analytical solution with minimal analyst
input, and therefore can be easily incorporated into early design studies. The macroscopic
element provides a computationally efficient and mesh independent comparative stress
result. To validate the element, the stress predictions of the single element are compared
with a continuum finite element model.

Nomenclature

le Length of the lap sub-element, m
tκ Material thicknesses of component κ, m
x,y Cartesian coordinates measured from the lower left corner of the adhesive, m
σκ11(x) Longitudinal stress in component κ, Pa
σκ22(x,y) Transverse stress in component κ, Pa
τκ12(x) Shear stress in component κ, Pa
σ̂κ11(x) Longitudinal virtual stress in component κ
σ̂κ22(x,y) Transverse virtual stress in component κ
τ̂κ12(x) Shear virtual stress in component κ
Eκii Orthotropic engineering moduli of component κ, Pa
Gbij Orthotropic shear modulii of the adhesive, Pa
ακii Orthotropic thermal expansion coefficient of component κ, ◦C−1

νκij Poisson’s ratios of component κ
P Mechanical load applied to the joint, per unit depth, N m−1

P1,P2 Element internal mechanical load DOFs, per unit depth, N m−1

∆T Temperature change from a reference temperature, ◦C
x̄ Normalized coordinate x

le
measured from the left edge of the joint

β̄,γ̄,λ̄1,λ̄3 Dimensionless system parameters
φ̄P Dimensionless mechanical load parameter
φ̄T Dimensionless thermal load parameter
¯̄φtotal Dimensionless total load parameter
¯̄φP Dimensionless mechanical load fraction
¯̄A, ¯̄B, ¯̄C, ¯̄D Dimensionless basis coefficients
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¯̄Φa , ¯̄Φc Intermediate variables
¯̄Ξa , ¯̄Ξc Intermediate variables
q1, q2, q3, q4 Nodal displacement degrees of freedom
qe Subelement extension degree of freedom
Na, Nc Element shape functions
Ba, Bc Element shape function derivatives

Subscripts
[] the or operator, i.e. [12] is 1 or 2 (no sum)
κ κ = [abcp] (no sum) Subscript representing central adherend (a), adhesive (b), outer ad-

herend (c), and end post (p) respectively
ii i = [123] (no sum)
ij i, j = [123] where i 6= j (no sum)

I. Introduction

Recent advances in structural epoxies and adhesives have expanded the temperature range over which
high performance fibrous composite materials can be used. In the structures composed of these materials,

adhesively bonded joints are widely used due to improved load distribution, increased service life, reduced
machining cost, and/or reduced complexity.4 These epoxies and adhesives, designed to provide structural
integrity at high temperature, are subjected to severe operating environments. Furthermore, manufacturing
processes subject these materials to broad temperature ranges during the different stages of the curing
cycle. It is known that high stress gradients can exist near the edges of bonded joints due to mismatches
in thermal expansion coefficients and elastic moduli.5 Therefore, components made from these materials
carry a significant risk of adverse stress caused by differential thermal expansion, even when used at room
temperature. Due to the increased use of composite materials and bonded joints, the need for efficient and
effective thermo-mechanical analysis tools is greater than ever.

The design and modeling of bonded joints is not yet a mature field. Continuum finite element (FE)
models of adhesively bonded joints are widely available in the literature, where work began as early as 1971
(Wooley and Garver,6 and Adams and Peppiatt7 are early references). More recently, promising advances
in cohesive zone (including Kafkalidis and Thouless,8 Xie et al.,9 Li et al.,10,11 Valoroso and Champaney12),
discrete cohesive zone (Xie et al.13), fracture mechanics (Weerts and Kossira14), probabilistic prediction
(Aydemir and Gunay,15 Koutsourelakis et al.16), virtual crack closure (including Gillespie et al.,17 Wang et
al.,18 Glaessgen et al.,19 Krueger,20 Xie et al.21–23), and other adhesive region models (including Munoz et
al.,24 Goncalves et al.,25 Goyal et al.26) have greatly increased the predictive capability of FE techniques.
Cohesive zone models have been incorporated into commercial software, including Abaqus R©,27 as well as
freely available research codes like Tahoe R©.28 However, despite their availability, the listed techniques are
expensive and require user expertise. Therefore there are ongoing efforts to develop rapid analysis techniques
(Oterkus et al.,29,30 Smeltzer and Lundgren31), a key enabling technology for vehicle designers.

Though models built with the tools listed above can be accurate and very capable, they rely on the pres-
ence of a meshed joint, where continuum elements represent the adherends, and the adhesive is represented
by continuum elements or a discrete traction separation law. There is significant overhead in creating and
analyzing joints using these and other continuum numerical methods. Mesh generation and manipulation is
an obstacle for all but academic geometries. Mesh density is also a consideration, since the computational
time for basic joints can be significant if non-linear material properties and material degradation criterion are
included. As a result, there are ongoing efforts to evaluate analysis techniques that are less mesh dependent.
For example, the Composites Affordability Initiative has recommended a p-based analysis code for analysis
of adhesively bonded joints.a Use of p-based codes should be less mesh dependent than the more commonly
used h-based FE codes. Similarly, Bednarcyk et al.32 used a higher order, semi-analytical theory (developed
for functionally graded materials) to analyze a double lap and a bonded doubler joint. This technique was
reported to be less mesh dependent than h-based analysis methodologies.

