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ABSTRACT

A general theory is developed for the electrokinetic power and
energy properties associated with the basic carrier modes present in
plasma media. Both hydrodynamic and kinetic theoretical models are
obtained for the media in the presence of applied static electric and
magnetic fields.

In the hydrodynamic theory the effects of carrier collisions and
thermal diffusion are properly accounted for andexplained by developing
a second-order quasi-linear analysis. In this manner it is shown that
the negative kinetic power property is directly related to dc slowing of
the active carrier. The distinction between absolute and cornvective
instabilities leads to the formulation of a space-averaged temporal-energy
basis for determining the existence of absolute instabilities as compared
to a time-averaged spatial-power basis for convective instabilities. The
analysis shows that it is possible to relate the causality criteria for
instabilities developed by Briggs to the conservation of power and energy
in the medium. Thus useful general information is obtained on the
behavior of the root trajectories in complex-k space as the imaginary
part of the frequency is varied.

The quasi-linear theory, as a by-product, allows the analysis of
the second-order Hall effect and related phenomena in solids. In addition,
a study of the physical meaning of the quasi-linear theory shows that this
is a useful analytical tool for studying potential energy effects caused
by the reaction of the growing RF fields on the carrier charges. This
also enables the accuracy of the linear dispersion equation to be assessed.

The power and energy theorems applied to the kinetic theory determine
the effects of nonlocality, anisotropic carrier temperatures, and carrier
heating. Whenever possible the results obtained are rigorously compared
with those of the hydrodynamics theory. By obtaining the respective
dispersion equations, computer results for the hybrid-hybrid electron-hole
interaction are related to published experimental work on the phenomenon of
microwave emission from indium antimonide.
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CHAPTER I. INTRODUCTION

1.1 Streaming Instabilities in Solid-State Plasmas

1.1.1 Introduction. There has been considerable research in

recent years directed toward the generation and amplification of micro-
wave radiation utilizing solid-state plasmas. The encouraging properties
offered by these media’™© are (1) densities of charge‘carriers far in
excess of any that can be reasonably achieved in vacuum or in gas dis-
charges and (2) the existence of two types of mobile charge carriers,
electrons and holes, which have different effective masses; these masses
are much less than the free electron mass. The high carrier densities
afford large coupling strengths in any carrier interaction mechanism;

the low effective masses provide both large drift velocities and very

high cyclotron frequencies at moderate applied fields. On the other hand,
the large Fermi (thermal) velocities of the carriers and their large
collision frequencies (lattice interaction) limit the degree of spatial

and temporal coherence available in any wave-carrier interaction. While
the collisions in gaseous plasmas are often insignificant, in solid-state
plasmas they are in many cases of vast importance. Under some conditions
the presence of collisions actually induces new instabilities by permitting
more general sets of carrier motions by which the system can reach lower
energy states. In addition, as opposed to gaseous plasmas wherein iﬁsta—
bilities naturally arise from the methods of plasma production, solid-state

plasmas are in thermal equilibrium, and in most cases very high current
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densities are required to generate instabilities. Thus the solid-state
plasma experimentalist is often operating at the limit of sample
power dissipation and the theoretician will, as a rule, have self-
magnetic field effects and carrier heating effects to consider. Since
the present study is concerned primarily with velocity-driven
instabilities, the relevant characteristics of those waves associated
with the drifting carriers will be examined.

A moving medium of charged carriers can support two classes of

modes.tt

One class carries positive kinetic energy so that energy must
be supplied to the system to excite these modes. The other class of
modes carries negative kinetic energy and, correspondingly, energy must
be removed from the system to excite these modes. Useful instabilities
arise from the interaction of a positive-kinetic-energy-carrying mode
with a negative-kinetic-energy-carrying mode. If the group velocities
of the interacting modes are in the same direction the instability is
convective in nature; if the mode group velocities are oppositely
directed, the instability is absolute (nonconvective). Regardless of
the interaction under study, several criteria are available to investigate
the instability characteristics of the system.lz'15

Of the possible instabilities, those which have received the most
attention in the literature are of the two-stream type. These can be
divided into two major subsets via their distinctive wave properties.
In one subset, termed the transverse instability, the related modes are
essentially electromagnetic waves modified by the presence of both a

static magnetic field in the direction of wave propagation and the charge

carriers. In the second subset related to longitudinal instabilities, the
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natural oscillations of the charge carriers give rise to electrostatic-type
modes (plasma waves), which in general are not affected by any applied
magnetic field. In addition, these basic modes can be coupled together

by applying the magnetic field at an angle to the direction of wave
propagation (hybrid instability). These classifications will be reviewed

in turn, followed by a description of the objective of the present study.

l.1l.2 Transverse Two-Stream Instabilities. The possibility of

transverse electromagnetic wave propagation in conducting solids
employing a static magnetic field parallel to the direction of wave
propagation was first discussed by Konstantinov and Perel.® Aigrainl7
termed the waves in uncompensated plasmas helicons on the basis of their
circular polarization and proposed their possible amplification by
drifting the charge carriers. Helicons propagate with small damping

in undrifted plasmas if the wave frequency is less than the majority
carrier cyclotron frequency and if the latter is large compared to the
phenomenological majority carrier collision frequency. In compensated
media, the helicon modes go over to Alfven waves propagating with
small damping for large applied magnetic fields at wave frequencies

above the mean carrier collision frequency.18

Helicons may still
propagate in compensated media if the mobility of one species is much
larger than that of the compensating species.

Bok and Nozieres,19

on the basis of an instability analysis of
the dispersion equation describing the drifted two-component system,
determined that amplification could occur if the drift velocity of the

more mobile carriers is greater than the phase velocity of the wave.
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Also, since the contribution to the effective dielectric constant of

the more mobile carriers is small near synchronism, the presence of a
second carrier species is necessary to maintain the high dielectric
constant. The gain mechanism cannot be described as inverse Landau
damping since there is no axial RF electric field or carrier bunching.
However, if the applied electric or magnetic field is inclined slightly
from being parallel to the propagation vector, Misawa?® has found that

a convective instability can be attributed to this mechanism. Rodriguez
and Antoniewisz®' have also studied the heliconFlongitudinal plasma inter-
action. Indeed, Baynham and Braddock®® have demonstrated gain for radio-
frequency helicon waves propagating off-axis.

19 under

H‘asegawa23 has investigated the system of Bok and Nozieres
conditions of mass anisotropy wherein the electron mobility is much
greater than that of the holes. In this case, the two-stream instability
degenerates to a one-stream resistive instability; i.e., the hole drift
can be neglected and the holes may be regarded as a resistive medium which
‘absorbs the electromagnetic energy which the electron stream carries. As
a consequence, the amplitude of the negative-kinetic-energy mode on the
electron stream increases. Similarly, Akai®* has interpreted the two-stream
instability of Bok and Nozieres in terms of the positive-kinetic-energy
cyclotron wave supported by the drifting holes behaving as the passi#e wave
which dissipates the energy. It was further shown via computer analysis
by Bers and McWhorter®® for intrinsic InSb at liquid nitrogen temperature
that above a threshold of applied magnetic field the convective instability
is overridden by the occurrence of an absolute instability. Thus a

necessary condition for a convective instability is that no absolute



instability occurs simultaneously. In a recent analysis, Bartelink®® has
analyzed the modes of propagation and associated instabilities of transverse
disturbances in solid-state plasmas of varying degrees of compensation
and mobility anisotropy with drift exactly parallel to the applied magnetic
field.

The salient feature introduced by partial compensation was that
the negative-kinetic-energy carrier helicon mode could exist with the
mean carrier drift velocity less than the wave phase velocity. Thus the
proper criterion for gain is that the negative-kinetic-energy mode must
see a net positive resistance. 1In this regard, negative resistance can
occur in p-type media in which the electrons cause greater collisional
interaction with the wave ﬁhan the holes either by having a larger drift
mobility or smaller cyclotron mobility than the holes, or both. The
negative resistance can lead to a second mode of amplification corresponding
to a positive energy wave, as has been shown in bismuth.2” In a one-
component and infinite plasma it is still necessary that the carrier drift
velocity exceed the wave phase velocity so as to obtain a negative kinetic
energy wave.2® The most promising scheme to attain amplification in one-
component plasmas is the utilization of a multi-layered structure in which
some of the layers would support the wave while the carriers in adjacent
layers would be given a drift velocity. In one form of this Baraff and
Buchsbaum, 29,30 Wallace and Baraff,3! and Saunders and Bafaff82 employ the
surface waves which must exist at the layer interfaces®® to match the
boundary conditions. The interaction between the surface wave and the
bulk helicon wave can lead to gain even for carrier velocities much less

than the wave phase velocity. McWhorter®* has explained the instability



as due to electron collisions at the interface between the drifting plasma
layers. No experimental evidence of this effect has yet been obtained.

In addition, Baraff>> has studied the layered device structure for bulk
interaction wherein the surface wave plays a secondary role. A threshold
for instability is found when the carrier drift velocity in one layer is
approximately twice the phase velocity in an adjacent layer. The growth
rate of the instability can be understood in terms of the balance of energy
between power generated in the drifted layers, collisional losses in the
undrifted layers and the losses or gains at the interfaces. The instability
arises from the reversal of the collisional losses in the bulk of the

current-carrying layer. Nanney et al.3®

in an experimental study of this
bulk phenomenon in n-PbTe “have observed, from the propagation of MHz signals,
a transmission increase of the order of 15 dB for the drifted vs. the
undrifted case. They were not able to obtain drift velocities greater than
the calculated wave phase velocity due to a limitation of the pulse current
supply, so net spatial gain did not occur. For larger values of magnetic
field the aforementioned surface effects will predominate whereas the bulk
effects become more important as the magnetic field is decreased.

One of the major problems associated with the helicon mbde
instabilities, in the frequency range which has been studied to date, is
that the corresponding wavelengths are typically of the order of a
millimeter so that the specimen will introduce a strong boundary effect on
the wave prdpagation. The boundary effect has been observed in the

helicon wave propagation in a semiconductor,3® and Grow®” was unable

to find evidence of the instability of Bok and Nozieres from an
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analysis of the finite-dimension sample case. In addition the size
effect can result in a significantly increased wave phase velocity over
the infinite medium case.®® There is also the nonlocal effect of
doppler-shifted cyclotron resonance which limits the threshold to which
the applied magnetic field can be reduced before severe damping occurs. 2®
This latter problem will be especially significant with regard to the
bulk instabilities because the upper frequency limit of the instability
is effectively limited. Since large currents are generally required

the self-magnetic field generated can cause a nonnegligible radially
inward force to be applied to the plasma resulting in pinchingﬁo_42
The effect of an external magnetic field is such that, when it is
comparable to or larger in magnitude than the self-magnetic field, the

43 Glicksman' states that this is not because of

pinch does not form.
effects caused directly by the applied field, but rather by the rapid
rise of helical instabilities which tend to prevent formation of the
pinch. ’

At higher frequencies the hélicon mode characteristic changes to
that of a slow cyclotron wave. ‘Abéolute instabilities associated with
the coupling between this slow wave and the fast hole cyclotron mode
have been studied by H'o'fflinger,44 Grow®’ and Vural and Steele.l?

Experimental verification of this instability has not yet been achieved.

l.1.3 Longitudinal Two-Stream Instabilities. In addition to the

transverse polarization case, in which the waves are electromagnetic
in character (their phase velocity being dependent upon the velocity of
light in the medium), the plasma can also support waves arising from the

collective modes of oscillation of the mobile carriers. They were first



°in a gaseous plasma and by Pines*® in

studied by Tonks and Langmuir®
a8 solid. Their electrostatic nature implies that the waves (termed plasma
waves) are of purely longitudinal polarization (in the absence of an
applied magnetic field). The number of distinct plasma waves is equal to
the number of distinct carrier species in the plasma. Thus, corresponding
to the electron-hole plasma in a semiconductor or semimetal, two
collective modes of oscillation exist. One mode consists of a high-
frequency oscillation in which the electrons and holes oscillate out of
phase at a frequency which in the long wavelength 1imit is the mean plasma
frequency. The other mode, corresponding to in-phase electron-hole
oscillation, is typified by phase velocities of the order of the Fermi
velocities (or, in a classical plasma, the thermal velocities).

By analogy to the vibration spectrum of polar crystals the former high-
frequency mode is termed the optical mode of plasma oscillation, the latter
mode at lower frequencies, the acoustic mode of plasma oscillation. Very
little experimental work has been done on the optical branch because of
the high frequencies involved (optical or ultraviolet), concurrent with
their longitudinal cheracter; however, there is considerable literature
related to the characteristic energy losses due to excitation of the
optical branch of the plasma wave by passage of fast particles through thin
metal foils.*” The acoustic branch is heavily Landau damped unless the
Fermi or thermal velocities of the two carriers are widely disparate.

The possibility of observing a two-stream instability in a high-
mobility semiconductor such as InSb was first investigated by Pines and

Schrieffer®® who demonstrated that an absolute instability should occur



for the acoustic branch if the electron drift velocity relative to the
hole velocity is comparable to the electron-thermal velocity and if the
growth exceeds the colligsional and thermal demping. Similar criteria were
found by Harrison*® in his study of degenerate plasmas and Vural and
Bloom>° in their study of guided plasmas. The general conclusion was that
it appeared marginal whether or not the instability could be observed in
practice with currently available materials. The major obstacle is the
thermal condition since Glicksman and Hicinbothem®! have determined that the
application of large electric fields to InSb at liquid nitrogen temperature
results in hole temperatures which are of the same order as the electron
temperature. In addition, since the oscillations are longitudinal in field
polarization, they would have to be coupled out through some type of gradient
mechanism. Efforts to experimentally observe the instability in bulk
materials such as InSb, pyrolytic graphite and bismuth have not been
conclusive. 2 Recently, Robinson and Swartz>® and Robinson and Vural®*
have analyzed layered structures of p- and n-InSb, with which the
temperature condition can be more easily satisfied, with the result that
the surface plasma waves can grow at rates only slightly less than those of
the bulk plasma waves of the corresponding penetrating stream system.
Interpreting the longitudinal plasma waves in a coupled-mode manner
shows theoreticallyso that a co-streaming two-component plasma can give
rise to a convective instability provided that the collisional loss is
not too severe. No suitable material has been suggested invthe literature

to observe this instability.
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1.1.4 Hybrid-Mode Instabilities. When the magnetic field is

inclined from being parallel to the wave vector, a mode propagates

witlh characteristics of both the longitudinal plasma-wave and helicon

or cyclotron modes. In drifted plasmas, & transverse corponent of magnetic
field also gives rise to a Hall electric field which for high mobility
materials can be comparable to the applied electric field. The hybrid

S5-57 in an attempt to explain one

system has been studied theoretically
type of microwave emission from InSb.5®75° An analysis by Vural® of finite
solid-state plasmas in the presence of an axial magnetic field has shown

that coupling between plasma waves and cyclotron excitations occurs for

this case which indicates an absolute instability associated with the
cyclotron space-charge wave interactions. The hybrid-wave interaction 1is
unusual in that Landau damping is absent.®?! Hasegawa62 has shown that the
hybrid-hybrid interaction leads to an instability in the limit that the holes

are collision dominated. Swartz and Robingon®® consider this interaction

to be responsible for coherent oscillations observed in InSb.

1.2 Outline of the Present Study

The Chu kinetic power theorem®’ %% for longitudinal space-charge
waves is a well known general method for studying those power properties
of the wave associated with a group of streaming charge carriers which
enable wave growth, either spatial or temporal, to occur in electron-beam
devices as well as in gaseous and solid-state plasmas. In Chapter II a
kinetic-electromagnetic power theorem is derived for the basic carrier

waves present in a static magnetic field. Past studies in this area®’®®
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have been inadequate in that the RF fields (which determine the kinetic
power properties) are neglected in the analysis so that the results thus
obtained only apply to the carrier wave in a region of no interest. In
addition, because of their importance in the solid-state area, the
effects of collisions and thermal diffusion on the carrier mode kinetic
power are examined.

In all past developments of power -energy theorems there has been no
differentiation made between convective and absolute instabilities. Thus
it is tacitly assumed that a carrier moderwhich is active for a convective
instability (e.g., slow space-charge wave) can, under proper circuit
configuration, be active for an absolute instability with the relevant
carrier parameters (e.g., plasma frequency) playing the same role in both
cases. In Chapter III, a kinetic-electromagnetic energy theorem is
derived for both space-charge waves and the basic carrier modes present
in a static magnetic field which shows that, in general, separate criteria
are involved. The theorem also demonstrates “the physical mechanisms
whereby an absolute instability arises. Whereas in Chapter II the study
of convective instabilities was formulated in a spatial-power framework,
this study is undertaken in a temporal-energy framework. In this way the
compléete dual of the convectively unstable system is found and related to
the time rate of change of the carrier kinetic energy at any point in
the interaction region.

In Chapter IV the power and energy theorems are examined with
relation to the potential energy effects which arise due to the reaction

of the growing RF fields on the charge carriers. The quasi-linear
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theory employed is found to be a useful analytical technique for studying
the evolvement of an instability from the point and time of its initiation.

The general formulation adopted for the carrier mode electrokinetic
power flow and energy density enables these concepts to be extended to
the kinetic theory in Chapter V. Thus the power and energy effects of
Landau damping, cyclotron resonance, and temperature anisotropy can be
examined and the results compared with those of hydrodynamic theory.

Chapter VI is concerned with a detailed analysis of the hybrid wave
system and its application to microwave emission phenomena in solid-state
materials. After the examination of the zeroth-order distribution function
for a system in a transverse magnetic field the dispersion relations
describing the wave propidgation according to kinetic theory are obtained.
Unstable cyclotron-harmonic behavior theoretically derived is compared
with similar experimental results. Furthermore, from a rigorous study of
carrier heating, it is found that an entirely new mode can appear. This mode
is significant in that it exhibits synchronous behavior and has a small
‘dampgng»decrement (similar to the helicon mode).

Finally, a discussion of results and conclusions is given in

Chapter VII together with suggestions for further study.



CHAPTER II. EFFECTS OF A MAGNETIC FIELD ON THE KINETIC POWER PROPERTIES

OF CARRIER WAVES: CONVECTIVE INSTABILITY

2.1 Introduction

There are three basic modes associated with a stream of drifting
charge carriers in a solid which will be of interest; namely,’the
longifudinal space-charge or plasma wave, the left- or right-hand circularly
polarized modes which propagate parallel to a static magnetic field
(e.g., helicon or cyclotron modes), and the hybrid mode propagating
perpendicular to a static magnetic field. For any of these modes to be
useful as a source of power in a convective instability (i.e., be active)
it must be such that the carrier mode transports less total energy than the
de stream alone in the direction of wave propagation. The total energy
flow or total power of a carrier mode is the sum of its associated
electromagnetic power and its electrokinetic power. When this sum is less
than the kinetic power of the dc stream alone it is designated a negative
EQEEE mode.

In the specific case of the slow space-charge wave of an electron
beam the electromagnetic power is of the order of (ab/w)z'times the kinetic
power in magnitude65 with the practical result that it can be neglected
and in this case the designation of negative kinetic power mode suffices.
When a negative power mode interacts properly with a passive circuit,
exponentially giowing RF fields occur without violation of conservation of
power since the carrier mode power growth is negative. In general, the

circuit can correspond to a helix in electron-beam devices, to a second
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carrier species in a plasma or to a mode of lattice vibration of a
piezoelectric or polar solid, etc.

Of particular interest in the present work is the analysis of the
manner in which the RF fields may extract dc power from the relevant
carrier mode. This is especially important for the cyclotron modes since
no bunching processes are present and it is not immediately clear how
these modes can supply power. By use of a quasi-linear analysis it is
shown that the negative kinetic power property can be directly related to
dc slowing of the carrier motion for all cases. In addition this method
indicates the conditions under which the plane-wave method of analysis
is valid.

Because of its importance in solid-state plasmas special attention
is directed to the effects of collisions, carrier diffusion, and a static
magnetic field upon the kinetic power carried by the carrier mode. For
small growth rates (ki < kr) it is shown that the collisions play a
dominant role and can assist the instability process by contributing to
the negative kinetic power property when (o - krvo) < 0. In the study of
convective instabilities in the present chapter the angular frequency of

the fundamental field w is assumed pure real.

2.2 Kinetic Power Characteristics of Space-Charge Waves

Chu's kinetic power theorem®*

is a well known general method for
studying those power properties of the longitudinal space-charge wave
associated with a group of streaming charge carriers which enable wave

growth to occur in electron-beam devices as well as in gaseous and solid-

state plasmas. A brief review of the longitudinal theorem as applied to

the traveling-wave amplification process is now given.
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A
Assume an electron beam in a drift region with a dc velocity Vv Xe

RF perturbations are assumed to have a space and time dependence of
ea(am-kx). Expressions for the electromagnetic and kinetic power flow

associated with the medium can be derived from a base of Maxwell's

equations and the linearized force equation,

VxE = —j@l s (2.1)
= + 3 .2
Vx B b+ Jau ek (2.2)
and
i + . + + = = + 2.
Jav, + (v, Dy, + vy, o Vo nE oty x B, (2.3)
where 71 = the charge-to-mass ratio for electrons,
Vp T the carrier thermal velocity and
v = the collision frequencj.

From Egs. 2.1 and 2.2 the small-signal Poynting theorem can be found as

g (E B*)+' H +H +3¢E B +E +J 0 (2.4)
— . X . (DE . . = .
Hy 171 Jduo_l ! ! 1 A ’
so that
* *
Re[:LV-(E XB)] = -Re(E *J) , (2.5)
M 1 71 1 71

and the electromagnetic power is not conserved but rather is balanced

by Re(E * )
e ° .
y Re(E * I
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A
From the y component of Eq. 2.3,
(-
J(d>"kVO - JV)Vl = |\l - -—-'> Ely s (2.6)

*
and since Jiy = povly, multiplying both sides of Eq. 2.6 vy Ely yields,

after rearranging,

S Jno_ (@ - kv ) e
1y 1y olw - kv - Jv) "1y

|2 . (2.7)

Equation 2.7 is used to show that

(@ E o a%ev(w - krvo)*Elylz . (2.8)
oy ol (w - krvo)2 + (kivo + v)2]

A
Similarly, the z component of Ed. 2.3 leads to

2 2
M aBev(o - kv )|E._|
Re(E J, ) = 14 - ro 42 — . (2.9)
ol(w - kv )2 + (kv + v) ]

Equations 2.8 and 2.9 show the important result that the transverse motion
of the carriers provides a source mode for electromagnetic power growth
because of the presence of collisions if (w "krvo) < 0. Since there is
10 transverse bunching it is not immediately obvious how this can occur.
This phenomenon will be explained later, however, in terms of the related
second-order carrier dynamics wherein the equivalence is made between

second-order dc beam slowing and the source properties of Egs. 2.8 and 2.9.
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A
From the x component of Eg. 2.3,

vy

e o ) _ 510
Jlw - kv - Jv)v. - o Py T Ty (2.10)

Since J., =p Vv, * pivo, the equation of continuity

| 9
V'J1+aJc_l = 0 (2.11)
gives
.prVlX
VT Tk, (2.22)
(o]

Equation 2.12 permits writing Egq. 2.10 as

Jl(w - kv ) (w - kv - Jv) - k2v§] I = 0B . (2.13)

1X

from which the following may be found:

2 2 2
wsew [(w - krvo)(v + Ekivo) + EkikrvT} ]Elxl

Re(E 3 ) =

1xX 1x 2

-{ (o - krvo)2 - kivo(kivo tv) + Vi(ki ) ki)]

- 2
- 2
L+ _(2kivo +v)(w krvb) + zkikrvT} }

(2.14)
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Since ki > 0 is the case of concern, corresponding to expoﬁentially
growing fields, Eq. 2.14 shows that for Re(ElXJTX) to be a source for
the field growth it is necessary that (w - krvo) < 0. DNote that when
this is the case the collisions assist the source power. Indeed, by
inspection it can be seen that if v — 0 it is then necessary that

v, > v_ in order for the longitudinal carrier mode to be a source of

T

power. This explains why in solid-state plasmas, where vy > Vi is not
in general possible, negative power modes are possible because of the
collisional assistance provided. This will be further elaborated upon in
Chapter ITI in the study of electrokinetic energy densities in solids.
The real part of the electromagnetic power flow associated with
the carrier stream is now examined. Since it is in general difficult to
take into account explicitly the effects of the external circuit on the
wave dispersion the results obtained for this flow are approximate and

only apply to weakly coupled systems. From the assumed space and time

dependence,
2k
* i *
Re[l—v- (E va)} = —LRe(E xB) . (2.15)
1 1 1

To determine this quantity, from Maxwell's equation it can be found that

* *
1 aEl aElZ A
FE xB = >—|E —<%+E >x, (2.16)
= = jo \"1y ox 1z oOx

so that from Eds. 2.15 and 2.16
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2k.k

Re [ %; Vo (Eﬁ X E:)} = szr (’Elyla + |ElZ’2) , (2.17)

which is of course positive for the case of interest (ki > 0).
The conservation theorem is now obtained by integration of Eq. 2.4
over the volume containing both circuit and beam, which gives when the

real part is taken

-
* *

/ﬂ {Fe [ Ly (E xB) J + Re L Lg. (E x3B) J }’dV

: Ho 1 1 Jeircuit H 1 1 Jpeam

* *
- Jf [%e(@i ) gﬁ)circuit * Re(gl ’ gi)beamA} av . (2.18)

*
The function Re(E + J ) corresponds to the wall losses at the
=1

= ‘circuit
circuit and is usually negligible. In addition, since at the beam the
electromagnetic power flow corresponding to Eq. 2.17 is small compared

to the beam kinetic power flow (i.e., |Elx| >> ‘Ely|, \Elz‘), Eq. 2.18

reduces to

1 * *
— U . = . (2.
e ‘jp {:[ “o (El i El)}circuit i (El £1>beam:} v 0 ( 19)

Make the definition

A
Pirouit = o Re(E x B ) x (2.20)

correspond to the circuit power and
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A L A

correspond to the beam kinetic power. If Gauss' theorem is used in Eq. 2.19,

the Chu kinetic power theorem is then obtained as

+ . = 2.22
Re 5[ (Bospouis B © 8 0 (2.22)

which is a surface integral enclosing the volume of interest. From
Egs. 2.8, 2.9, 2.1k and 2.21 the most general form of the beam kinetic

power should be given by

2 . 2 2
wfev(o - krvo)(|Ely| + |, [®)

P =
k 2 2
2kiw[(w - krvo) + (kivo + v)?]

2
v
2 v I 2
WLV, [(w B krvo><i * ok v > tkg J ‘Elx‘
+ =0 —~ . (2.23)
2 _ o212 _ 2
(lo - kv)= - kivo(kivo +v) VT(kr ki)]

- 212
+ [(2kivo + v) (o krvo) + 2kikrvT] }

In particular, when v = O = v, the well known form is obtained:

T)

a?ewvo(w - krvo)lElXI2 vty N
P, = P = Re[<——i>JlX} . (2.24)
[(w - kv )2 + k3v2)2 "
- Ir o 10

The latter expression has commonly been used as the definition of beam

kinetic power in the presence of collisions and thermal diffusion by
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Vural and Bloom.67 This is inappropriate however since this definition
has no direct significance in the balance of power given in Eq. 2.19.
Thus in the previous work®” the real kinetic power as defined by the
right-hand side of Eq. 2.24 is determined to be negative whenever

w - krvo < 0. Inspection of Eq. 2.23 shows that this is not in general
sufficient. The fact that the definition of kinetic power of Eq. 2.24 is

misleading has recently been pointed out.®®

To utilize the concept of
kinetic power properly in the presence of collisions and thermal diffusion
the definition given in Eq. 2.21 is required.

To proceed further with the study of the space-charge-wave case,

T

from Eg. 2.22 the total real circuit power (e.g., in watts), P ipouit 15

T — = - .
Pcircuit = ke j[ Ecircuit 8 = Re j[ E'k s - (2.25)

From the assumed spatial dependence, the following definitions can be made:

- F e-ka
X 10
and
* * 'k*
= JE X
x E, e s (2.26)

* .
where the multipliers Elo’E o are independent of x. In the case where
1

collisions and thermal diffusion are ignored, use of Egs. 2.24 and 2.26

in Eq. 2.25 gives

2 . 2
0 i abewvo(m krvo)|ElO| éﬂezkix R

‘s X+ 48 2.2
circuit (0 - kv )2 + k&2 =7 (2.27)
r o io
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where only the mode of interest has been retained. ZEquation 2.27 indicates
that for amplification to occur two requirements must be met; the nature

of the exponential term requires that ki > 0 and at the same time it

must be that v > (a)/kr) in order that the circuit power be positive. If
both these criteria are met the circuit power for a device of length L is

given in terms of the input amplitude of the longitudinal RF electric

field by
T a?eawo(krvo - w) 2k, L
P iouit b lE |2 (e -1> . (2.28)
[ - kv )2 + k2] 0 N

Hence an active or amplifying carrier mode is obtained if it has the
property a)/kr < Ve From the dispersion equation describing the uncoupled
modes on the beam this then indicates that for weak coupling at least the
slow space-charge wave (w - kvo = - |a®|) and the fast space-charge wave
(w - kvo = lab’) are active and passive, respectively.

It is now shown that the carrier mode power properties can be
related to the beam RF conductivity. For v =0 = Vi the longitudinal force

equation gives

nE,, = j(cu—kvo)le 5 (2.29)

so employing

=pv_ +poV 2 o] E
1X 0 1X pl 0 longtl "1X

(2.30)
and the continuity equation, it can be found that

u%eaﬁkivo(w - kv
Re(o = . 2.31
e( longtl) [(w - kv )2 + k222 (2.51)
ro io
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Hence under conditions of amplification the real part of the beam RF
conductivity is negative and as a result the property of negative kinetic
power flow is equivalent to that of negative RF beam conductivity. This
equivalence will be true in general if the kinetic power flow is determined
only by the first-order fields. This has been shown to be true for the
space-charge waves by retaining variables to second order in the analysis.69
The commonly held interpretation of the negative kinetic power

property of the slow space-charge wave is that an excess particle density,

N

No + {N I, occurs spatially localized with a decreased beam velocity,
1

v =v_ - ]v l, and vice versa, so that less net kinetic energy is trans-
1

o}
ported across a surface enclosing the beam than under strictly dec conditions.
It is shown in Appendix A" however that an alternate viewpoint can be

adopted and the negative kinetic power property is simply due to second-

order dc beam slowing. The two viewpoints give mathematically identical

results.

2.3 Nature of the Transverse-Field Contributions to the Kinetic Power Flow

It is wondered by what physical means the transverse contributions
to the kinetic power given in Egs. 2.8 and 2.9 can be accounted for since,
in the hydrodynamic model for the purely transverse modes, there is no
carrier bunching present; the latter was found to be directly related to
the kinetic power characteristic of the longitudinal space-charge wave.

To see this a quasi-linear theory is used in which second-order effects on
the carrier stream are expressed in terms of the fundamental RF fields.

