AIAA/AAS Astrodk/ﬂnamics Specialist Conference and Exhibit
5-8 August 2002,

onterey, California

AlAA 2002-4991

SOLAR SAIL ORBIT OPERATIONS AT ASTEROIDS: EXPLORING
THE COUPLED EFFECT OF AN IMPERFECTLY REFLECTING SAIL
AND A NONSPHERICAL ASTEROID *

Esther Morrow

D. J. Scheerest

Dan Lubin $

May 16, 2002

Abstract

This paper continues the work of previous studies
which examined solar sail dynamics about an aster-
oid. In the current study the effect of an imper-
fectly reflecting sail on the spacecraft dynamics is
evaluated and the effect of a non-spherical asteroid
is explored. The effect of the imperfect sail is seen
to cause a diminished solar radiation pressure force
along the sun line and modifies the possible hovering
locations. The effect of a non-spherical asteroid is
modeled by using the Js gravity field contribution.
We find explicit predictions for the coupling between
the (assumed dominant) solar radiation pressure and
the gravity field perturbation. Although the special
class of stable orbits for solar sails are generally sta-
ble under the .Jo perturbation, we find certain pa-
rameter combinations that may lead to instabilities
in the sail orbit. The analytical work is verified by
numerical computations.

Introduction

The natural appeal of solar sailing coupled with
the development of microtechnologies and new ma-
terials has recently caused increased interest in this
field. At the same time, we are just beginning to
study asteroids in situ. Because solar sail space-
craft have an inexhaustable fuel supply from sun-
light, they are capable of performing long term, mul-
tiple objective missions to asteroids, significantly de-
creasing the time between missions. They are also
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capable of orbiting asteroids or hovering over the
surface for extended periods of time which allows
surface mapping or sample returns.

In our first paper!, we examined the feasibility of
both asteroid orbits and equilibrium points, making
many assumptions on both the spacecraft and as-
teroid, i.e., that the spacecraft is perfectly reflecting
and planar and that the asteroid is a point mass in a
circular orbit about the sun. In our current analysis
we relax some of these assumptions in an effort to
move toward a more realistic model of sail motion
about an asteroid.

We change the sail from being perfectly reflecting
to imperfectly reflecting. Ideally, all photons inci-
dent on the sail will be reflected. In reality, however,
some of the photons will be absorbed into the sail
material. The efficiency of the sail will decrease de-
pending on the materials used. For the sake of this
paper, we are assuming 85% reflectivity, which is a
conservative estimate. Materials are available now
which can achieve about 90% reflectivity.>

We also generalize the asteroid gravity field from
a point mass to an oblate spheroid with its rota-
tion axis tilted away from the asteroid orbit angular
momentum. The asteroid spin axis is fixed in in-
ertial space. Since the asteroid spin pole is about
the symmetry axis, we do not consider the asteroid
spin rate. Though we add in perturbations due to
oblateness, we still neglect perturbations due to as-
teroid ellipticity. We make this assumption since the
largest perturbation comes from the .Jy effect and
because the sail will probably be placed in an orbit
which minimizes the effect of the asteroid ellipticity
in general.

Imperfectly reflecting sail model

When taking an imperfectly reflecting solar sail
into consideration, the solar radiation pressure
(SRP) acceleration vector is no longer strictly nor-
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mal to the sail. The equation for SRP for a perfectly
reflecting sail is a = a,(1- n)?n. For an imperfectly
reflecting sail we must include a component of force
in the transverse direction to the sail normal due to
absorption of photons:

a = [a; ay a;] (1)
1
= Zaw(1+n)(-n)’n
1
+5anp(1 = n)(1-n)(1-t)t (2)
or
1 3 3
a; = §anp(1 + 1) cos® ¢ cos® a
1
+§anp(1 — 1) cos® pcos asin® (3)
1 2 4 3
ay, = §anp(1 + 1) cos” ¢ sin ¢ cos’ a
1
+§anp(1 —1n)cos’ psinpcosasin®a  (4)
1
a, = §anp(1 + 1) cos® ¢ cos® asin
1
—ganp(l —n) cos? ¢ cos® asina (5)

where a,,, is related to sail acceleration a, by

_ 2 V14 tan® 6

np = (1+n) (1—tan§tan§)2ap (6)
and « is the pitch angle made up of two components,
the center line angle ¢ and the cone angle &; ¢ is the
sail roll angle; and 7 is the sail reflectivity value, 1
is the unit vector of incoming sunlight, n is the unit
normal to the sail and t is the unit vector transverse
to the normal.