Although the techniques cited above attempt to minimize mesh dependency, they do not eliminate it.
Due to mesh generation overhead and computational cost, it is often impractical and sometimes impossible

ahttp://www.esrd.com [cited Feb. 2007]
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to include joint models in sub-system, system, or vehicle level models. In these instances, an appropriate
single finite element representation of a joint could provide adequate representation of a joint’s behavior in
the structure being modeled. Such a joint element was suggested in Gustafson and Waas,3 and referred to
as a Macroscopic Bonded Joint Finite Element (MBJFE). In concept, it was shown to provide basic joint
performance analysis using a very limited number of degrees of freedom. The element’s shape functions had
a thermo-mechanical, orthotropic, lap-shear type analytical solution embedded within them. The internal
displacement (strain) field of the element provided an adequate approximation of the field in a joint. There-
fore, it predicted the stress response without significant meshing overhead. The MBJFE was intended to lay
a foundation for advances in application specific joint elements for initial sizing in FE models at all system
levels.

The work presented in this article is an extension of the work reported previously in Gustafson and Waas,3

where the embedded solution has an improved stress field over that provided by the analysis in Gustafson
et al.1,2 The virtual work solution presented in Ref. (2) was primarily intended to provide dimensionless
parameters and a governing equation which could be used for quick and directionally correct joint design
guidance. It did not provide a precise analytical solution for the stress field in the joint. Subsequently, the
MBJFE provided in Ref. (3) was a proof-of-concept element which could allow a finite element analyst to
represent a structural joint with a single element, while adequately predicting the stress field inside that
joint. Since that element was based on a solution which was not precise, the inclusion of a more accurate
solution into the MBJFE is desirable. This article intends to provide a solution that has improved accuracy
over its predecessor, and to report its inclusion within a MBJFE.

It would be a redundant and lengthy endeavor to include a complete mathematical derivation of the
virtual work solution of the governing stress equation presented in this article.b The form of the equation
used in this work, as well as its solution, were provided in Refs. (1,2). Similarly, the formulation of the
finite element (reported in Ref. (3)) does not need to be rederived, since only the stress equations and shape
functions must be updated to improve its accuracy. As a result, this article will be written with frequent
reference to the prior work. For brevity, most of the equations which would be identical (if repeated) are
referenced and omitted from this article. Similarly, there are comparatively few references to other double
lap analytical solutions, since Ref. (2) contains a summary of the current literature.

Figure 1: Typical peel stress distribution doe to mixed loading

In considering the solution accuracy required for the proposed MBJFE technique, it is well recognized that
there are many factors which effect the stress field and associated joint failure. These include adhesive spew7

or the geometric discontinuity and unbound stresses associated with stepwise geometries.34 Additionally,
material non-linearity has a significant effect on the stress field,35,36 which requires a level of material
characterization that is often not available early in an analysis cycle. All of the specialized joint analysis
techniques (cohesive elements, the virtual crack closure technique, as well as others) require high level and
additional material properties. In many circumstances, a designer has insufficient information or time to
obtain a highly accurate solution, and instead would prefer a simple, directionally correct analysis. These

bThe authors intend to present a complete derivation of all aspects of the MBJFE in an upcoming journal submission33.
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types of analyses are often useful in tradeoff studies and to identify likely problem areas needing further
study.
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Figure 2: In a linear elastic analysis with stepwise ge-
ometry, the mesh does not converge.

With that goal in mind, it might be considered
adequate to perform linear elastic FE analysis with
a basic geometry (ie square corners), similar to the
continuum FE analysis used for comparison in this
article. However, in such a solution, the singular
stress field causes a broad range of predicted stresses
near the edges, particularly at the material inter-
faces. For example, a typical result for predicted
σb22 (x, y) is highlighted in figure 1.

It is apparent that the peel stress can be de-
termined as a function of longitudinal position over
most of the joint. However, in the critical areas
near the edges of the joint, the predicted stress field
varies widely and is mesh dependent. The severity
of the mesh dependency is shown in figure 2, where
the predicted stress increases without bound with
increasing element density. Even when non-linear
material properties are assumed, which sometimes
can ensure that the stress remains bounded,35 mesh dependency and convergence remains a concern. It is
common practice that an analyst create several meshes at different densities in order to verify that the stress
results have converged. The work presented by Smeltzer and Lundgren31 is a recent example of this practice.

In light of the alternatives presented above and in order to be useful to an analyst, the proposed MBJFE
must accurately represent the magnitude of the most critical stresses in the joint, while consistently and
correctly predicting the trends from joint-to-joint. It must also do this with no mesh dependency and very
little meshing overhead. Further, its use must not directly burden the user with the significant calculations
typically associated with analytical solutions. In the remaining sections of this article, a macroscopic joint
element is presented and is shown to meet these requirements.

II. Derivation of the advanced shear and peel model

Figure 3: Schematic of the double lap joint with end
posts

In Gustafson et al.,2 a dimensionless solution was
presented for a symmetric, orthotropic double lap
joint subjected to thermo-mechanical loading. The
lap joint is schematically represented in figure 3.
The central adherend is referred to as material a, the
outer adherend is referred to as material c. Material
b is the adhesive, which is thin in comparison to the
adherends. The objective is to determine the equi-
librium stress response to thermal and mechanical
loading. The material is assumed to be linear elas-
tic and orthotropic, with linear orthotropic thermal
expansion. The joint is assumed to deform in plane
strain, where the material constitutive response is
given by Eq. (21) in appendix V.

Examining a general parallelepiped as shown in figure 4, force equilibrium in x and y directions can be
written as: ∑

F1 = δy (σ11(x + δx, y)− σ11(x, y)) + δx (τ12(x, y + δy)− τ12(x, y)) = 0∑
F2 = δx (σ22(x, y + δy)− σ22(x, y)) + δy (τ12(x + δx, y)− τ12(x, y)) = 0,

(1)
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Figure 4: Generalized equilibrium parallelepiped

which can be rewritten as the shear-normal stress relationship for each constituent:

∂σ11(x, y)
∂x

= −∂τ12(x, y)
∂y

∂σ22(x, y)
∂y

= −∂τ12(x, y)
∂x

.