Write the force equation to second order to give



ol

- V2 dv o,
— + e Uy + c v+ yw + = + + Y ’
ot (Yb )21 (Xi )1, e Po vbl 552 (Xo ‘ )Xé L ®
2
.
+ (v « V)v_ +vv + —E'VD = n(E +E +y xB +y xB 2.52
-2 -0 = P, 2 =1 =2 =13 =1 -0 ‘2) , (2:22)

and from this take the time-average real part, giving for the longitudinal

A
or X direction

*

Bv V2 Bp Bv
T 1 ( 1X < 1 %
+ 4 —_— + = = =
VO VV2 o gz 5 Re \Vl T) | E + 5 Re(vl X Bl)> B

(2.33)

where v , p2 and E2 are then the second-order changes in the dc state of
2

the system caused by the presence of the RF fields. From Eq. 2.7 and the

assumed spatial dependence, Eq. 2.33 may be written as

dp ki .
&2 B E— |V1XI * nEz

, né{krv(w -k V) - k, [ - krvo)z + kv (kv v)1} Iz
202 [ (w - krvo)2 + (kv o+ v)2]

H N

(2kivo + v)v2 = -

S

2 2
ol £, %) -

(2.3%)
Inspection of this result indicates that when the source functions given
in Egs. 2.8 and 2.9 are negative this leads to a dc slowing of the beam
velocity since a negative contribution is given to Véo Hence any carrier
mode with transverse field components which are such that (o - krvo) <0
acts through collisions to reduce the dc beam velocity so that the beam
kinetic power is less when such modes are excited than in their absence.

In the case where the fundamental fields are purely transverse

(TEM wave) the above results are still applicable with p = |le| =0
1
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since Elx = 0. It is assumed that the mobile charge carriers drift in

the direction of wave propagation. The general dispersion equation may

. 0
be written as®

mg(w - kvo)
k2c® - o + : = 0 , (2.35)
w - kvO - Jjv

where ¢ = l/\Juoe is less than the free-space velocity of light.
Equation 2.35 can be written in the form

(o - kvb)(kzca - af +af) = ju(k3e® - o) . (2.36)

p

Thus in the absence of collisions (v = 0) two stable uncoupled types of
modes are obtained. In the presence of collisions the forward traveling
waves are coupled and the solution®® for this case shows that an instability
of the resistive type is obtained if v_ > a/kr‘z c. This is then in full
agreement with the fact that the beam kinetic power flow as given by

Eq. 2.23 (with Elx = 0) is negative. Since the electromagnetic power flow
is positive when the instability occurs it is clear on physical grounds
that it must be that v2 < 0, corresponding to beam slowing, since this is
the only source of power available. A problem which arises in this

connection is now examined. As no RF bunching is present, the second-

order dc current is given by

T, = PV, t eV (2.37)

which by a consideration of continuity must be zero. Hence,



2
P = =P '.\'7—2 ) (2'38)

and, in the steady state, any alteration in the dc beam velocity must be
accompanied by a dc bunching given by p . From Poisson's equation the
2

function p2 gives rise to a second-order dc electric field given by
eV +E = 2k,6E = p . (2.39)
-2 1 2
Use of Egs. 2.3%8 and 2.39 in Eq. 2.34 then provides
2 _ _ _ 2
L {krv(m krvo) ki[(m krvo)

N ANV IMAAY <|E1y|2 i lElZ'z) . (2.40)

B 7
20 [(w -k v )2+ (kv o+ v)Z}
ro i'o

v .
'[Ekivo<l'_—>+"+2k5 J
- Ve io 4~

First note that the dispersion relation alone, Eq. 2.36, is independent

of Vipe On the other hand the alteration in the dc beam velocity given

by Eg. 2.40 is dependent upon v,

2 particularly when the growth rate ki

predicted by the dispersion relation is large. Thus, if causality is
based on the requirement v2 < 0 in this case, it must be concluded that
the dispersion relation alone does not in general give sufficient infor-
mation to determine causality. As an example, if v, >> vy in Eq. 2.40,

T
then v > 0 and the convective instability prediéted by the solution of
2
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the dispersion relation (together with any causality criteria applied
thereto) does not exist.

These results indicate that a basic inconsistency can be found
when the dispersion relation alone is used to study the system. This
inconsistency is in part removed when it is seen that if the effects of
p2 are significant upon the steady-state system (as predicted by the
quasi-linear plane-wave analysis) it is necessary a priori to take into
account the self-consistent possibility of a dc density gradient by

solving the system starting from an assumed spatial dependence of the

(x) e 98,
o
quantities become functions of x which are dependent upon the fundamental

fundamental fields, & , as ¢ In addition, the time-averaged-or dc
1 1 ‘

fields themselves. The problem is then highly nonlinear and cannot be
solved by straightforward analytical means alone.

These results indicate that essential nonlinearities can exist
in the determination of the stability of a system in the steady state.
In general, to satisfy conservation laws, the presence of a convective
instability in a system requires that the fundamental fields extract power
from the carrier mode. To solve for the stability of a system it is
common to assume that no significant dc gradient of density is present
so that the plane-wave type of analysis can be performed for the steady-
state case. When this is done, however, the plane-wave solution to
second order may show that to alter the dc beam velocity to provide source
power for the instability a dc density gradient must also exist, thus
violating an initial assumption made in the analysis.

A balance of power which can also be obtained is found as follows.

From Egs. 2.38 and 2.39,
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oV

[¢)
E = = 2k E'\Zf k) (2:”1)
2 i o

so that if amplification occurs (k, > 0), and v < 0, therefore
2

A%

2
pO

Re(EJ) = -

2
K > 0 . (2.42)

k. €
i

no

Thus, as in dc Poynting vector calculations related to Joule heating,70

the viewpoint may be adopted that the external source (e.g., battery)

is supplying the power for the amplification in addition to the usual

heating effects when collisions are present, the latter being given by EOJQ‘
The plane-wave analysis is fully Jjustified if it is assumed that

recombination processes ;re present in the system so that no second-order

density gradient is established and hence p2 = E2 = 0. In this case,

J = pov2 % 0, and Re(g * J) provides the term EOJ2 to account for the

2

source of the amplification.

2.4 Power Characteristics of Purely Transverse Modes in a Static Magnetic

Field
In this section the case of the carrier modes associated with
transverse electromagnetic waves propagating parallel to a dc magnetic
field is considered. If the plasma frequency is much lesé than the
angular wave frequency, as is common with electron beams, the associated
carrier waves are the slow and fast cyclotron modes. In solid-state
plasmas these are the left- and right-hand circularly polarized modes.

2.4.1 Derivation of Electromagnetic Power for Purely Transverse

Waves. Assume a collisionless convected medium (e.g., an electron beam)
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in a static magnetic field BO§ with drift velocity VOQ. Transverse
(§ - Q) RF perturbations are assumed with space and time dependence
ej<d¢_kx). An expression is derived for the electromagnetic power flow
associated with the convected medium from a base of Maxwell's equations

and the linearized force equation. With the assumed spatial dependence

temporarily suppressed, the following equations are then obtained:

VxE = -juB , (2.13)
1 1
VxB = J + jau €E 2.4k
x B R (2.144)
and
. + s e - . .
Jor (v, V)y_l ot x B W x By, (2.45)
A
where V = x(3/3x) and

n = the charge-to-mass ratio of the single species medium.

From Egs. 2.1 and 2.3,

v nw_ OE
jwvly Y _Sil T My TV Y EE? _Siz (2.46)
and
v n_ OE
j(bvlz + VO ;_(Z = nElZ - wcvly + 52)2 T;.(Z B (2.)4-7)

where w, = nBO. Introduce rotating coordinates with the following

definitions:
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Yie T Ny TV Voo T Ty T
= + 4 = - 4
E1+ Ely B, El' Ely I
= = + ] J = = - 2.48
U PV, le SR I oLV, Jiy JJlZ , ( )

where o is the charge density of the medium. If Eqs. 2.48 are then

applied, Egs. 2.46 and 2.47 become

o v + A OE s
o talv v 2 Byt T (2.49)

For the transverse fiel@s of interest, the wave equation is readily

obtained from Eqs. 2.4% and 2.4k:

+ & E = Jjwd - (2.50)
2 O

From this, employing the definitions of Eq. 2.48, the independent left-
and right-hand circularly polarized modes in the transformed system are

shown to be

BZE __|. wg
+—ZL%, = jwqu Lo (2.51)
axz 02 1= 1=

*
The expression E x B which is related to the real part of the electro-
-1 T

magnetic power flow is now examined. The equation
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OF OE
L E x B = = E -B—K + E alz > X (2.52)
Ky 1 JO, N1y X 1z OX

transforms according to Eq. 2.48 as

'CII—'

E xB = ;<E 8E1++E j—BE'>A (2.53)
o 1 1 - 2jauo 1+ X 1= OX xo ’

The power flows are now defined by the vectors

_ 1 £ A
Pogr ~ Bjen, it = X (2.54)

To obtain expressions for these power flows in terms of the RF carrier
velocities, the following procedure is followed:

a. Apply the operator 9/dx to Eg. 2.49 to obtain

v Fv OE.+ nv. O°E .
S 1% t _ 1= 0 12
Jw* wc) = Y 352 "kt jw A2 * (2.55)
b. Use Eg. 2.51 now to obtain
6Vl+ 82v1+ BE T]V 02
jlo £ (DC) e + v, 2 = 1 T J(L)u J i :2- Eli > . (2.56)

c. The first term on the right-hand side of Eq. 2.56 is replaced

using Eq. 2.49, and rearranging gives



0
Vi ®v N
—_ =
+J o P ) (2'57)
where
2 _._l__
et = T (2.58)
and
o npo
o = = (2.59)

d. Applying the operator d/dx to the complex conjugate of Eq. 2.57
and using the resulting expressions, together with Eq. 2.57, gives

for the power flows of Eg. 2.5k,

» [ ( a?vg WV 5vl+
P = Jlotwo - -IL—-> v, T =
elt V§ 2 c w2 1t w dx
EJ'CDHOHZ 1- —;>
c
- *
v Py, afvE N\ ¥, v Rv¥ v 3%,
P} 13 s + _ Do 1t~ co 1T . o 1¥
e % TN % we? ¥ o x> e x>
(2.60)

The spatial dependence assumed earlier is now invoked so that for
* ' *
example Ov ,/Ox = -3kv ., dv . /Ox = jkv ., etc. In this manner, Eq. 2.60
1t 1t 1t 1t

becomes, where k = kr + jki,

'2 122 2

+ - -
owtTow T — . (2.61)

k\vli

vg 2
Ewp,onz <1 - —-2->
A (¢

A
= X

£e£+
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Equation 2.61 gives the electromagnetic power associated with the carrier
stream in the absence of interaction. It will be found that the presence
of the interaction affects this result to a negligible degree. Since
examination of Eq. 2.61 indicates that the electromagnetic power is
positive, to obtain a negative power mode useful in carrier wave-circuit
interactions the kinetic power must be negative and exceed the electro-
magnetic power in magnitude.

2.4.2 Xinetic Power of the Purely Transverse Waves. In the Poynting

theorem given by Eq. 2.4, if the definitions of Eq. 2.48 are applied, the
theorem is transformed to the following:

1 . * * 1 . *
. = + = +
v <Bell++Pe/z-) +23<m0(ﬂ H H Hl ) + = Jwe(E E E E )

where are given by Eq. 2.54% and

Eeli

Hl+ T = (2.63)

Also, because the first-order fields were assumed purely transverse,

any longitudinal terms, such as Eliix’ are zero. Since solution of the
dispersion equation indicates that the (+) and (-) modes are uncoupled,
for our purposes assume that the (+) mode amplitude is zero, i.e.,

Ivl+| = O,Iand hence only the (-) mode is present. It will be seen that

from the results obtained from the (-) mode the (+) mode results can be

derived by the replacement of , by W, . Inspection of Eq. 2.49 provides
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the following table within the (-) mode framework, if electrons are assumed
A
as the carriers and B = alBo‘ x, where o = I1.

Table 2.1

Carrier-Mode Sign Convention

. £ 7 <<

Sign of w Solid-State Plasma Electron Beam (mp w)
<0 (a=+1) Helicon-cyclotron mode Slow-cyclotron mode
>0 (o = -1) Right-hand polarized mode (RHP) Fast-cyclotron mode

To proceed with the derivation of the kinetic power the source

*
function E J  is derived in Appendix B and verified as a proper physical
1- 1-

concept. From Eq. 2.21 and B.10, the carrier-mode kinetic power is given by

p = —l—Re<£E J*_>>’2 = co 1- X, (2.6h4)
i N

which shows that the modes with o, < 0 in Table 2.1 have the negative
kinetic power property.

Compare this result with that obtained using coupled-mode theory.71
The latter technique applied to the pure cyclotron modes by ignoring the
RF fields and requiring that the power represented by the square of the
cyclotron normal mode amplitudes be conserved gives for the power carried

in these cyclotron normal m.odes,71

wJ |v
o o+_o it (2.65)
&1 lay, |

Except for a factor of two related to the normalization used in Poynting's

theorem, this is the result obtained from Eg. 2.64 when the cyclotron
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dispersion (w - kv -, = 0) is inserted. Thus Eq. 2.64 is the more
general result which reduces properly to the simple normal mode result.
As was done in the derivation of the longitudinal s?ace-charge-
wave case, Eq. 2.22, both sides of Eq. 2.62 are integrated over the
volume of interest, Gauss' theorem is employed, and the real part is

taken to obtain the conservation law,

ke _?4 (Bep- * B Jvean + circuit ~ & = O (2.66)

as a surface integral over the volume of interest containing both
carrier mode and circuit. As a simple example, assume the circuit losses

given by Re(P are negligible, so that Eq. 2.66 becomes

k-)circuit

. + . = .
ke j[ (Pel-)circuit ds j[ Po_+ & 0, (2.67)
where
Pp. = Re(Pe!- ¥ k-)beam ? (2.€8)
or from Egs. 2.61 and 2.6k,
8 wBve kv w k&ve 2
K oo --RO__0C_ 0
T (¢] a% w w
P =
I- v2 2
2ay 2 < -2
-
)
c o 2
* v | (2.69)
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Equation 2.67 indicates that for the carrier mode to supply power to the
circuit enabling wave amplification to occur it is necessary that PT- <0
corresponding to a negative power mode. For the particular case of a
slow-cyclotron mode interacting weakly with a circuit, if the cyclotron
mode dispersion (w - kv - @, = 0) is used in Eq. 2.61 it is found that
Re(Pel-> =~ 0. Thus the slow-cyclotron normal mode has the attribute for
instability processes that it carries no electromagnetic power of
significance. It is important to note, however, that the entire spectrum
in w-k space of the left-hand polarized mode has the negative kinetic
power property, as can be seen in the form of Eg. 2.6k.

By inspection of Eq. 2.69 then, any region of carrier-mode presence
near kr = 0 is an active ﬁode. For example, with reference to Fig. 2.1
wherein the left-hand polarized mode in the uncoupled state is shown, the
region near w = aé corresponds to an active mode even though this is
part of the electromagnetic branch. This important aspect of the power
characteristic will be verified later in this chapter when the two-stream

instability is studied.

2.5 Nature of Magnetic Field Effects on the Kinetic Power Flow

As in the collisionally induced source function contribution studied
in Section 2.3, since in the hydrodynamic model there is no carrier
bunching in the transverse plane, it is asked what physical means account
for the transverse contributions given in Eq. 2.64. To see this it
is necessary to study the second-order longitudinal carrier dynamics in
the steady state. The presence of the transverse fundamental field

components gives rise to a nonlinear real Lorentz force given by
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FIG. 2.1 NATURE OF THE LEFT-HAND POLARIZED MODE DISPERSION.
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F. = q % Re(v x §l +v xB)x , (2.70)

where q is the carrier charge. The second part of this force which varies as

(v. x B ) gives rise to second-order variables which have the form
1 T1

e23(wt_kx>. Such variables give no time-average contribution to the major

power transfer (which is second order) and can be ignored. Analyzing the

remaining time-averaged force in terms of Egs. 2.48 provides

* *
* 1 1 OF 1 BEl+
- = —_ _.l._...l._ 2.
Re(zl = El) 5 Re i Vl- ox Jo Vl+ ox > ’ (2.71)

showing that independent contributions arise from the left- and right-hand
polarized modes. The second-order longitudinal force equation, since the
fundamental fields are purely transverse and collisions are assumed

absent, is given in the steady state by

2 _
Vo - B, t <Re(y_l) X Re@l)>2 ) (2.72)

which from Eq. 2.71 provides the following separate equation:

3 3E
v \
2T L1 1t
Vo Ox T nEgi * N Re < 23w Vit Tox ) ? (2.73)
where
- 1
E2 C2 (E2+ ¥ Ez_) (2.74)

and

v o= E(v +v ) . (2.75)

2 2 "ot 2-
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Using Eq. 2.47 for the last term in Eq. 2.73% gives

) %
- 1 ¥ I - mb) |2 1 ov

[y - -~ oL 1
23(1) vl" S.X 2JO El-Jl- + Envo 'vl_ 21,] Vl_ -SX— ) (2.76)

which from the assumed spatial dependence and Eg. B.10 gives in Eq. 2.73

for the (-) mode

k, o ka0 lvl_l2
2kvv = ME -z v |+ . (2.77)
2= 2- 1- 2[(w - kv )2 + k2v2]
ro 10

Inspection of this result shows that when the kinetic power given by
Eq. 2.6L4 is negative this leads to a dc slowing of the beam velocity
since a negative contribution is given to VZ_- Hence the circularly
polarized carrier mode with W, < 0 acts through the applied magnetic field
to reduce the dc beam velocity so that the beam kinetic power is less
when such a mode is excited than in its absence.

As no RF bunching is present, the second-order dc current is given
by

J = pv +p V. , (2.78)

which from continuity considerations must be zero to conserve particles.
Hence,

o = -p &= (2.79)
(0]

and the dc beam-velocity alteration is accompanied by second-order dc

bunching. A comparison of the fundamental mechanisms for effecting
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power transfer of the longitudinal vs. the transverse modes can then be
made in Fig. 2.2.
For the one-carrier case, the field Ez is given through Poisson's
equation by

EV . E = 2k.€E = . 2080
E, ;€E, e (2.80)

Use of Egs. 2.79 and 2.80 in Egq. 2.77 then provides

la, - [(o - krvo)2 + kivs]}.’vl_\z 1
v = . (2.81)
2- o2
Ly (i +—L ) [(w-kv )2+ k§v2]
(0] ukfvﬁ r o (0]

The relationship of the total kinetic power flow to the result given in
Eq. 2.64 is now derived and a fundamental problem discussed. From
Tonk's theorem, ® which is applicable to the present case since collisions

are absent, the following may be found:

y-x
Rej[ (_Ex_1_3_+2n g>-d§=o, (2.82)

which relates the electromagnetic power flow to the kinetic power flow.

In the present case, since v = (VO + v2_) 2 + vly ; + Vg 2,
y=x n v Xf
Re <‘ 2n Q‘) - 2n &
2 2
R S
= an Jb + o J, - (2.83)
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Equation 2.83 leads to defining the kinetic power as

Pl = I (2.84)

But from Egs. 2.64 and 2.77 it can be found that
*
P = =— Re(E J_+E J ) . (2.85)
2- 0 1" 1-

Thus the kinetic power expression obtained from Tonk's or Chu's type of
formalism is not in agreement with that obtained in Eq. 2.64. The
difference lies in the fact that the field E satisfies a separate

2=

conservation law which from Eq. 2.82 may be found as
Re j{ (E xB +E - gﬁ) -d8 = 0 , (2.86)

where Eos is the self-magnetic field due to go' The kinetic power form
given in Eq. 2.64 must be used for self-consistency with the dispersion
equation obtained for the system.

Note that the field Ez— is in essence the reaction presented against

the beam slowing. In the action of slowing, it must be that dc bunching

occurs and via the field E2 setup prevents the slowing. The
field E2_ can have the aspect of an essential nonlinearity for some

systems. For example, when thermal diffusion is introduced into the present

model as in Eg. 2.34, Eg. 2.81 then becomes
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_ ) 2 2 2 2
. {aub [(w krvo) + kivo]} lvl_| . (2.57)
2- o2 2
by <# T -E-> [(w- kv )2+ k?vz]
° hk?vs vg ro °

Assume that the linear dispersion equation for the system (which is

independent of v. in the hydrodynamic model) is solved for and a growing

T

wave (ki > 0) is obtained. Clearly v, < 0 is necessary for this solution
to be permissible since this is the only source of power available to
balance the positive electromagnetic power growth. However, if the
solution is such that vy > Vofl + (mg)/(hkivi)]l/z, Eq. 2.87 shows that

v2 > 0. Thus for those parameters used in the system the solution obtained
is not self-consistent since v2_ > 0 indicates that in the steady state
there is no beam slowing. The salient point is that in such occurrences
the linear dispersion relation with homogeneous dc charge densities breaks
down from the viewpoint of conservation of power and a more elaborate
nonlinear analysis is required.

Previous investigators have stated that the power properties of the
trénsverse modes in a longitudinal magnetic field depend upon the second-

order RF electric field>°

or upon a transverse gradient of the fundamental
RF electric field.®® The former of these explanations is invalid since
the second-order RF electric field has zero time average and hence does
not contribute to the conservation of power to second order. The latter
explanation, based upon gradients which are not in general present and

are not included in the dispersion relation for the system, was invoked

as a necessity since it is known that the (Xﬁ x B ) force cannot alter the

1
total carrier kinetic energy but only transfer energy between longitudinal
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and transverse forms. The important point however is that the (yl p'e El)
force can alter the flow rate of the total carrier kinetic energy out of
the surface of interest. It is because of this alteration of the flow
rate from v_ to (vO + v2_) caused by the second-order time-averaged
Lorentz force that enables the fundamental RF fields to extract power
from the dc carrier motion without affecting its total kinetic energy.
This becomes particularly clear in the following case.

Assume the system is such that, in the steady state, recombination
processes are present which prevent any second-order density gradient
p__ from forming so that E2_ = 0. 1In this case, which is the only case
which can be accurately evaluated based on the plane-wave analysis, the
kinetic power forms given in Egs. 2.64 and 2.85 are identical and if
Eq. 2.83 is used the kinetic power may be written, since pl = p2_ = 0,

as

vy
P, = Re <1\IO = v> , (2.88)

where m i1s the carrier effective mass. By definition the total carrier

kinetic energy is

k - o 2nm ) (2'89)

so that the net kinetic power flow out of the surface of interest is

ﬂ( B *d8 = Re jg‘ By« ds . (2.90)

By selecting a cylinder encompassing the interaction region whose axis is

longitudinal, the nature of the carrier dymamics shows that on the
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cylindrical surface v « dS =0 (i.e., no particles escape in the transverse
direction), whereas at the end sections a net contribution arises since
there v « d8 = [v_ + v2_(x)] X - dS. Thus even if the function E_is
constant, if v2_ < 0 the integral given in Eq. 2.90 is negative, indicating
a power source for the instability.

In the alternate limit, where no recombination processes are present,
the field E2_ which must then be present can alter the carrier kinetic
energy and thus account for the power transfei. Again, in this case, since
a density gradient p2_ is present, an assumption used in the steady-state
plane-wave analysis is violated so that strictly speaking a more complete
nonlinear analysis should be performed. For such systems, although
p2_ < 0y the quasi-linear "theory shows that the effect of pg_ is
significant in general in the power conservation process. It is reasonable
to assume, this being the case, that any study of such systems in the
steady state must include the dc density gradient in the analysis of

“instability phenomena.

The nature of the second-order field E2_ shows that this property
of the wave propagation applied to solid-state materials may be used to
advantage in the measurement of carrier effective mass or in the detection

of electromagnetic power. This aspect is presented in Appendix C.

2.6 The Two-Stream Transverse Instability in a Longitudinal Magnetic Field

It is desired to verify some of the results obtained in connection
with the power characteristics of the circularly polarized waves. A useful
case which will be solved explicitly under small-signal conditions is that

of the two-stream interaction. In this system a second carrier, with
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superscript (2), is used as the circuit and the primary, active carrier
is assigned superscript (1).

The quasi-linear theory is first used to study the second-order
effects when no recombination processes are present. In this case, from

continuity on each stream, Eq. 2.79 gives

5(8),(s)
"S) = .22 . o102 . “(2.91)
)

From the assumed spatial dependence and Eq. 2.91, Poisson's equation for

the second-order dc field, eV - §2_ = é pif), becomes

2k, €E__ ( °l> ( . (2) , (2.92)

where in general subscripts are used to delineate the carrier species
in the case of zeroth-order quantities. Superscripts are used for reasons

of clarity in the case of second-order quantities.

Employing Ed. 2.77 for each carrier gives

2
k Iv(s)l I (R kv )2 - k3v2 ]
2k.vosv(f) = n.E + 1- <8 2098 . s =1,2.
* 2 S 2 by [(w - LI Y2 + k3v2 ]

oS 1l OS (2.93)

A further relation is provided by the first-order force equation, viz.,

(1) (2)

jlw-%kv  -w )ov jlw-kv. - lov
. _ 01 c1’ 1 _ o2 co’ 1- (2.9%)
- n (w-kv_) N (w-kv ) ’ '
1 o1 2 02

from which it may be found that
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W = e T (2,95)
where
L8 (@ - kv (0= kv, - o) (2.96)
(w - kv I kv - ) ° ;
1 02 Ca

Substituting Fgs. 2.92 and 2,95 into Eq. 2.9% gives the following result:

0 Ivii)[g vOl[(Akﬁvig v )y B <.~= > 7.8 }

N =, (2.9)
=8 o -k )P v e T2 (MEVE b af ) +of, v ]
where
7e = e - (@ kv )7 - K (2.98)
and
B, = (@ =k, - “bs)g + kfvis ; s =1,2 . (2.99)

By a symmebry argument, the function vé%) i¢ readily obtained by the
replacement (; :i?) throughout Eg. 2.97. Inspection of Eq. 2.97 shows
that, in the absence of recombination processes, in the steady state the
quagi-linear theory predicts a strong influence on the second-order
carrier dynamics of the primary carrier by the secondary carriers and vice
versa. Ag an example, consider the System'with.ukl < 0, ah? > 0,

(VOJ,vb?) > 0 and 7 na < 0 so that based on the purely linear theory of

L7 02 1 g

Foo 2.64 the mode of carrier (1) is active and that of carrier (2) passive.
Inspection of Eg. 2,97 shows that if the interaction occurs with the

right-hand polarized mode of carrier (2) near (o - krv02) =~ (0 the situation
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can easily occur wherein vif) > 0. 1In this case it is clear, since

vii) < 0 must occur to supply power for the interaction, that in this
region any convective instability predicted by the linear dispersion
relation alone has dubious validity since these second-order effects which
affect the power conservation are ignored.

The quasi-linear theory is now used to study the two-stream
transverse interaction for systems which are a priori known to possess
recombination and generation mechanisms such that in the steady state no
dc density gradients are permitted.

For the two-carrier case, since the circuit is well defined, the

electromagnetic power flow for the system can be obtained. Equation 2.56

becomes, in the (-) mode formulation, for carrier (1),

Bvﬁl) Bzv(l) BEl aw
i - - + —_—l = — - +
Jo-w,) F—*+v,, "> Ul e E o+ Vot

. poSVEf) . (2.100)

s=1,2

Use Eq. 2.49 to replace the first term on the right-hand side and

rearrange to give

1
vil . a%lvil (1), “e1’o1 vi_)
n -— ) E = Jlo-w - v+ S
1 c2 1~ cl (ch 1= w X

| 2 82v(i) 1 @ v

o1 R P2 01 v(z)
@ 3x2 na w2 1-

. (2.101)

Apply the operator d/dx to the complex conjugate of Eq. 2.101 and use the
result obtained in Eq. 2.54 to provide, together with the definitions of

 Egs. 2.95 and 2.96,
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2
k¥ |v(l)| o kv w 2
P - 1- _ __Pro1 _oi1c1 _ 01
W= w
el- \f c1 2 w w
2 _ ot
Qduoﬂl ( ) /

o v (w-kv Mo=-kv -0 )2
Do 01 o2 o1 c1

2 - - -
ae= (w kvbl)(w kv02 aba)

The dispersion relation for the two-carrier system can be readily obtained

as
a?l(w - kVOl) @?Z(w - kv )
22 2 D 2 - ) ]
ke W w=-kv - * w=-kv - 0 (2.105)
0ol cl O2 Co

Use of this relation to replace a%g in Eg. 2.102 leads to the form

k_w |v(l)|2 w-=-kv - 2
) = T 1- ol c1l
- 2 w - kv

2“0”1 o1

Re(P

ol . (2.104)
‘By a symmetry argument this result is unchanged if the replacement (1 — 2)
is made in the carrier designation on the right-hand side. Equation 2.10k4
indicates that the cyclotron normal modes (w - kvos "W, 0) in the
two-carrier system carry power almost entirely in electrokinetic form.

Equations 2.64 and 2.10L4 used in the definition of total power flow given

in Eq. 2.68 show that the mode associated with carrier (1) is active if

01h%J(§1
k. < , (2.105)

2¢2 o - kv | - a%llz

where QE1-< 0 is assumed.

[GAN
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To verify that these power results are in agreement with the
instability characteristics of the two-stream system, a computer solution
of the dispersion relation, Eq. 2.103, is undertaken in sample regions.

In Fig. 2.3 the interaction of a passive fast-cyclotron mode on carrier (2)
with the forward and backward helicon branches of the primary carrier (1)
is shown. A strong convective instability occurs in this case which
severely distorts the uncoupled mode dispersion. A similar case in which

coupling occurs with the backward helicon branch alone is shown in Fig. 2.k.

The interaction of the normal cyclotron modes is shown in Fig. 2.5. 1In this
region the coupling between the modes becomes vanishingly small’® (p. 109)
for any reasonable carrier densities so that no instability results.

Fquation 2.105 indicates that the negative power property is not necessarily

limited to the region krvol > w. In particular, from the dispersion diagram
of the uncoupled left-hand polarized mode for a single carrier, Fig. 2.1,
the electromagnetic branch near kr =~ 0 may be examined utilizing the

A two-stream interaction. As the example of Fig. 2.6 indicates convective
growth indeed occurs, although by the nature of the dispersion in this
region (kr < w/c) the interaction is limited to large wavelengths which

in turn invokes the necessity of including boundary conditions and

self-magnetic field effects for any finite system.

2.7 Effects of Collisions on the Mode Kinetic Power Properties in a

Longitudinal Magnetic Field

Collisions can be taken into account via the replacement w —»w - jv
in the force equation, Eq. 2.45. When this is done Eq. 2.64 for the

carrier kinetic power in the (-) mode formulation is given by
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: . L Lo FyoL o~ o ,
Pk&(v) = ’EE Re < ”2 E'| mJjﬂ) = = - - 5 o o
i 1Tt bl (w = kv )® kﬁvgJ

(2,1.06)
I'or the case where generation and recombination processes prevent the
formation of any de density gradients in the steady state, o =1 =0,
o -

so that in the presence of collisions Eg. 2.7% becomes

oV <‘ 1 OF
2Ty : B .
vy TSt VVém n Re 550 Ty S > 5 (2,107)

) 2 o - ) o 2‘1‘q'22' . 2
{vmgwukf%)mkﬂb]r%g% %[W i%%) Kﬁ&}lﬂj

v = = - SR R S

(2:108)
Comparison of Egs. 2,40 and 2.108 shows that the general effect of
collisions 1s to provide a power source for a convective instability if

(- k vo) < 0 by inducing a component of dc beam slowing.