It can be seen that, although the tranverse com-
ponent must be taken into account when the sail is
at an angle with respect to the sun-line, it makes no
difference in the direction of the normal force when
the sail faces the sun. In this case, the normal force
is simply reduced by a factor of (1 + n)/2.

Equilibrium points with an
imperfectly reflecting sail about
point-mass asteroids

Since McInnes? has already studied the effect of
an imperfectly reflecting sail on equilibrium points
about a point-mass Earth, we will not discuss equi-
libruim points about point-mass asteroids in much
detail. Even though the gravitational effect of an
asteroid is much less than that of the Earth, the ef-
fect scales proportionately. Our conclusions are the
same as Mclnnes’, i.e., that the direction in which

the SRP force vector can be oriented is limited by
the change in the SRP normal force acting on the
sail. Figure 1 is a two-dimensional plot of possi-
ble equilibrium points about a point-mass asteroid.
Each line in the plot represents a continuum of pos-
sible equilibrium points for a given amount of nor-
malized sail acceleration. This plot is similar to that
found by McInnes?. Note that the volume of space
where equilibrium points are possible is significantly
decreased from the volume of space found with a
perfectly reflecting sail spacecraft.

Normalized ap

Figure 1: Contour plot of equilibrium points about
a point-mass asteroid with an imperfectly reflecting
sail. Dashed lines represent the Hill radius and show
the “terminator” line of asteroid.

In Figure 1, the graph is in the zz-plane of the
rotating frame but position coordinates have been
normalized by z,, = r, cosf cosvy and z, = r,sinf
where r,, is the distance between the spacecraft and
the asteroid normalized by the Hill radius, r/rg.
The Hill radius is given by

ra = (u/3N%)'/? (7)

and marks a boundary (r, = 1) where the sail may
and may not fly. In this equation, u is the asteroid
gravitational parameter and N is asteroid orbit an-
gular velocity. On the day side of the asteroid, the
sail may not fly inside the Hill radius. It also may
not fly on the outside of the boundary on the night
side of the asteroid. The sail acceleration a,, has
been normalized by u/r%

The end result of having an imperfectly reflecting
sail is that possible equilibrium points for a sail with
a given characteristic acceleration are pushed radi-
ally away from the asteroid. The acceleration in the
radial direction is decreased, therefore, the sail must
move outward in order to compensate.



Oblate asteroid model

In this section we consider the effect of asteroid
oblateness on the dynamics of a solar sail. We will
model our oblate asteroid as a body with semi-major
axes a > b = ¢ which is spinning at a constant rate
about its smallest axis c.

Figure 2 shows the orientation of an oblate aster-
oid in an inertial frame (X,Y,Z). The asteroid spins
about the p.-axis, whose orientation is given by the
angles & and §. The oblateness assumption is rea-
sonable for some of the larger asteroids in the so-
lar system, and, even for irregularly shaped aster-
oids, represents the first non-trivial force perturba-
tion (beyond SRP) acting on the sail’s orbit.

z

Figure 2: The p.-axis is fixed in the inertial frame
(XY ,Z). Its coordinates are given by the Euler an-
gles & and §.

The unit vector of the asteroid’s rotation axis is
described in inertial coordinates as

P: = J[cosdcos@ cosdsind sind] (8)
where § is the declination of the asteroid rotation
pole and & is the right ascension of the asteroid ro-
tation pole in inertial space. The spacecraft orbit is
described by

r, = sin{Qsiniz — cosQsiniy + cosiz 9)
rr = —sinQcosiZ —cosQcosig +siniz  (10)
ro = cosQZ+sinQy (11)

where i is the orbit inclination and 2 is the longitude
of ascending node relative to inertial space.

r = 7rrg (12)

is the position vector from the asteroid to the space-

craft where the unit vector is given by
rs = cosurg + sinury (13)

where u = w + v, w is the spacecraft orbit argument
of periapsis and v is spacecraft true anomaly.