(2)

Several additional assumptions are made to ease the solution. The longitudinal normal stress in the
adhesive is assumed to be zero, therefore Eqs. (2) dictates that the shear stress in the adhesive is a function
of x only.c For convenience, the remaining shear stress fields are assumed to vary linearly in y throughout
the specimen, therefore Eqs. (2) dictate that the adherend longitudinal normal stresses are also functions of
x only, and that the peel stresses are linear functions of x and y.

Traction free boundaries are present on the top and bottom surfaces. The centerline of the central
adherend is free of shear due to symmetry. These requirements are expressed as:

τc12(x,tb+tc) = 0,

σc22(x,tb+tc) = 0,

τa12(x,− ta
2 ) = 0.

(3)

Stress continuity at the joint interfaces requires the following:

σb22(x,0) = σa22(x,0),

σc22(x,tb) = σb22(x,tb),

τb12(x,0) = τa12(x,0),

τc12(x,tb) = τb12(x,tb).

(4)

Finally, longitudinal normal stress boundary conditions are imposed by the mechanical loads at the edges of
central adherend a, and are expressed as:

σa11(0) = 0,

σa11(l) =
2P

ta
,

(5)

By sequentially writing a linear form for each stress component (using the stress field character described
above), and by applying boundary and continuity conditions to determine the linear constants, equations
can be written for each stress component in terms of the central adherend stress σa11 (x). The process is as
described in Ref. (2) and is the same in this work, with the addition of several stress components (τa12 (x, y),
σa22 (x, y), τc12 (x, y), σc22 (x, y)). The resulting stress equations are detailed on the left side of table 1.

cThe limitations imposed by this assumption are described in Gustafson et al.2
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Table 1: Double lap joint stresses and virtual stresses expressed as functions of σa11 (x)

Equilibrium Normal Stress Virtual Normal Stress
σa11 (x) σ̂a11 (x)

σc11 (x) = P
tc
− ta σa11(x)

2 tc
σ̂c11 (x, y) = − ta σ̂a11(x)

2 tc

σa22 (x, y) = d2

dx2 σa11 (x)
(

y2+tay
2 − ta(tc+2tb)

4

)
σ̂a22 (x, y) = d2

dx2 σ̂a11 (x)
(

y2+tay
2 − ta(tc+2tb)

4

)
σb22 (x, y) =

ta

“
d2

dx2 σa11(x)
”
(2y−tc−2tb)

4 σ̂b22 (x, y) =
ta

“
d2

dx2 σ̂a11(x)
”
(2y−tc−2tb)

4

σc22 (x, y) = −
ta

“
d2

dx2 σa11(x)
”
(y−tc−tb)

2

4tc
σ̂c22 (x, y) = −

ta

“
d2

dx2 σ̂a11(x)
”
(y−tc−tb)

2

4tc

Equilibrium Shear Stress Virtual Shear Stress

τa12 (x, y) = −
d

dx σa11(x)(2y+ta)

2 τ̂a12 (x, y) = −
d

dx σ̂a11(x)(2y+ta)

2

τb12 (x) = − ta( d
dx σa11(x))

2 τ̂b12 (x, y) = − ta( d
dx σ̂a11(x))

2

τc12 (x, y) =
ta( d

dx σa11(x))(y−tc−tb)

2tc
τ̂c12 (x, y) =

ta( d
dx σ̂a11(x))(y−tc−tb)

2tc

Equilibrium End Post Stress Virtual End Post Stress

σp22 (x̄ = 0, y) =
ta ( d

d x σa11(x)) (y−tb)

2 tp
σ̂p22 (x̄ = 0, y) =

ta ( d
d x σ̂a11(x)) (y−tb)

2 tp

σp22 (x̄ = 1, y) = − ta ( d
d x σa11(x)) (y−tb)

2 tp
σ̂p22 (x̄ = 1, y) = − ta ( d

d x σ̂a11(x)) (y−tb)

2 tp

In addition to the boundary conditions specified in Eqs. (3), Eqs. (4), and Eqs. (5), the adhesive edge
shear stress is forced to zero using the end post technique described in Gustafson et al.,2 which was inspired
by the double lap joint solution of Davies.37 The stresses in the edge posts also listed on the left side of
table 1.

The solution for the central adherend normal stress (σa11 (x)) is carried out by application of the principle
of virtual forces, as described in detail in appendix V. In summary, for each stress component (each is a
function of σa11 (x)), a corresponding virtual stress component is written in terms of the virtual normal stress
σ̂a11 (x). These virtual stress components are shown on the right side of table 1. By integrating potential
energy over the volume of the joint and minimizing for any admissible σ̂a11 (x), the central adherend stress
field σa11 (x) is determined as a function of all material properties and loads. Subsequent grouping of all
material terms according to their order of derivative (defined as β and γ in Eq. (6)) and the loads according
to thermal and mechanical contributions of the total load (defined as φT and φP respectively in Eq. (6)),
the differential equation can be written as:

∂4σa11 (x)
∂x4

+ β
∂2σa11 (x)

∂x2
+ γσa11 (x) + φT + φP = 0. (6)

Eq. (6) is identical in form to the solution given in,2 however the material constants β and γ, as well as the
load constants φT and φP are more complex due to the increase in the retained stress components in the
potential energy minimization. The improved accuracy of this model over its predecessor is a direct result
of the addition of these previously neglected terms.