T

2.8 Kinetic Power Properties of) the Hybrid Mode

A hybrid mode, which hag characteristics of both the longitudinal
space-charge wave and the circularly polarized electromagnetic wave, is
obtained when propagation occurs at right angles to the direction of an
applied static magnetic field. With the applied magnetic field in the
/\ 3 I (3 1 /\ o o 1 A 3 °
z direction and wave vector k in the x direction, the hybrid extraordinary
wave hag the field structure (wa’Ewy)° The remaining uncoupled ordinary
wave with polarization Elz has a dispersion relation independent of the

magnetic field and is thus equivalent to the purely transverse mode studied

in Section 2.3,
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For the hybrid mode, since no simple separation into uncoupled modes
occurs as in the longitudinal magnetic field case, in general it will be
found that explicit knowledge of the dispersion equation for the interacting
system is required. Assume it is known then that the dispersion equation

describing the system is given by

R%m-<zj> = <Z>, (2.109)

where 5(a»k) is a two by two matrix. From Eq. 2.109 the following may be

found:

E D . A
b - - = -=2L 2 p(p,k) , (2.110)

=
1X 12 22
where the Dij's are the elements of D(wk).
The cold-plasma hydrodynamic force equations, with drift velocity

assumed in the direction of wave propagation only, are given for the sth

carrier species from Eq. 2.45 by

(s) (s) .

jlw - kvos)le - 0Ty T B o (2.111)
and
kv
. (s) (s) _ <‘ 08
Use of Eq. 2.110 in Egs. 2.111 and 2.112 provides the relations
[\ o
(s) NgP)x [J(w B kvos) T g ‘l T W > P(a”k)}
v = : (2.113)

1 @ - (o- kv )2
cs 0

S



and . L >
(s) nSElx <;&Es t3s (w - kvos) P(a»k)>
vy = ) (2.11k4)
2 - 2
o (w kvos)

(s) _ 1 ( (s)* (s)*
Py = 2k, Re \E J. 0 +Elley s (2.115)
where J(S) =p V(S) and from Egs. 2.11 and 2.12
1y 0s 1y
e V<S)*
*
s&)% | Tosax (2.116)
1X *
w-kv
os

Equations 2.110 through 2.116 enable Eg. 2.115 to be written as

7|2
2 2 _ 2
(s) dbse ’Elxl Vos(w krvos) <¥ * 2Piwcs * w QES>
P =

k

’ (2.117)
[aﬁs - (w- krvos.)2 ¥ kivis]z ¥ Mkivﬁs(w ) krvos)2

where P(w,k) = Pr + jPi has been used. Note that Eq. 2.117 reduces properly
to the result found in Eq. 2.24 when W, = 0.

As the simplest example of the use of Egq. 2.117 consider a single
carrier stream interacting weakly with an external circuit. In this case, for
the present purposes, the dispersion equation can be approximated by that for
the isolated single stream alone. It can readily be shown using Egs. 2.111
and 2.112 together with Maxwell's equations that the elements of this

dispersion relation are

d)2 wz
D = -—<1+ - b > , (2.118)
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. 2

Jaw o
= -D = €l (2.119)

12 21 cz[aﬁ - (o - kvo)g]
and
2 o2 (w - kv )2
D = kK& -& - L 0 . (2.120)
22 2

czfaﬁ - (o - kvo)z]

Using Egs. 2.118 and 2.119 in Eg. 2.110 provides

Plwyk) = 'gi:; 2k,v (0 - kv) + Jl(w - krvo)2 - (wﬁ + a%) - k§v§i> .
@,
(2.121)

This result when used in Eq. 2.117 then gives

2
. [(w - krvo)z - (aﬁ + a%) - K?vg] B
r e |E 12 v (o - kv )[ <i + )
(0] ro . 2
w
D
Mkivi
_ 2
+— (o krvb> J J
— (Dp
P =

[ - (0 - k3 )% + 18R] + bR - 1y )2

(2.122)
Inspection of this result shows clearly that (w - krvo) < 0 is required to
obtain the negative kinetic power property for this case. That this
result is in general true in the absence of collisions and thermal

diffusion can be seen when Eq. 2.117 is written in the form

2 2 - 2 2 2
(s) _ “ps® ,E1x| Vbs(w krvos)[(w * Piwcs) * Prwcs]
P = -~ (2.123)
a><ia? - (w-kv )2 +x3%% ] + 422 (0 - kv )é)
cs T 08 i'os 108 T 08

which shows directly that (w - krvos) < 0 is required for Pés) < 0.
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As in the case of the purely transverse modes studied, the
electromagnetic power flow associated with the hybrid mode cannot be

neglected. In the present model, this power flow can be approximated as

P = :Re(E B ) = “r p|2 |E |2 (2,124
el 2Ry 1z) T 2w 1X : +124)
Since the total power flow, Pel + P(S), must be negative for the sth carrier

k
hybrid mode to be active, Egs. 2.123 and 2.124 then provide the limitation

2 (k_v

2 _ 2, 02,2
6EsVos (Bpog o) [(w + Piuks) + P2af ]

r CS

k

T (2.125)

<
2
P12 ([P, - (0 - kv )2+ k2 ] +5k32 (0 - kv )2>
o cs T o ios ios T 08

5]

for the mode to be active, where Vs > w/kr is assumed.

2.9 Effects of Collisions and Thermal Diffusion on the Kinetic Power

Properties of the Hybrid Mode

For completeness in the study of the basic carrier modes the effects
of collisions and thermal diffusion on the hybrid mode kinetic power
properties are studied, although in this case the results are particglarly
lengthy.

Collisions and thermal diffusion are introduced into Egs. 2.111 and

2.112 in the standard manner, whereby Egs. 2.113 and 2.114 then become

W
: : I _Cs -
(s) T]sElx <5(w kvos JVs) * w (o kvos)P(w’k)>
Vix - k?v%s(w - kv o - jvs) (2.126)
2 _ o 2
' u%s (@ kVos va) * w - kv

oS
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and
n.E <-w + 3w - kv )(w - kv - jv.) - K22 ] 5ﬂ9&3&->
(s) 81X cs (o]} 08 S Ts w
'V' -
1 Kv2 (0 - kv - jv )
2 _ s = Ts 08 S
(Dcs (w kvos va> w - kvOS

from which Eq. 2.115

corresponding to the kinetic power flow becomes

(2.127)

e E
S(e) | s Bl < NOPNENCY (o125
k ID |2 2 2
where
(s) _ 2 2 - _ 2 2
P o= [(w kv )Z+ klvis][wc (w kv )Z (vs + kv )
2 _ .2 2 _ .2 _
+ (k2 ki)vés] + v2 [klvos(kr ki) + 2kikr(m krvos)] , (2.129)
wv (o - kv ) 2
q(S) B - = * Ii’ [zkikrvés * (Vs * ‘Ekivos)((JJ B krvos)]
o (w-kv )2+ k3
T 08 i'os
(2.130)
(s) - 2 2.2 2
pz - 2[((0 B krvos) * k:’LVos][((D krvos)(vs * kivos) +'kikrVTs]
2 2 2 2 _ .2
+ v VTS[krvos(kr + k7)) + ok ki)] ,  (2.13%1)
awv kv >
q(s) 2P.w  +w + s 108 + ] [(w- kv )2
2 1 CS ((L)-kV )2+k2V2 w r OS
T oS ios
" EiVos(ve + kv ) - (62 - kBBl (2.132)

)
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and
_ o (s) L (s)
Dy = Py 0 *d T (2.153)
where
(s) _ 2 2 2
15 = (o - krvos>[a£s - (o - kv )%+ (vs + kv ) ]+ 2kivos(vS + kivos)

. - 2 2 _ .2 _
(w krvos) + VTS[(kr ki) (w kI_VOS) + Ekikr(vs + kivos)] (2.134)
and
= - - - + + + -
9, kv Lo - kv )2 -af - (v + kv )2l +2(v, + kv (o - kv )

tve [Pk (0 - kv )- (v, + kv ) - X)L (2.135)

As this result is difficult to analyze directly, the separate effects of
diffusion and collisions are examined.

First congider v, = 0 and the resultant effects of thermal diffusion.
In this case, if Egs. 2.128 through 2.132 are used, it can be shown that
the kinetic power flow reduces to

2 2
a € |E1x| [(w - kv,

. )2 + k?vss][(w + P,w )2 + P2 ]

S 1 CS r CS

Dy (vg = 0)]2

e [(w-Xkv

r OS>v

s * krvés] . (2.1%6)

Inspection of this result shows that due to the presence of thermal diffusion

5 .
Pﬁ )(VS=0) < 0 only if



w VTs
Vg > <—k >+—— s (2.137)
T

so that at the very least Vs > v,  1is required. Thus regardless of the

Ts

dispersion relation for the (isotropic) system [i.e., regardless of the
polarization factor P(w,k), number of carriers, nature of the interacting
circuit, etc. ), if for all carrier species s it is known a priori that

Vos < VTS, then only collisionally assisted convective instabilities are

possible in the isotropic hydrodynamic model.

In a similar manner, let v,, = 0 in Egs. 2.128 through 2.132 and

Ts

obtain the kinetic power flow in the presence of collisions as

2 2
wpse lElxl

_ 2
2kilDS(st_o)|

Pés)

(VTS=O) = (w - krvos)Q(w’kr’ki) ) (2.138)

where

Q(wyk k) = e [(w-%kv )2 +k2 J{(v. +2kv ) +v [(w-kv
S | W T 08 i'os S i'os’ cs S T o

)2

S

27 . 2 _ 2 2
* (Vs * kivos) ]} +&Ws[ahs + (o krvo )=+ (Vs * kivos> * 2kivos(vs * 2kiv

)]

S (OFS]

- 2 2.2
+ [(o kv )+ kivos][Ekivosw + uPia%S(vS + kivos)] . (2.139)

A close inspection of Egs. 2.138 and 2.139 assuming ki > 0 shows that again

és) < 0 and that when this is the

case the collisions assist the source power.

(w - krvos) < 0 is required to obtain P

These separate results would tend to indicate that in the general

case, with both collisions and thermal diffusion present, the factor
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(o - krvos) must be negative to obtain a negative kinetic power mode,
although even when this factor is negative it is still possible for the
thermal diffusion to prevent this.

As with the previous carrier modes studied, the hybrid mode kinetic
power flow can be related in part to the steady-state second-order dc
carrier dynamics. As discussed previously, the only case which can be
accurately studied with the plane-wave analysis used corresponds to the

de field E = O or, equivalently, the medium is homogeneous in the steady
2

(s) - o,
2

state and o In this case it can easily be shown that the second-

order longitudinal time-averaged force equation in the steady state is
given by

k: M

L 2 . 8 * 2.1k
(2k,v VIV + 3 |le| Re(v. B ) . (2.140)

28

The right-hand side of this equation may be written as

*
N * n.k * >
S s
= = 2.1k
5 Re(vl B ) Re 5 N Elley s ( )

*
so that when kr Re(ElyJi ) < 0 a negative contribution to v2S is obtained

N

corresponding to beam slowing.

2.10 Utility of the Kinetic-Electromagnetic Power Theorem

Regardless of the carrier mode used, the present study has shown

that the salient function of interest from the viewpoint of convective

instabilities is the kinetic power function given by

S Re(E ~gj) . (2.1k2)
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The power relations, such as Eq. 2.22, show that an instability cannot

occur unless P, < 0 if ki > 0. In a sense then, the power theorem provides

k
a form of causality on the system indicating whether or not the root

with ki > 0 indeed corresponds to the amplification of RF electromagnetic
power. Since the functional dependence of Pk

ascertained by analytical methods, the primary utility of the power theorem

(a»kr,ki) can in general be

is in determining, before any solutions of the dispersion equation are
attempted, which regions of (w,k) space and which carrier parameters are
causal in nature. Note that this immediately delimits the investigation
of the first-order dispersion relation to those carrier modes and/or those
regions of (w,k) space which can support a convective instability.

The present study also raises important questions related to the
form of the assumed steady state of the system in convective instability
analyses. If it is known at the outset that by its nature the system can
support a steady-state dc density gradient of charge, such as is common
in solid-state media (e.g., the Hall effect), then solving for the
instability in such systems assuming a homogeneous medium in the steady
state (i.e., using a plane-wave analysis) is in general inaccurate.
Although the self-consistent dc density gradient is only second order in
magnitude the power theorem indicates that it can still play an important
role in the power exchange processes and hence that it cannot be neglected.
This statement is particularly important for multiple carrier species
interactions as evidenced by the discussion following and related to
Eq. 2.99.

In the opposite case, in which it is known that the steady state of

the system cannot support equilibrium dc carrier density imbalances through
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generation and recombination processes, the plane-wave dispersion equation
is accurate and regardless of the carriér mode studied the kinetic power
flows are in agreement with the second-order dc carrier dynamics. These
considerations lend importance to the surface boundaries of the system
(eogo, in solid-state devices the contact area) since these play a part

in determining the steady state of the system.

These considerations lead to the speculation that for those systems
in which the dc gradient of charge is permitted in the steady state, the
possibility of nonlinearly generated ingtabilities exists wherein part of
the power represented in the function Eng ig fed to the RF fields through
the self-consistent charge density inhomogeneity. In such cases it may
also be that the power represented in the plane-wave analysis of the system
by Re(ElJT) need not be negative. Verification of these hypotheses
requires a full nonlinear analysis which is not attempted in this tract.

A further point raised by the power theorem deals with the
distinction between a negative kinetic power mode and a negative power
mode. For example, neglecting collisiong and thermal diffusion, the
left-hand circularly polarized mode (ab < 0) was found in Eg. 2.6l to be
a negative kinetic power mode throughout (a,k) space, although the total
mode power flow for this case, given by Eg. 2.69, is negative only in
restricted regions of (wyk) space. The problem in obtaining the total
power flow of a carrier mode is that a localization of the RF electromagnetic
power flow is required. From the viewpoint of coupled-mode theory this
may be permissible for weakly coupled modes, but in the actual interacting
system this cannot be accomplished with certainty. It would then appear

that for weakly interacting modes a negative power mode is required for
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instability, whereas for strong interactions a negative kinetic power
mode may be sufficient. A negative kinetic power mode, although both
necessary and sufficient to satisfy conservation of power requirements,
may not be sufficient to guarantee that instability will occur when this
mode interacts with a passive circuit.

The techniques used in the kinetic power theorem can also be applied
to gain insight into decaying mode interactions (ki < 0). This aspect

is presented in Appendix D.

2.11 Summary

The kinetic power theorem has now been formulated for the basic
carrier modes possible. Any new mode (e.g., static magnetic field
applied at an arbitrary angle) should only be a superposition of these

basic modes and hence provide no new physical phenomena.



CHAPTER III. KINETIC ENERGY.PROPERTIES OF CARRIER WAVES:

ABSOLUTE INSTABILITY

3.1 Introduction

It is generally held that the consideration of energy or power can
only provide information on convective instabilities or that a mode which
has negative kinetic power can be active for an absolute instability if the
proper interacting circuit mode is chosen. It will be shown, however, that
a separate but related conservation principle for absolute instabilities
can be obtained. A kinetic-electromagnetic energy theorem will be derived
for the three basic carrier modes studied in Chapter II. The theorem also
demonstrates the physical mechanisms through which absolute instabilities
can arise.

Whereas the convective instability theory of the previous chapter
used a time-averaged spatial-power framework, the present study employs a
space-averaged temporal-energy basis. For example, in the convective
instability process the source arises from the active carrier mode having
negative power so that exponentially growing waves in space are possible.
In the absolute instability process, however, it will be determined that if
the carrier mode has a negative energy property, exponentially growing
waves evolving in time are possible. 1In the latter case, in general, at
each point in the interaction region, the total carrier kinetic energy
increases exponentially as time progresses, but in the negative direction.
For the present analysis the condition for steady-state oscillations will
not be dealt with since this state is ultimately determined by saturation

Processes which cannot in general be taken into account. This in no way

~67-
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diminishes the value of the theory for predicting which carrier modes

and which regions of w-k space are potentially absolutely unstable.

Because of their importance in the case of solid-state plasmas, the effects
of collisions and thermal diffusion are included.

It is shown through a study of the electrokinetic energy density
functions that the dynamics of the kr-ki plots according to Briggs' criteria
can be elaborated upon and the meaning of the root behavior explained as
a function of time for both absolute and convective instabilities.

The theorem is also used to show that the characteristics of the
electromagnetic branch of the helicon spectrum are such that unstable
wave behavior is permissible without violation of the conservation laws.
This region of w-k space is usually rejected as a possible source of
instabilities.

Whenever possible the quasi-linear theory is included to help in
understanding the carrier dynamics. It is found that the second-order
effects predicted by the quasi-linear theory are intimately related to
the boundary conditions of the system. In particular it is shown in
which cases the linear dispersion relation is accurate and also a
discussion is given of how the boundary effects can enhance or quench

the instability.

3.2 Kinetic Energy Characteristics of Space-Charge Waves

The development in many ways parallels that used in the convective
instability study. Thus assume that fundamental variables vary as
exp[jlawt - kx)],where now w = ®, + jo; and k =k + jk;. The Poynting

theorem is written in the form



V. (Ex Bf) +B g MR 5t E Q% =0 , (3.1)

1 %1, O _ -
EO-Re [v (Exﬁ)]"ﬁ(wef’wk) = 0 , (3.2)
where
4 L |52 +& g2
Weﬂ - 2"1‘0 |B| +2 ’E| (3'5)
and
W A L1 Re (E . i’*) 5 ((.l)i #0) . (3.4)

k 2w,
. i

The function wel is the sum of the electromagnetic and electrostatic
energy densities and Wk is the electrokinetic energy density.
It will first be verified that the slow space-charge wave is
the source‘mode for the backward-wave oscillator type of interaction in
which a single carrier stream interacts with an external circuit wave
mode. Consider the simplest case in which collisions and carrier diffusion
are neglected and it is assumed a priori that k is purely real. It is
shown in Appendix E that the electrokinetic energy density of the
longitudinal space-charge wave to second order can be expressed in terms
of the fundamental fields alone in this case as
-2w, t
kpovo(a% - kvo)e * \le(o)\z

W, = ) (55)
k 2nl(o, - kv ) + of]




-70-

where |le(O)| is the longitudinal RF velocity amplitude of the carrier
at time t = 0. Since in the present case k is purely real, if W, # 0,

Eq. 3.2 gives

wez + Wk = 0 . (3.6)

Inspection of Eg. 3.5 indicates that Wez is positive and hence for
conservation of energy to be satisfied it is necessary that Wk <0, or
equivalently from Eg. 5.5 that vy > wr/k. Thus the slow space-charge
wave must be used for the oscillation to grow positively in time. Note
that part of the function Wel in Eq. 3.3 is the electrostatic energy
density associated with th? carrier mode. Hence in general it is not
sufficient that W. < O for growth to occur, but rather that the function

k

WT defined by

2w +w (3.7)

wT weS k

be negative, where Wes represents the electrostatic energy density of the

carriers. In order to evaluate WT,

Eq. 2.10, gives for the present case

the longitudinal force equation,

(w, = kvo)2 + of

B ()7 = —= = v (%, (3.8)

1X 2 1X
M

where Elx(o) is the longitudinal RF electric field at time t =0, so

that, 1f Eqs. 3.3 and 3.5 are used,
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= ('e[(d% ) kvo)2 i mﬁ] + kpovo(wr ] kvo) ;le(O)la _E&Et
WT o e .
(3.9)

The functional dependence of WT on w, shows directly that o must be

L (0, = kv )2 + o
T 0 1

limited in magnitude and moreover indicates the important limiting
parameters involved.

The general form of the electrokinetic energy density of the space-
charge waves employing the definition of Edq. 3.4 can be obtained directly

from Fqs. 2.6 and 2.13 as

- - - 2_1,2Y,2
(QQ krvb)<wr+krvo)+<¢i kivo)<wi kivo+v)+<kr ki)VT

~ | i 12
1X ( (DI‘ .
i);i - ‘ a;—- > [2kikI‘VT+(2kiVO+V) (wr-krvo) ]
R | (w=kv ) (w=kv -jv)-kBv2 |2
o] o} T
L

w 7]
(lE1y|2+|ElzIz)[(mi~krvo)2+(mi-kivo)(&ﬁ-kivo-v> - (‘Zi > <&E—krvo)v}
+

Iw—kvo-jvlz (a§+u§)

)

(5.10)
Tt will now be shown that it is possible to relate the energy
characteristics of the system to the causality principle based on
Briggs' criteria. For clarity assume the waves of interest are purely
electrostatic and neglect the thermal diffusion (VT = 0) so that Eq. 3.2

becomes when Eq. 3.10 is used
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2 - + - - - 7
wp [(a% krvo)<a5+krvo) <Qﬁ kivo)(wi kivo v)

W
T
- <(L). > (2kivo+v)(a)r-krvo):|
-, € \Elxlz 1+ L ‘ = 0 .
_ 2 ¢ . - _.\12
[(a% krvo) (wi kivo)(wi kivo v)]

Y-v ]2

- 272y =
+(a& krvo) [ <aﬁ kivo

(3.11)

For an actual system a sum over the carrier species present can be made
without altering the present relationships. If Briggs' method is applied
to Eq. 3.11 by permitting W, = =, inspection shows that for the electro-
kinetic energy density to remain finite and satisfy Eq. 3.11 it is
necessary that ki —>wi/vo.—>-w. Hence for either convective or absolute
instabilities it is seen that Briggs' requirement on the amplifying mode,
to satisfy causality, namely ki — =0 4§ W = =% is directly related to
conservation of energy in the system.

Note that in a very real sense the state of the system defined by
the operation of letting w; = - is an actual potential physical state of
the system according to the linear analysis since it is a solution of the
dispersion equation. Thus if the wave blows up very quickly in time
(Qﬁ — =) it must be that it simultaneously decays spatially very quickly
(ki — =) or otherwise there is too much energy in the system (conservation
of energy is not satisfied). This nonequilibrium behavior can be related
to the dynamics of the Briggs' plot for an absolute instability as shown
in Fig. 3.la. At some fixed time the system can have the solutions
indicated by ® , wherein Mode 1 is the forward amplifying wave and Mode 2

is the backward passive wave. Mode 1 is then essentially in the state
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(b) BRIGGS MAPPING FOR CONVECTIVE INSTABILITY
SHOWING POSSIBLE ROOT TRAJECTORIES

FIG. 3.1 TRAJECTORY STUDY OF BRIGGS' MAPPINGS.
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discussed above. As time proceeds reflections (and possibly considerations
of entropy) drive the system to the resonant double root at point S from
which the eventusl steady state is reached.

Tt is also now possible to relate the dynamics of the Briggs' plot
for convective instabilities as shown in Fig. 3.1b to the dictum of
conservation of energy. In particular, consider the possible forms the
convectively unstable root may take in crossing the kr axis (ki = 0) as
Wy is varied, typified in the figure by potential trajectories 1 through L.
Even for convective instabilities the system must satisfy the conservation
of energy equation, Eq. 3.2, which for ki = 0 indicates that WR is
necessarily negative ahd nonzero. Inspection of Wk as given in Eq. 3.10
shows that for‘/ki = 0 it must be that (mr - krvo) < 0 in order that Wk < 0.
Thus with reference to Fig. 3.1b trajectories such as 1 or 2 cannot occur,
whereas trajectories 3 or 4 are permissible. Although this has been shown
only for space-charge waves, it will be determined that this is a general
result for the basic carrier modes in the hydrodynamic analysis.

Similar to the result found for the kinetic power function, Eq. 5.10
shows that the electrokinetic energy density can be negative through the
action of the collisions for purely transverse fields alone. To understand

this, consider the case ki = 0 and take the dc part of Egq. 2.32 to obtain

v 1 M
yz*'vvz = TI<E2+'§RG(Y. X.B_l),\> . (3.12)

* X

Then from the assumed time dependence, it is found that
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E 2K -xv )(|E_ |2+ |E_|®
.. e, L e, = kv )(] ly|‘ | 1z| ) (5.15)
2 v - Ewi . . : 2’

2(v - 2wi)(w% + ai) lo - kv - v

so that when (ai - krvo) < 0 the collisions act through the second-order
Torentz force to extract energy (at all points in the interaction region)
from the carriers by slowing. Note that this result indicates that
collective Cerenkov radiation may be strongly influenced by the presence
of collisions.

In addition, as inspection of Eq. 5.10 indicates, under small-signal
conditions, with w; < w, and ki << kr’ it is the presence of collisions
which permits the electrokinetic energy density to be negative in' the

case v. < v_.
o) T

3.3 Electrokinetic Energy Density of Purely Transverse Waves in a Static

Magnetic Field

Assume that the fundamental variables vary as expljlat - kx) ] where
A
both w and k are in general complex and B =B 2 with v. = v_x as before.
=0 o -0 o
The coordinate definitions of Egs. 2.6 are used and again, since the
transverse modes are uncoupled, only the (-) mode need be analyzed. Thus

Eg. 2.7 is written in the form

v A BEl_
¢ - ~kv v = Nt o T (3.14)

1-  Jw

To examine the second-order longitudinal carrier dynamics in detail,

consider the Lorentz force term

F, = qRe(y)xRe(8) = gafRe(v xB +v xB) (3.15)
1 1 1 1

J
1 1y
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which shows that two types of motion exist for the second-order variables,
so that v2 for example may be written as

-20.t 2k.x -20.t 2k.x
1 1 1

Re(v ) = V e e +V e e T cos2(wt - kx) , (3.16)
2 21 22 r

where V21 and V22 are independent of x and t. The sinusoidally varying
part of this dependence is related to the importance of device length for

the time growth of the oscillation. In the limit ki — 0, a space integration
over the device length shows that this contribution is zero if the device
length, L, is an integral number of wavelengths. Also, if ki - 0, this
contribution should be negligible if L >> \. In general ki # 0 and it is
necessary to take into aqcount the total interaction so that at oscillation
the interference between the waves present cancels the sinusoidal contri-
bution and the expression for the ideal device length becomes dependent

upon ki, the wave parameters, etc. In order to determine the kinetic

energy properties of a single mode then this sinusoidal contribution is
neglected. This problem does not arise for convective instabilities since

w; = 0 and Eg. 3.5 is time averaged. In addition, using Eq. 2.6, if it can
be rigorously assumed that vl+ = 0, the contribution of this sinusoidal

part to the second-order motion of the (-) mode is identically =zero.

From Eg. 2.62 the small-signal Poynting theorem can be written in

the general form for the (-) mode:
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where the sum is over the carrier species present. Make the definitions,

where the symbols have the usual meanings, as follows:

- -1 X
W = T Ty Re(El_Jl_) p (3.18)
- L 2, € 2
Voo = By B 2+ g e | (5.19)
and
kw -k,
p, = LI 1l g 2, (3.20)
. 2u (o +af) *
o'r 1

so that, corresponding to the real part of Eg. 3.17, the following can be

written:

Sl aw}if)
Fern S T LT 0 (5-21)

S

The function Wk- is derived explicitly in Appendix F. Now from Briggs'
criteria it is clear that for an absolute instability at least one root
is required with the property that s < 0 for k.l = 0. TFor ki = 0 and

W, # 0, Eq. 3.21 takes the form

W, * 2 wlif) = 0 . (3.22)

Inspection of Egq. 3.19 shows that Wez is necessarily positive (the case

|E | = 0 is of no interest) so that at least one carrier species must
1=

possess Wk_ <0, i.e., a negative electrokinetic energy density. Inspection
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of Eq. F.4 for this case thus indicates that for W _ < 0 then @, <0

corresponding to the slow-cyclotron mode, helicon mode, etc., and that
- 2 2
o, | kv, > (o, kv )?+af (3.23)

Equation 3.23 is easily satisfied by the helicon branch since (a% - krvo) ~ Q
and also by the slow-cyclotron branch since kr > !abl/vo for positive
frequencies. 1In addition, however, this equation can still be satisfied
in certain regions of the electromagnetic branch referred to in Fig. 2.1.
Hence thigs branch which is usually neglected in instability studies can
satisfy both the criteria of conservation of power and conservation of
energy and hence be a source mode for convective or absolute instabilities.
It must be immediately pointed out that the presence of collisions or
consideration of finite size effects (since k, is small in this region)
can remove this branch from the negative kinetic power or energy property.
Ag an aid in understanding the absolute instability process the
quasi~linear theory is now studied. The continuity equation for each
carrier specieg is

d
v-g2_+—§i—=o. (3.24)

From the assumed time dependence together with physical considerations it
must be that p2_ = 0. Fquating current density contributions from outside

and within the interaction region provides

(s) aEz'
Pos’os Pos’os T Pos’,- > e (5.25)
S

IS
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so that the displacement current balances the total current density in
the interaction region. In particular, for the case of a single species
of carrier interacting with an external circuit, Eq. 3.25 applies if the
interaction is weak

o
V2_ = -a _-g—ét . (5.26)

Thus in the case of absolute instabilities the slowing down of the dc
beam in time is compensated by the buildup of displacement current whose
magnitude increases with time until the eventual steady state is attained.
It is in this manner that continuity is achieved. 1In an actual device this
necessitates charge buildup at the extremities x = O and x = L where
pz_(t> # 0. The device analog is a leaky capacitor which "heals" itself
as time progresses. The functions VZ_ and E2_ are spatially uniform in the
interaction region. The pictures obtained of the absolute instability
process are thus quite different for the space-charge waves ves. the present
transverse modes. The space-charge wave system evolves as shown in
Fig. %.2a, while for comparison the nature of the transverse mode is
depicted in Fig. 3.2b for the simplest case, wherein ki = 0. It is noted
that in the most general case, w, # O and k, # 0, all the processes
occurring in Fig. 2.3a and b and Fig. 3.2a and b may occur.

A similar problem to that connected with the suitability of the
linear dispersion in the convective instability process occurs here also.
The field Ez‘ is the self-consistent reaction of the system to the dc beam

slowing which must be present to conserve particles properly. This field
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can quickly extinguish the instability so that in fact it never occurs
or in some cases it can assist the instability. The quasi-linear theory
can be used to show how this can occur. The second-order force equation
for the active carrier can be obtained from Eq. 2.25 with collisions

neglected as

v v 1 BEI
2= —_— = —_ —_
3t T Vo T nEg' ke ( 23w 1~ ox > ’ (3.27)

where from Eq. 3.25 the field E satisfies the following:
o=
Ep V(s)+€__.oka- -0 . (3.28)
2 . ot

Clearly for the instability to proceed it must be that v2_ of the active
carrier must be negative since this is the only form of energy loss
available for purely transverse waves. Equation 3.28 indicates, however,
that the field Ez' is in part determined by the properties of the passive
carrier. Indeed by solving Egs. 3.27 and 3.28 simultaneously it can be

found that for the active carrier, for a two-carrier system,

o) 2 M *
o v 1- W, v 1- 1-
’vl_l % go1.o O i 08
v = -7 -5 1 Re(E J ) + 2
o= vy miJ6 1= 1- 2 =
16 e (14 22 )
A by

o (5.29)
where all unscripted variables refer to the active carrier, and the last
term on the right-hand side is due to the field E . The linear dispersion

o=

relation would indicate that the sign of v is completely determined by
o=
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the Re(El_JT_); however, the quasi-linear theory of Eq. 3.29 indicates that
this is not in general true. The secondary or passive carriers can play

a crucial role in determining the sign of v2_. The physical reason for
this is that as the active carriers are slowed an imbalance occurs in the
continuity of the system which must be balanced by the secondary carriers.
Unless a series of generation and recombination processes occur near the
ends of the device the field of the displacement current E2_ builds up and
affects the further evolvement of the active carrier dc motion. Thus the
quasi-linear theory offers a method of taking into account the boundary
effects of the system--something that is completely ignored in setting up
the linear dispersion relationship.

In particular, for solid-state devices, one set of contacts for a
particular device may be such that its injection characteristics never
permit any charge discontinuities such as charge buildup near the confacts
and the absolute instability can proceed. For a second set of contacts
with opposite injection characteristics it may be that the charge buildup
at the extremities near the contacts cannot be halted and the instability
is quickly quenched by the effects of the field Ez- on the system. It is
only in the former case that the results predicted by the linear dispersion
equation will be valid. It would at first appear that an active mode
could be obtained even if W, < O by appropriate variation of the system

k
parameters to alter E and hence obtain vn= < 0. The difficulty with
2- -
this approach is that in absolute instability studies the dynamic phenomena
are nonequilibrium in nature and not a steady state of the system. Thus

questions of which direction the system proceeds in time leads to the

conclusion that the field E (which is in a sense a measure of the effects
o=
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of the system boundaries) can extinguish or enhance an instability already

initiated, but cannot by itself play a role in the initiation itself.