For detailed discussion we will use a rotating coor-
dinate frame fixed with respect to the asteroid-sun
line, denoted as (z,y, z). We assume that the z axes
in the rotating and inertial frames are aligned.

While the asteroid rotation pole is fixed in the in-

ertial frame, it rotates in the rotating frame and is
described by:
P = cosdcosNtx —cosdsin Nty +sindz (14)
where the Nt term denotes the polar angle of the as-
teroid about the sun. Note that we assume a circular
orbit for the asteroid, although this assumption can
be relaxed without fundamentally changing the re-
sults of this paper.

With this definition the J; force potential with a
tilted rotation axis is given by®:

Uy, = “—‘h[l—%(r-ﬁzf] (15)

where r is the position vector from the asteroid to
the sail, and is specified as

r = r[cosfcosypX cosfsinyy sinbz] (16)
where 6 is the declination angle measured from the
xy-plane toward the z-axis and ¢ is the right ascen-
sion angle measured in the zy-plane from the +a-
axis, as shown in Figure 3.

INCOMING
SOLAR FLUX

OBLATE
ASTEROID

Figure 3: Solar sail near an oblate asteroid with as-
teroid rotation about p.-axis. The vector p. is fixed
in inertial space while the asteroid revolves about the
sun.

The gravitational attraction is computed as:
ou _ _3ph Bpk
or 2 75 2 77

I,LJQ ~ ~
_37‘—5 (r-p:) P (17)

r-f)2)2r



Incorporating OU/Or into the equations of motion in
the rotating coordinate frame', we have:

Sul
2 rd

r- f)z)2a7

—%w+3N2m —
r

E“_JZ’(
2 77
J. R
—3%(r ‘pz)cosdcos Nt +a, (18)

& — 2Ny

j+2Ni = —Ly—-S"y+ 2 (r-pe)’y

J.
+3ur—2(r -Pp.)cosdsin Nt +a, (19)

—3—"(r-p;)sind +a, (20)

where the origin of the rotating reference frame is
centered at the asteroid with the positive x-axis in
the anti-solar direction, the z-axis normal to the
ecliptic, and the y-axis according the the right hand
rule. This frame rotates about the z-axis with
angular velocity N = \/usun/agst, where fisyn 1S
the sun’s gravitational parameter (~ 1.34 x 10!
km?/s?), and a,s is the asteroid’s heliocentric or-
bit radius in km. The gravitational parameter of
the asteroid is denoted as p. The entire sail-asteroid
model is shown in Figure 3. The sail position coor-
dinates are determined by r, # and v in the rotating
frame (x, y, z). The sail orientation is given by pitch
angle a and roll angle ¢. Force vectors are along the
sail normal (n) and transverse to the sail (t).

Sail dynamics about an
Oblate Spheroid

We now consider the effect of asteroid oblateness
on the dynamics of our sail orbit. First we review
some of the basic results originally reported in (Mor-
row et al.)!. In that study we found a class of frozen
orbits about the asteroid which were stable in the
sense that they neither impacted the asteroid nor
escaped. We found an upper bound on sail acceler-
ation at 1 AU to be

ay = (R/16)(u/r5) (21)

where R is the asteroid-sun distance in AU and rg
is the mean asteroid radius. We showed that a suf-
ficient condition for an orbit to be bound was that

ase < (R/4)V ,U/apo (22)

where a4 is the spacecraft semi-major axis. Bound
orbits were close to a family of frozen orbits defined
for these systems with eccentricity close to 0, sun-
synchronous, with orbit plane in the sun plane of sky,
and with constant semi-major axis on average. The
initial conditions for these stable orbits were e ~ 0,
i =7/2, w = %7/2 and A\ ~ Fr/2. With these
initial conditions the eccentricity and longitude of
the ascending node were bound.

