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Abstract 

A scheme for solving the two-dimensional Euler equa- 
tions is developed. It is based on a aew scheme for 
the two-dimensional h e a r  convection equation, and the 
Euler-equation decomposition develeped by Hirsch et 
al. [I]. The scheme is genuinely two-dimensional. At 
each iteration, the data are locally decomposed into 
four variables, allowing convection in appropriate di- 
rections. This is done via a cell-vertex scheme with a 
downwind-weighted distribution step. The scheme is 
conservative, and third-order accurate in space. The 
derivation and stability analysis of the scheme for the 
convection equation, a rd  the derivation of the extension 
to the Euler equations are given. Preconditioning tech- 
niques based on local values of the convection speeds 
are discussed. The scheme for the Euler equations is 
applied to two channel-flow problems. It is shown to 
converge rapidly to a solution that agrees well with that 
of a t hird-order upwind solver. 

Introduction 

Much of the qnderstanding of modern upwind schemes 
for the Euler equations has come from designing algo- 
rithms for the one-dimensional linear convection equa- 
t ion 

As a consequence of this, problems in two or three (di- 
mensions are typically solved in a direction-split man- 
ner, with the upwinding directions normal to the faces 
of the computational cell. This leads to schemes that 
are strongly coupled to the grid on which they are ap- 
plied. Discontinuities that lie along grid lines are repre- 
sented properly when treated in this manner, but ones 
that are oblique to the grid are interpreted incorrectly 
by the built-in "Riemann solver" [2]. This suggests the 
need for designing an upwind-differencing scheme for 
the Euler equations that is truly multi-dimensional, and 
therefore less strongly coupled to the grid. The design 
- -- - 
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of an algorithm of this type should be motivated by the 
tw~dimensional linear convection equation 

and by an understanding of the wave-like character of 
the two-dimensional Euler equations. 

Characteristic information has been used in the past 
to formulate schemes. Morstti's A-scheme [3] and 
the QAZlD algorithm of Verhoff and O'Neil [4] are 
two examples of non-corker vat ive, characteristic- based 
schemes that use grid-decoupled stencils. Conservative 
schemes that are decoupled from the grid are more rare, 
however. Davis [5] has formulated an upwind scheme 
in which the Riemann problem is not solved normal to 
cell faces, but normal to shock waves. Levy et al. [6] 
have extended this work, including other possible up- 
winding directions. Hirsch et al. [I] have developed a 
method of decomposing the Euler equations into a set 
of convect ion equations. They have formulated a first- 
order scheme based on this decomposition. b e  [2] has 
developed a different decomposition method, based on 
locally decomposing the data into waves. He has for- 
mulated a first-order scheme that makes use of his de- 
composition. All of these conserva.tive algorithms are 
extremely nonlinear. Differences are not taken in grid- 
contravariant directions, but in directions determined 
by local values of the flow variables. In general, the di- 
rections are actually based on derivatives of flow quan- 
tities. For this reason, these schemes are inherently less 
robust than schemes that use the grid-cont ravariant di- 
rec t ions. 

Most of the upwind schemes used to date are cell- 
centered schemes. While cell-vertex schemes have ad- 
vantages in terms of accuracy [?], the ones that have 
been developed for the Euler equations thus far are 
based on central differencing [8,9] or on the Lax- 
Wendroff scheme [lo, 111. In the central-ditferencing 
version of a cell-vertex scheme, the residual for the cell 
k distributed equally to the four nodes of the cell. In 
the Lax-Wendroff version, this distribution is altered 
by the higher-order terms, so that the nodes receive 
unequal portions of the ~esidual. This can be general- 
ized so that the nodes receive some weighted fraction 



of the residual, where the weight is determined from 
the  stability analysis of the scheme. For a convection 
problem, the weights should be such that the residual 
is "pushed" downwind. For the Euler equations, there 
is the added difficulty of determining what variables 
should be convected, and in what directions. 
For the design of a genuinely multi-dimensional up- 

wind cell-vertex scheme, then, the following compo- 
nents are necessary: 

': P tz!!-veriex scheme with a downvind-biased dk- 
tribution f ~ r  a scdn!: mrrvection qua t ion  in which 
the  grid components of the wnvection speed are 
known; 

2. a method of locally decomposing the Euler equa- 
tions into a set of convection equations; 

3. an extension of the scalar scheme to a system, such 
t ha t  mass, momentum and energy are conserved. 