3.4 Electrokinetic Energy Density of the Hybrid Mode

The field directions and conventions adopted in Section 2.8 for
the hybrid mode are retained. The general form for the electrokinetic

energy density of the hybrid mode is

1 * *
= - — + R
W, 2 Re(Elilx Elley) ) (3.30)
with both w and k complex. Equations 2.113, 2.11k4, and 2.116 can be

substituted into Eq. 3.30 for the present case to obtain the following

neglecting collisions and diffusion:

- =

2
«?e |E |2 {é(w - kv ) (o, - k,v )<§ + 2P, w + wof lfl_
D 1X T ro’‘i i0/\'r ic re BE

(3.31)
where P(w,k) is the polarization factor defined in Eq. 2.110. TInspection
shows that even for the case ki — 0 the electrokinetic energy density is
strongly influenced in magnitude and sign by the polarization factor
P(w,k). This is unlike the corresponding kinetic power flow of the hybrid
mode given by Eq. 2.117 which indicated that (w - krvo) < 0 is always
required to obtain P, < 0. Thus, in general, it is necessary to study

k

the total system, thereby obtaining explicit information on the function
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P(w,k) before any specific statements can be made regarding the electrokinetic
energy density. An exception to this occurs if ab > IQE’ so that |E1X| >>
\Elyl and |P| = 0 in which case inspection of Eq. 3.31 shows that the

function Wk approaches in value that given for the slow space-charge wave.

3.5 Summary and Discussion

The electrokinetic energy density functions have been obtained for
the basic carrier modes present in a static magnetic field. Since these
basic carrier modes encompass all physical phenomena for isotropic media
any general mode such as that obtained by applying the magnetic field at
an arbitrary angle to the direction of wave propagation should simply be
a superposition of the effects studied.

The potentially most valuable use of the present energy studies
is that 1t offers a method for taking into account the fact that the
finite length of the system introduces end boundaries to the interaction
region which can play a significant role in determining the stability of
the system in the steady state. Thus if the (linear) dispersion relation
indicates that an absolute instability should develop in the system,
application of the quasi-linear theory to second order, together with
information about the end boundaries and the carrier generation-recombination
characteristics, will determine whether or not these end effects enhance
or quench the further evolvement of the instability. In the latter case
no instability will exist in the steady state.

The energy theorems also provide useful correlations with the
causality conditions of Briggs' criteria. Thus the behavior of the roots

in kr-ki space as o, is varied is related to the fact that the
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electrokinetic energy density must remain finite for arbitrary perturbations.
As in Appendix D, where it was hypothesized that even decaying convective
roots must satisfy a causality condition similar to that for growing
waves, this can also be extended to include causality criteria for waves
which are predicted to decay in time. Note that these considerations
raise the question of the definition of an instability. It is for practical
reasons that an instability is defined to occur when the RF fields grow
in time or space. It is possible however to define an instability more
generally as any interaction in which a continuous flow of power and/or
energy occurs between waves in the system. It is for this reason that
causality criteria should be invoked even for decaying RF fields.

A central problem in'the analysis of systems is that it is never
clear in which state the system resides as the time t becomes larger.
This ambiguity is related to the fact that one can arbitrarily assume o
complex, k complex, or both w and k complex, and obtain a variety of
solutions té the dispersion relation which all satisfy causality criteria.
Thus, depending on the initial perturbation, these are all potential
solutions at some time in the state of the evolvement of the system. These
considerations immediately invoke the question of which direction the
system proceeds after the time of the initial perturbation and for what
reasons it does so. Although no attempt is made herein, it is suggested
that consideration of the entropy of the system will provide knowledge of

the system evolvement as a function of time for arbitrary perturbations.



CHAPTER IV. THE EVOLUTION OF PLASMA INSTABILITIES

BASED ON QUASI-LINEAR THEORY

4,1 TIntroduction

In genefal the assessment of instability characteristics for a
particular system involves the development of a dispersion relation based
upon the linear wave equation. Solutions of this dispersion relation
determine whether or not a small perturbation at some frequency of interest
will at the perturbation onset grow spatially away from this point (convective
instability) and/or build up in time from the perturbation onset (absolute
instability).

The dispersion relation based on the linear theory cannot be used,
however, to determine how the instability evolves in space and time away
from the onset (e.g., x =0, t = 0) point. The fact that the dispersion
equation possesses a causal unstable root is then a necessary but not
sufficient condition for the instability to persist as either the time or
the spatial direction becomes finite. This is because the reaction of the
carrier motion (e.g., carrier slowing) to the growing RF fields is not
present in the linear equations.

The quasi-linear theory is first applied to aid in developing an
understanding of how convective instabilities evolve from their points of
initiation. This theory is a direct extension of the linear equations in
‘that they are retained and used as a basis for formulating the equations of
carrier motion to second order. This is permissible only if the small-signal
approximation still holds and, more importantly, if the wave number predicted

by the linear equations can be assumed to be a constant of the system

-86-
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for the root and frequency of interest. More generally it would be
necessary to include the possibility that the wave number can be spatially
dependent [e.g., k —»k(x)]. This latter approach is analytically non-
tractable, however, and so the quasi-linear theory is used to obtain at
least some indication of the system behavior due to the reactive forces

of the growing RF fields on the carrier motion.

Even in the quasi-linear theory only the very simplest of convectively
unstable systems is readily analyzed and effects such as the thermal
diffusion, collisions, and the spatial dependence of the wave number are only
qualitatively discussed. Some useful results relating the second-order
effects to the potential energy of the charge carrier system are obtained
and discussed for both gaseéus and solid-state plasmas.

These methods are then applied to absolutely unstable systems. In
this case the terminal boundaries of the system in the kX direction can

play an essential role in the development of the instability as is discussed.

L.2 Application of Quasi-Linear Theory to Convectively Unstable Systems

Various examples of convectively unstable systems will be examined
to determine the reaction of the growing RF fields on the particle motions
in the quasi-linear theory. Except when assessing causality according to
Briggs' criteria the frequency is assumed purely real. In all cases the
wave vector k is assumed to be parallel to Q-

4.2.1 FElectron Stream-Plasma Electrostatic Interaction. The

dispersion relation for the purely longitudinal interaction of a cold

electron beam with a cold stationary plasma is well known ag
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(D2 (,02
ST S -1 R, S (h.1)
of (w - kvob)2

where the subscript p denotes plasma variables and b denotes the beam

variables. This equation is readily solved as

5 -1/2
i)LP. N
= ot - ]
kvob ® = W, 1 . > (4.2)
w
. . < . . .
so that ki >0 can exist if w = mpp and moreover this root is causal since
ki — -0 a8 Wy — =0, In particular it is noted that if w —aaﬁp,then ki — ©
and the growth rate is infinite.
To proceed with the quasi-linear analysis it will be of interest to
first study the case wheré wpp corresponds to a single charge carrier
species alone denoted by subscript g so that w_ = &bq' The longitudinal

op

force equation for a cold, collisionless carrier to second order is

Bvl BVZ avl 5vl v
Tt e T P = 1E FE) - (:2)

The time-averaged real part of this gives

*
1 < Bvl ov
= —_— =
5 Re Vl g + VO Re < S > N Re (Ez) 3 ()-l-.)-l-)
Ekix
where v2, E ~e as discussed in Chapter II since the second harmonic
2
contributions give a zero time average. If Eq. 4.4 is applied to the
q plasma carriers, the following is obtained since vOq is assumed to

be zero:
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*

1 Bvlq
'2— Re <qu 3% > = T]q Re (EE) . (14-.5)

From Eq. 4.3, by extracting the first-order equation, which is consistent

with the dispersion equation of Eq. 4.1, the following is true:
; (4.6)
therefore, from Egs. 4.5 and 4.6 it can be found that
N
Re (B) = 3L g |2 . (4.7)
2 202 1

In a similar fashion Eq. 4.4 can be applied to the beam to obtain

jlw - kvob)vlb = 1k, (4.8)

so that Eg. 4.7 can be written in the form

n .k,
= 21 - 2 2 2 2 )
Re (E2> - [(w kv )2+ kivob] |v1b| . (4.9)
"y
Use of Eq. 4.9 in Eq. 4.4 leads to
2 2 2.2
v - ]Vlbl {(E&) [(l _ krvob > + kiva J _ } ()-l- lO)
2b EVOb My, w o2

Some remarks regarding the nature of the evolvement of the instability

in space and time are now needed. The dispersion equation, Eq. 4.1, and
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its solution, Eq. 4.2, indicates that a perturbation at any frequency
w § abq at any point in the system will initially be unstable at that
point. Since the present system is purely electrostatic the Poynting
vector is zero so that no power is being fed into the RF field El.
However, consideration of the RF electrostatic field energy density,
Wel(x) = (e/E)IEl(x)IZ, shows clearly that by the definition of convective
instability this quantity must be increasing with distance so that,
corresponding to k, >0 and k, > 0, Wez(xg) > Wel(xl> if X, > X . Assume
then that the instability is triggered by a continuous source at x =0,
t = 0 at a frequency Wy < abq and examine the system at a later (elapsed)
time t = 5. Assume further that & is much shorter than the characteristic
times of,and the operatihg frequency Wy is much greater than the character-
istic frequencies of, any possible recombination or generation mechanisms
present.

Since questions of recombination and generation are then

inconsequential, continuity of the time-averaged charge then necessitates

that

Re<v-g2+;i-%> = 0 . (k.11)

Since w is real, Re(épZ/Bt) = 0, and hence Eq. 4.11 leads to

1 *
+ - = H . . .
PV, * 5 Re(plvl) + P, 0 ky #0 (4.12)

For any carrier the time-averaged carrier-mode kinetic energy is defined by

<K.E.> = %ﬁ <Re(pv * v)> , (4.13)
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*
where < > denotes a time average, e.g., <Re(p v )> = (1/2)Re(p v ). When
11 11

expanded to second order Eq. 4.13 gives

>+ 0 v + 0 v
) pgv _vaO>

1
E> = — + . >+ 2
<K.E.> \EVOVZDO <Re po(vl vl) v <Re (plv .

21 1

(4.14)
If Eq. 4.12 is used to replace P, in Eq. 4.14, the following results:

e o ,Vllz Vs *

= 24240
<K.E.> = o Vo + 2y Vo, + 0, T + T Re(plvl) . (k.15)

Apply this now to the electron beam-g plasma interaction. Continuity of

the RF beam charge gives
1b
v Jb+_$ = 0 , (h,,]_6)

from which it can be determined that

2 _ w2
* _ Pob Ivlb! [kr(w B krvob) kivob] I

_ 2 4 2.2
[(w kv ) kivob]

ob
The solution with ki > 0 from Eq. 4.2 when it is inserted into Eq. M.l7 gives

2
* pob lv1b|
Re(plbvlb) = - . (4.18)
ob

Finally, Eq. 4.18 used in Eq. 4.15 provides the following for the beam:

P
- ob (.2 ~
KB eam = 2n, \Vov +Vobvgb> . (4.19)
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Recall now that the RF electrostatic field energy Wez(x) is increasing
in the positive x-direction away from x = O. A simple consideration
of conservation of energy shows that it must then be that the kinetic energy
of the beam is decreasing in this direction, or from Eg. L4.19 since
Vb >0 1if ® >0, v2b < 0.

'~ Examine now the function v b given in Eq. 4.10. Equation 4.2 shows
2

that Eq. 4.10 can be written in the form

2 2.2

_ |V1b| CYASS L

v, o= — | = —=)-1] . (k.20)
2b ob nb of

Until now no assumptions about the g-plasma have been made except that

it corresponds to a single species of carrier charge. Assume now that the

g-plasma is an electron-ion (gaseous) plasma in which the.ions have infinite

mass. The ion plasma frequency, a@i’ is then zero and the plasma is

effectively one component with abp = abq = a@e. Moreover (nq/nb) = 1 and

hence v . < 0 in Eq. 4.20 only if k. < w/v_, = k_. From Eq. 4.2, since
b i ob r
<

% 7 %pp’
< SZR -1/2
kiVy = O \ o " ;> s (k.21)
a
t
1/2
and hence Véb <0 only if @ > (agb + a€q>

The physical reasoning behind this result can be seen if the
reaction of the beam electrons to the growing RF field is examined after
the time of initiation. TFor all practical purposes no dc bunching has

yet occurred at or very near to t = O so that Eg(x) = pz(x)= 0 and from
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Eq. 4.k, Vo T —(l/uvob)|vlb|2. This result is in essence independent

of the magnitude of ki and is really as far in time as the linear

dispersion relation, Eq. 4.1, can go with full accuracy. (In general, the

linear dispersion relation is still of vast importance since its solution

must necessarily be unstable for the instability to be initiated in the

first place.) At a slightly later time, however, the reactive effects

of the growing RF field El on the beam charges lead to the spatial effect

that in the region of interaction (i.e., in the region of the presence of El)

the field E2 is generated. In particular, the quasi-linear theory shows

that for the infinite-mass ion case if oy s (w;b + wgq)l/ 2 the field E,

is sufficiently strong to quench the further evolvement of the instability.
Clearly the linear tﬁeory is in some ways extended too far by the

quasi-linear theory. If the field E2 is large, p2b is then large, and

A
1 = — . - . . .
hence Pob = Pob +p = pob(x), and the time-averaged carrier density is

2p
dependent on x. Self-consistently then the dispersion equation cannot
be formulated assuming a dependence as exp[j(wt - kx)] for the RF variables

but rather as exp(jlat - J © k(x')dx']}, so that
vV - -ik(x) . (k.22)

In the quasi-linear approach k was held fixed so that the linear equations
could be extended. This was useful in determining the direction in which
the system moves from the point of initiation by studying the reaction of
the charges to the growing RF fields. It is this charge reaction which

itself causes the time-averaged charge density to become a function of x
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necessitating k - k(x). The quasi-linear theory then suggests the
following method for incorporating nonlinear effects directly into the

dispersion relation. The general carrier drift velocity is written as

v (x) = v (0) +v (0) e : (1.23)

v, ()
Y + Vo (X) 83(_ + VJ_ T = T]El (ll-.2J+)

oot

so that when the dependence of Eg. 4.22 is used, wherein the e @ dependence

is retained since w is assumed real, it is found that

2f ¥k (x') ax'

jlo - kv (x)Iv + 2k, v (0) v e = nE . (%.25)
(0] 1 1 2 1 1
On the basis of Eq. 4.23 the following may also be written:
2/ X ki(x‘) ax!
o (x) = p (0) +p,(0) e : (4.26)
Equation 4.26 coupled with the form of Eg. 4.22 shows that the
continuity equation takes the form
X
3o 2/ k, (x') ax!

1 .
v gﬁ 5 = Jk(povl + plvo) + Eki[pz(o)vl + v2(0)pl] e

+ djop = 0 . (k.27)
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(

S>,and if the dependence of Eq. 4.22
1

From Poisson's equation, €V - El = % 0
is used as well as Egs. 4.25 and h.27, a form of the dispersion relation

is obtained as follows:

n (e () -2 e 0 (0)

2f ¥ x (x') dx'
1 = Z ’ = ‘>2 . (L.28)

of *x. (x') dx
ek (j(a) - kvos) + Ekivas(o) e J 1( ) >

If k, 50 this reduces to the usual dispersion equation, Eg. h.1.
Equation 4.28 can then be regarded as a dispersion relation which
incorporates the nonlinear reactive effects. DNote that V2S and E2
still satisfy Eq. 4.4 where now these functions are assumed to vary
as exp 2 [ % ki(x‘) dx'. To solve this dispersion relation it is
necessary to obtain the sets [kr(x),ki(x)] which at some real frequency
o of interest satisfy Eq. 4.28, bearing in mind that the functions VZS(O)
and pzs(O) are themselves in general dependent upon ki(x = 0), (e.g.,
Eq. 4.20), in such a fashion as to maintain continuity of the time-averaged
charge density. This problem is then too complex to solve by any
analytical means.

A case in which at least the form of the solution for k can be
found is if k, <<k so that the terms containing vzs(o) and pgs(o) in
Eq. 4.28 can be neglected and, in addition, it is assumed that the g-plasma
is such that |nq/nb| << 1 so that voq(x) =~ 0 and pzq(x) ~ 0. In this case

Eq. 4.28 is approximated by
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a%b(x) w

— = (4.29)

o]

which is readily solved as

2 _-1le

s (1- 5"

k(x) = . L.
(x) e (4.30)

In particular when vob(x) and abb(x) are taken as constants the result of
Eq. 4.2 is retrieved. Even in this simple case Eq. 4.30 is difficult to

solve since abb(x) and vob(x) are actually dependent upon ki(x).

To proceed with the physical reasoning behind the quasi-linear
theory it will be instructive to consider the case where the g-plasma
corresponds to ions alone. (e.g., positive ion sheath) so that in its
interaction with the electron stream nq/nb < 0 and from Eg. 4.10 it is seen
that there is now an additional component of beam slowing due to EZ.

Recall now that the linear theory provides exponentially growing fields,

k.x
E ~e * , 8o that a beam electron downstream has lost more energy than

1
-one at a smaller value of x. This energy loss cannot come from RF bunching
alone since there would then be a net time-averaged, spatially dependent,
second-order dc current J = (l/E)Re(plvi) and this would violate
conservation of charge. Hence beam slowing and dc bunching also occur

and moreover these quantities ;re spatially dependent (increasing in
magnitude with x) varying as e kix to match and annul the time-averaged RF

bunching current. This dc bunching in general then gives rise to the

field E |,
2
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Tn extending the linear theory it was assumed that the k value
(independent of x) could be retained. Hence the quasi-linear theory imposes
the constraint upon the system that it provide the same field growth as
the linear theory even when second-order effects are included. In the ion
g-plasma case this gave the result that the beam was losing even more
kinetic energy (e.g., the additional component of beam slowing provides in
Eq. 4.19 that |<K.E.>| has increased) than that required of the linear theory.
The reason for this is that the electron beam now must not only slow by
an amount to feed a growth rate kito the field El'but it must slow further
(lose further kinetic energy) in order to account for the fact that the
potential energy of the electron beam-q plasma system has increased. Stated
alternatively, for the electron beam to slow in the presence of the ion-g plasma
the quasi-linear theory states that the beam electrons must go uphill (do
additional work and lose more energy),whereas the linear theory has the
beam electrons on a flat plane.

Intuifively it is clear that in this case the quasi-linear theory
| indicates that it is now more difficult for the RF field El to extract energy
from the beam since it competes for this energy with the potential energy of
the charge carrier system. Since the interaction strength is determined
for all practical purposes by the parameters Vop? abb’ and abq (and these are
effectively constant for small signals), in actuality it is expected that
the growth rate of the system will be less than that predicted by the linear
theory. Indeed because the interaction strength is independent of Ez-field
effects the quasi-linear theory strongly suggests that when the magnitude

of the potential energy part of v b exceeds that of the RF field part, viz.,
2
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H—:\ kivib > o, (4.31)
where Eq. 4.20 has been used, the instability does not occur in fact.

In the opposite case nq/nb > 0, corresponding to the electron
dominated or infinite ion mass g-plasma case, Eq. 4.20 indicates a component
of beam speeding results from EZ. In this case, to retain the growth rate
ki predicted by the linear theory, the beam electrons must slow less than
the amount needed to feed the RF field growth in order to account for the
decreased potential energy of the system. Instability occurs more readily
in this system since the charge separation effects tend to keep the beam
electrons and the wave field in synchronism. A limiting action (on ki) due
to E2 is also suggested for this case, since if Eq. 4.31 is satisfied
v2b > 0, and the unacceptable situation results that the beam energy and/or
the field energy is increasing at the expense of the carrier charge potential
energy. Rather, the instability does not ensue in this case and the primary
effect of E2 is to alter the saturation characteristics and growth rate
predicted by the linear theory.

The quasi-linear theory thus provides some important differences
in the description of the evolvement of convective instabilities in this system
as compared with the linear result. On the basis of the linear dispersion
relation alone it is concluded that the sign of the charges of the interacting
carriers isof no importance (in the dispersion relation the charge always
enters as a squared quantity so that the sign is lost). The quasi-linear

theory on the other hand stresses the importance of the charge sign.
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L.2.2 Two-Stream Longitudinal Amplification. For the two-stream

convective instability the dispersion relation neglecting collisions

and carrier diffusion is well known to be

(02 (1)2
1 = Pl + P2 . (LI"BE)

_ 2 _ 2
(w kvOl) (w kvoz)

To facilitate the analysis consider only the case where

2 2
o1 “2 A
Lo P2 2 w2 g9 Vv,V > 0 . (4.33)
2 W2 0 o1’ o2

01 02

A
kg 2 =5 s o= L2, (4.34)
0oSs
and
A +
k, = 5k Tk) . (k.35)

The dispersion equation, Eq. 4.32, is solved for o assumed purely real as
(k-k)2 = R+ 02+ a2z (4.36)
It can be shown by letting w; = - o that k —aw/vOl, w/vO so that all four
2

roots are causal for ki > 0. Inspection of Eq. 4.36 shows that for complex

k to exist for real w

kg +tk2 < +ko(k§ +l+k?)l/2 s (4.37)
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wherein the (-) sign must be chosen in Eq. 4.36 indicating that two of the

roots are dropped from consideration. Equation 4.37 can be simplified to

1 1

v v
ol O2

6§

< \/—2—1{0 5 v F oV ) (14"38)

ol o2

and the only root of interest is given by

1 w w . '
e = (&) eanl (1.39)
o1 o2

where

1/2
7l = (ko ig +1Z - (2 + kﬁ)) : ~ (n.20)

As discussed in the previous example assume that questions of
recombination and generation do not arise in the time and frequency scales
considered. For the quasi-linear theory Eqs. 4.4 and 4.12 are applicable
to the presént case for each of the charge carriers (s = 1,2). These

relations, together with Poisson's equation in the form eV Ez =20 3

5 28
yield
2 IV(S)|2 2,2
Re(E kiko }: . (o - krvos>((D ] 5krvos) * 5ki 08
e = e—— .
2 2 2 Ul - 2 2
M(ko + 2ki) o1,z S (o krvos) + kivis
(k.41)
From the first-order equation,
, (s) _ ) _ 9 4o
jlw - kvos)vl = 1E s =1,2 (k.42)

it can be determined that



il :\!“5“'" : ey .
LHE UNIYEL ™Y a8 aipwe

a0 ENGINEERI i LIBRARY

2 1 \2 (0- kv )%+ k32 2
o (R e e,
(0 - krv02) * kivoz
Use of Egs. 4.41 and 4.43 in Eq. L.b for s =1 leads to
(l) 2 2 _ 2,2
V(l) _ lvl l _{ 2ko [ (w - krV01)(w 5krv01) * 5kl oL < Eé.)
2 Moa k2 + 2K2 (0 - kv )2+ K32 Ny

[(w - krvo2)(w - 5krv02) + 5k§v§2][(w - krvo_l)2 + k2v2 ] } ] 1:} (4

i'01
[(w-kv )2 +k32 ]2
r 02 i'o2

(2)

, 152
By symmetry considerations v2 ” )

2 -1
throughout Eg. 4.4t4. The present case cannot be reduced to the system

is obtained by the replacement (

studied in Section 4.2.1 because of the assumption made in Eq. 4.33. By
comparison with Eq. 4.10,however, it is seen that Eg. 4.4l introduces an
additional term in vil) due to the fact that the carrier with which it
interacts ié now drifting.

The solution given in Egs. 4.39 and 4.40 is too lengthy to analytically
deal with the general behavior of vis). It is clear however that the
introduction of drift on the second carrier has permitted an extra degree
of control over the second-order charge dynamics to be established and
as a result this leads to an additional control of the maximum growth rate

2k, L

k, and the saturation length (e.g., the length I such that v (0) e . vo)
2

of the system.

4.2.3 Two-Stream Transverse Amplification. It will be assumed that

one of the charge carrier species i1s stationary, =.g., hole or ion, and its
interaction with a drifted electron stream will be studied. The dispersion

relation for the purely transverse interaction is given by



2 2
s, of (o - kv )
2 _ 2.2 _ pi _ _Dbe o = L.
@ koe w-w w - kv ° (heh5)

where the (-) mode framework is used and W,q = nSBO; s = e,i. For the

undrifted species Eq. 2.26 is used to give

5 = -» <_l_ (1) it (4.146)
o = e\ 33 v TS s .
where
(i) N8

1) - u . et
Vl- J'Zw-wciS (h47)

In addition it can readily be found from the first-order equations of

Chapter IT that

2 2r(. _ } 2, 2.2
Iv(i)lz i <’Ei.> Fl(w - kv, wce) + kivo]
1- T]e [

. 2, 2.2 . 2 ' 1-
(w krvo) + kivo](w wci)

Equations 4.46 and 4.48 then give

2 - - 2 2.2
. _ k:’Lni(D [(w XY wbe) * kivoJ | e)®
e 2(,. - 2 2.2 1-
2ame(w a%i)[(w krvo) + kivo]

(k.49)

From the time-averaged second-order force equation for the electron stream,

viz.,

OE

Bk

(e)

1 -
= T]eEz_ + o Re <.2__(D VJ(_?> > , (4.50)

2k, v v
1 0 J

,

it can then be found when Eq. 4.49 is used that



where, from Eq. 4.15,

Iv(e)’a (e)

1o for <K.E.> <
0 e

v(e) < 0 and |v(f)| >
2

Now inspection of the k-cubic dispersion equation shows that an unstable

convective root (k.l > 0) is expected if ®,, <0 and

2

v (w.+ o, D2w - lo.])
<'_9_> 2 ce ci > 0

5[a§e(w - I&Ei]> + aa%i]

) (4.52)

and this is easily satisfigd near the resonance w = |wci| + |6 . Since
(ni/ne) < 0, Eq. 4.51 then shows that the reactive effects attempt to drive
the charge carrier system to a higher level of potential energy. As
discussed for the electron beam-q plasma interaction in Section 4.2.1, in

this case instability is more difficult to achieve and the system in

actuality has a growth rate diminished from the value predicted by the linear

theory.

4.3 Effects of Collisions and Carrier Diffusion

Up to this point to obtain useful analytical models for the
quasi=-linear theory the presence of collisions and carrier diffusion has
been totally ignored. It was then determined that in multiple carrier

interactions the presence of the growing RF fields alters the carrier dc
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characteristics to satisfy the condition of charge continuity. This in
turn led to an alteration in the potential energy of the charge carrier
system.

To obtain some understanding of the effects of collisions and

thermal diffusion examine the time-averaged second-order equation given by

=R\

(%.53)

TDI<}
©

k,
i
(v + 2kivo)v2 = -5 |vl|2 + 1 Re <E2) - 2k,

(o]

which corresponds to the purely longitudinal interaction when
collisions and diffusion are retained. In addition Poisson's equation,

&V +E =)p , can be used to replace E in Eq. 4.53 giving
—2 5 23 2

K, hEy2 s

- - = 2 N - !

(v + Ekivo)v2 = 5 |v1| + 2ki€ [ <i - > P, + P, J s (L.5h)
D

where p' is appropriate to the carrier being interacted with (e.g., the
2
undrifted carrier). Also Egs. 4,12 and 4.17 are still applicable to the

present case and from these it can be found that

2 - -
o = - povg _ DO|V1| kr(w krvo) kivo (4.55)
2 o 2Vo (w - kv )2 + k2v2
ro io

Finally, if Eq. 4.55 is used in Eq. 4.54 the following results:

ag Mk?v? ki no!
S § 2 2

[V * 2kivo Ky <# B > > } v, = 2 Ivll * ke
io o i

1Y
af (- kv ) - Kv hx2vE
_ . s |v |2 r T o i < _ T > (4.56)

Hi% b (- kv )? o+ kP af
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Intuitively it would be expected that the carrier thermal diffusion would
tend to prevent the formation of 0, (and hence Ez) and as a result diminish
the second-order potential energy effects. Indeed,from Egs. L.15 and

L.17, in the present case the general result

2 -
N _ % o, % N o Iv, | olw = kv_)
““beam 2n o 21 o0 2 bn

<K.E (4.57)

_ 2 4 122
(e krvo) kivo

shows that the beam need not be sloWed to obtain

P
-2 y2
< 5 Vo +<K.E.>beam> <0

if (w - krvo) < 0.

The complexity of the problem of second-order effects is now
described. It would appear Justifiable to assume that if the charges
have large thermal velocities concurrent with a low collision frequency
(so that the diffusion coefficients are large) then Vz’ pz, E2 -»0. In
this case Eq. 4.57 would suggest that the RF bunching is solely responsible
for the energy lost by the beam. However in this same case the time-
averaged charge density fo is constant in the x-direction so that k is a
constant corresponding to the medium being homogeneous. This then implies
that Eq. 4.12 must be satisfied bringing in the contradiction that VP, # 0
to satisfy charge continuity. On the other hand, if the collision frequency
is sufficiently large, the thermal diffusion effects should be greatly

reduced and the importance of potential energy considerations becomes

reestablished.
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The quasi-linear theory then at least helps to provide some insight
into the difficult problem of the nature of the evolvement of a convective
instability from its point of initiation. The field E2 would appear to
be necessarily important in the purely transverse interaction since there
is no RF carrier bunching in the hydrodynamic theory so that carrier dc
slowing must occur to provide the energy to drive the instability. On the
other hand for space-charge-wave interactions the RF bunching process can
be the dominant energy extraction process. In this latter case, if the

beam slowing is small, the saturation length L (where L is such that
2k, L
vy =V (O) e ) is much larger than for the purely transverse waves.
2 2kix kix
Note that since v, p, E ~e , Whereas v , E ~e 7 ,it would appear
2" . 2" 2 1701
that the second-order dc effects, at least in some cases, will dominate
2k, x
the nonlinear behavior since the condition v (0) e T ox v, can arise in
k.x 2
i

space prior to |Vl(0)| e’ ~v .

L.L  Application of Quasi-Linear Theory to Absolutely Unstable Systems

In general the absolute instability process is much more difficult
to analyze than the convective instability case since both w and k can
be complex. For this reason only the case where k is assumed purely real
is considered. This still retains the essential physics of absolute
instabilities since the effect of complex k is primarily to permit time-
averaged power to be extracted from one of the device terminals. Since
Briggs' criteria shows that for any absolute instability the system must
possess at least one root with Wy < 0 for real k, the present analysis is
then meaningful in all cases.

In general to study the instability characteristics of a system a

linear wave equation is used to determine whether a small perturbation of
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the RF field will grow from the onset point (in space or time) of the
initial perturbation. Although the system boundaries transverse to the
wave vector k can be taken into account in this theory (e.g., this usually
introduces some additional mode structure into the solutions), this is not
true of the terminal boundaries parallel to k (the end boundaries). TFor
convective instabilities this is not a significant problem in general
because the interaction proceeds spatially so that the condition of charge
continuity is satisfied locally (questions concerning reflections are
outside the scope of the present work).