With an equation for the central adherend stress (σa11 (x)), all stress components can easily be determined
using the equations in table 1. It was noted in Ref. (2) that non-dimensionalization and load normalization
of (6) is possible, and doing so provides a mechanism for separation of the responses to mechanical and
thermal loads. As described in Ref. (3), this has great benefits for the MBJFE solution when used with an
iterative solver. Therefore, without explicitly reporting the dimensional material and load constants (β, γ,
φT , φP ), non-dimensionalization and load normalization is done so as to conform to the solution provided
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in Ref. (2). The dimensionless and load normalized material, load, and stress terms are defined as follows:

x̄ =
x

l
,

β̄ = l2β,

γ̄ = l4γ,

φ̄T = φT
l4

Ea11
,

φ̄P = φP
l4

Ea11
,

¯̄φtotal = φ̄P + φ̄T ,

¯̄φP =
φ̄P

¯̄φtotal

,

¯̄σκij(x̄) =
σκij(lx̄)

Ea11
¯̄φtotal

.

(7)

In Eq. (7), x̄ is the dimensionless spatial coordinate measured from the left edge of the joint, β̄ and γ̄ are
dimensionless material parameters, and φ̄P and φ̄T are the dimensionless mechanical and thermal loads
respectively. A dimensionless total load is defined as ¯̄φtotal , which is used to further normalize the stresses
¯̄σκij(x̄). Similarly, a mechanical fraction of the dimensionless total load is defined as ¯̄φP . Each of the terms in
Eq. (7) are explicitly defined according to the constitutive and load quantities in appendix V. Now, Eq. (8)
from Ref. (2) is written as the form most suitable for the MBJFE:

¯̄σa11

(
x̄, ¯̄φP

)
= ¯̄A

(
¯̄φP

)
eλ̄1x̄ + ¯̄B

(
¯̄φP

)
e−λ̄1x̄ + ¯̄C

(
¯̄φP

)
eλ̄3x̄ + ¯̄D

(
¯̄φP

)
e−λ̄3x̄ − 1

γ
. (8)

In Eq. (8), the material parametersd are recast in the form of the roots of the bi-quadratic differential
equation.

λ̄2
[12] =

−β̄ ±
√

β̄2 − 4γ̄

2
. (9)

The equations for the dimensionless basis coefficients ( ¯̄A
(

¯̄φP

)
, ¯̄B

(
¯̄φP

)
, ¯̄C
(

¯̄φP

)
, ¯̄D

(
¯̄φP

)
) are identical to

those given in Ref. (2) and are listed below:

¯̄A
(

¯̄φP

)
=

µ3µAP

µ1µ2

¯̄φP +
µAT

µ1
,

¯̄B
(

¯̄φP

)
=

µ3µBP

µ1µ2

¯̄φP +
µBT

µ1
,

¯̄C
(

¯̄φP

)
=

µ3µCP

µ1µ2

¯̄φP +
µCT

µ1
,

¯̄D
(

¯̄φP

)
=

µ3µDP

µ1µ2

¯̄φP +
µDT

µ1
,

(10)

In Eq. (10), the coefficients ( ¯̄A
(

¯̄φP

)
, ¯̄B

(
¯̄φP

)
, ¯̄C

(
¯̄φP

)
, ¯̄D

(
¯̄φP

)
) are linear functions of the mechanical

fraction of the total load ( ¯̄φP ) and several variables denoted by µ which are combinations of the material
parameters. These are listed in the appendix F. In combination, Eq. (8) and Eq. (10) effectively separate
the thermal and mechanical responses.

It is recognized that the presented solution in this section would be incomplete without additional in-
formation provided in Ref. (2), particularly with respect to the application of boundary conditions which
bridge between the differential equation (Eq. (6)) and the stress solution (Eq. (8)). Further, Ref. (2) provides
complete detail regarding the load normalized form of Eq. (8).
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Figure 5: Symmetric double lap joint and MBJFE representation.

III. Formulation of the finite element

Figure 5 schematically shows the MBJFE originally derived in Gustafson and Waas.3 The element
is a 1D element, with all displacement degrees of freedom being oriented along the 1-axis. Two of the
displacement degrees of freedom, q1 and q4, are external degrees of freedom which connect the joint element
to the external structure. The remaining displacement degrees of freedom are internal to the element, and
are used in conjunction with Lagrange multipliers to determine the mechanical loading fraction, ¯̄φP , required
for determination of the stress and strain fields governed by Eq. (8). The mechanical load that is carried
across the joint is calculated using internal degrees of freedom, P1 and P2 .

The element in figure 5 is composed of three subelements. The outer subelements span q1 - q2, and q3 - q4.
These subelements are essentially truss elements, and their principal purpose is to establish the mechanical
load as an internal degree of freedom as described in Ref. (3), where their contribution to the element stiffness
is given in detail. The joint section subelement spans q2 - q3, and is responsible for predicting the relevant
joint stresses as well as correctly representing the stiffness of the joint. The form of the stiffness matrix was
developed in Ref. (3). To update the subelement to the more accurate stress functions developed above, the
displacement interpolation (shape functions) must be updated, as is detailed in subsection A.

A. Stiffness and Load Contribution of the Adhesively Bonded Section

The subelement stiffness matrix is directly dependent on the load-displacement response of the central and
outer adherends. The strain in these adherends is related, via the material constitutive response given in
Eq. (21), to the stress fields known from Eq. (8) and table 1. These strains are related to the stiffness matrix
by shape functions derivatives, and this relationship was given in Ref. (3) as Eq. (11).