Orbit about Ida with imperfect sail in rotating frame
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Figure 4: Orbit about Ida in the rotating reference
frame with J5 = 0. The orbit is stable in the sense
that it neither crashes nor escapes.

Orbit about Ida with imperfect sail & J2 effect

200

100

Z (km)
o

-100

-200
200

100 200
0 100

0
~100 -100

Y (km) -200 -200 X (km)
Figure 5: Orbit about Ida with Jy # 0. All other
conditions are the same as in figure 4.

In our current analysis we will concentrate on one
specific case, that of sail motion about a suitably
simplified model of the asteroid Ida. In Figures 4 and
5 we show numerically integrated trajectories about
our Ida model, one including J> and one not includ-
ing it. For both cases the model parameters are a,,
= .5 mm/s? and the sail is imperfectly reflecting



with » = .85. Initial conditions are: a = 2.5r¢ (2.5
times the largest asteroid semi-major axis), e = .1,
i=m/2,w=0, A =7/2, and time ¢t = 1le7 seconds.
The model for Ida assumes g = 0.03 km?/s? and
Jo = 283.5 km?, computed by

Jo = (a* +b* — 2¢%)/10 (23)

where ¢ = 58 km, b = 23 km, and ¢ = 23 km are
the semi-major axes of Ida’s shape. Thus we explic-
itly see that stable orbits about oblate spheroids are
possible with imperfectly reflecting sails.

General and secular perturbation potentials

If we express the gravitational and SRP forces as
potential forces acting on the spacecraft, we can
compute the averaged effects on the orbital elements.

These potential forces are given by

B (3p. x)? 1 29

where R, is the gravitational potential, and

Ry, =

Rsrp = appr[cosucos A —sinusin Acosi]  (25)

where Rs,p, is the SRP force potential. A = Q — v,
is the longitude of ascending node of the sail orbit
relative to the sun-asteroid line and v, is the true
anomaly of the asteroid orbit. Together, the entire
force potential for a solar sail at an oblate asteroid
is R = Ry + Rsrp. This formulation assumes that
the sail is face-on to the sun.

The combined force potential can be averaged over
the sail mean anomaly to find the secular potential

1 2T

— [ Ram (26)

R, =
2 Jo

For the combined problem of SRP and oblate
spheroid®® the secular potential is

R, Mﬁ%ﬁﬂ‘wﬁ

—ganpaeW2 (27)
Wi = cos®isin®6 + % sin 2i sin 26 sin K

+sin? i cos? § sin® & (28)
Wy = coswcosA —sinwsinAcosi (29)

where a is the orbit semi-major axis, e is the orbit
eccentricity, and Kk = Q — & = X — & + vyt

Lagrange equations for secular potential

Given a perturbing potential of the form U, the

Lagrange planetary equations with respect to time
4
are

da 2 U
@ T nadll (30)
@ . 1—¢e% 9U _\/l—eQB_U (31)
dt ~—  na2e M, nae Ow
ﬂ B cot i 6_U B csci B_U (32)
dt  na2vV1—e2 0w na2y/1—e2 00

dMy 20U 1-¢0U

& = “nada  na’e D (33)
d_w _ \/1—626_U_ cot i a_U (34)
dt na’e Jde  pa2y/1—e2 0i
dQ _ csci oU (35)

dt na?y/1 — e? i

For the secular potential R; we find the partials to
be:

OR;

= 0 36
9N, (36)
ORs 3uds 3
= 2 (1 _2
da Tai(1 — 2y L= 3Wa) = 5 %
anpe [cosw cos A —sinwsin Acosi]  (37)
1
Ws; = cos?isin?é+ 5 sin 24 sin 26 sin K
+sin” i cos? § sin? & (38)
ORs 3udse 3
ge = Ia_eprd T3 mgx
Anpa [cOsw cos A — sinwsin Acosi]  (39)
1
Wy = cos®isin®d + 5 sin 24 sin 20 sin K
+sin” i cos? § sin? & (40)
OR; 3pd>
= ———W,
0i 403(1 —e2)3/2 0
— @npac sinw sin Asin (41)
W5 = sin2isin®§ — cos2isin2dsink
— sin 2i cos® dsin® k (42)
ORs _ —Qppae X
ow 2™
sinw cos A + coswsin A cos i
i A in A cosi 43
oRs —3uds .. 3
50— 1P (1= c2)i2 sinicos kWg + > X
anpae [coswsin A + sinw cos A cosi| (44)
W = cosisin2d + 2sinicos®dsink (45)