These compcncnts are described below for the case of 
two-dimensions . 

Scheme for the Convection Equation 

The heart of the new scheme for the Euler equations is 
a cell-vertex scheme for a two-dimensional convection 
equation 

This scheme is analyzed below. On a uniform Cartesian 
grid, the residual for the convection equation is given 
by 

where the semi-integer index denotes a average over a 
cell-face, i.e. 

These cell-face averages, t o  fourth order, may be writ- 
ten as 

and are approximated here by the third-order accurate 
one-parameter formulas 

where 6: and 6; are the centered second-direrence op- 
erators 

Using these formulas for the cell-face averages, the 
Fourier footprint of the flux integration for a, cell is 

&4 13 cos - - cos 3) i [ u s s in$ (  3 ( A t R e s )  = -- 
6 2 

Pz +vy sin (1.3 cos - - cos %)I 
2 2 2 

+O,uy sin % (sin - 3 sin A)] 
2 2 2 ' 

where the 0's are the Fourier variables and the v's are 
the Courant numbers 

To update the nodes. the cell-centered residual, given 
in Equation 2, multiplied by At, will be sent to the 
nodes (i.j). ( i  + 1,j). ( i  + l , j  + 1) and ( i , j  + 1) with 
weights us,. d S e ,  i;,, , and u,, respectively (see Fig- 
ure 1). The Fourier footprint of this distribution step 
is given by 

A + fiy (w'~, , ,  - L J , , )  sin - 
2 
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If a simple forward-Euler time-stepping scheme is 
used, the net amplification factor for the entire scheme 
is 

The appropriate values for the 8's and the w 's remain 
to be determined from the stability analysis. The w's 
correspond to convection directions, and should there- 
fore be determined by enforcing stability for the long 
waves (Pl,flY + 0). The 0's control the high-order dif- 
ference terms of the scheme, and should therefore be 
determined by enforcing stability for the short waves 
(A, Py -- T ) .  

Taking the limit of Equation 6 as P, , &, -, 0 yields 
the constraint 

where k is some real constant. An added constraint 
(conservation) is that the entire residual must be dis- 
tributed, 

Also, by symmetry, if the us and vy are such that con- 
vection is directly towards one node, all of the residual 
is distributed to that node, i.e. 

w,, = 1 if -us = vy < 0. 

Combining these conditions gives the distribution coef- 
ficients 

These formulas state that the residual is sent only to 
the nodes that define the downwind face, and is dis- 
tributed in a weighted manner between the two nodes 
on that face. For a plane wave moving in one of the 
coordinate directions, the two downwind weights are 
equal, and the scheme reduces to the standard one- 
dimensional up-vind scheme. 

i+l,j '' Figure 1: Cell-Vertex Distribution Scheme 

A short-wave analysis shows that- a necessary c.2ndi- 
tion for stability is 

For this to hold for all values of y, and vy , the constraint 

must be met, so that the 8's must be given by 

For steady solutions that are independent of At, the 9's 
must be independent of At. This leads to  the choice 

where a is a positive parameter of order one. It is 
interesting to note that this says that the 0's must be 
downwinded, i-e., in the cell-face average calculation of 
Equations 3 and 4, the 8's must be chosen so as to 
give more influence to the second-difference about the 
downwind node of the face. 

The only parameter in the scheme that remains to 
be datermined is the valuc of a. Figures 3-5 show the 
effect of different values of o on the amplification fac- 
tor G of the scheme. The maximum amplitude of the 
amplification factor over the high-frequency region (sce 
Figure 2) 



High F'requency Domain 

Figure 2: High-Frequency Region Used to Determine u Figure 4: Effect of cr on Stability - 20' Wave 
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Figure 3: Effect of cr on Stability - 0' Wave Figure 5: Effect of a on Stability - 45' Wave 
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New Cell-Vertex Scheme 
Stability Boundary 

v ,  = 1.00 and U, = 0.00 
Wave number locue 

Figure 6: Stability Boundary for Scheme 

is plotted as a function of cu for waves traveling a t  0°, 
20' and 45'. Based on these results, the value a = 1.0 
was chosen fo; the  scheme. The  stability boundary for 
the scheme, with cu = 1.0, is shown in Figure 6. 