In the absolute instability process the end boundaries can play a
fundamentally important role however. To understand this assume that a
system of .purely transverse waves is absolutely unstable (mi < 0) with k real.
Since the waves are purely transverse, no RF bunching is present so that it
must be that the active charge carrier is slowing as a function of time
(at all points in the interaction region) as this is the only method
available to feed energy to the RF field growth. This immediately raises
questions about the end boundaries. TFor example, assume that this system
corregponds to an electron beam as the active source entering and exiting
a finite plasma at x = 0 and x = L. Assume further that the RF fields
are zero for x < 0 and x > L (e.g., in a gaseous plasma, coupling devices
are at x = 0 and x = L and in a solid-state plasma these are the contact
points). In any case there is no interaction for x < 0 and x > L so that in
these regions the beam is unaffected. On the other hand at all points x
in the plasma the beam is slowing exponentially with time. Clearly this

raises questions of charge continuity at x = O and x = L.
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If the growth rate Wy is extremely slow it would appear feasible
that generation and recombination mechanisms at x = 0 and x = L could
maintain the continuity. If this cannot happen the charge must build up
at these terminal points and create a time-dependent field E2 whose
displacement current provides the continuity. If the former is the casge
the linear dispersion relation gives an accurate description of the system
until such time as the small-signal approximation breaks down. To study

the effects of the field E it will be assumed that the time scales of the
2

system are such that charge recombination and generation can be ignored.

4.5 Two-Stream Electrostatic Oscillation

With collisions and thermal diffusion neglected,the two-stream

longitudinal interaction can be described by

of of
- o, ke (4.58)
(w-%kv )2 (o+kv )2
01 o2

Consider the simplest case, w__ = 2 w and v _ =v 8 v _, which then
p1 P2 D 01 o2 o
yields the solution

1/2
(kv )2 = o + u% T ub(ua? + ag) . (4.59)

o
For an absolute instability a double root of k is required with w; < 0.
Inspection of Eq. 4.59 shows that this only occurs at the purely imaginary
frequency w = @ = -j(ab/E), with the corresponding real wave number
k= ( JBV?)(wp/vo). As discussed in Chapter IIT assume the interaction
length L >> A or L = n\ with n an integer. In that case the second~-order

variables of interest vary as exp(-2a&t) alone.
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From Eq. 4.4 therefore the following may be obtained for the terms

which vary as exp(-Eaat):

BV(S) .
Re<?;20— = 1. Re (BE) 3 s = 1,2, (4.60)

where all other possible contributions are zero since k is purely real. The

first-order equations provide the following:

(1)

jlw - kvo)v = 7 E
1 11
and
2
So+w W) = nE (4.61)
: 0" 1 21
so that
2 2
2 n (w + kv )= + 5y 2
HOTL. <'ﬁ£> e 1+ (1.62)
* 2 (&} - kVO) +af  t
As discussed in Chapter III, from physical considerations, in the
interaction region,
DiS)(t) = 0 3 s =12 , (L.63)
so that
(s) - (s) 1 * (s) -
J2 (t) = Pos’, (t) + 5 Re (plsvl Y s =1,2 (L4.6k4)

and the proper form of continuity in the absence of any generation or

recombination processes is
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OF
Z Jis)(t) + € EE- = 0 . (k.65)
S=1 2

Use of Egs. 4.60, L4.64, and 4.65 provides

2 2
ko, 0 (0, -k ) W7 @ v v
Re(E ) - 1ab <I wr 0 1 + wr 0 1 > ,
2 2(&% + w?) nl[(a% - kvo)2 + aﬁ] nz[(wr + kvo)2 + a?]

(4.66)
2 2),2
so at the unstable root o = W, from Eq. 4-65, ﬂ§'|V(l)| = nf |V< )I
1 1

and as a result

212

(1)]2

aﬁa>k v, [v n,
Re(E ) = b = <1 - n_> . (4.67)
= o (e 2R) (639 + f) .

Inspection of this result shows that if nl = nz,(i.e., two equivalent
beams in contra-flow) then Re(Ez) = 0 and, consequently, from Eq. 4.60,
vz(t) = 0 for each stream. Consider the kinetic energy balance which
resulﬁs when nl = nz. Apply Eq. 4.15, where now p2 = v2 = 0, to obtain

(where carrier 1 is understood)

1 2 2 2
B, = = < << + << + 2v <<
<<K.E.>> o <bovo + 2vopo <vl>> + o vl>> pl>>vo v, vlpl>?> ,

(4.68)

-, t
wherein since v~V (0) e * the first-order terms must be retained so
1

that << >> now represents a space average and the kinetic energy (as
expected) is always a function of the time and contains variation both
asexp(-wit)and exp(-2wit). It is clear, however,that if the device length
L = n\,then <<vl>> = <<pl>> = 0. If from the continuity equation, Eq. 4.16,

-the result
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_ kpovl X
o = (k.69)

w - kv
1 0

is used in Eq. 4.68, assuming L = n\, the following is true:

O
O

(a% - kVO)(a} + kvo) + of

KK.E.>> = <<vf>> . (4.70)

]

<
on
+

®lo
Blo

_ 2 2
(a% kvo) * @5

It can be seen by inspection that the <<K.E.>> functions of streams
1 and 2 are identical at w = @ and moreover (9/dt) <<K.E.>> < 0. Indeed,

on substituting the solution at w = @ for each stream,

<Ly=>> o) euf
1
) s 2= 2, (4.71)

pO
KK.E>> = =—|v2 - >
n
1

0 2
When nl # nz,however,the field E2 arises and can affect the
evolution in time of the absolute instability. Note that now potential
energy changes in the overall system will occur spatially at or near the

end boundaries as opposed to the convectively unstable system in which
these occurred at all points in the interaction region. The more general

form of the stream kinetic energy when E # O is given from Egs. 4.15 and
2

4L.68 as

%o

P
5 vV + == v2 + <K.E. (Eq. 4.68)>> , (4.72)

<<LK.E.>> =
2n

where the last term is the <<K.E.>> function of Eq. 4.68 which at the
unstable root is given by Eq. 4.7l for either carrier.

Recall that in the quasi-linear theory the system is constrained to

provide the same solution (e.g., growth rate) as the linear theory even when
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second-order effects are taken into account. This alters the magnitude
of the rate of loss of kinetic energy of the streams from the linear
theory (Eq. 4.71) to account for potential energy changes caused by

the instability. From Eq. L4.72 these effects become important at

least when
pO _F_)a 2 u 6 vaCZ) )-l-
’ o 2va2 + = Vo ~ <<K.E. (Eq. 4.68)>> - o (4.73)
or,since in the interaction region p (t) = 0,
2
o 0wy b Th
— ~ <<Lv=> . .
27] 2v V2 -rn Vl > ( 7 )

(1)

To solve for v in the quasi-linear theory, Eq. 4.65 when expanded
2

using Eq. 4.64 gives
(1)? (2)?
v, v () o W) ()

0 v(l> + + S o) v(z) = 2m,€E .
ol 2 2(k2V§ + mi) 2(k2v§ + ®2) 02 2 1 2

(4.75)
Equation 4.60 can be used to replace v<2) which together with Egs. 4.62
2

and 4.67, yields the following at w = ay:

i N n ]
2 2( L ok

(1) K2V IVEl)| N2 4 < n ><l n > o

R R )
2 2.2 4 8 2 2 2
2(k ve aﬁ) 1 (q@ + 2&&) haﬁ

(4.76)
and since w; = -ab/2 the last term can be simplified to the following

eventual result:
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vil) R |v [ < ) +% %( -:—;ﬂ . (4.77)

, 2
When used in Eq. 4.74, since <<v§>> = Ivil)l if L = n\, the condition under
which the effects of the field E2 become important (corresponding to the
alteration of the system potential energy becoming comparable to the

alteration of stream 1 kinetic energy in the absence of E ) is
- 2

M n nZ
4#(1-#>+%< --—f)b ~ 1, (k.78)
2 2 ﬂl

When f(n 5N ) > 1 it is expected that the instability is quickly quenched
172

>

£
(”1’”2)

or else driven to a much smaller growth rate. Inspection of the form
f(nl,nz) shows that if nl # n2 it is easily possible for f ” 1.

The method used herein for the two-stream electrostatic oscillation
can readily be applied to any system described by the linear dispersion
equation to be absolutely unstable. Note that since in general pg(t> =0
in the interaction region the medium remains homogeneous so that it is not
expected that k — k(x) due to the RF field growth as in convectively
unstable processes. Rather, the linear dispersion equation remains
valid (e.g., nl = n2 in the preceding example) until the small-signal
approximation breaks down or else the quasi-linear theory is a good
approximation to take into account the end effects on the wave growth.
Indeed for systems which are absolutely unstable with either k real or
w; >> kivo it is expected that the quasi-linear theory is the best

practical method to account for the end boundaries.
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When an absolute instability occurs at a double root with
ki 2 a&/vo all the second-order effects studied in the convective
instability process in Section 4.2 become important, e.g., k —k(x).
The effects of collisions and thermal diffusion are expected to -
play a similar role to that discussed in Section 4.3, A much more
significant role may be played by the nature of the end boundaries with

regard to the buildup or depletion of the carrier charge density near

these regions.

L.6 Summary and Discussion

The utility of the quasi-linear theory in aiding in the under-
standing of the evolvement of plasma instabilities has been shown. It
permits studying the instability in the intermediate regime after the
initiation of the instability but prior to any large-signal effects.

In addition, the quasi-linear theory offers a method for taking into
account the effects of the end boundaries of the system on the instability
evolvement--something which can be quite important in absolutely unstable
systems.

'In general, the quasi-linear theory shows that potential energy
effects cannot be ignored in the analysis of plasma instabilities even
when the thermal diffusion coefficients are large. Since some control
can be effected over the parameters determining the second-order effects
the quasi-linear theory can thus be used to suggest methods to help
quench Qr diminish undesirable instabilities or enhance desirable ones

by alterirg the growth rate and saturation characteristics.



CHAPTER V. THE POWER THEOREM ACCORDING TO KINETIC THEORY WITH APPLICATIONS

5.1 Introduction

The general definition of the kinetic power flow given by
1
P = 5—Re(E *J) (5.1)
1

is readily adopted within the framework of kinetic theory for any carrier
velocity distribution function. In the past the power theorem has been
restricted to hydrodynamic theory by virtue of the fact that a sufficiently
general formulation was not constructed.

The major distribution functions examined are the hydrodynamic or
square distribution, the Maxwellian, and the degenerate distribution
functions. These are applieé in turn to obtain the kinetic power expressions
for the basic carrier modes--the spéce-charge, cyclotron, and hybrid modes.
Whenever applicable comparison with the hydrodynamic results of Chapter II
is made.

Since a fundamental part of the present work is concerned with solid-
state plasmas, special attention is devoted to the role of collisions in
the kinetic power functions and the consequent wave behavior. It is

shown that the magnetic field and the collisions play a crucially important

part in active wave phenomena near the cyclotron resonance point of the
carrier cyclotron modes. Applied to the phenomenon of microwave emission
from indium antimonide (InSb) it is shown that even a small density of
holes can lead to large wave slowing and consequént amplification by the

electrons.
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Comparison with the hydrodynamic theory of Chapter II shows that
in many cases the hydrodynamic theory has been improperly used and the
limitations on its applicability are shown. In those cases where the
' hydrodynémic theory is not valid, the results from the kinetic theory
show that resonance and/or anisotropic temperatures can readily lead to
instability.

A discussion of causality within the kinetic theory is discussed

and suggestions made for its implementation.

5.2 Power Theorem for Longitudinal Space-Charge Waves

The Boltzmann equation is written for this case in the form

’ afo ( of
il - + = .
J(o = kv )E + B >, ) (5.2)
where it has been assumed that the fundamental variables ~ exp[j(wt - kx)]
and where various forms for the collision term on the right-hand side will

be studied.

5.2.1 The Hydrodynamic Distribution Function. Consider first the

drifted-square distribution defined by

N

£ = 5%; S(Vy)ﬁ(vz) for vy * v, 2 v, 2 VooT Vo
£ 0= 0 otherwise , (5.3)
so that
Bfo Nb
g\-l_; = Z/‘E S(Vy)é(vz) (5(VX -t VT) - S(VX -V, - VT>> . (5.4)
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The RF current is in general given by

{?° \
'Jlx = q JfJ U/\ vxfl dv_ dvy_dvZ (5.5)

for each charge species present.

In the collisionless case, (Bf/at)co =0, Egs. 5.1 through 5.5

11

can be readily solved to obtain

(i ]
2 - T 2
afewvy \(w krvo) tk, = > |E1X’

O /
P (v=20 =
) . .
_ 2 _ 2.2 _ 201212 2 _ . 2>
<(m krvo) kivo VT(kr kii> + Akl <§O(w krvo) krvT,
(5.6)

Note that this result is identical to that obtained in the hydrodynamic
analysis, Eq. 2.23, as is expected for the square distribution. If one
proceeds in a similar fashion for the commonly used collision term

defined by

(‘%%>coll = i (5.7)

it can be shown that

_ 2
v

2 2 - + v + _T
abeawo 'Elx| [(w krvo) <i v ) kr -

e 2 2 2y,.2
“4-2kivow <(V ¥ kivO) ) <w ) krvo) * (kr - ki)vT>ﬁ_
Fe = r . = (5.8)
<kw " BV)® - (v v )E - (- ki)V§>

2

- 2
|+ L <(v + kivo)(m krvo> + kikrvT>
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Inspection of this result shows that the collisionally assisted form of the
negative kinetic power flow obtained in the hydrodynamic analysis, Eq. 2.23,
when (w - krvo) < 0 is not in general present. To some extent this result
is to be expected since it is known that the collision term given by

Eg. 5.7 does not conserve particles properly. Although it has been asserted
that this collision term is valid if o > v,74 Eq. 5.8 shows that even

in ﬂhis case Eq. 5.7 may not be an accurate representation if w’w - krvo <
kiv?.

The collision term which conserves particles properly is

N
<%% = v <f1 - N_l f0> ’ (5.9)
coll o]

where Nl is the perturbed number density given by

Noo= fff fl dv, dvy dv, . (5.10)

If‘the resulting Eq. 5.2 is integrated over velocity space and Eq. 5.10

is used, the perturbéd distribution function can be written as

f,7 (D-J]Z\E/‘ - [( +_f} ) (5.11)

5

/l/L/\ = kv m_—y dv dvy dv (5.12)

where

and
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0
f
¥ =;jN-vfff———L————dv dv_ dv_ . (5.13)
1 o) w = kvx =Jv 7x Ty Tz

-00

For the distribution function of Eg. 5.3,

kao
o = - . | (5.14)

_ L s\2 2.2
(w kv Jv) K=ve

To compute the kinetic power flow it is found from a transformation of

variables that the following integrals in the complex p-plane are required:

Ly 14
o = f Yoand o = L (5.15)
3 g Z-H 4 g Z-H

where
w = kvo - Jv
Z = kV (5016)
T
and
Vx - vo

“‘ = "'—v—— . (5'17)

T

If it is assumed that k; <<k, it is seen from Eq. 5.16 that Im (z) < 0
if k; >0 and v > k;v . Since the time-dependent Fourier transforms

~ explj(at - kx)] it is necessary to integrate just above the singularity
by choosing the contour in the complex u=-plane with corners [-l, -1 - j|7l,

1-3l7l, 11 and |7| = -In (2z), leading to

+ 1 .
| @3 = log, ( 2 ~ l‘> - jno | (5.18)

and

@4 = -2+zCI>s R (5.19)
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where
o =1, if |Re ()] < 1 ; Im(z) > 0 ,

= 0 otherwise . (5.20)

Use of these results in Egs. 5.5 and 5.11 leads to the kinetic power flow

of Eq. 5.1 being given as

a€€|E |2
b = D ' Tix
k 2. - - )2 - k222
x| JT|(w kv jv) k le
¥ .- . \2 2 21% .
« Re | =ik [(w - kv = jv)< - VT] [w - JVF<¢3)] , (5.21)
where

* * . *
2k VT(w - jv)@s + 2Jvkvgd - Juap @
F(e ) = ™ 23, (5.22)
® bx|2 v2 + v20 0
T 3 3

The function F(® ) is the term taking conservation of particles into
3
account. The resultant form, Egq. 5.21, can be studied in various limits.

Case a:

lz| >1 , |Re (z)| > 1 .

For this case 0 = 0, loge[(z +1)/(z - 1)] = j tan-l(va/v) ~ 0, and hence

F(® ) = O so that under the assumption K, <k,

3
2 2 v )
af eV, IElXI [kr <i + kv > (w krvo)}

O/

~

Px 2 2 2.2|2 ’ (5-23)
x| Vi | (o - kv - jv)® - k vT|
which by comparison with Eq. 2.23 shows that the present conditions are

similar in power flow characteristics to the hydrodynamic case.
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lz] > 1, |Re (z)| < 1
From Eq. 5.16 it can be found that in general

kw-k v
i T

Im (z) = s (5.24)

2
%[ v,
so that from Eq. 5.20 the residue only contributes if ki < 0 corresponding
to damped waves with Ikil > krvﬂb. Thus the residue cannot play any role
in instability (growing wave) processes. For this case o = 1 and
@3 ~ = jn leading to
2 2 1412 _ 2 2
afe |E1x| kr[(w krvo) + V2]

= 2 .2 2 2.2|2 ? (5.25)
2k, x| ve | (w - kv - §v)® - k vTI

Pk

so that the self-consistent result obtained i1s that the interaction can
only proceed if ki < O in which case Pk < 0 to balance the positive
electromagnetic power flow. When it is assumed that Ikil < krv/w the
result of Eq. 5.2% is again applicable. For any particular system it is
necessary to either solve the difficult dispersion equation exactly or
else assume initial constraints such as |ki| < krv/w to analytically solve
the dispersion equation, in which case the results obtained must be in.
agreement with the initial assumptions for self-consistency. This is

a general problem associated with the kinetic theory.

Case c:

—

lz] «< 1, |Re (z)] < 1 .
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Again for the case |ki| > krv/w with ki < 0 the residue contributes
so that o = 1. In addition log [(z + 1)/(z = 1)] = jx leading to F(@s) ~ 0

and
2
2 2 : \4 3 ZVT
Lpe® lElxl Vo [\ tES (e = krvo) trk T
P, ~ , 2907 S . (5.26)
2 - _ a2 L n2.2|2
|k| Vi | (w kvo jv) k VTI

This result is of value in indicating which regions of (w-k) space will
Potentially provide a self-consistent solution. TFor example in the
present case if Ikil S krvﬁw it is required that |w - krvo|2 > (3/2)k§v§
which is not self-consistent with |z| << 1 and hence no damped solutions
are possible. If Ikil >> krv/h» however, a potential solution is possible
(P, < 0) only if (v - krvo) <O0andv_ > (5/2)krv§/(krvo - ).

For the unstable case (ki > 0) or |ki| < krv/ﬁb k, < 0, the residue

does not contribute and it can be found that, if ki < kr’

2 2 .2 - 2 22 _ (o 2
Naﬁe |E1x| vk2 <éakrvT(w kov) +vlv® + K2vE - (0 - kv )Z] >

HJ
Q

6] [(o - kv - §v)2 - BB2[2 (b [x[2 V2 + 2®0)

(5.27)
Inspection shows that since Iz] <§ 1 the kiv% term above dominates and
Pk > 0 so that an instability is not possible.

These results demonstrate the difference between the hydrodynamic
theory of Chapter II and the kinetic theory with the square hydrodynamic
distribution function. For unstable waves with lzl >> 1 the two theories
are in agreement provided ki >0 or |ki|A< krvﬁw. However with |z| <1

there exist opposing results. Thus, for example, if vy <wv_ it is only if

T
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v > |va| that unstable solutions (such as acoustic-phonon amplification)
predicted by the hydrodynamic theory are in accord with the kinetic theory.

5.2.2 The Maxwellian Distribution Function. Equations 5.11 through

5.13 can be applied to the isotropic drifted Maxwellian distribution

function given by

;) - W)s/z e <_VZ_L>< el > R

Define the plasma dispersion function as

© _§2
1 e
G(z) = —= [ L (5-29)
from which it can be shown by an integration by parts that

\/ﬂn —# = \/—[ZG()-l]

and

00 -gz
f é’":_gdé = VxzlG(z) - 11 . (5.30)

The function G(z) is related to the tabulated function’> Z by

¢(z) = -z(z%) , (5.31)

where the complex conjugation is due to the tabulated functions being
derived assuming variations as exp[j(kx - wt)l.

With these definitions and the use of Egs. 5.5 and 5.11 in Eq. 5.1,
wherein only the collision term which conserves particles properly (Eq. 5.9)

is studied, the power is found as
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2 2
WS EWw IE ‘
P, = P X Re <;jk*(zG - 1)( V2 k*vT - ij*)>
2-J5'ki k|2 v2(2 [x|? Ve + vAeeY)

(5.32)
where G = G(z) and
w - kvo - Jjv

ng-va

£ (5.33)

Z

A central problem exists in the nature of the tabulated function %
(or the function G) as has been pointed out by Montgomery and Tidman;76
namely, the function so obtained is only valid in the limit t — o and
hence cannot Be applied to unstable systems. When the buildup occurs in
time (aﬁ < 0) this may be Fhe case; however, for a convective instability,
the linear steady state is well defined and this problem should not occur.
In addition this function is commonly used for application to unstable

systems so that the kinetic power results using the G function will be

obtained in various limits.

Case a:
lz] > 1 .
For this case,
¢(z) ~ =jVr o exp(-z2) +.%-<i + —l: PR > : (5.34)

where

0 Im (z) < O

2 Im (z) > 0
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and from Eq. 5.32

() - kr(v + kivo) + ki(m - krvo) 5.35)
) JETVT(ki +12) ' .

For growing waves (ki > O) inspection of Eq. 5.35 indicates that necessarily
Im (z) <0 so that the residue term in Eq. 5.34 does not contribute (o = 0)
and Eq. 5.32 becomes for this case, retaining the first two terms in the
expansion,

2 2 (o 4 2 _ .2 - 2 _ .2
afew |E1x| (w krvo)(v + 2kivo)[!k| AL kr[5(w krvo) v ]}

*
2ki,|k|2 V(2 |k |2 v + vE6e") (@ = kv - 3v)2|2

(5.36)
This result shows that Pk < 0 provided (w - krvo) < 0 unless the drift
velocity is sufficiently nonsynchronous with the wave phase velocity that

] 2 2.2 4 |w]4 o2
5(w = kv )% > K2E + x| =2

Case b:

lz] < 1 .

For this case, G(z) ~ 2s[1 - (222/5) + (42%/15) - ...], so that retaining

only the first term

2 2 - - " - 12 2,32
we lElxl [v{kr[kr(w krvo) ki(2v kivo)] kiw] + 2kikr(ki+kr)v§}

2 2 .2 2nn¥Y (1.2 24,3

2k, k|2 (2 |x| V2 + vP60%) (k2 + KE)vE
(5.37)
Inspection of this result shows that for the hot- plasma case it is again

necessary that (o = krvo) > 0 and in addition that the growth rate be

limited to



-
N
Q

v
H ;;; . (5.38)

5.2.3 The Degenerate Distribution Function. The degenerate

distribution function is defined by

N y oz T,
£ = —;—2&— for s
2nve v > 2 -
Tl T” vO + VT” = vX = Vo, VT”
= 0 otherwise |, (5.39)
so that
afo N (
S = > [8<VX-VO+VT>-6\VX-VO—VT>] . (5.)-1-0)
X 2nve v i I
Tl T”

Note that this distribution is an improvement over the hydrodynamic
distribution function of Eq. 5.3 since the latter function ignores the
transverse thermal motion. The collision term which conserves particles
properly is chosen so that Eq. 5.11 is applicable. Inspection of the
pertinent integrals involved in forming the kinetic power function shows
that in all cases the transverse thermal distribution has no effect and
hence the results obtained for the hydrodynamic distribution function,
Egs. 5.1k4 through 5.26, are strictly applicable. This is to be expected
since the space-charge wave system is one dimensional so that the random
transverse thermal motion cannot alter the longitudinal RF current. This

is, of course, alleviated by the presence of a transverse static magnetic

field.
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5.3 Power Theorem for Purely Transverse Waves in a Static Magnetic Field

The kinetic power functions for purely transverse waves with

B Ik X are now developed. The Boltzmenn equation for this case,

assuming that the fundamental frequency variables vary as exp[j(wt - kx)],

is in linearized form

of of of of
)

1 1 0 0
i (w - + — -V — — + — 4+
i kvx)fl ®e <§z va Vy ov, 1y va B dv, n(xxB)

4

of
L2 - (%) , (5.41)
- coll

where ®, = nBO. Define the reduced distribution functions

[os]

f = JfJf v £ dv_ dv

y y1r ¥y z
-0

and

[2¢]

fZ = \/1/\ vzfl dvy dvz s (5.42)
=00

together with a transformation to rotating coordinates, viz.,
0 .
< 1y 1z

and

B, = B *JB (5.43)

t 1y 1z

Equation 5.#1 is multiplied successively by vy and v, and integrated over

the transverse velocity space (vy,vz) to obtain
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©0

j d
o - kvx)fy - af, - B \[ffo av, v, + T

-00

00

w -
. [ \/P/“(B v - v v B £ dv_ dv J + nv_B Jﬁjhf v dv
@ 1z y yz 1y’ o v 7 X1z o y 7

-00 o

ST () e, o

coll

and

0

Jo- K )f +af -8 fffo Qv dv, + (;Tx
0
. [ f‘[ (VyVZBlZ i viBly)%O Ty dvz} - By ff £y 9y ,
~oo
oo
) H "z <%>Con av av, 5 (5.45)

and where, if i,k subscripts represent y or z it has been assumed that
fo, f -0 as v, - *w so that in obtaining Egs. 5.44 and 5..45 use has
1

been made of

w of

0,1
-S—L- dv.
V., 1

® 1

i

3 o ,
0 €82 \/1/W Vi Sv. dv, dv, = 0,
1
- 00

00

[ f afl
JI TR S e T
=00

and
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0 3¢ 0
0,1 o ~

f Vi 'ﬁ;# dVi d’\fk = ff fO,l dvi de P ()OL\L6>

=00 =00

which can easily be shown via integration by parts. Perform the
operation [(Eq. 5.44) - §(Eq. 5.45)] and use the definition of Eq. 5.43

to obtain

jlw = kv - ah)flu - nbo(vx)El= + JanFo(v

where
o]
Fo(Vx> = \/1/\ £ dvy dv, (5.48)
=00
and
[o0]
G (v) = /N/W [B (v -+ v2) + B (vZ - v®) +2jv v B J fy dv dv
10X 2 Ju 1=y oz 1+ 2y Yz 0y 1z
=00
(5.49)
Now, in the presence of the constant external field Bog fo is necessarily
isotropic about the direction of this field so that £ = fo(vxy v§ + -vi)c

Thus if the B part of the integral in Eq. 5.49 is considered and written as
14

u sin 6

<
i

and

<
]

u cos 6 ,

the result is
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00

b, 200
5 Bl+ (VZ Ve + 2vavz) £ dvy dv,

- 00

Thus, in general,

o]

G:L(VX) = 3B G (v,) = %Bl_ ff (v;fvi)'fo dv, av, . (5.51)

=00

For the collision integral defined by Eq. 5.7 the right-hand side of

Eq. 5.47 simplifies using Eq. 5.4% and Eq. 5.47 becomes

daGg
jlow = kv, - aé)fl_ - nFO(vX)El_ + jnBl_ [VXFO(VX) + a;i (VX)J = —vfl_
(5.52)

From the equation V x E = =juB and Egs. 5.4%3 it can be found that
1 1

so that from Eq. 5.52

kVXZ
I, - [Fo (vy) (1 - 75‘) -
-, - Jv

- ' w - kv
1 X

eI

aG

—

dv }
X

: (5.54)

Equation 5.54 shows that the circularly polarized modes separate. It can

be shown by proceeding in a similar fashion that



kvX K dGO
JnE 4 [:Fo(vx) (1 - ‘5‘) To @, J

£, = - . ) (5.55)

- + -
w kvX QE Jv

50 that the results for the (+) mode can be obtained from those of the (=)
mode by the simple replacement w, - -w, and only the (=) mode need be
examined further. Recall that in the (-) mode formulation , < 0 corresponds
to the helicon or slow=-cyclotron mode, etc.

Because reduced distribution functions have been used the RF

current density is
[2¢]
J = q Jf f dv_ , (5.56)
i- — 17 X
where q is the species charge.

As a simple example of the utilization of this result consider

the cold plasma distribution function,

= Vo) ) (5~57)

and use Egs. 5.54 and 5.56 together with the definition of the kinetic

power flow, Eq. 2.64, to obtain

2 2 v - |
. X v afe |El_| [QE + v (w krvo)
P = =——Re(E J ) = - . (5.58)
i 1 2ol(w - kv =-w )2+ (kv + v)2]
ro c io

By using Eq. 2.9% to replace |E1_|2 by the appropriate |vl_|2 term it
can be shown that Eq. 5.58 is completely equivalent to the hydrodynamic
result, Ed. 2.106.

In addition, integration of Eq. 5.54 can be performed to verify

that N = 0 so that only the collision term of Eq. 5.7 need be examined.
1 : ,
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Prior to analyzing the various distribution functions it will be
of value to examine the general requirements for instability of the purely

transverse waves. For a multiple stream interaction it is readily found

from Maxwell's equations, where Jl_ = Jr- + jJi_, that for real w
2
L C
2 _p2\.2 _ .2 __0 (s) =
(k7 = k)% - of - — 2%- 0 (5.59)
1= 5
and
2
L _C
2 0 (s) -
2kikrc + E }: J}_ = 0 . (5.60)
= S

The RF-conducﬁivity of a carrier is given by o_ = o + joi_, where

I 3, |
On. = <’E——-> and o0, = <Tir—-> . (5.61)
1 -

Thus under conditions of amplification (kikr > 0) Eq. 5.60 shows that it

(s)

r? must be negative.

is necessary that the net real RF conductivity, % o}
Also, if ki << kr’ Eq. 5.59 indicates that for slow waves to be present
(whiéh is a necessary requirement for the interaction to occur) the net
reactive RF conductivity, é oif), must be large and positive. The latter
condition indicates that relatively large RF reactive currents are
necessary which in turn suggest that resonance processes may be important.
Note that the kinetic theory can account for resonance processes whereas
the hydrodynamic theory cannot.