Substituting these partials into the Lagrange equa-



tions, we find the derivatives with respect to time as
da

Vi—e?

de _ BwmV1Zcy, (47)
dt 2na
Wy = sinwcosA+ coswsinAcosi (48)
di 3MJ2

e kot B ¢ 74

dt dnad(1 —e2)2 ' °

3anpe . ..
———————coswsin Asint (49)
2nav'1 — e?
Ws = cosisin2§cosk + sinicos®dsin2x  (50)
dw 3uds
dat 4dna’®(1 — e?)? (1= 3W5)
3o cot i 3anp

4nad(1 — e?)? "7 9na

Vv1-—e?
e

(coswcos A — sinw sin A cos i)

3
+ 2‘;”; ﬁ (sinwsin A cosi) (51)
1
Woe = cosZisin®é + 5 sin 27 sin 24 sin K
+sin? i cos® § sin® K (52)
Wio = sin2isin?d — cos 2isin2§sink
— sin 2i cos® § sin” k (53)
aa 3uJscsci
dt  4nad(1 — e?)? "
3anpae .
——————————sinwsin A 54
2nav/1 — e2 (54)
Wi = sin2isin?d — cos2isin2dsin &

— sin 24 cos® §sin® K (55)

The equations have their simplest form if we re-
place the independent variable of time with the as-
teroid orbit’s true anomaly. Making this transfor-
mation yields:

da
= 0 56
d’/ast ( )
de = —AvV1-e2x
d’/ast
(sinw cos A 4 coswsin A cos i) (57)
di o A/J/J2
AVast  2P2a2ay,
(cosi sin 28 cos k + sin i cos? d sin 2/&)
Ae
———coswsin Asin¢ 58
T (58)
dw Apds
= ———(1-3W,
dvgst 2P2%a%ay, ( 1)
Apds coti

AV1 — €2 y
e

2 Y, —
2P2%a2ay,

(cosw cos A — sinwsin \ cos 1)

el
+ ——sinwsin Acos? 59
i (59
dQ  ApJycsci
dvest  2P%a%an,
Ae .
———=-sinwsin A (60)
1—e2
d\ dQ
= -1 61
dVast d’/ast ( )
where
9. . 9 | .
Wias = cos”isin®d + 3 sin 27 sin 20 sin k
+sin? i cos® § sin® K (62)
Wis = sin2isin?d — cos?2isin2dsin
— sin 2i cos® 6 sin” k (63)
A = 3anp a
2thzst 19

3 a
SB[ 5 (64

and P is the asteroid orbit parameter. The parame-
ter A is a measure of the solar radiation pressure per-
turbation. It is important to note that this parame-
ter is a constant even if the asteroid is on an elliptic
orbit. For this final set of equations the time vary-
ing term, , increases uniformly with true anomaly.
These equations have been studied previously for the
case Jo = 0167,

Frozen Orbits with and without Js

An equilibrium point of the averaged Lagrange
equations exists when all of the differential equa-
tions equal 0. At this point there is no change, on
average, to the orbital elements. These equilibrium
solutions are also called “frozen orbits.”

If J; is set to 0, as in the case of a point-mass as-
teroid, then an equilibrium point for the averaged
system has been found! with ey = /1/(1 + A2),
Ao = x7/2, ip = /2 and wy = F/2.

These orbits are sun-synchronous and have a con-
stant semi-major axis on average. They lie in the
plane perpendicular to the asteroid-sun line and
nominally have their periapsis aligned 90 degrees
above or below the orbit plane. They depend on lim-
iting the maximum acceleration of the sail accord-
ing to (21) and limiting distance from the surface
according to (22).