The locus of the scheme (i.e. the Fourier footprint 
of F(AtRes)F(Dis t ) )  is shown for the 0°, 20' and 45' 
waves in Figures 7-9. The plots are generated by vary- 
ing A continuously and p, discretely, which leads to a 
mesh of points within the continuous footprint of the 
locus. The actual locus of the scheme consists of the 
lines in the plot, and all the space between the lines. 
The circu1a.r stablity bounda1.y of forward-Euler time- 
stepping is circumscribed about the loci for reference. 
The loci a, : very different from those of first-order up- 
wind or central-difference schemes. It is the wave that  
is convected at  45O that is damped the b e d ,  while waves 
at 0° (or 90') are not damped well. This can be seen 
clearly in the contours of the amplification factor for 
the scheme, shown in Figures 10-12. 

Some numerical results for a convected Gaussian on 
a 32 x 32 grid are given in Figures 13-15. In each case 
the G auseian propagates across the grid virtually undis- 
torted. The onset of a zebra instability can be seen iA! 
the 0' case, as predicted in the stability analysis. The 
amplitude of oscillations in this case is very small (on 
the order of loa4). The con ,argence history for each of 
the cases is shown in Figures 16-18. The  Gaussian con- 
vects a i  almost one cell per iteration, so that the slope 
of tk residual curve changes drastically after approx- 
imately forty iterations. The 45' case, which has the 
best high- frequency damping, converges very quickly, 
while the O0 case converges very slowly. Table 1 shows 
the results of a grid-refinement study confirming the 
t hir d-order accuracy of the scheme. 

Figdrt.7: Fourier ~ootqr int-of  Scheme - 0' wave 

v, = 0.90 and v, = 0.30 
Wave number locus 

1 

Figure 8: h u r i e r  Footprint of Stheme - 20' wave 
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us = 0.80 and u, = 0.80 v ,  = 0.90 and v, = 0.30 

Amplification factw 

Figure 9: Fourier Footprint of Scheme - 45' wave Figure 11: AmpLfication Factor of Scheme - 20' wave 

v ,  = 1.00 md v y  = 0.00 

Amplification factor 

v ,  = 0 8.0 and u,, = 0.80 

Amplification factor 

Figure 10: Amplification Factor of Scheme - 0' wave Figure 12: Amplification Factor of Scheme - 45' wave 
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Conrscted Gaussian 

Figure 13: Gaussian Convected at O0 

V =  = 0.90 vy = 0.30 < = 0.25 
Convected Gaussian 

Figure 14: Gaussian Convected at 20' 

v, = 0.80 vV = 0.80 ( = 0.25 
Convected Gaussian 

x 

Figure 15: Gaussian Convected at  4 5 O  

Y, = 1.00 uy = 0.00 < = 0.25 

Convergence History 

Iteration 

Figure 16: Convergence History for O0 Case 



v ,  = 0.80 u y  = 0.80 ,$ = 0.25 

Convergence History ence History 
1 

Iteration Iteration 

Figure 17: Convergence History for 20' Case 

Table 1: Order of Accuracy Study - Convection of 
Unit-Ampilitude Gaussian, I: = 3.25, at  45' 

Grid 

4 

8 

1 62 

322 

642 

Scheme for the Euler Equations 

The  Euler equations are 

Peaka t  x=0.5 

0.84602 

0.85929 

2.99314 

0.99901 

0.99988 

where U is the state vector of conserved variablcs 

and F and G are the flux vectors 

EstimatedOrder 

- 

1.92 

2.57 

2.88 

2.95 

Figure 18: Convergence History for 45' Case 

i 

To solve the Eulel equations with a scheme andagous 
to the one above, the system must be decomposed into 
a set of twmdimensional convection equations, with or 
without source terms. Once thc equations have been 
decomposed, each component can be treated with the  
coiwxtion scheme described above. The  distribution 
step carries over in a very straightforward manner: t he  
flux calculation (particularly the higher-order terms) 
must be treated carefully t o  ensure that the fornulation 
for the system is consistent with the formulation ior 
the scalar equation, and that the resulting scheme i s  

conservative. 

Decomposition of the Euler Equations 

Roe [2,12] has formulated a decompcsition of the two- 
dimensional Euler equations, based on the eigenvectors 
of the matrix 

The eigenvectors of A represent a shear wave, a contact 
discontinuity and two acoustic waves. Roe makes use 
of these eigenvectors, decomposing the flow into. for 
example, four acoustic waves, one shear wave and  an 
entropy wave. He uses local values of the flow gradients 
to compute the strength and angle of inclination of each 
of the waves in his model. 