5.5.1 The Hydrodynamic Distribution Function. For the hydrodynamic

distribution function defined in Eq. 5.3, Egs. 5.54% and 5.56 can be used

to obtain
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2 + 2 -
fﬁzﬂ_ Re fv" '1 o - 1) v . (5.62)
k v 7 w=kv =Jjv-ow bl
V=V X c

The pole present in the integrand can lead to a component of wave
damping (cyclotron damping) or growth similar to the Landau damping of
the purely longitudinal waves. By the transformation of variables

b= (vx - VO)/VT it is seen that the integrals @8 and @4 defined in

Eq. 5.15 are introduced and can be used to obtain the result

w3e |E ]2 z +1
P = £ 1 g {( gk = k, N, + Jv) [log < < > jﬂOJ }
- - B - = ’
k bk v o |x|2 N e\z, -1
i T
(5.63)
where .
w=kv = Jv=-uw
0 c
Z, = o (5.64)
T
and
c = 1 if |Re (zc)] < 1 and Im (zc) > 0 ,
= 0 otherwise . (5.65)
Case a:
lz | > 1 .
c

Assume that either [Re (z,)| >1 or Im (z,) <O so that the
residue does not contribute. In this case loge[(zc + l)/(zC -1)] =~ 2/zc

and hence from Eq. 5.63

| a%e |E,_|? vy [mc + k:Vo (w - krvo)}
P = , (5.66)

k= - _ 2 21
2ol (w k., “Q) + (kivo + p)=!
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which is a recovery of the hydrodynamic results of Chapter II with the
carrier thermal velocity playing no role. Indeed it will now be shown

that for this case the hydrodynamic results can be retrieved exactly

(e.g., helicon mode). To see the effects of the transverse thermal motion
this will actually be done for the degenerate distribution function defined
— 0 the actual hydrodynamic distribution

1
function result is obtained. Define the multiplier JV;— to mean that,

in Eq. 5.39 and by letting Vi
when this symbol appears as part of the numerator of a function, the
> >
function is multiplied by unity if (v_ + v, =v_=v_=v_ ) and by zero
o] T” X o] T”

otherwise. Thus, when the integration is performed in Eg. 5.51 for the

degenerate distribution function,

N v2
’ 0 Tl
G (v,) = B, (fve ) s (5.67)
|
so that
dGo(vX)
& - G |B(v, = v + vT”) -8(v, - v, - VT”)} . (5.68)
Similarly from Eq. 5..48,
N
) < e () (5.69)
so that in Eq. 5.5k,
2.2
anl"'NO g0 ) VT_L
fl- - E&NT (w - kv = Jv - QE> '{(m E kvx)( Uy ) - n

. [a@x =V Vg ) = B(v =V - VT”)J } » (5.70)
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and from Eqg. 5.56,

2.2 .
ja@eE g i VTH
P lm[___ L
e 20V 2[(0) o kv - jV _— >2 k“'va J

The integral in this equation is simply related to the functions ®8

and ®4 of Egs. 5.18 and 5.19 (with Vi =V ) so that in particular under

Ty

the conditions of Case a, wherein |zc| >> 1 and either |Re (zc)] > 1 or

Im (zc) < 0, it is found that

k2yv2
o 2 -
; o q?b€Elm [ w kvo . TL 1
1= w w = kvo -V -, M[(w kY e gy ) - KPR ] -
0 [¢] TH

(5.72)

Inspection shows that if VT = 0 this result is in exact agreement with the
1

hydrodynamic theory of Chapter IT and hence gives the same dispersion
relation. The second term in brackets in Eq. 5.72 is the correction term

due to the finite transverse temperature. Note that

ZC1 >> 1 gives the

following when the substitutions are made:

o > 1, (5.73)

which is independent of v_ . Thus if VT >> L the correction term can

1 1 ~l

be large, whereas if VT = VT 1t can be ignored. In general the dispersion
1 l

equation is derived from the Maxwell equations as

T
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k2c® - o + €§ }: J(S) = 0 , (5.74)
.-
17 5

so that using Eq. 5.72 in Eq. 5.74 the following result is found, for

the case of a single carrier:

2,2 2
o2 (w - kvo) ubk VT_L
k2c® - of + — iv Ty + : — = 0 ,
0 c [(0=-%v - 3dv-0) -k VTH1

(5.75)
where any solution obtained therefrom must satisfy Eq. 5.7 and either
have |Re (ZC)I >1or Im (zc) < 0. TInspection shows that this equation
is now fifth order in k so that two additional waves have been introduced
due to the finite transverse temperature. In particular, although not
attempted herein, this equation can be used to study the effects of finite

Vq on the drifted helicon dispersion relation with significant departures

I
from the hydrodynamic theory occurring if Vi >> Vi o
1 I
Now from Eq. 5.64 it can easily be found that
kr((D B krvo B QE> ) ki(v " kivo>
Re (z,) = (5.76)
° |%]® v
T
and
kv + ki(w - a%)
In (z ) = - . (5.77)

(¢} : 2

|&[Z v

The latter equation shows that for ki > 0 it is always true that Im (Zc> <0
if w, < 0 corresponding to the helicon or slow-cyclotron mode, etc. Thus

under growing-wave conditions the RF current density expressions .never

contain a residue contribution for carriers with w, < 0.
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«Q
©
4]
(0]
I

|z | < 1
c

This is often referred to as the case where nonlocal conditions
apply. It is first demonstrated how a major nonlocal effect, namely
cyclotron resonance absorption, occurs. To make this clear assume that
v, = O and the collisioné are absent, i.e., v = 0. Assume that ® =, i.e.,
@, > 0, so that, by inspection of Eg. 5.77, Im (zc) - 0 and hence the
residue is absent, o = O. 1In this case the kinetic power flow from
Eq. 5.63 is

age ,El_|2 ﬁkra%

'Pk_ = ) (5°78)
- bkovoo |k|2
i T

where loge[(zC + l)/(zc - 1)] = jx has been used since |zc} << 1. Thus
Pk- < 0 when ki < 0 and the resonant damping occurs. The carrier mode
with @b > 0 is as a result often termed the cyclotron resonance active
mode.

| The RF current density is now considered for the case |zc| <1
to compare results with the hydrodynamic theory of Chapter II. This will
again be done retaining the transverse thermal motion so that Eq. 5.70 is

applicable. The general result can be written, using Egs. 5.18 and 5.19

in Eq. 5.71, as

JufeE w + jv kzvé
J_=-_g_l_'.[2+fw > + L }
1 ® T” 3 2[((1) - kVO - jV - (DC)Z - kZVZ ]

(5.79)
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where & is given in Eq. 5.18. Since ]zc| << 1 the asymptotic expansion
3

gives loge[(zC + 1)/(2C -1)] ~gn + 220 in @8 leading to

. 2 . N
JW”€E _ w + jv w=kv = jv - w
J = - P(Dl [1+}sz <j%(l-c)+ f{v : °>
.-
T T
k22
VT_L
+ J (5.80)
(o - kv - v - QE>2 - k32 ]

Ty

The important point now is that irrespective of whether or not the residue
is present the RF current density given in Eq. 5.80 is drastically altered
from the conventional result of hydrodynamic theory, viz.,
.-
S _ JabEEl-(w - kvo)

1- wlw - kv - v - mh)

’ (5.81)

so that if |Zc| K1, i.e., |o- kv = v - d%' << kv, the hydrodynamic

Ty’
theory should be considered invalid. Note, however, that in many
investigations of solid-state plasmas (suéh as the helicon-phonon
interaction or the electron-hole interaction”®) the results obtained
from the hydrodynamic dispersion equation satisfy lzc| <1 for any
reasonable carrier densities and hence these results are invalid since a
nonlocal theory should be used. The hydrodynamic theory thus breaks
down at the higher frequencies, although at the lower frequencies (typically
less than 1 GHz) the equality ’ch >> 1 is satisfied and the hydrodynamic
theory is acceptable (unless vT > v ).

From Eq. 5.80, since |ch << 1, it can be seen very roughly that the

RF current density can be approximated by
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JuPeE kzvé
J = -—p_};[“u L } . (5.82)

1= ® r - o4 2 _ 12,2 B
[(w kv - Jv mc) k VT”]

A particularly simple result is found if it is assumed that only one

species of mobile charge is present with the anisotropy vT << VT . In
1 I

this case the second term in the brackets is negligible and use of Eq. 5.82

in Eq. 5.74 provides the dispersion relation,

b = ’ (5.8%)

and undamped waves are possible if w > wp. For example, if w >> wp lo)
that k ~ w/c, the condition that Eq. 5.83 be valid is, since |zC| <1

is required,

ke = kv - jv - ] << IvaHI , (5.8k)

which can be achieved if mb > 0, w, =~ ke, and the collision frequency
satisfies v K mNT“/c. These conditions can be approximated by choosing
a doped-degenerate material with significant mass anisotropy. For the
isotropic case the first and the third terms in Eg. 5.80 cancel and

the cyclotron resonance condition is reestablished in this case.

Opposite to the limit v -0, consider v,, > v_ . Equation 5.82

T L
under the assumption ki < kr and of course |ch << 1 provides the
following:
- 2
JuTe T
~ 2 (1
I = —&w—(_v > E_ (5.85)

so that Ur- ~ 0 and
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afe Vi 2 ‘
~ 2 L
o, _%(\VT > : (5.86)
I

Recall now from Egs. 5.59 through 5.61 that Eq. 5.86 is just the requirement
for slow waves with ki < kr provided oi_ is large. The part of the

dispersion equation given by Eq. 5.59 becomes in the present case

v 2

T

- -op g () v ) Gl =0 o
I r

where ; represents a sum over any other carrier species present. If the

latter are absent, since in Eq. 5.86 0, " 0, the dispersion equation is

k2C2 -U)Z = (D2< T-L > (5'88>
2v ’

which shows that the wave is significéntly slowed if the plasma frequency

is large and there is a large anisotropy. Since the distribution function
used actually corresponds to a degenerate material this in turn is interpreted
as being a large anisotropy of the Fermi surface between the transverse and
the longitudinal directions. It is then readily conceivable that with a
mobile secondary carrier present the slow wave predicted by Eq. 5.88 can

be amplified. For self-consistency the solution must satisfy |zC| K1

which from Eq. 5.88 becomes in the present case

w_V
pT
o - kv =@, - gv] < \—201-\ ’ (5.89)

from which it is seen that the collisions will be the basic limiting factor

since large ratios of (wp/v) are difficult to achieve in solid-state plasmas.
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5.3.2 The Maxwellian Distribution Function. The Maxwellian

distribution function is altered to take into account the possibility of

temperature anisotropy so that Eq. 5.28 becomes

N, A ) ve + v
f = — exp exp ( > . (5.90)
0 alz _2

(2n) Vi)
where v and Vl are the components of the thermal velocity parallel and
perpendicular to x,respectively. The integration in Eq. 5.48 is performed
directly, viz., N (v. - v )2
P (v,) = ——— exp <- A -> ) (5.91)
N 2n \l EVﬁ

and similarly from Egs. 5.51 it can be determined that

ag Novi(vO - Vx) (vX - vo)2
v exp \ - > . (5.92)
X N 2 vﬁ EVﬁ

Use of Egs. 5.91 and 5.92 in Eq. 5.54 provides the following:

v2
STE. I, [w - kv (i -2 —ﬁ }
' LV v ( (v - V0>2>
r_ = - exp | = —m
< Vex aN“(w - kv, - jv - wb) ' EVﬁ
(5.93)
Define for the Maxwellian case
_ w - kvo - Jv -,
z = (5.94)

¢ \/E kVH

and compute the current density according to Eq. 5.56 using Egs. 5.29

through 5.31 and the definiton of Eq. 5.94 to obtain
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] [(w- kv ) - V2 kv, <1 -—é—) gJ

JoPeE

Ml £2

J S A Rl - e at

1~ \/2_31 (DKV” ) ZC E

| (5.9)
or
juPeE Ve g
J = e [(w - v )6(z,) - V2 kv <1 - —l> <zcc}(zc) - 1> J ,
1 \/E (,LKVH V2 ’

(5.96)
where again G(zc) is simply related to the tabulated Z function by Eq. 5.31.

Case a:

lz | > 1 .
(¢]

For this case Eq. 5.34 is applicable with z =7, If only the
first term therein of the asymptotic expansion is retained, the following
results:

G(zc) ~ =3Vn o exp(-zi) + %— . (5.97)
c

Apply this to Eg. 5.96 assuming Im(zc) < 0 so that ¢ = O to obtain

. 2
S - kv
J R - pr l-(w - O)
1= wlw - kv - Jv - QE)

) (5.98)

which is exactly equivalent to the result of hydrodynamic theory. This

is an unusual and important result which shows that if |zc] >> 1 and
Im(zc) < 0, regardless of the distribution of the thermal velocities, even
if anisotropic, to a first approximation, the RF current density, Pk—’

and hence the dispersion relation for Maxwellian plasmas is identical to
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that given by hydrodynamic theory. Including further terms from .the
asymptotic expansion of Eq. 5.34 will provide only a small correction.

From Eq. 5.9% it can be found that

kK (w=%kv =)=k (v+kv)
T T o c i i'o

Re(zc) = 7z |2 o (5.99)

and
In (z) = - v E e - ) ) (5.100)
¢ \/?lklz V”

In Eq. 5.34 it is seen that for the residue to contribute it is necessary
. ‘
that Im (zc) = 0. Inspection of Eq. 5.100 shows that this can only occur

under growth conditions (k, > 0) if @, >0 and

ko, > (kv +ko) ; (5.101)

or stated alternatively, the fast-cyclotron-type mode is required and if
k; <<k, it is necessary that (QE - @) > v. Recall that for the purely
longitudinal waves Eq. 5.35 showed that for growing waves the residue term
cannot contribute. The static magnetic field provides a method for
potentially retrieving this residue. Assume then that Eq. 5.101 is
satisfied with ki > 0 so that from Eq. 5.3h o = 2. Also neglect
anisotropic effects or heating effects by setting v, = v in Eg. 5.96.

Use of Eq. 5.97 in Eq. 5.96 then gives the following:

afeE 22 1
J ~ ___PL_l___<[k?v -k(w-kv)]+jk.w>-<\/2yre +J > .
5 i'o T T o i
o [X[= vy

(5.102)



“1hh-

Let a = Re (zc) and b = Im (zc) so that the exponential term can be

written as

exp(—zi) = exp(b® - a®) * [cos(2ab) - j sin(2ab)] . (5.103)

Recall now from Egs.5.59 through 5.61 and the discussion thereafter that
if ki < kr it is necessary that the net resistive RF current be negative and
the net RF reactive conductance be large and positive (to slow the wave).
Inspection of Egs. 5.102 and 5.103 shows that large RF conductivities are
obtainable if b > a because of the exponential function.

Under the condition ]zcl >> 1, however, inspection of Egs. 5.99
and 5.100 indicates that if ki < kr then necessarily a > b and the

exponential term will be negligibly small, unless (w - kv - wc) ~ 0

(o)

and Im (zc) > 1. 1In the latter case the exponential term is large and

dominates the RF current density in Eq. 5.102, so that

V2 ageE o [krv + ki(w - ab)]z
J_ o~ —_— 1 (-krwc + jk.m) exp > , (5.104)
o o k| v ’ 2 |x|* vf

where it has been assumed that a = O, and from previous assumptions @, >0
and ki(&b - w) > k.v. Inspection of Fg. 5.104 shows that this current
density is appropriate for unstable wave growth since J}_ < 0 and

Ji- > 0 and their corresponding conductivities are large due to the

exponential factor. In addition the kinetic power flow in the present

case may be found from Eq. 5.104 as



-145-

ﬂage !El_l2 k. ®, o < [k, v + X (0 - o) >
- Yo = - )
k 2ki 172 \/—E—I{iw |k|2 V“ 2 |k|4 Vﬁ

(5.105)

which shows that the kinetic power flow is negative for ki > 0 and hence
assists the instability. Although vy is not explicitly present it has
been taken into account by the assumption a = 0, i.e., (w - kv - ah) ~ 0.
Note that without the carrier drift this latter assumption cannot be made
since it would violate the assumption ki(dé -w) > krv. On the other

hand it is seen that A can be replaced by v without altering any of

the conclusions reached. The assumptions again are

'zcl > 1, ®, >0, ki(cnc-co) > kv, k, <k, o,

v = v, and (w = kv o= &b) ~0 , or a ~ 0 . (5.106)
The first of the assumptions above can be relaxed to |ch > 1 since the
asymptotic expansion is no longer important when the residue is present with
a large value (b - a >1). The condition (w - krvo - QE) ~ 0, together
with ki(wc -w) > krv, implies that the condition b > 1 is equivalent to

V2 (k2 + x3)y
v | > r 1 (5.107)
0 kikr ? ’

where vy < 0 is required. Hence for ki < kr it is necessary that
Ivol > v|+ If the restriction ki < kr is lifted, however, the condition

that a ~ 0 and b > 1 from Egs. 5.99 and 5.100 yields the following:
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K ‘
v, | > \/—2—<-1-{£>v”+_<-;-;—> 5 v, < 0, (5.108)
i/ i

so that it is potentially possible for unstable waves to exist with
k, >k and |vo| < v. From Eq. 5.60 such large growth rates are
feasible since 0,. can be large.

Also under the present conditions the RF current density is
altered if V), # Vl' In this case with G(zc) large corresponding to

the presence of the residue, Eg. 5.96 gives

2

JEFQ%GE o ve
J_ o= [[k?vo -k (0= kv)]+ ko - < - —>
1 [0V Iklz V” Vﬁ
. [krwc v+ j(krv - kiab)]J . exp(-zi) . (5.109)

As an example of the utilization of these results it will be shown
that even a carrier species with a small number density can provide large
slowing factors in solids under growth conditions. To see this assume

ki’< kr so that Eq. 5.59 is approximated by

SO <}§\> o . (5.110)

where o << krc gnd the pfesence of any other carrier species in the
equation is assumed to be negligible. Equation 5.107 is then applicable
so that [vo| > v corresponding to a large drift velocity either due to
a large applied static electric field or to the high field regions near
the contacts in any solid-state device. If the simpler case v = Vl is

assumed it is found from Eq. 5.104 that
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C

2 [k|* v§

(e}
I

ngnageki N < [krv + ki(m -w)]? > , (5.120)

k|2 v

R

where Re (zc) 0 is assumed. FEquation 5.111 shows that the effect of
the residue in the present case can be interpreted by defining an effective

number density,

[krv + k, (0 - mb)]z
N' = N exp< = > . (5.112)
(0] (0] ) lk|4- Vﬁ 4

Now some typical values for a semiconductor could be chosen as

-1

v~3 x 100 5T o ~ 101 s, V2 v ~3 x 107 en/s, so that with

ki =~ 0.1 kr Ed. 5.112 becomes if o << @,

' 2
Coo 10° .
NO = NO exp <3?r-> . (5.115)

Thus, for an example, if k =5 x 10%® cm * corresponding to a wave phase
velocity of 2 x 107 cm/s at o = 10t ™1, the effective number density is
approximately a factor of 101° times the actual number density. Clearly
then, even if the actual number density is small, the resonant nature of
the interaction provides that such carriers are still important to the
interaction, whereas from the hydrodynamic theory such carriers may be
a negligible factor in the dispersion relation. Self-consistently Eq. 5.113
can be solved to find that for the present example Nb ~ 10° cm 2, This
serves to indicate that under wave growth conditions the presence of even
a small density of a carrier species can be important.

It is also to be noted that these results are even somewhat
pessimistic for the Maxwellian distribution. This is because a constant

collision frequency v has been assumed to simplify the analysis. In general,
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however, the collision frequency is dependent upon the carrier energy so
that at any time some of the carriers in the distribution function will
be colder than the mean so that their collision frequency will be less
than the mean value v. For such a subset of carriers at any particular
time, then, the condition given in Eq. 5.10l is relaxed. In this case,
for examplef even if w, &V the residue can still be large. It is
suggested that this may be the case for the holes in n-InSb, where

Iwbh] =~ Vh is typical and Noh is small.

Case Db:

c
For this case even if the residue is present it is limited in
magnitude since exp(-zg) ~ 1 so that

ST gt
G(ZC) & =jro + 2ZC <l - T'*'—B— = ...> . <5.llu)

For a comparison with hydrodynamic theory consider that the system
satisfies o = O and v =V For this case Eq. 5.96 gives, retaining

only the first term in the expansion,

. 2 . "
JofeE, (0= kv )(w=-kv - jv - o)
g = -2 0 0 S (5.115)
1 wicBvE

which introduces the nonlocal effect of the longitudinal carrier thermal
velocity. Thus for finite temperatures the slow-cyclotron mode predicted
by hydrodynamic theory does not exist since these solutions have

lw - kv = 3v -‘uE[ ~ 0. This consideration does not apply for the
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forward helicon branch since |o - kv_| ~ 0 and |w,| > |kv)| so that
lzcl >> 1 applies.

In addition the backward helicon branch which has negative group
velocity is predicted by the hydrodynamic theory to be restricted to
k< || /v, for positive frequencies so that if |w | >> | J2 kv, i.e.,
vy > Uk this entire branch is présent. If VO < UlE however, only part
of the baékward helicon is present and the single-carrier dispersion
relation breaks away from this branch at some positive frequency near the

helicon maximum frequency, w

= 2v2 /(L 2 't
- &bvo/( |&EI c®), and joins a root of

the kinetic dispersion relation. Note in addition that, since Eq. 5.115
will lead to a fourth-order k and second-order w dispersion equation as
compared with the third order w and k hydrodynamic dispersion equation,
it is clear that the root structure in (w,k) space is significantly
modified. From Eq. 5.115 and Maxwell's equations the single carrier
kinetic dispersion relation is found as

of (0w - kvo)(w - kv - - jv)

k2c2 - of + -2 =0 , (5.116)
kavﬁ

where any solution must satisfy |Zc| K 1 and Im (Zc) < 0, and for the
helicon mode w, < 0. Although not explicitly analyzed, since [zc| <1
and Jl_ varies proportionally to Z it is clear that the effective
dielectric constant remains small and the solutions to Eq. 5.116 are
characterized by heavily damped modes which have ki > kr'

The case of potential interest when v =V corresponds to the

1
residue being present (o # 0). The conditions for this are as discussed
for the previous Case a. TFor this case the RF current density is given

from Eqs. 5.34 and 5.96 as
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2ﬂa?eEl_
I o~ -—2 2 (p-xv) ; Im (z ) > 0 . (5.117)
17 \/E (L)kV” ro ¢

In addition the kinetic power flow associated with this carrier mode is

rofe |5 |2
P k(0= k) (5.118)
\/—E kl(b |kl2 V”

- = * -
P = Bk, Re(El_Ji_) =

.and the unusual result is noted that it is necessary that v, < a/kr for
this mode to be active for a convective instability. Since |z,| <<1

this necessitates @, > 0 which is in agreement with the conditions required
for the presence of the residue when ki > 0. This result is independent
of the sign of vy in that it plays no role in the sign of Pk-' As

discussed in Case a, however, it is advantageous if v, < O corresponding

to a backward wave. When P _ < 0 this indicates that the real part

k
of the RF conductivity is negative and since the net real RF conductivity
must bé negative this implies that the instability is assisted.

The effect of significant temperature anistropy ié now considered
for the case |zc| << 1. Assume that the conditions are such that the

residue is absent, i.e., 0 = 0, and the longitudinal and transverse thermal

velocities are widely disparate so that Egs. 5.96 and 5.101 indicate that

. 2 2
JuTeR < v
p_1- 1
J ~ - C—————— - o— . .
. = . (5.119)

M

. *
It can readily be seen from this result that Re(E J ) = 0 and no power
1= 1=

transfer is expected. Indeed the dispersion equation is



.
k2c® - o + w; <1 - —l> = 0 , (5.120)

so that if v, > v and ag[(vi/vﬁ) - 1] > d?, pure;y real solutions for k
are obtained. Since an approximation has been used in deriving Eg. 5.119,
namely G(zc) ~ 0 since lzcl << 1, this indicates that the system is
actually at a point of marginal stability. This has been pointed out
previously77 where the present system was analyzed by a different approach.
Note that if ki = O then the residue is indeed necessarily absent since

In (zc) < 0. TIf the correction term is included as the first term in

the asymptotic expansion given in Eq. 5.11#, Eq. 5.96 becomes

- 2 .
Jw ek, _ v w=kv =jv-w
J_=__p__l_[<__l>+ 0 c
* @ vﬁ kzvﬁ
2
1

. (jv + o, + i (a = kv = Jv - mc)ﬂ s, (5.121)

<
\V]

and the kinetic power flow is found from this to ke

2

Eki&) Iklz V” ) V” V”

where ki < kr has been assumed. Inspection shows that for v, > )| it

L
is desirable to have w, < O and (o = krvo) < 0 to drive the instability.
At large magnetic fields the residue can appear when w, > 0 under

growth conditions. The RF current density is then given from Egs. 5.96

and 5.114% as
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J(REemerrn) oy,
I

so that the solutions are again near ki = 0 and it is necessary that

w, > v, when 0 # O. Inspection shows directly that the sign of Pk-

is directly dependent upon the sign of [1 - (vi,/vﬁ)](w -k - aE) and

since (w - kv - QE) ~ 0 it should be possible to obtain growing waves

0]

with either vl > V) or Vi

These results show that the Maxwellian distribution function for

< V”o

the purely transverse waves in a static magnetic field yields a wide
variety of solutions acco;ding to the kinetic theory depending upon the
assumptions made regarding their location in (w,k) space and the carrier
temperatures. For the kinetic theory, since the general solutions obtained
involve complex functions whose values are themselves dependent upon the
nature of the solutions, it is usually necessary for the purpose of analysis
to assume a priori some properties of the solution in (w,k) space. This
leads to the formulation of a dispersion equation with a limited range of
applicability so that solutions obtained therefrom must satisfy the initial
assumptions made.

If a convective instability is predicted it should be verified that
this convective root follows a trajectory in kr—ki space such that for
some Wy < O the wave number k is purely real. The difficulty is clear,
however, since the act of letting w become complex starts to alter the
nature of the variables which were initially delimited by a priori

assumptions. The form of the dispersion equation itself can then change
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as W, is varied. This makes it difficult if not impossible to follow
roots analytically as w; is varied. A necessary condition can be
established by solving for the dispersion relation with k real and w
complex and verifying that solutions with Wy < 0 exist. Note that an
assumption such as ]zcl >> 1 for the complex w dispersion relation does
not necessarily correlate with the complex k dispersion relation with
|zc| >> 1 and indeed it may join onto the complex k dispersion relation
with |z | << 1.

The degenerate distribution function need not be analyzed further
since it was incorporated into the hydrodynamic distribution function

of Section 5.5.1.

5.4 Kinetic Power Theorem for Hybrid Waves

As was found in Chapter III the hybrid modes are difficult to
analyze since both the longitudinal and transverse motions are coupled.
Thus the hybrid modes in the present case will only be studied assuming
the quasi-static assumption. In addition, only the isotropic Maxwellian
distribution is examined since the hybrid mode for hydrodynamic and
degenerate distribution functionsis studied rigorously in Chapter VI.

For the Maxwellian distribution function,

No ’(vx B Vo)z v; * Vi
f = ——— = XD Q-———-—;;———-) exp <; . > , (5.12k)
(Ean) 2y 2ve
where only the drift velocity in the direction of wave propagation is

assumed significant. Assume that Eo = BOQ and the fundamental field varies

as exp[j(wt - kx)] so that if E  is the applied field and B, is the

Hall field the Boltzmann equation for the present case is
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Bfo of afl 3 fo .
St v, BEL +alE + (yxB)]l 5=+ n[gl + (v x El)] 52 - <’SE'> .
- = co
(5.125)

which becomes under the quasi-static assumption

of of of

. 1 1 0
- + + — - +
3 (o ka)fl n<on VyBo) Bvx T](Eoy vao) gvy T]Elx ng

of
= . (5.126
3t >coll ( )

Make the following definitions:

<
]

ucos 6 +v
o]

<
i}

. usin 6 . (5.127)

Assume that the carrier studied has high mobility and that the magnetic

field is moderate so that v.~E /B and |E | << |v.B
0 oy’ "o 0xX y o

. Thus any
carrier heating effects are neglected. In this case when the transfor-
mation of Eq. 5.127 is made, Eg. 5.126 takes a particularly simple

form given by

of w - kvo - ku cos 6 Bfo 3¢
% - m = WEIXW'<5¥> : (5.128)
¢ X coll

The differential equation is solved using an integrating factor to obtain
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<(u>-kv)6-kusin9 6 (w = kv )0' - ku sin 0"
. 0] . (0]
f = expl\J >f exp <-J ; >

w w
1 e C c

af0 of
. T]Elx S "\ ¢ j| ae'’ , (5.129)
X “coll

where C is a constant such that £ (8 + 2x) = £ (6). Equation 5.127
1 1

applied to Eq. 5.124 shows that

° (e )3/2 ( >P< > (5.130)

H
n

so that

afo afo - afo
P <av ) = cos O 5= - (5.151)
X X

In addition the collision integral can be neglected to first study the
collisionless case. Define

w = kv

= -—-—-—o = e ’
a, Y and b o, (5.132)

so that if Egs. 5.151 and 5.132 are used in Eq. 5.129,

nE,
.2

S exp[j(ace - b, sin 8)]

afo ¥l 561 "y -ja ' Jb, sin 6
T / (e” + e ) e e @' 5, (5.133)
e
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where the replacement

jer . -’

cos 6' =

has been made. The Bessel function identities given by
+ . . 1 0
Ijb sin 6 Fiont
e © = }Z Jh(b ) e Jné

are used in Eq. 5.13% to obtain

lx<au ) Z SR ACRERCS

1, m==60

\

& .., =jao' N o
/1 eJme e © (eJe + e 36 ) a6
c

which gives

fl v= %(%) i J£<bc)Jm<bc)

L, m==co

) <exp[3(m -4 +1)6] exp(j(m -0 - 1)9]>
j(m - a, 4+ 1) jlm - a, - 1)

Now the longitudinal RF current density is given by

)

(5.13L)

(5.1%5)

(5.136)

(5.137)
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[e]
J = q JfJfJF v f dv._ dv_dv
1X X 3 X ¥ Z

-00

© 27 )
q [\ Jf JF (uwcos 6 +v )f ududddv , (5.138)
Yo Yo Yew ° 1 z

where Eq. 5.127 has been used. DNow from Eq. 5.124,

afo N 4 ( <
W = m \- "E ) exp \ = >exp - > (5 o 159>
T

T)v
which is independent of 6, so that in Eq. 5.132

T, = (EWZC)’S/Z lx f Z 3 (0)3,(b )<- 9;) exp <—;P—z—> u du

1, m=noo M Vo

00 2x / . .
. < \/ﬁ exp[-v§/2v§] dv%> [kjj i < eXP[%(T - 1++ll)9] + eXP[i(? - 1_'11)9] >

-0 0 c c

* (u cos 6 + vo)de} . (5.1k0)

The 6 integral is given by

2nv
[ }z z_%[um-z+1)+ﬂm—z-lﬂ

£)6]

. % \/“2n < explj(m - £ +2)] + expl[j(m

m=-a +1
c

+

L expli(m - £ - 2)0] + explj(m - £)6] > o . (5.141)

m=-a -1
c
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If the Bessel function identities

dJm(bc)
Jm-l(bc) - Jm+1(bc) =2 dbC
and
J (m)+J .  (0) =@J(b) (5.142)
m-1'c m+1' ¢ bC m'c

are used in Egs. 5.141 and 5.140, then

. .2
5 _ Jv w eE }: /“ <‘ku o <; EE_ A JdbEElx
1x o ZE - ai P .

2 4
Vi f=-00 2V Vi
[2]
l 2 ku
. }: ~{ J[ u.——— [2 { - ac) -1]1 <'——-> exp <} — ] du
(1 - a, 2v

Zm=00

(s AR) e w S )a) . s

Since

® 2 uZ -\
J o e (-5 ) ew - et n0 (5284

the following is true:

> y@e%X ( lo v mﬁ £(4 -ac)-l )
Jix = }j SR > . (5.145)

2
v, c’
==00 T ¢
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From this result the kinetic power properties can be readily derived.
This is reserved for application to instabilities in Chapter VI where

a more complete case can be examined thoroughly.

5.5 Summary and Conclusions

The concept of the kinetic power function has been applied to
the basic carrier modes within the framework of kinetic theory and the
results obtained compared with those of the hydrodynamic theory of
Chapter IT.

Analysis shows that Maxwellian plasmas cah exhibit resonance
behavior leading to large effective dielectric constants even for
small carrier densities. This effect leads to large wave slowing and
consequent wave amplification if a second carrier species is present.

The possibility of temperature anisotropy is taken into account
leading to several possible convective instabilities associated with the
carrier‘modes.

Whenever possible corrections or improvements have been pointed
out with regard to the utilization of the hydrodynamic theory, thus

defining its realm of applicability and accuracy.



CHAPTER VI. KINETIC THEORY OF SOLID-STATE PLASMAS FOR PROPAGATION NORMAL

TO THE STATIC MAGNETIC FIELD

6.1 Introduction

When the wave-vector k is taken perpendicular to the applied static
magnetic field Bo’ in an isotropic medium with a single species of mobile
charge, a mode termed the hybrid mode results with characteristics of both
the longitudinal space-charge oscillations and the transverse (electro-
magnetic) helicon-cyclotron mode. This mode is of special interest in
solid-state plasma interactions since Landau damping is absent and the
Poynting vector is nonzero so that the coupling of electromagnetic radiation
to this mode is possible.