Ke =

∑
κ

Eκ11

∫ yκ1

yκ0

∫ 1

0

B2
κ

(
x̄, ¯̄φP

)
dx̄ dyκ

le

[
1 −1

−1 1

]
(11)

In the discrete space of the FE model, the known or desired quantities are the applied temperature change
(∆T , assumed to be constant through the element) and the nodal loads and displacements. The load
quantities must be recast into their non-dimensional forms to conform to the stress equations given above.
Non-dimensionalizing constants ( Θ

θ∆T
and Θ

θP
) are defined so that:

∆T =
Θ

θ∆T
φ̄T ,

P =
Θ
θP

φ̄P .

(12)

dIn Ref. (1) the roots of the bi-quadratic equation were listed as λ̄[12], whereas Refs. (2,3) had them listed as λ̄[13]. The
latter is chosen for this article in an attempt to maintain consistency with the more recent work.

8 of 21

American Institute of Aeronautics and Astronautics Paper 2007-2308



Application of Eqs. (12) to the known stress field and constitutive law, the strain can be written as a linear
function of the total load ¯̄φtotal :

εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
¯̄φtotal

=(1− νa13νa31)
(

e−λ̄3x̄ ¯̄D
(

¯̄φP

)
+ eλ̄3x̄ ¯̄C

(
¯̄φP

)
+ e−λ̄1x̄ ¯̄B

(
¯̄φP

)
+ eλ̄1x̄ ¯̄A

(
¯̄φP

)
− 1

γ̄

)
+

Θ
θ∆T

(
1− ¯̄φP

)
(αa33νa31 + αa11) ,

εc11

(
x̄, ¯̄φP , ¯̄φtotal

)
¯̄φtotal

=
Ea11ta (νc13νc31 − 1)

2Ec11tc

(
e−λ̄3x̄ ¯̄D

(
¯̄φP

)
+ eλ̄3x̄ ¯̄C

(
¯̄φP

)
+ e−λ̄1x̄ ¯̄B

(
¯̄φP

)
+ eλ̄1x̄ ¯̄A

(
¯̄φP

))
+

Θ
θ∆T

(
1− ¯̄φP

)
(αc11 + αc33νc31)

+
1

Ec11tc
(1− νc13νc31)

(
Ea11ta

2γ̄
+

¯̄φP
Θ
θP

1

)
.

(13)

It is assumed that the total elongation is the same for the adherends, therefore the two elongation
equations are written as:

qe =
(

dx

dx̄

)∫ 1

0

εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄,

qe =
(

dx

dx̄

)∫ 1

0

εc11

(
x̄, y, ¯̄φP , ¯̄φtotal

)
dx̄,

(14)

where the subelement elongation qe is defined as:

qe = q4 − q3. (15)

In Eq. (14), the elongation is written as a function of the non-dimensional total load, ¯̄φtotal . The total load
is not known a priori and must be eliminated in favor of an available quantity (the total elongation qe) so
that a stiffness matrix can be calculated. This is accomplished by applying the boundary condition to the
result of Eq. (14): (

dx

dx̄

)∫ x̄

0

εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

)∫ x̄

0

εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=1

= qe,(
dx

dx̄

)∫ x̄

0

εc11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

)∫ x̄

0

εc11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=1

= qe,

(16)

Specifically, the elongation is zero when x̄ = 0 (since x̄ = 0 is the reference from which elongation is
measured), and the total elongation is qe when x̄ = 1. Applying these boundary conditions and solving for
the total load ¯̄φtotal as a function of elongation qe (this is done for each strain equation), total load can be
replaced in Eq. (13) with the following:

¯̄φtotala = ¯̄Φaqe,

¯̄φtotal c = ¯̄Φcqe,
(17)

where the constants ( ¯̄Φa , ¯̄Φc) are detailed in appendix E. Substituting Eq. (17) into Eq. (13), the displacement
field is known in terms of total elongation and the shape functions and shape functions derivatives can now
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be written for each adherend:

ua

(
x̄, ¯̄φP , qe

)
= Na

(
x̄, ¯̄φP

)
qe,

uc

(
x̄, ¯̄φP , qe

)
= Nc

(
x̄, ¯̄φP

)
qe,

Ba

(
x̄, ¯̄φP

)
=

d

dx̄
Na

(
x̄, ¯̄φP

)
,

Bc

(
x̄, ¯̄φP

)
=

d

dx̄
Nc

(
x̄, ¯̄φP

)
.

(18)

The complete shape functions in Eq. (18) are detailed in the appendix V.
Having established the appropriate shape functions, the stiffness matrix can now be integrated numerically

using Eqs. (11). Additionally, the subelement load vector was derived in Ref. (3) as Eq. (19), and can now
be calculated. In Eqs. (11) and Eq. (19), the summation includes both adherends (κ = a, c).

~F = P

{
−1

1

}
+
∑

κ

ακ11Eκ11

(∫ y1

y0

∫ 1

0

Bκ

(
x̄, ¯̄φP

)
dx̄ dyκ

)
∆T

{
−1

1

}
(19)

The final requirement for element calculations is knowledge of the mechanical load P , used to determine
the load character ¯̄φP of the bonded section sub-element. This is accomplished by causing this load to be
an internal degree of freedom using Lagrange multipliers. In this work, the load becomes P1.e The complete
description of this process is as presented in Ref. (1) and is not repeated here.