Hirsch e t  al. [I] have formulated a different derompo- 
sition, which converts the Euler equations to the form 

where W* is a vector of convected quantities (entropy, a 
component of velocity, and two acoustic-like variables). 
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Dx and Dy sre  diagonal matrices of convection speeds, 
and S is a source term. Similarly t o  b e ' s  decomposi- 
tion, the decomposition of Hirsch is based on the matrix 

where tc, and tcy are the componellts of a unit propa- 
gation vector. Diagonalization of A gives 

where 

D(s)  = 

and P and P-' are the left- and right-eigenvector ma- 
trices. The  choice of the unit vector K is based on 
local flow gradients. Hirsh chooses tc so  as to  minimize 
the components of the source term S. To minimize 
all components, one needs two different K vectors; K(') 

for &he velocity-component convection and K ( ~ )  for the 
acoustic-like convection. With two K vectors, 

and 

and 

These equations are general, holding for any choices of 
n(') and d'). Hirsch shows that, in order to minimze 
t h  sowre terms, one needs a n(') that is aligned locally 
with the pressure gradient, and a PC(=) that  is related to 
the strain-rate tensor. Tha t  is, d l )  is given by 

and K ( ' )  is computed from the velocity derivatives in 
the following way: if 

then the propagation angle 

is calculated; otherwise, the possible propagation angles 
are given by 

The value of d 3 )  is then 

The proper branch for Equation 14 is tile one that max- 
imizes the inner product n( ' ) .  d l ) .  This inner product 
appears in the denominator of entries of the t rar  ~ f .  -- 
mation matrix P* (described below); the two v e c t ~ ~ s  
therefore must not be perpendicular. This is ensured 
by taking n(') := n(l) if the nominal value of the inner 
product is less than 1/10. 

Hirsch's decomposition was chosen for this study be- 
cause the matrix P' is square (4 x 4) ,  as opposed to 

Roe's decomposition, which yields a 6 x 4 matrix. 

Extens ion  of Convec t i on  Scheme 

Just as in the scheme for the convection equation, the 
scheme for the Eu!er equations is made up of two pri- 
mary steps: 

1. a residual calculation based on a flux.integra1: 
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2. a residual distribution. with (I?\ 

q' = a";,- ' 
Each of ?!.me stepti is somewhat more complicated for / (t) 
the system, however. pt I , I ~ ~ ) I ] .  

For the Euler equations, the residual for a cell is given 
by The cootravariant Courant nurnbe;~ vik) and vik) and 

the transformation matrix 2' nre defined further below. 
(15) Note that P* and BY)  arc defintd per cell, and must be 

averagind over neighboring celb t o  yied a cell-face value. 

where A is the cell area and the integrsl is taken along The analog of Equation 3 is 

the cell's boundary dA.  The cells are now quadrilater- 
F i j  + F i + l  j G i  ,j + Q i + l j  

ah, with faces lying along curvilinear coordinate tines bi + 4 3 Ac = 2 AEY - 2 4~ 
= & and q = j The bcundary integral of Equa- 

tion 15 is composed of contributions of fluxes normal -- 6; / Tivj + F i t ; , j  A ~ Y  - G i d  + G i + l , j  

t o  cell faces. To extend the approximation of Equa- 12 2 2 Atx 
- - 

tions 3 and 4 so that they apply to  the above residual, 
i t  is necessary to convert these to flux approximations. 
Equation 4, for instance, when multiplied by c, J y ,  be- 
comes an expression for the total flux across the cell- 
face centered at  ( i ,  j + 1/2): 

with 

1 A( = c i + l  - t i  
+,@,cZ ( ~ i , j + ~  - U i i )  AY} . 

and 
M7ith regard t o  the Euler equations, this translates di- ed< = Fdy - Gdz . 
rectly into 

The matrix Ot is given by 

- (GiVj+l - G i t j  Aqx] } 7 
The contravariant Courant numbers ur) and uc) are 

related to  the wave speeds normal to the cell faces. 
in which the following notation is used: Thus we have, for instance, 

with 

1 
The quantity P denotes the flux normal to s cell-face, + j +  = ~ ( z i , j + l  - x i , ,  + z i + i d + i  - ~ i + l . ~ )  

scaled such that 

Pdrl = Fdy - Gdr . 