If we assume the asteroid’s .J, parameter to be
small, or if the sail is sufficiently far from the aster-
oid, the J, terms will act as a perturbation on the



sail orbit and will provide the time-varying forcing:

dcll/i(:t =0 o
do (66)
dcllj‘lzt — 2131&2542‘];% sin 2§ sin k (67)
dii‘:t — 2PA25—2JZW cos? § sin 2k (68)
dcf:(:t - 2131&2572‘3% (1 — 3 cos® §sin® k) (69)

Thus we are left with a series of perturbations act-
ing on 4, w and A which depend on k and §. If
d = m/2 then the rotation pole of the asteroid is
aligned with the asteroid orbit angular momentum.
In this case, ¢ and A are constant and w increases
at a constant rate. This is what we normally find
for a polar orbit about an oblate planet. In general,
however, ¢ will not be /2.

The linear solution and its stability

We can assess the dynamics and stability of the
system if we linearize the equations for the or-
bital elements about the equilibrium point (ey =
]./\/]. +A2, io = 7T/2, )\0 = :*:71’/2 and wo = 4371'/2)

After finding each of the partial derivatives and
evaluating them, we assume that Jo is small and of
the same order as de, §, etc. Neglecting products of
these terms, we find the linearized system equations
to be:

dde A2
Qe = vy — o (70)
doX Apds . .
= ——~ sin2
D 2P%aa, sin 26 sin k
14 A2)3/2
+%5e (71)
ddi A/.LJ2 2 .
= = 2K — 2
o 2P2aZa,, cos” § sin 2k — dw (72)
dow Apds 2 e . 9
= — (1- )
W 2P ar, ( 3 cos” J sin n)
+(1+A%)di (73)

We can rewrite these equations in matrix form as
dox/dvast = AdX(Vast) + B(Vast) where

A2
(1+A02)3/2 e ’ ’
A= | = 0 0 0 | (74)
0 0 0 -1
0 0 1+A%2 0

and
0
Apds sin 26 sin k
B 2P2aa,,, cos? d sin® k (75)

1—3cos?dsin’k

Since A is constant in v,g, we can use the state
transition matrix, ®(v,s,v) = L7 (s — A)~!} to
help solve for x(v,s¢). We find,

®(7) = (76)
2
COS Wo U — (w%) sin wo U
(22)? sin w7 COS Wo 7 L (77)
0
0 0
0 0
0 0
coswal  — S—inw?’? (78)
wo SINWoV  COSWol

where v = v, — v and ws = V1 + A2, For a time-
forced system,

§(Vasta 0)6)(1 +

/Oym D (Vgst,v)B(v)u(v)dv (79)

0x(Vgst) =

where 6x; = [de; 0\; &i; dw;]T are the initial condi-
tions.
In our case the entire solution 0x(vys) is:

0x(Vgst) =

2
d€; COSWalast — ON; (12\—2) Sin Wolast

2
oe; (w%) SIn WaVgst + ON; COS Walyst
01; COS WalVgst — ‘i‘;’; SIn Wo Vst

Wo0%; SIN WaVygt + Ow; COS Walyst

- 2
— (A) Csin2d
w2
Fsin 26
A 2 3 28
+2M4¢2]2 /\/lclos 6+ 3-Ncos? o (80)
2P2a2a,, L (1 — coswavast)
2

waoN cos? § — 3M cos? 6+
sin WoVgast X
wa
(2 coswav,st — 1)

where C, F, M and N are given in Appendix A.



There is a resonance singularity within these equa-
tions if wy = 2 (or A = v/3), denoting a semi-major
axis of

. é Qastlhsun

Qres = 3 af,oR(% (81)

This singularity is usually not a problem, however,
since for this value to occur the sail orbit semi-major
axis would have to be less than the asteroid radius
in general (a.s = 1.21 km for the orbits about Ida
that we are using for examples in this paper.)
Linear continuous-time systems of the form:

x = A(v)x(v) + B(v)u(v) (82)

are stable in the sense of Lyapunov if the norm of x,
lx(¥)]|, is bounded for all v > 08.