B. The Abaqus R© Subroutine

Table 2: Model size for ASTM double lap joints

Model Nodes Elements DOFs
CPE4 ∼ 22100 ∼ 21600 ∼ 44300
UEL 4 1 6

The sub-element stiffness matrices and load vectors,
developed above and in Ref. (3), are assembled into
element matrices with 6 DOFs using a standard as-
sembly technique.38 The formulation requires an
iterative solution, since the mechanical load carried
by the joint is not known in general. Therefore, the
shape functions developed above have been imple-
mented as a user element subroutine (UEL) for the
commercial non-linear FE package Abaqus R©.27 A
complete description of the UEL functionality is provided in Ref. (3), including the modified midpoint rule
numerical integration technique.

The field quantities are calculated from table 1 at each integration point, based on the calculated ∆T
and P1 for the increment. The user specifies the number of integration points to be the number of stress
prediction points desired in the joint. In this way, all stress and strain quantities of interest are calculated
in a manner consistent with the shape function displacement field.

IV. FE output

The stress prediction provided by the UEL has been compared to a plane strain continuum FE model.
In the case of the UEL, the entire model consists of a single element. In the case of the continuum model,
a 2D mesh has been generated. Both models are based on the ASTM International double lap joint.39 An
overview of the continuum mesh is shown in figure 6, and the assumed geometries are given in table 3(a). The
solver used is Abaqus R© Standard, and the continuum mesh consists entirely of linear plain strain elements
(CPE4). Half of the joint is modeled due to symmetry. Loading is specified as listed in table 3(b), where
the mechanical load is applied far away from the lap joint and the thermal load is applied to all nodes.
Displacement symmetry constraints are enforced along the mid-plane of the central adherend. Non-linear
geometric stiffness is assumed.

eThe currently reported formulation of the element carries two internal load degrees of freedom, P1 and P2 as shown in
figure 5. Strictly speaking, this only requires, and would be most efficiently accomplished using only one additional degree of
freedom.
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Figure 6: The FE mesh

Table 3: Geometric and loading assumptions for model
comparison

(a) ASTM double lap joint geometric features (mm).

Component Thickness Length
Outer Adherend 1.6 76.2

Adhesive 0.2 12.7
Central Adherend 3.2 76.2

(b) Assumed loading.

Load Type Value
P (N·mm−1) 10

∆T ( ◦C) 10

Aluminum (Al) is used as the central adherend in
all models; the outer adherends are Titanium (Ti),
and AS4/3501-6 (AS4).40 For simplicity, the ad-
hesive properties are assumed to be isotropic, and
are estimated base on Cytec FM300 adhesive. The
assumed material properties are summarized in ta-
ble 4. The shear stresses from the continuum model
are reported at the centerline of the adhesive, which
is the most representative location for comparison
with the uniform shear stress predicted by the UEL.
The peel stress in the continuum model is reported
at the interface between the adhesive and the cen-
tral adherend. The choice of this location has a large
effect on the predicted peel stress, as was shown in
figure 1. The adhesive to central adherend interface
(a-b) comparison location is chosen because the UEL
model can be used as a measure of the magnitude of
the singularity present at this location. The peel stress reported from the UEL is the average peel stress
through the thickness (the stress equation is evaluated at y = tb

2 ).

A. Comparison of MBJFE and continuum based FE models

Plots of the stresses predicted by the continuum and UEL models are shown in figures 7-10. figure 7 shows
the predictions for a Al-Al double lap joint. When this joint is subjected to thermal loading, as is shown
in 7.1 and 7.2, both models predict that the stress is negligible.f This stress result is intuitive, since the
two adherends have identical thermal expansion coefficients. Figures 7.3 and 7.4 show shear and peel stress
predictions of the Al-Al joint subjected to mechanical loading, where good agreement is found in both
figures. The peak shear stress predicted by the UEL is similar to that predicted by the continuum model,
though there is a difference in predicted peak location. The peel stress predicted by the UEL is in adequate
agreement with the continuum model, and its value does not suffer from any mesh dependency. Figures 7.5
and 7.6 show mixed loading for the Al-Al joint, which is almost identical to the mechanical load predictions
for this joint.

Figure 8 shows the stresses predicted by the continuum and UEL models for an Al-Ti joint. Thermal
loading is no longer trivial, and the stress predictions resulting from it are shown in 8.1 and 8.2 for shear and
peel respectively. In this joint type, the predicted shear stress is in good agreement for thermal, mechanical,

fThis is a special case of identical adherends which was noted in Ref. (2). Thermal expansion of the adhesive is the primary
source of loading. Consequently, the longitudinal stress of the adhesive could be of primary interest to the analyst. Therefore,
an analysis methodology which takes this into account might be chosen.
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Figure 7: Continuum and UEL models of Al-Al joint
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Figure 8: Continuum and UEL models of Al-Ti joint
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Figure 9: Continuum and UEL models of Al-AS4 (0◦) joint
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Figure 10: Continuum and UEL models of Al-AS4 (90◦) joint

15 of 21

American Institute of Aeronautics and Astronautics Paper 2007-2308



and mixed loading, as is shown in 8.1, 8.3 and 8.5. In all cases, the peak shear stress predicted by the UEL
matches the continuum model adequately, and the peak location is consistently found to be further from the
edge in the UEL than in the continuum model. Looking at the peel stress predictions shown in 8.2, 8.4 and
8.6, good agreement is found again. The stress predicted by the UEL is similar to the continuum model,
and is representative of the unconverged singular peel stress result.

The UEL solution is orthotropic, and an example of a composite application is shown in figures 9 and
10. The figures show two Al-AS4 joints subjected to thermal, mechanical, and mixed loading. The laminate
shown in figure 9 has fibers oriented longitudinally (0o), and the laminate shown in figure 10 has fibers
oriented transversely (90o). Despite the unlikelihood of the 90o fiber orientation (relative to the joint loading
axis) being used in practical applications, the two figures shows that the UEL solution is in adequate
agreement with the continuum solution in both cases and for all three load types.