The matrix 8, replaces the scalar 8,; it acts as a scalar The Cartesian wave speeds c, and c,, are the diagonal 
in each of the convection equations generated by the elements of the matrices Dx and Dy introduced previ- 
transformation matrix P+ ously, and are evaluated a t  (i + 1/2. y + 1/2) by using 

cell-averaged state quan t i ties and the cell-centered K 
8., = P*diag {OF'} P*-' , (16) values. Note that the factor At in Equation 18 drops 
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out in the definition of 81k). Andagous to Equation 18 where k vcies from one to four. In the above, P * ( ~ )  

is denotes the kth column of P* , corresponding to  the kth 
wave, and 6 t ~ ( k )  is the portion of time change in the 

At = ( e = ~ C  e y ~ Z z ) i + + , j + +  , (19) state vector caused by the kth wave. Each may 
i+ , j +  be divided between the two vertices of the downwind 

cell-face, according to the weights of Equations 7-10, 
with (k) with u, and q, replaced by vlk) and v, , e.g. 

1 - 
(Ac$),++ - ( x i + l g  - X i  j + X i + l , j + l  - xi,+lj) (vik) + u p )  

1 \ Ivy) + u?? I + ( P i k )  - U i k )  I 
(AC~)i++ = ( ~ i + l , j  - Y i , j  + ~ i + l , j + l  - ~ i , j + l j  

The transformation matrix P' is given, in colurnns, 

( n(') + cn, 
2cK (I)) 

The distribution step requires, in each cell, projec- 
tion of the residual onto the columns of the matrix P*, 
giving weights dkI, and multiplication of each of the 
resulting vectors by an appropriate time-step: 

As indicated in Equation 21, it is not necessary to 
take the szme value of At for each cell, or even for each 
wave. Spatial conservation, and, therefore, the ability 
to find steady weak solutions, is guaranteed by formu- 
lating the discrete residual on the basis of Equation 15. 
Using different time steps in different cells is a well- 
known technique called "local time-stepping;" using dif- 
ferent time steps for different waves is new, and will be 
called "characteristic time-stepping." Mathematically 
speaking, the use of a non-constant At is equivalent 
to preconditioning the equations. Local time-stepping 
takes away the stiffness due t o  spatial variations, and 
may be called "spatid preconditioning;" characteristic 
time-stepping removes the stiffness due to the differ- 
ences among the local wave speeds, and may be called 
"wave-preconditioning." 

In local time-stepping, one chooses, with some safety 
margin, the largest single time-step value that satisfies 
the stability criterion (see Figure 6) for the local values 
of all pairs ulk), uik). In characteristic time-stepping, 
the ~lrne-step for each pair is maximized separately. 
The validity of this practice hinges on the assumption 
that, in the steady state, each residual (Equation 15) 
vanishes separately; for a cell-vertex scheme this, how- 
ever, is not generally true. All one can assume is that 
the sum of all residual components sent to a particular 
vertex vanishes in the steady state. To prevent an im- 
balance among contributions b r W k )  for a particular k ,  
arriving in a vertex from different cells, both local and 
characteristic time-step values need to be assigned to 
vertices (i, j) rather than cell-centers (i + 1/2, j + 1/2). 

The use of characteristic time steps requires special 
provisions near sonic lines, steady shocks and stagna- 
tion points, i.e. in regions where one of the convec- 
tion speeds vanishes. The linear stability criterion then 
allows of arbitrarily large values of At; in practice, 
however, its value must be constrained by a solution- 
dependent upper limit. How to do this robustly in 
the multi-dimensional case is not yet known; for one- 
dimensional flow, some progress has been reported [13]. 

Boundary conditions are imposed at  the walls by en- 
forcing a tangency condition a t  the vertices on the walls 
and zeroing the mass-flux for the faces on the walls. 
Boundary conditions at inflow and outflow are imposed 
by a non-reflecting condition described by Lindquis t 
and Giles [14]. 
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Results 
The scheme described above was used to compute 
steady flows in a two-dimensional channel, with cosine- 
shaped walls yielding a 10% constriction at the throat. 
Two different inflow Mach numbers were taken: 

Both cases were run on the 64 x 32 grid shown in Fig- 
ure 19. It is worth mentioning here that the full grid 
was used in the calculations: although the final steady 
state is symmetric about the channel axis, the transient 
states are not, due to the asymmetry of the n('). This 
asymmetry of the Hirsch decomposition is suspected to 
have a negative effect on the convergence to a steady 
state; this remains to be investigated. In comparison, 
the decomposition of Roe preserves flow symmetry. 