Looking at the wunforced case, =x(vgs) =
D (vyst,0)x(0), we must show that
[x(vase)ll = [|®(vast, 0)x(0)]

S ||¢(Vast70)||||x(0)|| (83)

is bounded. Since the initial conditions are bounded,
we only need to show that

[|®(Vast, 0)|| < N for all vast >0 (84)

The eigenvalues of A are A. = £v1+ A2 and
++/1 + A2i. The eigenvalues are repeated, however,
the two sets of conjugate pairs are not coupled so
the unforced systems are Lyapunov stable. There
is, therefore, a number N such that (84) is satisfied.

For the forced case, we need to show that ||x(vast)||
is bounded by some other number M. Since we know
that the homogeneous solution is bounded, we only
need to show that,

/0 B (aat 0) Blo)u(w)do | < M (85)

Since 0 < v, < 2w, we know that,

/Oym D (Vyst,v)B(v)u(v)do|| <

Therefore, the forced case is stable as well.

/0 i D (vyst, v)B(v)u(v)dvo

Non-linear Stability

Although we find the orbits to be stable in theory,
there are some parameter combinations which lead
to non-linear instabilities. For example, if the semi-
major axis of the sail orbit is small (within two aster-
oid radii), the eccentricity can grow large (more than
.5). When this situation occurs, the orbit periapsis

can become less than one asteroid radius (according
to the equation 7, = a(l — e)) and the spacecraft
may impact on the surface of the asteroid.

Due to the J, perturbations, the SRP solution os-
cillates about the ideal fixed point, meaning that all
the orbit elements take on a range of values. When
the amplitude of these oscillations is large enough,
the linearized equations of motion do not apply any-
more and the dynamics become dominated by the
closed form solution for the averaged SRP force!.
This situation is exemplified in the series of compu-
tations presented in Figures 6-15, showing the orbit
dynamics of a sail about an asteroid with and with-
out a Jo gravity term. In the absence of the J; term
the orbit is stable, however the addition of J, causes
the eccentricity to rise to extremely large values over
short, time spans.

This instability is non-linear in general and is
closely related to the original solution of the La-
grange equations for the SRP-only case. As reported
in Morrow et al.! the solution for eccentricity in the
SRP-only case, with an initial value for eccentricity
of zero, is:

esrp = \/1 —sin?igsin? \g X
sin(vest vV 1+ A?) (87)
where ig and Ay are the initial values of these angles.

From this condition we see that deviations in the ini-
tial values of these angles can excite the eccentricity

to reach maximum values of \/ 1 —sin?igsin® \o at
a later time. For our frozen orbits we nominally set
these angles equal to 90°, but perturbations from J
give them, essentially, initial conditions that deviate
from these angles. Adding this non-linear effect to
the natural oscillation of e due to .J and the forced
oscillations in the other orbit elements can lead to
large deviations in eccentricity over relatively short
time spans, as is apparent in the figures.

Thus, while previous results indicated that frozen
sail orbits close to the asteroid tended to become
more robust, here we see that asteroid shape effects
can destabilize motion when close to the asteroid.
Thus, a compromise must be struck between for fea-
sible sail operations about an asteroid.

Figures 6 and 7 are trajectories shown in the frame
aligned with the asteroid rotation pole. We use this
coordinate system because it is easier to see the
degradation to the orbit under the J» perturbation.
In Figure 6, with Jo = 0, the orbit stays fixed as ex-
pected. In Figure 7, with J5 # 0, the orbit becomes
elongated and skewed, the periapsis radius becomes
smaller, and the spacecraft eventually crashes into
the asteroid surface.
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Figure 6: Orbit about Ida with tilted asteroid rota-
tion axis, with Jo = 0. Initial conditions are: a =
116 km (two times the largest asteroid semi-major
axis),e =.1,i=7/2, w =0, Q = 7/2, and v = 0;
and time ¢ = 3.2e5 s.