Based on the cumulative agreement shown in figures 7-10, it can be concluded that the UEL element
adequately predicts the shear stress in a double lap joint. The peel stress predicted by the UEL model is
found to be consistently in agreement with the magnitude of the (unconverged) singular stress field in all
figures (at the mesh density used in this comparison). Therefore, it can be used as a mesh independent
indicator of peel stress magnitude, useful for joint-to-joint comparison.

V. Conclusion

In this article, a Macroscopic Bonded Joint Finite Element has been described. It is capable of predict-
ing the lap joint field quantities in the bonded zone while using only six degrees of freedom. It does so
without burdening the user with mesh dependency or significant meshing overhead. The described MBJFE
accomplishes this task by embedding an analytical solution directly within the element. Its stiffness and
load response are based on non-linear shape functions that are dependent on the load character. All critical
terms are formulated as functions of the dimensionless mechanical load fraction, ¯̄φP , allowing for solution
via an iterative, non-linear FE solver. To demonstrate its capability, the element has been implemented as
a user element subroutine in the commercial finite element package Abaqus R©.

Based on comparison with a traditional FE solution, the MBJFE has been shown to be capable of ad-
equately predicting stress and strain due to thermal and mechanical loads in a single, four noded element
with six degrees of freedom. With this element, initial sizing and trade studies can be accomplished with
a greatly reduced meshing investment, as well as a reduction in computation time, when compared with
the standard finite element method. This work lays a firm foundation for further advancements in macro-
scopic joint elements. It is anticipated that currently available analytical solutions can be reformulated as
application specific macroscopic joint elements.

Extended description of the virtual work calculations

The principal of virtual work calculations are briefly summarized below. Equilibrium relations derived
in section II are given in table 1, as well as their associated virtual stress quantities. In table 1, all virtual
stress quantities can be written in terms of the central adherend virtual stress σ̂a11 (x). The principal of
virtual work is applied using:

δW =
∑

i

∫
(σ̂iεi) dVi = 0, (20)

where i represents the quantities listed in table 1 for each solution. The plane strain constitutive equation
for material κ is governed by:


εκ11(x)

εκ22(x)

γκ12(x)

 =


1−νκ13 νκ31

Eκ11
−νκ23 νκ31+νκ21

Eκ22
0

−νκ13 νκ32+νκ12
Eκ11

1−νκ23 νκ32
Eκ22

0
0 0 1

Gκ12




σκ11(x)

σκ22(x)

τκ12(x)

+

 ακ33 νκ31 + ακ11

ακ33 νκ32 + ακ22

0

∆T (21)

Eq. (20) applies for an arbitrary virtual stress σ̂a11 (x). The field equations and boundary terms of the
solution becomes apparent when integration of Eq. (20) is performed by parts.
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Shape Functions and Derivatives Within the Bonded Region

The shape functions and their derivatives are expressed with the following equations:

Na

(
x̄, ¯̄φP

)
le

¯̄Φa

=− (1− νa13νa31)

e−λ̄3x̄ ¯̄D
(

¯̄φP

)
λ̄3

+
−eλ̄3x̄ ¯̄C

(
¯̄φP

)
λ̄3

+
e−λ̄1x̄ ¯̄B

(
¯̄φP

)
λ̄1

+
−eλ̄1x̄ ¯̄A

(
¯̄φP

)
λ̄1

+
x̄

γ̄


+ x̄

Θ
θ∆T

(
1− ¯̄φP

)
(αa33νa31 + αa11) ,

Nc

(
x̄, ¯̄φP

)
l ¯̄Φc

=
Ea11ta (1− νc13νc31)

2Ec11tc

e−λ̄3x̄ ¯̄D
(

¯̄φP

)
λ̄3

−
eλ̄3x̄ ¯̄C

(
¯̄φP

)
λ̄3

+
e−λ̄1x̄ ¯̄B

(
¯̄φP

)
λ̄1

−
eλ̄1x̄ ¯̄A

(
¯̄φP

)
λ̄1


+

x̄ (1− νc13νc31)
Ec11tc

(
¯̄φP

Θ
θP

+
Ea11ta

2γ̄

)
+ x̄

Θ
θ∆T

(
1− ¯̄φP

)
(αc33νc31 + αc11) .

(22)

Model information

Table 4: Assumed material properties in continuum and UEL solutions (moduli in GPa, expansion coeffs.
in µε· ◦C−1)

Material Aluminum Titanium AS4/3501-6 FM300
(0◦)

E11 70 110 148 1.98
E22 70 110 10.6 1.98
E33 70 110 10.6 1.98
G12 26.3 41.4 5.61 0.71
G13 26.3 41.4 5.61 0.71
G23 26.3 41.4 3.17 0.71
ν12 0.33 0.33 0.30 0.40
ν13 0.33 0.33 0.30 0.40
ν23 0.33 0.33 0.59 0.40
α11 23 9 -0.8 20
α22 23 9 29 20
α33 23 9 29 20
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System parameters in terms of material properties and loads

The following variables are used in the text in order to facilitate compact equations:

A. Dimensionless System Parameters

Table 5: Dimensionless System Parameters

Load Parameters Material Parameters

φ̄P = θP P
Θ β̄ = θβ

Θ

φ̄T = θ∆T ∆T
Θ γ̄ = θγ

Θ

B. Dimensional Material Parameters

θβ = +
t3a

24l2

[
(νa12 + νa13νa32)

Ea11
+

(νa21 + νa23νa31)
Ea22

]
− t2atc

24l2

[
(νc12 + νc13νc32)