The results for the first case are shown in Figures 20- 
30. Figure 20 shows the Mach number contours of the 
steady flow. The compression waves caused by the co- 
sine bump, the coalescence into shock waves, and the 
reflection of the shocks are clearly seen. There are 
some oscillations a t  the shocks, due to the fact that 
the scheme is third-order accurate everywhere. For 
comparison, results from a grid-biased cell-centered up- 
wind scheme [15] are shown in Figures 21 and 22. This 
s ch~me  is linearly third-order accurate but formally 
t hird-order accurate only for one-dimensional flow; the 
approximate Riemann solver used for upwinding is Os- 
her's. r'igure 21 shows the results produced without 
limiting of higher-order terms, allowing a fair compar- 
ison with Figure 20. The results are very similar, the 
cell-centered scheme being a littie less oscillatory, but 
yielding less defined reflected shocks. The results of 
Figure 22 were rendered monotone by the use of Van 
Albada's limiter [16], leading to a clear loss of resoluti~n 
for all waves, especially the reflected shocks. The re- 
maining plots show the details of the shock-intersection 
region. Figure 23 shows the grid in this region; Fig- 
ure 24 shows the Mach number contours. Comparison 
of the two shows that, although the shock is oblique 
to the grid, it is everywhere captured across two cells. 
The n(') vectors (related to the pressure-gradient) and 
the n(') vectors (related to the strain-rate tensor) are 
shown in Figures 25 and 26. These give rise to the con- 
vection directions shown in Figures 27-29. The first 
shows the convection direction for the shear variable 
and the entropy variable; this is simply the stream di- 
rection. The remaining two show the convection direc- 
tions for the acoustic-like variables. The shocks are ev- 
ident in the acoustic directions. Convergence histories 
for this case are shown in Figure 30. The two different 
convergence rates are for: I 

M, = 1.75 10% bump 

l . O O ~ ,  

Figure 19: = 1.75 Case - Grid 

M ,  = 1.75 10% bump 

Mach Number Contours 

1 1 0000 
2 1 1000 
3 1.2000 

Figure 20: A.I, = 1.75 Case - Mach Number Contours 

1. constant At (no preconditioning); 
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2. a different At in each cell (spatial preconditioning). 



M, = 1.75 10% bump 

Mach Number Contours 

1 I 1 1.0000 

Figure 21: M ,  = 1.75 Case - Grid-Biased Upwind 
Results (Limiter Off) 

Figure 22: 1% 

Results (Limiter 

M, = 1.75 10% bump 

Mach Number Contours 
1.00 

Moo = 3.50 10% bump 

1 

Grid 

1 1.0000 
2 1.1000 
3 1.2000 

Figure 23: M ,  = 1.75 Case - Grid 

M, = 1.75 10% bump 

= 1.75 Case - Grid-Biased Upwind 
On) 

REP RODUC I 

Figure 24: hl, = 1.75 Case - Mach 
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M, = 1.75 10% bump M, = 1.75 10% bump 

Entropy and Shear Convection 
0.50 

0.30 

0.10 
Y 

-0.10 

-0.30 

-0.50 
-0.50 -0.30 -0.10 0.10 0.30 0.50 

2 

Figure 27: M, = 1.75 Case - Convection Directions Figure 25: M, = 1.75 Case - dl) Directions 
for Shear and Entropy 

M, = l.75 10% bump 

6 2  vectors 

M ,  = 1.75 10% bump 

First Acoustic Convection 

Figure 26: Mm = 1.75 Case - d2) Directions 
Figure 28: hi, = 1.75 Case - Convection Directions 
fm First Acoustic-like Variable 
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M, = 1.75 10% bump 

Figure 29: M, = 1.75 Case - Convection Directions 
for Second Acoustic-like Variable 

Wave-preconditioning was also tried, but the lack of a 
precise control for the ~ t ( ~ )  in regions where low wave 
speeds occur (inside steady shocks) made this calcu- 
lation actually converge slightly more slowly than the 
calculation with spatial preconditioning only, 