A useful approximation which is commonly made when the slow waves
are of interest is to assume that the RF magnetic field is negligible
corresponding to the transverse component of the RF electric field being
much less than the longitudinal component. In this case the resulting slow
wave; termed the quasi-static hybrid mode, has a purely longitudinal RF
current density which is dependent solely upon the longitudinal component
of RF electric field. This quasi-static assumption will always be made
and understood in this work. With two species of mobile charge present
the interacting quasi-static hybrid modes of each carriér lead to the
hybrid-hybrid instability.

For a rigorous analysis of the waves possible with k 1 Eo it is first
necessary to accurately ascertain the form of the carrier distribution

function.in the presence of applied static magnetic and electric fields.

-160-
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This is done for equilibrium Maxwellian and degenerate distribution
functions’and it is shown under which conditions the often used approxi-
mation of a drifted form of the distribution function will be a

reasonable solution. In addition, for the Maxwellian case, the dc electric
field is more fully taken into account in the solution and the carrier
distribution function which incorporates carrier heating effects has been
obtained.

These results are then used to study the quasi-static hybrid mode.
By introducing a modification to the degenerate distribution function, as
an approximation, a particularly simple solution results which is readily
analyzed. Computer results of the resulting hybrid-hybrid electron-hole
instability obtained from this model are applied to the phenomenon of
microwave emission from InSb and related to the harmonic structure observed
in experimental studies. A discussion is also given of the transitioh from
this plasma type of instability to acoustoelectric amplification at large
magnetié fields. The dispersion relation is also obtained for the
degenerate and Maxwellian distribution functions. In the latter case the
full dispersion relation is solved by computer analysis and it is verified
that the approximation of isolated resonances in the wave structure is
quite acceptable.

In all cases a comparison is made of the results obtained from the
present kinetic theory with those of the hydrodynamic theory. By
incorporating a collision term which conserves particles properly it is
found that, in essence, the hydrodynamic theory can be retrieved from the

kinetic theory at large magnetic fields.
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Since in these analyses the variation of the carrier collision
frequency with carrier speed has been neglected by using avconstant
collision frequency,a study is made of the effect of including this
variation in the analysis of the waves.

An examination is then conducted of the electrokinetic energy.and
power properties of the hybrid carrier -mode,and the results applied to
the RF bunching characteristics of the charge carriers. A comparison with
the results of hydrodynamic theory is also made here to aid in understanding
the mode behavior.

The effects of carrier heating on the hybrid mode for the
Maxwellian distribution function are then studied. The concept of a
complex temperature is critically examined by deriving the exact dispersion
relation for this case. Significant departures are introducéd by the dc
electric field heating from the previous kinetic analyses including
collisionless modes with a negative electrokinetic energy density at
k < ofv.

Pinally, alsecond mode present in the configuration with k 1 Eo’
which is electromagnetic in character and termed the ordinary mode, is
examined. Unlike the hydrodynamic theory for this wave, the kinetic theory
exhibits resonance behavior due to the static magnetic field. Potential
instabilities of this mode are then discussed including the effects of

carrier heating on this mode.

6.2 Distribution Functions in Applied Static Electric and Magnetic Fields

It is desired to determine the distribution function for a drifting
A
stream of charge carriers in a static magnetic field Eo = Boz and general

electric field g%. This distribution function is given as



£ o= f_+f_ (6.1)

where fo is the known equilibrium distribution function in the absence of

L

any external fields and f L is the perturbation due to the applied fields
1

(EO,EO). From Boltzmann's equation,written in the well known form

of of , 1 of _ of
-a—€+y_--a-;+ag-$ = <§€> B (6.2)
- - coll

where F is the external force, the function fo satisfies the following

in the steady state:

afoL af1L
n@o‘w”lxﬁo%w = L (6:)
where
afoL
(XX§O>.-BV_ = 0 (6.J~I-)

has been used corresponding to isotropic media and the term nE_ - (BflL/az)
has been ignored. The latter term brings in carrier-heating effects which
are negligible unless the carrier drift velocity is comparable to the carrier
thermal velocity and this case is presently neglected. Since Bo = B0 Q,

Eq. 6.3 then becomes

1}

aflL aflL y afoL
B <§y 55;— " Vx va > * n flL‘ LT (6.5)

which, employing the definitions
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VX = yw cos O
v, = Wsino (6.6)
becomes
afl]'-l .Y f = l_ e BfOL (6 7)
X nB, 1L BO =0 ov :

By utilizing an integrating factor, Eq. 6.7 is solved as

=P <‘“_ ) U[

Hy
1

1L

exp<-—<p>_o Lo, (68)

I

where w, nBO and the constant ¢ - e, The latter arises from the

condition that f L be bounded and be periodic in ¢ with period 2r, with
1

the choice of I determined by the sign of w, - For the case where the

equilibrium distribution function is Maxwellian, viz.,

NO < v2 + vy + VZ)
P —2 e ) (6.9)
oL (2nv )3/2 2v§
and
- N
B, = B, X*E .V, (6.10)

Eq. 6.8 becomes

fiL = - exp <’__ ‘> \jp exp (L —_ ¢‘> (E 5 COS o'+ E sin @' ) o,

(6.11)
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so that when the integration is carried out, Eq. 6.1 gives the following :

Note that for foL Maxwellian, the expression

o0
JfJfJF f dv._ dv_ dv = 0
iL X Y Z

-0

is true, and this indicates that the solution conserves particles properly.

As an example of the application of this result consider n-InSb
with the applied electric field on' For moderate magnetic fields

(typically 3 kG) and rectangular bar geometries, since the Hall electric field

E _>>E and !w | > v, the distribution function becomes, from Eq. 6.12,
oy OX ce e
~ + M .
f e f1 <1 > (6.13)

A
The carrier drift velocity becomes, in the x direction,

\ fff By
- L ~ OO m
T ) vxfoe dvx dvy dv, = s (6.1k4)
-00

]

so that Eq. 6.13 can be written as

v v
£.o= o <1 2L X X> . (6.15)

oe
2
Te
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Consider now the displaced Maxwellian féL given by the Taylor expansion

of fOL(vX) as

of v Pr

8 - - _ oL oe oL +
£l For, (Vg =V = Voo) = Tp(v)) - v STt 5 waliR T
X v
(6.16)
which for v. << v_ gives
oe Te
VOeVX
1 ~ 8
fon ~ oL <l * > : (6.17)
2
Te
Comparison of Eq. 6.15 with this result shows that for Voo << Vg
Noe (VX - Vbe)g v2 + vi
foe ™ 2 \alz OF <; | o ‘> exp <} _E;;____> ; (6.18)

thus illustrating that under the conditions assumed the drifted Maxwellian
distribution function of Eq. 6.18 is an excellent approximation to Eq. 6.12.
In order to study the degenerate distribution function, the

following transformétion is needed:

Ve = Wcos® = vp cos @ sin' 6 ,
v = w sin = v _ sin sin @
y ¥ p ®
and
v, = v, cos 6 , (6.19)
where
1/2 1/2
vy = (vi + v2 + v2) = (w2 + vi) (6.20)

and
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o v 2x Mx
Jpjpjf av_ dv dv, Jf F‘JF v[‘ v2 sin 6 dv_dp a8 . (6.21)
“ -7 o Yo Yo ° P

The equilibrium degenerate distribution function by definition is

1l

SN
f = S if v pS Vo, s
oL L."vaa p F
F
= 0  otherwise , (6.22)

where Vg is the isotropic Fermi velocity. It can readily be verified

that

©0
JfJ[JF f _dv_dv_dv. = N
oL, x "y Z o]

—00

A A
= + L] . i . L] i
For the case E = E_x Eoyy, use of Eq. 6.22 in Eq. 6.8 provides that

of l
£o= = BOL> L [E'<-2—v +v>-E <v +LV>J;
1LV v > ox w, X v oy \'x w,
P P B, < Y. %)
2

wC
so that Eq. 6.1 gives, directly,
- 1

afoL 1
= f_+ = > [E <- v +v > -k <§ + Iy
0 o, Vv ov > 0xX w X y oy X
o

c ' (6.24)

It can be shown that the drift velocity in the Q direction given by

=
v, = i U[ijf v £ av, dvy dv, (6.25)

becomes, when Eq. 6.24 is used,
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1

v = <ﬁ + L E > )
) /2 oy w, “ox
Bo(_+1)
.-
c

which is identical to that found for the Maxwellian case.

From Eq. 6.22 it can be found that

afoL i afoL < BVX
ov.  dv ;v )
p o]

The drifted degenerate distribution function is defined by

A 5No
f'l 2 £ _(v. »v._ -v.) = if (v. = v )2 +v2 + 42
oL olL' ' x X o} by 3 X o) y Z
F
= 0 otherwise .

A Taylor expansion similar to Eq. 6.16 shows that, if vy < VF,

afoL

oL oL o dv
X
so that from Egs. 6.26 and 6.28

3 1 afoL

for, oL  v. \ ov >
o p B <
o

' 1

1
2

sl

(D2
c

<_E v = LE v > .
> oy X, OX X

(6.26)

(6.27)

(6.28)

(6.30)
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A comparison of Eq. 6.3l with Eq. 6.24 shows that if 'on| < |Eoy| and
|&EI >> v the drifted degenerate distribution function is an excellent

approximation to the general result, Eq. 6.2k,

6.3 Effects of High Electric Fields on the Carrier Distribution Functions

The case wherein the carrier drift velocity may be chparable to
its thermal or Fermi velocity is now considered by including the term

nEO(BflL/az) in the analysis. When this is done Eq. 6.5 becomes

on aflL Eoy aflﬁ Eoz af1L v
Bo[ ERAL W*(‘B""Vx . B J*ﬁf
0 X 0 y 0

afoL
= -_EO'—SX— . (6.32)
Consider first the case where on and Eoz are negligible compared to

Eoy and define the new transformation as

- . A
v, = VH +u cos 6 VH = Eoy/Bo
v, = usin 6 , (6.33)
so that Eq. 6.32 transforms as
of of _
1L v oL
% "oty T Ay (6.34)
c
therefore,
v 0 y ' afoL
fq = exp ('5— é) Jf exp <l a;-9'> vy Se 48 - (6.35)
R c © e y

The equilibrium Maxwellian distribution, Eq. 6.9, provides that
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of v N . v 2
u sin 6 H u
S dny e un g () o ()
y Vo (Ean) Vi 2vy 2ve

v2 uv
. exp (— —E—-> exp (- | cos 6> 3 (6.36)

thus, since

exp <- —= cos 9> Z ( > g0 (6.37)

=00

the following is true:

afoL N uVH Jné
> go(u) sin 6 In - —;-'> e ’ (6.38)
Y n=-c Vi
where
No u
g (W) = - —— — exp ( > exp ( > exp < >
o (Eﬂvz)s/z v2
T T (6.39)

Equation 6.%5 is then readily solved as

uvy Jn - v/w Ysin 6 - cos 6] .
Jjnbé
fL(G) ? ( v2 © ’
1 n -
e Vo 1+ (jn v/ab

(6.40)

where the constant c¢ has been taken into wccount via the requirement

£ _(8) =f (6 +2x).

lL( 1L(
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The distribution function in the presence of the applied fields is

then given from Egs. 6.1, 6.9 and 6.40 as

fo " ‘('—)—/‘P< >Z (2 ) 3“9

Nn==00

uvy [(jn - v/a)c)sin 6 - cos 6]
<l - > , (6.41)
v% 1+ (jn - v/coc)2

which, if desired, can be transformed back to the original (Vx’vy’vz)
reference frame from Eq. 6.33. Inspection of Eq. 6.41 shows that to

conserve particles properly it is necessary that

N v v2 2x oo
f[f dv dv dv -OHexp<-—}—I—>\f /‘Z——-—-————l
4 2v2 0 "o 1+(3 2
T ==-00

+(JI’1-V/(DC)

il

2 1.12 U.VH Jjné
wRexp(-32— )1 (-— ) [(jn - v/o )sin 6 - cos 6le” dau a8 , (6.42)
‘ 2v,§ /B V,% ¢

and the integral on the right-hand side is found as

L [ ()

+ Jn - v/a)

. <ex,p[,j(n +1)8] [-3(jn - v/a)c) - 1] + explj(n - 1)6] [3(5n - v/cpc) - l]> du 4t

= 2x foo(—j)(j—cuzexp<-§é>l:ll<-iﬁi>-I_l<-ﬁ>} = 0 ,

0
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wherein use was made of the following:
2n
(x) -1 (x) = -= In(x) . (6.44)

n+i n-1 X

Thus the solution given by Eq. 6.41 conserves particles properly. The

drift velocity in the Q direction is found as

(2]
1
= — = + .)4-
i JFJFJF Vifo de dvy de Vet Vg (6.45)
-00

where

ot E) e

1 +(Jn-vﬁ%) 0 0

2 uv .

« 0@ exp (— 9——> T <- ——Ii> [(5n - v/u) )sin 6 cos 6 - cos? 61e9% ay ag,
2v2 /R v

Lo (L) [ ()
()5 (20w

2
v, Vo
T

-l_;_/w_p(-_) (,1,— , (6.46)

<
I
1

1

where M is the confluent hypergeometric function and Vi > 0 has been

assumed. For example, if

71-__VT , M2 ;1 ;0.1) = 2.71828
5

and
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2 4 VZ/(D2
V.o~ VH<————C> . (6.47)

2/2
1+ /hE

If VH < VT,then it is clear that the n = 0 term will dominate

in Eg. 6.41 since for small arguments IIOI > ]Il|,lIzl,lIS},.... Further-

more if |a%| >> vy, Eq. 6.41 is approximated by

YH'x
£, 0~ £ <i + : > s (6.48)

which is identical to the result found previously, Eq. 6.13, which led

to the drifted Maxwellian form.

6.4 The Quasi-Static Hybrid Mode: General Solution
Assume that the quasi-static case is valid so that in the effective

dielectric constant

g = €f>+L Z?S s (6.149)

©
where T is the unit matrix and S; is the conductivity tensor of the sth
carrier species, the element €y is much larger than any remaining eij
where a variation as exp{j(wt - kx)] is taken for the RF fields. The

linearized Boltzmann equation, with Eo = BOQ, is then given for each

carrier species s by

< afls afls <
(- + -2 - —= )+
3w kvx.s>f1s T]sBo Vys BVXS Vxs vas > Mg on

afls 8fls
+
ov Eoy ;v >
XS ys

N
18

of
os _ 18
*Ex 35;; - Vs <£1s Nog fos) » (6.50)
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where Eoz = 0 has been assumed and the collision term which conserves
particles properly has been taken on the right-hand side, where le is

the RF number density,

0
N, = \]1/1]0 flS dvXS dvys dvzS . (6.51)
-00

To obtain a tractable result it is now assumed that Iabsl >> Ve the Hall
field E  is larger in magnitude than the applied field E _ (or E__ is

oy ox oy
the applied field and is larger in magnitude than EOX), and the carrier
drift velocity is sufficiently small compared to the carrier thermal
velocity or Fermi velocity. Then, as discussed in Section 6.2 for either
the Maxwellian or degenerate equilibrium distribution function, Vg Eoy/Bo'

The following transformation is then convenient:

v = v _+u cos 6
XS oS s

Vg = Uy 8in o , (6.52)

since Eq. 6.50 can now be written as

aflS . T]SE:LX afOS vs NJ_S
—59—- - J(as - bS Ccos e)fls = - 3 > - N f ) (6.53)

where
w - kvos - dvg kus
a, = = and b = — . (6.54)
cs cs

As discussed in Section 6.2, in the present case, the drifted distribution

functions given by Eq. 6.18 for the Maxwellien case and Eq. 6.29 for the
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degenerate case can be used for foqa In both instances, inspection

of Eq. 6.52 indicates that foq is independent of 6 so that

[O)S) oS S

of of ou
v \?Ef“°>
XS S X

Bfoq N\
cos 6 (522 ) - (6.:55)
S

Equation 6.5% is solved employing an integrating factor together with

Eg. 6.35 to obtain

" os V[
. - - s = e IR i ?
fls(e) expl J(aSQ b, sin )] B %5 ) JF cos 6
cs s c
Vg le /“9
. _2f. (. . 1 v b Lb
expl J(aSQ b, sin 6 )lae = fos(us) ]
cs o8 c

‘ exp[mj(ase‘ - b, sin 8" )lae' , (6.56)

where ¢ is determined from the condition flS(O + 2x) = fls(G)° The
Bessel function relations of Fg. 5.135 enable the solution of Eg. 6.56

to be written as follows:

7 B . Bfos [mj(as - n)cos 6 + sin 6]

£ (8) = ;; }j J (b )J (b_) [ —— ( )
18 [ /[, ‘m s’ n‘"s w du 5

. - cs s 1 - (a -n)

m=--00 n:::moo S
V@lefoq '
BRI n-a) J exp[j(n - m)e] . (6.57)
cs os s

The relations

dv_ dv__ dv = u_dv_d0 dv__ (6.58)

xS ys 28 s s 7S

and



are now used in Egs. 6.51 and 6.57 to obtain

00
n.E © o /Of 2nmJ% (b )
. 'sTax 0s m s
J du dv
k du m - a s zs
-0 0 s S

==00

N = .
00

18
271.'VS z 1 [w /‘m J2
1 - (b )f u_ du_ dv
Noswbs m - aS J e Yo m* s’ os s s ZS

(6.60)

At this point, prior to a study of the degenerate and Maxwellian
distribution functions, a simple approximation to the degenerate distri-
bution function is made. This will simplify the integrations involved
while retaining the essential physics of the interaction.

6.4.1 The "Cylindrical" Degenerate Distribution Function. The

"eylindrical" degenerate distribution function is now defined by

N

<
£ o= —9  yp oy S oy oand lv.| = v
0s oy v2 s Fs Zs B
F“ F's
= 0 otherwise |, ‘ (6.61)

where VF“ is the Fermi speed parallel to Bo' This is then similar to

the degenerate distribution function studied previously which is given

by Egs. 6.29 and 6.52 as

3N 1/2
<
£ o= =22 jr (u® +v2) = v, o,
08 3 s A Fs
by
Fs

0 otherwise . (6.62)



..:[_77_

From the viewpoint of achieving instability it is expected that the
function of Eq. 6.61 is actually more pessimistic than that of Eq. 6.62.

The distribution function of Eq. 6.61 used in Eq. 6.60 yields

3 . < kaS >
] JgnSNOSElX ;{1 csm \ @,
kvés m—:m w - kvo - Jv_ = maks
N = — , (6.63)
18 2 2
mew kv kv
< - cs > ) < Fs > + [J, < Fs > }
k2ve n Ces " Ces
L+ jv rs
8 w - kv = Jv - mw
oS S cs
I==c0
where
kus
kas dJm < Z;; >
J'< > - s , (6.6L)
m\ o
cs ku u _=v
< s> Fs
d PE———
w
cs
and in obtaining Eq. 6.6% use has been made of
mJi(O) = 0  for m integer |, (6.65)
and
Plex) x dx = (%2 - ) 2(x) + LB [ ()] (6.66)
m 2 12 m 2 m ’ ’

Note that in the present case the Fermi velocity parallel to Bo’ Voo plays
I

no role in the quasi-static case. From Poisson's equation,
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VB - fE, = ) 2 (6.67)
S

and the dispersion relation is found from Eq. 6.63 as

< kaS
> CS m
( k2v2 }j w = - JV - b, g
m==co
‘ 2
: - ( )
L+ va ;; @ = kvb - Jv - mw

M=w=00

(6.68)

cs

where Qm(kas/wbs) is defined directly from Eq. 6.63. The term in Q,
is due directly to the conservation of particles aspect of the collision

term defined in Eq. 6.50. Thus if the collision term (df/dt) vf

coll - "1
had been used this would correspond to Qm = 0. The physical effect of
imposing particle conservation is seen if it is assumed that a single

resonance at m = n gives the major contribution to the sums in Eg, 6.68

for some carrier "s" in which case the dispersion relation is

kaS
22 32 22 )

Y o terms due to
1 = S 4—( other .
kaS carrier species
2.2 - - o s - I8
k Vg {?5 kv o = DO = JVg [l Q, < o > } }
cs
(6.69)

Thus the modification introduced by the conservation of particles can be
taken into account by replacing the collision frequency Vg by an

effective collision frequency Vé’ where
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T SR ERHE I

Moreover, from Eq. 6.60, the more general statement for the distribution

function fos is, when a single resonance is assumed as shown above,

vé=y[l-—-——f f J2<ku>fudu dv}, (6.71)

wherein it ig assumed that fos is independent of 6 since Eq. 6.55 has been
used to obtain Eq. 6.60. This latter condition is true for the drifted
Maxwellian distribution, Eq. 6.18, and the drifted degenerate distribution,
Eq. 6.62, and of course the cylindrical distribution, Eq. 6.61. Hence
for v__ < v__ for the Maxwellian case and v__ < v _ for the degenerate

08 Ts 08 Fs
case the respective distribution function is independent of 6. When k
is real and fos ig independent of 6 it can be shown that vé, the effective
colligion frequency, is necessarily positive or zero. TFor k real, it

< < .

follows that |J (kv [ )= 1 end |3 (kv fo )= 1/ V2, so it must be
that

u/\ Jf Je < ———§'> f u du dv = b[‘ Jf f u du dv .
n\w os s 8 z8 os 8 s Zs
-00 0 cs

-00 0

Therefore, if fos is independent of 6, since

2 poo o
N = J[ Jf b/\ f u du dé dv P
o} os's S z8
0 -0 -0
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then the following is true:

o8 (6.72)

Use of this result in Eq. 6.7l then provides that vé 2 0. Note that only
in the case n = 0 and (k/ués) -0 does v! - 0.

To investigate the properties of the theoretical model, consideration
is given to high-field instabilities in n-InSb since experimental data
is available for this material. The carrier resonances are well defined
if Imcs] >> Vg which is readily satisfied by the electrons but not by the
holes. Nevertheless for the purposes of analysis the resonances will be
separated out even for the holes. 1In addition the effective collision
frequency defined in Eq. 6.70 can now be used. The dispersion equation

then is written from Eq. 6.69 as

kv kv
s 22 | o 2 (2 g |
20y o 1\ ©pe ce 2 n m\ O ch
1 = - < P + < P > P
2.2 - o 2 2 -y -
k3R 7w - kv - vl o+ Iwce| k V?h ® = Ju m]wch[

(6.73)

which describes the interaction of the fundamental electron slow-cyclotron
mode with the mth harmonic of the hole cyclotron wave. The hole drift
velocity is assumed negligible and the effect of the Hall electric field
on the hole dispersion properties is neglected. The solution for real k ig

2w = j(vé + vﬁ) + ml&fh’ (L+6) + kvoe - laze| (1L + Ge) T JR ,  (6.7h)

P

where
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2
_ : t o ! - -
R = <§(ve W) + kv -mle [ (L) - o | (1+ Ge)>
- hmfaéh| Iaze\ 9.9, (6.75)
and
2 2
?wpe ) kae 2a$h > kah > 0 .
ee = . J m s eh = - Jm = =
l A
k Vge ce k th ch
(6.76)

For the possibly growing solutions (ai < 0) of interest, where w = @, + jaﬁ,
EqQ. 6.74 simplifies, if vy ~ v}, to the following:

20, = kv +mlo] (1+6) - o] (1+ 6,) (6.77)

r

and

v o4y 2 1/2
o = S B4 [ mlaw,| (1L+6 )> +no, | |o | 66
i 2 - r ch h ch ce e h

(6.78)

Inspection of this result shows that growth should occur near the hole

cyclotron harmonics in frequency provided that
kv kv
2,2 2 _Fe )2/
o ‘aEh, Ia%el “e%n Jl <:w > I < W > (v + v))2
ch S h

4.2 .2
k vFeVFh

ce S

—— . (6.79)

However, because of the strong dependence of the growth factor on the
wave number, a solution for k from Eq. 6.77 indicates that, for moderate

magnetic field Strengths (Bo ~ 3kG), larger growth rates may be attained
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for 20 —am{aéhl, provided that |u%e| >> lwchl' Exact computer solutions
of Eq. 6.73 have shown this to be the case in that the emissive peaks are
shifted to magnetic field valueslarger than those corresponding to the
hole cyclotron harmonics. The amount of the shift increases with a
decrease in carrier density. Thus in Fig. 6.1 with equilibrium electron
and hole densities N = P = L x 1015 cm ® the shift from the fundamental
resonance for a chosen frequency w, = o x 9.4 GHz (corresponding to the
experimental value”®) is approximately 600 G, whereas in Fig. 6.2 with

N = P = 101° cm 3 the shift is only 100 G. Other parameters used in

these computations are as follows:

*os 0.0
me = -Bmo ’
m:: = 0.6lnm_,
Vee = 8 x 107 em/s
Ve = b x 107 cm/s

This carrier density range is selected in accordance with the
currenf density values attained in the experimental work’® under the
stipulation that the drift velocity never exceeds the thermal velocity
and the fact that the harmonic radiation occurs after the onset of impact

78 The theoretical results obtained in Fig. 6.1 are in general

ionization.
agreement with the experimental data reproduced in Fig. 6.3 with the
following characteristics:

1. The quantitative position of the emissive peaks and their relation
to the hole cyclotron harmonics.

2. The shift at low-current densities to higher values of magnetic

field corresponding to a decrease in carrier density at low-field values.
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3. The independence of the position of the emission peaks on the
drift velocity.

The fact that the linear theory presented here predicts higher
growth rates at the m = 3 resonance than at the m = 2 or m = 1 resonances
in contradiction to the experimental results may be due to any of
several factors. The theory presented here does not take into account
explicitly any carrier generation or recombination phenomena, whereas
the experimental current densities correspond to the post-impact-ionization
regime. In addition the m = 3 resonance corresponds to a larger wavelength
than the m = 1 resonance and hence the experimental coupling of radiation
will differ in these cases. Also in the theoretical work the effects of
carrier heating have been neglected in developing the carrier distribution
functions in Section 6.2. Of course there are also the possibilities of
boundary effects and nonlinearities in any actual system.

| Also from the experimental data of Fig. 6.3 it appears that a
different and stronger form of instability sets in when the transverse
magnetic field becomes sufficiently large (BO 2 3 kG). There is ample
evidence”® 7® to conclude that this region corresponds to (electron-phonon)
acoustoelectric amplification enhanced by the transverse magnetic field.
Theoretically,73 a large transverse magnetic field is necessary in
high-mobility semiconductors such as InSb in order to lower the electron
drift velocity to a value which meximizes the gain. Experimentally,’®
transverse magnetic fields have been found to enhance greatly the
acoustoelectric effect in the ITI-V semiconductors InSb, GaSb and GaAs.

These experiments showed that the formation of high-resistance domains
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can be induced by applying a sufficiently large transverse Bo’ and in
addition, from a qualitative comparison of the results of different
materials, that for a given BO the enhancement is more pronounced as

the mobility increases. Also whereas the resonance-type emission only
occurred78 above the breakdown field for impact avalanche ionization in
agreement with the present kinetic theory (i.e., below breakdown in n-InSb
the hole plasma frequency in Eq. 6.79 is negligible thus preventing
instability), the emission with BO 2 3 kG can occur below the impact
ionization field in agreement with the theory of the acoustoelectric effect

in high-mobility materials.’®

6.4.2 Correlation g£ Kinetic and Hydrodynamic Theory for the

"oylindrical" Degenerate Didtribution Function. It is of interest to

determine if the present results can be correlated in any way with the
corresponding hydrodynamic theory for the quasi-static hybrid mode.
Inspection of the denominator of Eq. 6.63 shows that if Iabsl >> kas the
primary contribution is from the m = O term. 1In addition the summation

in the numerator may be written as

KVpg KV
[ me J2 < > ) omPef J2 < >
es'm \ o cs’m \ w
cs s
TR = E . (6.80)
os ~ Vg T Mg (o - kv - v )2 - nfdf
i w00 m=1 os s s

For ‘ahs’ >> kv then Eq. 6.63 may be written as follows:
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kv
om2af J2 ( ——E§-> (w-kv__=jv))
W os “'s

. )
N _ . JgnsNosElx }j cs m cs
18 kv? : ( kV?
S m=1 3 _ 2_2 2 _ s T S
[(w kv jvs) m u%s]_w kvos va[l Jﬁ <,wcs } }
(6.81)

From the asymptotic expansion for small argument, viz.,

3 (2) “;?;j= §y<%>,' (6.82)

it follows that J2 ~ 1 and J2(kv_ /o ) ~ k32 /haf [ Use of these latter
0 1 Fs' “cs Fs’ Tcs
approximations in Eq. 6.8l together with Eq. 6.67 permits the dispersion

equation to be found for the fundamental (m = 1) as

o .
L) o e L + R (6.55)
- ! > 2 2 S ? )
. (o - kvos)[(w - kvos - va) - a%s]

where RS represents the contribution from any carrier species which do not

satisfy lwcsl >> kaS and hence have a different form. Now the hybrid

quasi-static dispersion equation is given by’ >

2 ) - I
d)'pS ((l) kvOS JVS)

sy 29 _Ll.o02 _ .
va) mbs] 2 k VTs<w kvos va)

1 =

)

Z; (w - kvos)[(w - kv

s
(6.84)

where vTS is the thermal velocity. Comparison of these results shows good

agreement and in fact becomes exact when v, — 0. Thus if 'ahsl >> kv

Ts Fs
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it is quite clear that the hydrodynamic analysis (for that carrier) is
accurate although the kinetic theory suggests the dropping of the thermal
term in the denominator of Eq. 6.84 entirely. As a result the utilization
of the hydrodynamic analysis in the study of the acoustoelectric interaction
in high mobility media is justified for the case of a large transverse
magnetic field such that ]a%| > va. For smaller magnetic fields, however,
the kinetic theory raises serious questions about the legitimacy of the
hydrodynamic analysis.

In addition it is to be noted that in multiple carrier interactions,
such as the electron-hole hybrid interaction, it can easily occur that

the condition lwcsl >> kv o for the one carrier species (electrons) is

T
well satisfied but not for the other (holes). In this case a hydrodynamic
analysis with direct substitutions in Eq. 6.84 is of dubious validity,
whereas the kinetic theory incorporates departures from the lwbsl >> kVTs
format in the term RS in Eq. 6.83. Also, since the hydrodynamic and
kinetic theories depart at smaller magnetic fields, it is reasonably

certain that the resonance emission for BO < 3 kG obtained in n-InSb from

the kinetic theory will not be predicted by the hydrodynamic theory.

6.4.3 The Drifted Degenerate Distribution Function. Reconsider

now the drifted degenerate distribution function of Eq. 6.62 which was
found to be a good approximation to the general form, Eq. 6.2&, when
Vos < Vo and lwbs' >> Vg Identify the integrals of interest in

Eq. 6.42 by
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® Mo of
_ 08
@l = ‘-[o f_w <aus >J§(bs) du, dv_ (6.85)

and
00 o0
= 2 a
®2 \]; ‘/im Jh(bs)fosus s dVzs ’ (6.86)

where it suffices to have m take any positive integer or zero value since
the summation can be reduced as was done for example in Eq. 6.80. Define

a new transformation,

u, cos 6 = Vg COS @ sin © ,
u, sin 6 = V. Sin ® sin ¢ ,
zs = Vpg COS o , (6.87)
so that
3 . > 2
u, = v, sin g, (x =0 =0)
and
o0 [ 2x o0 o P2 [
ff f usdusdedv = / [ f vzssinq)dvsd@dcp.
o Yo o z8 Jo Yo o T T

(6.88)
It can be shown that the angles ©® and 6 are equivalent. The distribution

function, Eq. 6.62, transforms as

BNos . <
os a if Ves T Ups
hﬂVFs

1l

0  otherwise |, (6.89)
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so that

afos afos avrs MNos
5 = 5 < Bus ‘> = sin @ <g(vrs) - S(VrS - VFS)> - . (6.90)

s rs
Fs

Use of these relations in Eqs. 6.85 and 6.86 provides the following:

3N s /2 kVF
$ = -_2° f sin @ J2 ( S sin <P> aop (6.91)
1 > m o\ w
2nv. 0 cs
Fs
and
Mg [7/2 [ 7gg “rs
o = d[ JF ve J° < sin é) sin ¢ do dv . . (6.92)
5 2ﬁV§ 0 0 rs'm \ o rs
s .