Figures 8 - 15 show plots of the orbital elements
with and without J>. We used an altitude of 2.5r
for these plots which does not crash within the time
interval plotted, but clearly shows the perturbing
effect of Js.

Conclusion

In the current study, we have shown that hovering
solutions and orbital options still exist under the re-
laxed assumptions made to our model.

The volume of space surrounding a point-mass as-
teroid where hovering points exist has been reduced
by allowing for an imperfectly reflecting sail, how-
ever, there are still a continuum of hovering positions
available.

When perturbations due to asteroid oblateness are
included, we find new constraints on feasible or-
bits. However, a large family of stable and sun syn-
chronous orbits still exist. We have shown that dis-
tance from the asteroid is a major factor in finding
feasible orbits about oblate asteroids. We must al-
low for the spacecraft to be neither too far away
nor too near. Within this “altitude envelope,” how-
ever, good coverage of the asteroid is available for
extended periods of time.

For long-duration missions to asteroids, solar sails
have the advantage over conventional spacecraft of
having an unlimited fuel supply from sunlight. They
are capable of rendezvous with an asteroid then es-
caping from orbit to meet another planetary body
or returning to Earth.

Orbit about Ida with imperfect sail, tilted rotation axis & J2 effect
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Figure 7: Orbit about Ida in the rotating frame with
Jz # 0. All other conditions the same as in figure 6.
In this figure we can see that a stays constant while
e changes so that the periapsis radius grows smaller.
The spacecraft will eventually intersect the asteroid.
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Appendix A

Coefficients used in the linearized solution

Note that in this appendix, v is the asteroid true
anomaly.

C = sin(woy— o+ ) {1 — cos(wz + 1)1/]

— sin(wsv + Ao — &) [1 —2(:?5}(210_2 1—)1)1/]
+cos(wzr — Ao +4) {%}

10
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Figure 10: X vs. time when Jo = 0.
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Figure 11: X vs. time when .J5 # 0.

— cos(wav + Ao — &) [%] (88)

cos(wav — g + @) {1 — cos(ws + 1)1/]

— cos(wav + Ao — &) {1 _;E);)(Q’U}_Q 1—)1)1/]
+sin(wzr + Ao — @) [Slg((;uj : i))”}
—sin(wr — Ao + @) [Slg((zfj : 11” 59

G coswavsin?(\g — &) +
H coswav sin(Ag — &) cos(Ag — &) +
T cos wav cos? (Ao — &) +

J sinwyvsin®(Ag — &) +
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Figure 12: Inclination vs. time when Jy = 0.
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Figure 13: Inclination vs. time when Jy # 0.
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Figure 14: Argument of periapsis vs. time, Jy = 0.
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Figure 15: Argument of periapsis vs. time, Jy # 0.

L sin UJQI/COSZ(AO _ d) (90) 1-— COS(U}Q + 2)1! _ 1-— COS(U}Q — 2)11- (93)
wo + 2 Wy — 2
1T = —sinwsr — — X
N = Gsinwyr sin2()\0 —a)+ ‘ , AT ‘ 24 )
H sin wav sin(Ag — &) cos(Ng — &) + [sm(w2 _2 )V s1n(w2:-2 )V (94)
T sinwav COSQ()\() —a) — w2 1 w2 1
J coswyvsin®(Ag — &) — J = 20, [1 — coswyv] + 1 X
K coswav sin(Ag — &) cos(Xo — &) — 1—cos(ws +2)v 1 —cos(ws —2)v 05
L cos wav cos?(Ng — @) (91) wo + 2 Wy — 2 (95)
where K= l sin(ws — 2)v B sin(ws + 2)v (96)
1 1 2 wy — 2 wy + 2
= —sinwyv + — X 1 1
2wy ’ 4 £:2—[1—cosw2u]—1x
sin(ws — 2)v  sin(ws + 2)v Wa
92 _ _ _
Wy — 2 Wy + 2 (92) [1 cos(wy +2)v 1 — cos(wy 2)1/] (97)
1 ws + 2 wy — 2
H = 5 X