The results for the second case are shown in Fig- 
ures 31-41. Figure 31 shows the Mach number contours 
for the steady flow. The shock pattern is similar to that 
of the first case, but the shocks move at  a shallower an- 
gle, so that they do not reflect from the walls before 
reaching the outflow boundary. Due to the strength 
of the shocks in this case, some extra damping was 
necessary to  capture them without large oscillations; 
this was provided by smoothing the residuals after each 
time-step with a biharmonic operetor. Comparison re- 
sults, non-limited and limited, are shown in Figures 32 
and 33. Again, the new cell-vertex scheme gives vir- 
tually the same results as the non-limited cell-centered 
scheme. Figure 33 shows the substantial loss in resoiu- 
tion caused by turning on the limiter. The remaining 
plots again show the details of the shock-intersec tion re- 
gion. Figure 34 shows the grid in this region; Figure 35 
shows the Mach number contours. The dl) and K( ' )  

vectors are shown in Figures 36 and 37, the convection 
directions in Figures 38-40. Convergence histories for 
this case are shown in Figure 41. The three different 
convergence rates are for: 

1. constant At (no preconditioning); 

2. a different At in each cell (spatial .>reconditioning); 

M ,  = 1.75 10% bump 
Effect of preconditioning 

- l . O O < ~  - none 

3. a different At for each convection equation (wave- 
preconditioning). 

Due to the relatively high Mach number, the wave 

1 I -- space speeds do not exhibit much of a spread, so that the 

Iteration 

Figure 30: Mm = 1.75 Case - Effect of Local At 
(CFL=0.5) 
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preconditioning gives only about a 20% gain. In this 
case, the convergence history clearly resembles that of 
the scalar equation: after 150 iterations, the residual 
drops rapidly. 

Conclusions 

A genuinely multi-dimensional upwind-differencing 
cell-vertex scheme for a twedimensional convection 
equation has been formulated, analyzed and tested. 
I t  has been extended to the Euler equations, giving a 
third-order accurate conservative scheme. The numer- 
ical results thus far are promising. The four essential 
elements of the Euler scheme are: 
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Figure 35: M,  = 3.50 Case - Mach Number Contours 
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the calculation of the convection directions; 

0 the  residual calculation; 

the distribution step; 

the time-step calculation. 

Three of the four warrant further study t o  produce a 
practical scheme. 

The  convection directions chosen here were the ones 
derived by Hirsch et  al. [I]. As these are based on 
derivatives of the flow variables, the numerical values 
can be  very noisy. One method used to minimize the ef- 
fect of the noisiness of the Kirsch K'S was to freeze them 
after the residual had dropped two orders of magnitude. 
This improved convergence considerably. Experiments 
with other directions (e.g. the streamline direction) 
for the CG'S showed that  they could lead to  faster con- 
vergence. Such alternative directions did not work in 
every case, however. Other wave models, such as that 
of Roe [2], remain t o  be investigated. 

The residual calculation derived here gives third- 
order accuracy everywhere, which is not an advantage 
near shocks. I t  is not yet clear how to modify the resid- 
ual formulas in order t o  ensure monotonicity. In addi- 
tion, the highest-order terms in thi. scheme are strongly 
coupled to the choice of the CG's. These terms turned 
out t o  be destabilizing in regions where the K'S were 
highly oscillatory. In particular, subsonic cases (not 
shown here) converged only very slowly, and the final 
solutions were not smooth unless a more reliable fourth- 
order term (e.g. a biharmonic term) was added. 

Not all of the underdamped behavior of t i e  scheme 
can be traced to its high nonlinearity. As c,>n be seen 
from Figure 10, the basic convection scheme does not 
damp any combination of a high spatial frequency along 
one coordinate with a low frequency along the other 
coordinate, if the convection is precisely in one of the 
coordinate directions. This lack of damping is caused 
by the vanishing of either 8, or Oy . Improvement of 
the  convection scheme in this respect requres the intro- 
duction of additional finite-difference terms; these may 
actually be formulated as a smoothing term following 
the distribution step. 

Finally, the time-step calculation, aimed a t  achieving 
optimal convergence, is far from robust. The technique 
of preconditicning by calcillating a value of At for each 
convection equation, at  each cell-vertex, can lead to  
large improvements in convergence [13,17]. When one 
of the convection speeds is very small, the potential 
benefit of wave-preconditioning is greatest, but so is the 
danger of taking the time s tep too large. A satisfactory 
analysis of this remains to  be carried out. 
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