Ec11
+

(νc21 + νc23νc31)
Ec22

]
+

t2a
4l2Ea11

(
tb
1

(νa12 + νa13νa32) +
tc
2

(νa12 + νa13νa32)
)

+
t2a

4l2Ea22

(
tb
1

(νa21 + νa23νa31) +
tc
2

(νa21 + νa23νa31)
)

− t2a
8l2

[
tc

3Gc11
+

tb
Gb11

]
θγ =

t2a
4Ec11tc

(1− νc13νc31) +
ta

2Ea11
(1− νa13νa31)

(23)

C. Dimensional Load Parameters

θ∆T =
ta

2Ea11
(αa11 − αc11 + αa33νa31 − αc33νc31)

θP =− ta
2tcEa11Ec11

(1− νc13νc31)
(24)

D. Dimensional System Parameter

Θ = + (1− νa23νa32)
t3a

8l4Ea22

[
t2a
30

+
tatc
6

+
t2c
4

+
tatb
3

+
tbtc
1

+
t2b
1

]
+ (1− νb23νb32)

t2atb
4l4Eb22

[
t2c
4

+
t2b
3

+
tbtc
2

]
+ (1− νc23νc32)

t2at3c
80l4Ec22

(25)

E. Intermediate variables

¯̄Φa =
λ̄1λ̄3e

λ̄3+λ̄1

¯̄Ξa

,

¯̄Φc =
λ̄1λ̄3e

λ̄3+λ̄1

¯̄Ξc .
,

(26)
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¯̄Ξa = + leλ̄1 (1− νa13νa31)
(
eλ̄3+λ̄1 − eλ̄1

)
¯̄D
(

¯̄φP

)
+ leλ̄1 (1− νa13νa31)

(
e2λ̄3+λ̄1 − eλ̄3+λ̄1

)
¯̄C
(

¯̄φP

)
+ leλ̄3 (1− νa13νa31)

(
eλ̄3+λ̄1 − eλ̄3

)
¯̄B
(

¯̄φP

)
+ leλ̄3 (1− νa13νa31)

(
eλ̄3+2λ̄1 − eλ̄3+λ̄1

)
¯̄A
(

¯̄φP

)
− leλ̄1λ̄3e

λ̄3+λ̄1

(
(1− νa13νa31)

γ̄
− Θ

θ∆T

(
1− ¯̄φP

)
(αa11 + αa33νa31)

)
,

¯̄Ξc =− Ea11ta
2Ec11tc

leλ̄1 (1− νc13νc31)
(
eλ̄1 + eλ̄3+λ̄1

)
¯̄D
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄1 (1− νc13νc31)

(
e2λ̄3+λ̄1 − eλ̄3+λ̄1

)
¯̄C
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄3 (1− νc13νc31)

(
eλ̄3 + eλ̄3+λ̄1

)
¯̄B
(

¯̄φP

)
− Ea11ta

2Ec11tc
leλ̄3 (1− νc13νc31)

(
eλ̄3+2λ̄1 − eλ̄3+λ̄1

)
¯̄A
(

¯̄φP

)
+

leλ̄1λ̄3e
λ̄3+λ̄1

2Ec11tc

(
(1− νc13νc31)

γ̄

(
Ea11ta + 2γ̄ ¯̄φP

Θ
θP

))
+

leλ̄1λ̄3e
λ̄3+λ̄1

2Ec11tc

(
Θ

θ∆T

(
1− ¯̄φP

)
(αc11 + αc33νc31)

)
.

(27)

F. µ parameters for the basis coefficients

The µ values of Eq. (10) are given by:

µAT
=

λ̄3

(
eλ̄3 − 1

)
γ̄

µBT
=

eλ̄1 λ̄3

(
eλ̄3 − 1

)
γ̄

µCT
=−

λ̄1

(
eλ̄1 − 1

)
γ̄

µDT
=−

λ̄1

(
eλ̄1 − 1

)
eλ̄3

γ̄

µAP
=−

(
λ̄3e

2λ̄3+λ̄1 − λ̄1e
2λ̄3+λ̄1 + 2λ̄1e

λ̄3 − eλ̄1 λ̄3 − λ̄1e
λ̄1

)
µBP

=eλ̄1

(
−2λ̄1e

λ̄3+λ̄1 + λ̄3e
2λ̄3 + λ̄1e

2λ̄3 − λ̄3 + λ̄1

)
µCP

=
λ̄1

(
λ̄3e

λ̄3+2λ̄1 − λ̄1e
λ̄3+2λ̄1 + λ̄3e

λ̄3 + λ̄1e
λ̄3 − 2eλ̄1 λ̄3

)
λ̄3

µDP
=−

λ̄1e
λ̄3

(
2λ̄3e

λ̄3+λ̄1 − e2λ̄1 λ̄3 − λ̄3 − λ̄1e
2λ̄1 + λ̄1

)
λ̄3

µ1 =λ̄3e
λ̄3+λ̄1 − λ̄1e

λ̄3+λ̄1 + λ̄3e
λ̄3 + λ̄1e

λ̄3 − eλ̄1 λ̄3 − λ̄3 − λ̄1e
λ̄1 + λ̄1

µ2 =λ̄3e
λ̄3+λ̄1 − λ̄1e

λ̄3+λ̄1 − λ̄3e
λ̄3 − λ̄1e

λ̄3 + eλ̄1 λ̄3 − λ̄3 + λ̄1e
λ̄1 + λ̄1

µ3 =
Ec11λ̄3t

3
btc (νb23νb32 − 1)

3Eb22l4 (νc13νc31 − 1)

(28)
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