Corresponding directly to these integrals the cylindrical degenerate

distribution function, Eq. 6.61, gave the values (e.g., from Egs. 6.60,
6.63, 6.85 and 6.86)

Nos kVFs
2! = - J;(w > (6.93)
i 2 ©es
Fs
and
N o mzcozs kv, kv 2
9! = —2 {(v?s-——“')J;( S>+v§S[JH'l< S>J},
2 2nv§s . k2 wbs dﬁs
(6.94)

where the cylindrical & functions will be primed. Although Egs. 6.91 and

6.92 can be directly integrated using the relations
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/2 .
—Ji(o) + Jf Ji(z sin 6) sin 6 d6 = }j Jém+2n+l(z) s [Re(m) > -11]
0 n=o
(6.95)
and
m+ 3
Vg v? T < 2 >
J[ ® %27 (ox) dx = L2
0 o r ( m- 1
2
oo(m+2£+l)1"(mél+l>
: - Jopn(@) s (6.96)
I=0 r < ﬂ-§—5 + /z>

where I' is the gamma function, I'(n + 1) = n!, the results are too lengthy to be
detailed here. By inspection of Eq. 6.91, however, it can be seen in

general that @l(-m) = @l(m) and necessarily ¢ So. Similarly, from

Eq. 6f92’ @2(-m) = @2(m) and @2 2 0. For simplicity the & integrals will

only be investigated for the fundamental interactions Im[ =1 and m = 0.

From Egs. 6.91 and 6.95, and the relation
sinz = 27 (z) - 2Jé(z) + EJS(Z) - 2J§(z) + e, (6.97)

it can be found that

5N kv kv kv
®l(|m| =1) = - [- % sin < I > +J) < Is > - 27 ( Is >
2 Ces s 8\ Bug

_2J7<kVFS>-2Jll<?F—S>-...J . (6.98)

@
cs cSs
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Similarly from Egqs. 6.92, 6.95, 6.96 and 6.97,

®<m=o>=3N°S{FS [ )sn(kv (k22 1)
CS

2

o Fs
v cos < kVFS -1l -2 z (DcSv;S P(Zn + E)I‘(En + Z) 3 <kVFS
Yes k  T(2n)T(2n + £ +3) “ant2ld2 \ ©

)

n, {=o
(6.99)
and
= cs Fs T(2n + 2)T'(2n + £)
¢ (|m| =1) { z )T (on + 5+ 1) (bn + 21 + 2)
n, {=o
Vs s ” kv, K22
.Jn+£+2< >' [< )Sm( > ( >
an+o W, g 8
kv E o v -
.cos< Fs>_l}_z CSFSE(IZ+1) Ir(¢) 7 < Fs>}
Ces k I'(3 + 1) “apte 0, g
=0
(6.100)

Corresponding to these, the cylindrical degenerate distribution function

gives, from Eq. 6.93,
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N af kv, kv, 2
o (n] =1) = —o8 {(FT>J(_—>+F (2]}
2 2rve Ces Ces

(6.101)

From the point of view of the dispersion relation, the only difference
between the cylindrical and the drifted degenerate functions is contained
in the respective @l and QZ integrals.

By going to the limit (kas/&Es) - 0 it can be found that
@2(m =0) = ¢é(m =0) > ®l,¢£. Thus the hydrodynamic form found for
the cylindrical degenerate distribution function, Eq. 6.83, also exists
for the drifted degenerate case. For the resonant interaction, if the

replacements

b, - 2 (LT =% ) o (Jal -
k2 2 Nos

and

<
1}

. v ( - ﬁ—— o (|m| = > , (6.102)‘

(OF]

corresponding to Egs. 6.98 and 6.100 are made in Fgs. 6.74 through 6.78,

the solution for the drifted degenerate interaction is obtained directly.

The results for the drifted and cylindrical degenerate systems are then

quite similar and differ only in the magnitude of their respective & functions.
Since thesg functions involve infinite sums for the drifted degenerate case
these are not dealt with directly. This fact points out the utility of

the cylindrical function which is much more readily analyzed yet is

similar in instability characteristics to the drifted degenerate function.
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6.4.4 The Hybrid Dispersion Relation for Maxwellian Carriers. The

quasi-static RF current density, Jix’ for the hybrid mode with a drifted
Maxwellian carrier velocity distribution function was developed in Chapter V,
Section 5.5. This will be used later in the discussion of the electrokinetic
energy density and kinetic power flow of the carrier modes. To develop

the dispersion equation, Eq. 6.52 used in Eq. 6.18 shows that the drifted

Maxwellian distribution function if IVOs| <L v o takes the form

T
u? v2
2 2
(2nvg) Vg Vg
so that Egs. 6.85 and 6.86 provide the following:
1 Ny Mg
° = <- -—-) <1>2 = =M Im(ks) , (6.104)
2
VTS 2nk VT
where
vas ®
= <w > , (6.105)
cs

Im(hs) is the modified Bessel function of order m, and the standard integral

o 2
_ -\
\]; L exp <— %xv Jﬁ(u) du = Ne "I (M) (6.106)

has been used. From Egs. 6.60, 6.85 and 6.86 the following general result

is found:



. E w
g™ ¢ }: 2nm s

k m - a 1 _
==00
No= - - - , (6.107)
TV
. S 1
1-3 }Z d
N w m - a 2
os cs S
m=-co

so that using Eq. 6.104 in Eq. 6.107 provides that

. % .
INeMos®1x EZ m Ms

kvg m - a € Im(XS)
= Is == . (6.108)
" v 1 _xs
1-5-= Z ——— e "1 (7))
@ m a m- s
cs —_—

TS m=;-oo 8
1+>j - —~ - = 0 . (6.109)
V -
s 1 -3 S ;; 1 o s T (x )
w m- a m'™s
cs S
=-00
In the limit that (vas/aEs) — 0 the behavior of the function e Im(xs)

shows that m = O provides the dominant contribution in the denominator,
so that when only the fundamental (|m| = 1) is retained in the numerator,

Eq. 6.109 becomes

-\
2 22( '-'k _ . ) S
N o (w0 - kv jv e T.(\)
1+Z JZZ> <2 s ——=— =0 , (6.110)
> } o _
s K Vs [d%s (w Kos va> o kvos)

where
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Z m e'stO\) = z 2l -KSI(k) (6.111)
m - a m\‘"“s’ € m'"s )

m=-oo m=1 S

has been used with |m’ = 1. To understand this result further, from the
-\
behavior of e ° Im(xs) for small A,

_)\‘ m
s ~ (A
e Im(xs) ~ <2> , (6.112)

e-kS I () = (%) , (6.113)

leading to the following result in Eq. 6.10k:

of (w-kv - jv)
1+ Z LS - o8 B — =0 . (6.114)
(o - kvos)[aés - (w - kv o - JVS) ]

This result is identical to that found for the cylindrical degenerate
distribution function under the same limit, Eq. 6.85, and is quite similar
to the result of hydrodynamic theory, Eq. 6.84. Thus for the drifted
Maxwellian the discussion following Eq. 6.84 comparing kinetic and
hydrodynamic theory is also applicable. This hydrodynamic limit corresponds
to retaining only the m = O term in the denominator of Eq. 6.109. If the
|m| = 1 term is also retained, and having used the method of Eq. 6.111, the
denominator becomes as follows (for small A so that Egs. 6.112 and 6.113

can be used):

vy vy k2V§S
D = 1+ — - ] . (6.115)
© - kv T vy Ces a% - (o - kv o - jvs)2
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When this improved form is used Eq. 6.126 becomes

2 o'
of (- kv - jv)
1+ }Z DS 0s i
_ 2 _ s 21 _ s+ 8 2.2 /. _ _ s
s (o kas)[aEs (w kv va) 1-3 o k VTS(w kv va)
= 0 . (6.116)

This result should be compared with that of the hydrodynamic theory, Eq. 6.8k4.
This also suggests returning to the cylindrical distribution function of
Chapter V, Section 5.3.1 and retaining the |m| =1 term in the denominator
under Id%s, >> kaS. When this is done the following result is found,

which is an improvement of Eq. 6.83%:

2 _ s
o (w kv JVS)

s
1 = ’
S

2_ 2 BVSkz'V?\S kzv;s

- - -5 - —_— (= -3 2.4

((D kvOS>[((D kvOS JVS) wCS] * J uwz ((l) kV‘OS JVS) JVS E
cs

(6.117)

which also indicates divergence from the hydrodynamic result.
The case is now considered where the resonance approximation can be
made so that only the resonance terms contribute in the .. The dispersiqn

m
relation then takes the following form for the nth resonance:

' d%s“esn e © In(x )
1+ Z 2 B =0 , (6.118)

2..2 - - Y |
k VTs[ndE (w kv JVS)]

IS S S

where vé is the effective collision frequency given by



-\
vy = v <i e °© In(xs)> . (6.119)

For example, for n = 1 the maximum effect occurs when N =~ 1.5 in which
case vé ~ 0.8 Vg Thus the general statement can be made that vé is
never altered appreciably from Vg for n = 1 (20 percent) and Tfor larger n
values this is even more true; for n = 2 the maximum is = 12 percent, for
n = 3 the maximum is 8 percent, etc.

From Eq. 6.118 the dispersion equation for the electron fundamental

interacting with the hole harmonic modes is

Iw ! r mlm | T
1+ e € - ch & =0 , (6.120)
w - kvoe - jvé +qlahe| w - jvﬁ - m|abh|

where
r = 2. ¢ ®10) (6.121)
and

I, = _fég_ e-xh Im(xh) s (6.122)

2 2
k VTh

so that Pe’rh > 0. The solution is identical to that given in Egs. 6.74
through 6.76 with the replacement 6, - T, s =e&,h.

For self-consistency it should be verified that the resonance
approximation is valid. First it is demonstrated that the term corresponding
to m = 0 in the denominator of Eg. 6.109 has a negligible effect on the
dispersion equation. The solution given by Eq. 6.74 for w; < 0 indicates

that kvoe ~ 'wcel for reasonable carrier densities so that ke > 1 since

< . ~ T O] .
Voo < Vpgr FOT A > 1, Io(xe) ll(he) so that defining the following as
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D = e (M) s =eh , (6.123)

it follows that |[D_ | >> |D_ |, since
e,1 e,0

® - kv, - J.Ve * Ia%e!

> o - kv - dv, (6.124)

corresponding to la%e} >> Vo Thus the m = O term should have a negligible

effect in the electron term. For the holes

Dh,o * Dh

xh <' Z?-OJV + aEhIm(hh) - > , (6.125)

- W - Jv

and since A, > 1 implies that A >1, it is true that Io(xh) ~ Il(xh). Thus

form=1 and oo << vh the right-hand side of Eq. 6.125 is approximately zero

and hence, by inspection of Eq. 6.109, the resonance approximation is valid

although v,

I should be replaced by v

y+ The approximation Io(kh) ~ Im(xh)

becomes successively weaker for higher m values. However near w = |abh|m
inspection of Eq. 6.125 shows that the effects should be negligible and this
is the region of interest.

Tt should also be verified that the harmonic terms can be isolated
for analysis. Since vé NV and vﬁ ~ vy the effects due to the sum in the

denominator of Eq. 6.121 can be neglected and the denominator set to unity.

From Eq. 6.12% the dispersion equation, Eq. 6.121, becomes

-\
0 S 2.2
202 e 1. (A )n=as
L ey ) (o) Bl o8 (6.126)
/. > j _so\2 2.2
S n=1 k V§S ((l) kVOS JVS) n wCS

which can be written in the integrated form, viz.,
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w - kvos - jvs -XS cos X
;oR - . sin x sin [x < o )} e
D (E) -
o ~0
S cs

w=-kv = Jv
. 08 S
sin |=n
w

cs

(6.127)

In particular since this result is amenable to complex k, Eq. 6.127 will be
solved for real w and complex k. Thus, since w; < 0 is not necessarily
sufficient for instability, if amplifying roots are obtained it can be
stated with good certainty that a causal instability exists. In addition,
if the harmonic modes are clearly separated in the solution, the use of
the resonance approximation as an analytically acceptable technique will be
verified.
Equation 6.127 is solved via computer for the following parameter
values:
= N, = 10 em?® ,
v = v, = bx10tt gt
e h

* *

m = 0.03m , m = 0.6 mo

B = 2%k ,

o)
6x 10" em/s , v, = bx10" em/s ,

Th

107 emfs , v, = 10* em/s (6.128)

]

vTe

Voe
which are again in the range of values corresponding to the reported
experimental work in n-InSb of interest;’8 namely that the instability
occurs in the post-impact ionization range. The solution shown in Fig. 6.4
indicates clearly separated harmonic modes except for small wave numbers

which are not in the interaction region. A convective instability at the hole
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cyclotron harmonic frequencies is also present, thus verifying that the
W, < 0 golution of the resonance approximation has a corresponding
amplifying wave for real w.

6.4.5 Effect of Collision Frequency Variation with Carrier Speed.

Tn general, the collision frequency v_ 1s a function of the carrier speed
[~}
1/e

v o= (vi + v§ + vi) , whereas up to this point it has been assumed
constant. If Vs < Ving OF Vpg it is apparent that Vg is independent of

6 as defined in Eg. 6.52. It then follows that Eg. 6.60 is still valid
if the replacement Vg w>vs(v) is made so that the denominator of Eq. 6.60

should now be written, where a_(v) = [w - kv - jvs(v)]/abs, as

2 2 ’ i &
where v = (U5 + v when v < v or V. .
( s zs) 0 Ts I's

Tnspection shows that near resonance at small growth rates,

mw, - (0 = kvos) ~ 0, vq(v)/[m - as(v)] ~ constant so that the collisional

K

dependence on carrier speed will have negligible effect on the value

| obtained for DS if it is assumed that v is a constant. for hole cyclotron
resonant interactions the resonance assumption can be made independent of
the dispersion relation since it can be assumed that w, ~ m‘mbh[y \voh| =~ 0,

and k ~ \ahe|/v , << labe" so that in each case my o - (w = kv__) =0,

oe 05

Even away from resonance it is not expected that the replacement v wavs(v)
will seriously alter DS because of the nature of the integrand in Eg. 6.129.

Thus it will be assumed that for any carrier velocity distribution function,



-20k -

fos’ independent of 6 the use of a constant collision frequency Vg in the
denominator DS is justified for the collision term which conserves particles
properly.

With this in mind the numerator can now be examined. For the
drifted degenerate distribution function of Eq. 6.62, Eq. 6.90 applied to
Eq. 6.60 shows directly that because of the delta function dependence only
the value of the collision frequency at v = st is involved. Thus the
assumption of a constant collision frequency for this distribution function
is well justified for resonant processes with vy = vs(v = VFS). For the
drifted Maxwellian distribution function for resonant processes the function

DS in Eq. 6.129 can be set equal to unity since the denominator has little

effect so that Eq. 6.60 becomes

=
]

. [

INGE y Z

—_— 27emw
1S | ) | cs

kv
u_ exp (— ) exp (— >
s o2 2v

Ts m=-w
© o ku 2
. 2 S Is Ts
f f Jm < w ) - Lo - kv - v (V)] d-us dVZS . (6.130)
=0 70 cs cs 0s s

Since the case of interest corresponds to w; < 0 for k real no singularities
can arise. The effects of the variation of collision frequency with
carrier speed will only be examined qualitatively because of the difficulty
associated with the integrals involved.

For scattering due to thermal vibrations in nonpiezoelectric materials

-1
the mean free path is a constant, lo’ and vy = vlo . Inspection of Eq. 6.130



-205-

1/2

shows that since v ~ (u§ + v2 ) the carriers with low carrier speed in

zS
the distribution will interact more strongly with the wave (i.e., the
resonance is more clearly defined) than in the constant collision frequency
case. The net effect of this is that the values of PS in Egs. 6.121 and
6.122 are increased thus easing the requirements for instability without
altering the essential physics of the interaction. Alternatively, if the -
scattering is predominantly due to lattice thermal vibrations, the analysis
employing a constant collision frequency should use an appropriate constant
Vg less than that appearing in the low field mobility.

In a similar fashion it can be determined that if impurity scattering
predominates, since vs(v) ~ v-l, the resonances are more poorly defined
at low carrier speeds (whefe the exponentials in Eg. 6.130 dominate) so
that the analysis employing a constant collision frequency should use a
larger value of collision frequency than that associated with the low field
mobility.

In general, the inclusion of the variation of collision frequency with
carrier speed is not expected to lead to any significant departures from

the constant collision frequency theory.

6.5 Electrokinetic Energy and Power Properties of the Hybrid Mode

6.5.1 Carrier Distribution Function f Independent of 6. Since the

o S— —
quasi-static assumption has been made V x B =~ 0 so that it follows that
=1
z g(s) 4 JeeE. = 0 (6.131)
1X 1X ?

from which it can readily be found that
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2
S €
}: wﬁ ) 4 slE | =0, (6.132)
where W}ES) is the electrokinetic energy density of the sth carrier species,

and is defined by

k 1xX 1X

(s) _ __1 * _(s)
ws o= - 2y Re (ﬁ J\S > . (6.133)

Equation 6.132 indicates that 2. Wl({s) must be negative for unstable (mi <0)
S ;
interaction to occur. From Eq. 6.131 and Poisson's equation, Eq. 6.67, it

can be found that

(s) . o Z
Ix Tk AN s (6.134)

so that if the carrier species are assumed to be separately conserved in

number, then JS{) = (w/k)qSle. Applying this result to the case of the

cylindrical degenerate distribution function, Eq. 6.63, gives the following

for the mth resonance:

5(8) i

1X 2 _ - Gyt oo
k V;s(d) kvOS JvS mwcs>

kv.
N, 2 2 Fs
JEwpseElxw m wchm ( —-——(DC )
)

(6.135)

where vé is given by Eq. 6.70. If k is assumed purely real Eq. 6.133 used

in Eq. 6.135 provides that
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kVFS
2 2 2
Pps© B,y |® w77 < <b > @
(s) Ccs T
Wy = kvog T Mg - o, V;
k2v§s | - Kos - jvé - “u%s|2 i

(6.136)
For example if this result is applied to the electron-hole interaction

studied in Section 6.5.1, then the following results:

5 kVFe
2 2 -
B 5,1 Lo, | o2 (2=
|<D | W
we) - - = kv - | I—(-ﬁ v!
k 2 oe e w; e
k2v§e w - kvoe - jvé + lwﬁel
(6.137)
and
ka
e |E |2n|o, | 5 < ——4§{>
ph 1x ch' . 'm I
(h) Iaﬁe ©r
W = » mlakh| - Z;-) vﬂ ,  (6.138)
i
kzvﬁh w = Jvp - m|wch|

where m = 1,2,3,.... For the unstable solution of Egs. 6.7k through 6.78,
it is true that o, < O and kv__ > |o_| so that (&) < 0 ana w(® > o.

i oe ce k k
It can also be found from Egs. 6.134 and 6.135 applied to the electron-hole

interaction that

5 kae
2
Eabee |aEe| Jl <’—————->

@ . ol L ) - s -+ s T
Dl > e i J T oe ce
kVée @ .- kvoe h JVe' * |wce|
(6.139)

and

1X
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kv
2 2
2abh€m|aéh| Jm < | >

h) 'u%h

1

K h

V;h w = jv. - m]wchl

(6.1%0)

A comparison of this result with Egs. 6.137 and 6.138 shows that

the sign of W(S) is equal to the sign of Re(p(s)/E This is similar

k 1 lX>.

to the result of hydrodynamic theory for space-charge waves in cold
plasma, viz.,
2 _ _ s _ 2 _ .2
mpek{(v Ewi)(a% kvo) J[(a& kvo) o + wiv]}

o E._ , (6.141)
| (o - kv )(w - kv - iv) |2 1x

in which if (¢% - kv ) < O then Re(pl/Elx) < 0. Thus carrier modes with
negative electrokinetic energy density are characterized by the property
of bunching charge carriers in regions where the passive modes (e.g., the
mode With v, o= 0 in Eq. 6.lﬁl) have carrier depletion and vice versa. The
same energy exchange process occurs for the hybrid mode as for the space-
charge mode then. A basic difference, however, exists between the hydro-
dynamic space-charge result, Eg. 6.141, and the present kinetic case in
that, although the former requires vy > a%/k, in the latter case the sign
of the electrokinetic energy density is dominated by the function me, in
Eq. 6.136.

Results of this form also follow when the kinetic power flow is
examined. Only the case ki = 0+ (i.e., ki > 0 and ki < kr) is considered
because of the difficulty associated with handling arbitrary complex

arguments of the Bessel function. Since the quasi-static assumption has
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been made the Poynting vector is zero and the conservation of power takes

the following form, with w assumed real:

For the cylindrical distribution function then, Eg. 6.135 used in Eq. 6.142
gives, at the mth resonance,
ka
o e lE [Pomnw J2 <j———§-> v!
s 1x cs m wcs S

(s) _ .
P ~ ; ki < kr . (6.143)

2 _ R P B 2
kist |k (w kvos v, maés)‘

Comparison with Eq. 6.136 shows that Wﬁs) <0 (wi < 0) is in correspondence
with Pés) <0 (ki > 0). Hen¢e similar statements with regard to the
energy exchange can be made regarding the sink and source of the electro-
kinetic power.

Similar behavior is found when the drifted Maxwellian function is

examined. From Eg. 5.120 in Chapter V, for the mth resonance, with the

- definition of vé in Eq. 6.119 having been utilized, the following results:

-\
.2 S
jof €E. mw e T (\)
s s T1X cg m' s
EX) = - — 2p — - (6.1kk)
k vTS(w - kvos - v - )

so that when this result is compared with Eq. 6.135 it can be seen that the
Wés) and Pés) functions can be obtained from the results of the cylindrical

distribution function by the replacement

2

kv kv N2 kv
Fs 1 _ Fs Fs
Jﬁ <’¢ES > - 3 exp [ <‘wcs > } I < = > . (6.145)

cs
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In summation, for those distribution functions fos which are
independent of 6 so that Eq. 6.60 may be used, the electrokinetic energy
density and electrokinetic power flow are negative if mmCS < 0 corresponding
to the slow-cyclotron type of mode and hence are similar in general to

hydrodynamic theory.

6.5.2 Carrier Distribution Function fo Dependent on 6. As discussed
in Sections 6.2 and 6.3, when the dc electri;—field is taken fully into
account, the carrier distribution function fo can become dependent on the
angle 6 in the x-y plane defined by Eq. 6.33. When this occurs Eq. 6.55
(and hence Eq. 6.60) is no longer valid and as a result interesting
deviations from traditional requirements for instability (e.g., v > wr/k)
are potentially possible.’ Various cases in which the carrier velécity
distribution function fo is dependent on 6 are now examined.

Up to this point the effect of the field Eoy has been ighored for
the holes so that the general formulation could be used. This neglect is,

strictly speaking, only permissible if IEoy/Bol <L v The effect of the

Th'
inclusion of this term is examined for a carrier (e.g., hole) whose drift

velocity is negligible in any direction (|vo] <v

). In this case employ
T .

the transformation

E
v o= <’—91‘> + u cos 6
X . BO

usin 6 , (6.146)

«
1]

where the field on is assumed negligible compared to Eoy' The solution
given by Eqs. 6.53 and 6.54 is still valid where now, with Eqs. 6.9 and

6.146 having been used,
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N, [ < Eoy 2 42 uE,
f = —————exp |- ——————-> }exp(——>exp[
° (2nv§)3/2 JE.BOVT 2v

().

so that f_ = fo(e). From Eqs. 6.9 and 6.146, the following results:

afo Vx 1 (E y
= - — - - — —_
5;— > fO v2 B u cos 6> fo(e)
X v 0
T T
From the Bessel function identity,
[>]
exp(z cos ) = }: Iz(z) exp(jLe) ,
J==00

Eq. 6.147 becomes

o - e (B Jea( ) ()

from which g_ (u) is defined by

£.(0) = g, (u) z ( >ejw .

f==00

)

(6.147)

(6.148)

(6.149)

(6.151)
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By proceeding in a manner similar to that used in obtaining Eq. 6.57,

Egs. 6.35, 6.148, 6.150 and 6.151 provide the following:

fls(e) = Z,gnbw Jm(b)Jn(b)Ilz <- 5 z> go(u)

. [Sl exp[j(m+i-n)6] 5211 ( exp[j(m+L-n+1)6] . exp[j(m+f-n-1)6] > } ,

m+l-a m+f-a+l m+f-a-1
(6.152)
where
Eo
w -k < E—l;> - Jv
5 __T]Eleoy_le . b=ﬂ,a= o
1 . joN 7 w w
Jd)CV?BO co c (¢
and
nElx
62 = S - (6.153)
JE&CVT
From Eq. 6.51 the RF number density is found as
E 2
. oy
N exp |-| —————
> JTﬂi}lxoep{ \/'EBVT> j] E
I, n=-c a)cv;(a - n) ° e
o= R —— , (6.15%)
oy
v exp [- < > } ©
\/-E_B VT L
- o )
2 a -n
w Vv
c T m, n=-0

where
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- [Ta(E)s(B)g, (2

and

" V > exp < 2V2 > u du (6.155)

® ku ku ) 1o _u ) 2
fo I < o, > 3, < S > L exp 2@ > u= du, (6.156)
wherein use has been made of
- 2_ - '
Im_l(x) + Im+l(x) = 2 I (x)> = 2Im(x) . (6.157)

It can be verified that if Eoy -0, Eq. 6.154 reduces properly to the result
of Eq. 6.108 since only the n = m term survives in Eq. 6.155 [In(o) =

except for IO(O) = 1] and

1oy 20 23 [ 5 (8) 4 (5) (0 * Han )

2 nw © 2
exp <_ _u__) w2 du = kcs J121 K—“—) exp <- u___> uda , (6.158)
2v§ 0 Pes 2v2
where Jn_l(x) + Jh+l(x 2n/x ) has been used.

Tnspection of Eq. 6.154 indicates that the resonant form is still
present in the factor (a - n) representing the nth resonance. In particular
the n = O resonance can now appear, whereas this gave zero contribution
for £ independent of 6 as can be seen in Eg. 6.60. However, for the

= 0 resonance in the hydrodynamic limit, kVTs/aEs -0, Egs. 6.154

through 6.156 give the following:



Ll ~ /\ Ja(O)Io - Z > exp | - ——;:) udu o~ vy exp 2y2 >
0 BOVT 2vT 2BovT
00 uk -
L = b/\ J2(0)1 (— __9X_> U2 exp <} ———-> au ~ - 2LL ey (
2 o ° 1 Bov% 2v% 232v2

and thus N = 0, wherein use was made of
1

and
f exp(-a262)8 "7 (08) " = —P— exp < p‘"> 5
0 Lg2
(2a®)

[Re(v) > -1, Re(a®) > 0] . (6.160)

In general the integrals in Eqs. 6.155 and 6.156 are not solvable
by analytical means. Some information can be achieved by using Eds. 6.15M
and 6.154% in Eq. 6.133 to obtain the carrier-mode electrokinetic energy

density for the nth resonance in the resonance approximation

N e
o - ) : 2

=00 4 _ __O_X_'t_
Eva w -k < > Jv nw,

where
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N N A

==00

so that if o, Ko, W <0 if [(E /B L + L 1< 0. By proper selection
of EO, go, etec., it is expected that this latter condition can be achievea.
In this case for example the hole mode can act as the energy source to
drive the instability.

An alternative method whereby the distribution function becomes 6

dependent occurs when the field EoX is taken more rigorously into account.

The following transformation is now used to replace Eq. 6.146:

<
1

E
L= ‘<'§9X:> +u cos 6 ,
(0]
EX
- -(§9_>+usine . (6.163)
(0]

Then, if the carrier drift velocity is negligible (v >> ab), Fas. 6.9

and 6.16% give the distribution function as

f = _O___ exp M exp < > exp < > exp < sin 9>
0] 2
(Env EBové

N uE N .
Z I, <--—%)er9 . (6.16%)

l=-c0 BovT
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Inspection of Egs. 6.53, 6.148 and 6.164 indicates that the term in 6
introduced by the field on can be taken into account by replacing the
argument of Jm(b) in Eg. 6.152 via

ulk

p = B kg _ox (6.165)
(Dcs wcs Bov$

The RF density given by Eq. 6.154 is still valid where now, however,
2
I: < on > wa . ) <ku>
exp |- | —————mo J ku _ J
1 \/E B v 0 ®e
oT
ukE
I <} —2L ) exp <; ) u du
n-m B V2
ofT

|
1]

and

2

- [ ()] [a (e

)
¢ (DC

Inm<Bv>exp< >u au . (6.166)

To obtain a more tractable analysis assume that Eoy field effects are

=
]

negligible by letting Eoy -0 (e.g., the applied field can be Eoy and
the Hall field on’ with on >> Eoy’ without loss of generality). From

an analysis such as used in Eq. 6.158 it can then be found that
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3 pr%ﬂK% ok by > (=)
(. £)e

and
L = - L . (6.167)
2 B 1
k . 0X
< 5: oY B v2 )
oT

The general result®®

” 2,2 p _ O?

exp(-p3t )Jv(at)Jv(Bt)t dt = — S exp ;
0

Re(v) > -1 , |arg p| < % , (6.168)

applied to Egs. 6.167 and thence to Eq. 6.154 provides the following:

00
}: JnElkao 0w, -xc

w-jv- nw, 2y € In(xc)
No= n=- f}\c 5 Re(n) > -1 , (6.169)
2 e S 1. ()
. n c¢
Lo )L E00
w=-Jv-nw
[¢]
=-00
where
k2v§ KE_,
N = e (6.170)
(DC o C
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Since vé = KT/m*, where T is the carrier temperature, K is Boltzmann's
constant and m" is the carrier effective mass, the view can be adopted
that the effect of the field on is to replace the temperature T by the

complex temperature

*
onm wc
T =

c T TTIE E (6.172)
o

The resonance approximation is now made, corresponding to the omission

of the'n = 0 term in the denominator of Eq. 6.170, which is valid provided

that Ihc! R 1 and is strictly invalid if Ixc| << 1. Equation 6.169 then

becomes the following for the nth resonance:

-\
. c
JnE. kN nw e T (A)
N - 1X o0 ¢C n c ; |>\' | Z 1 , (6.172)
. aBh (0 - Jv' - nw) ¢
c''e ¢
where
->\'c
! = -
vto= v <i e In(xc)> . (6.17%)

A study of the function e ¢ In(xc) indicates that Re(v') > O must hold.
Apply these results now to holes with |¢bh| << 12 by comparing Eqs. 6.108
and 6.169 so that the solution given in Eq. 6.120 is still valid but

wherein,

2 [¢]
oS, e I (\)
Fh - Fl:l = ph LA ) (6.174)
A _of
c C

where from Eq. 6.170,
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k2v2 kE
Th . X
N, = - i (6.175)
2 eV
o) o ch
ch

Recalling that the field EOy is negligible or zero (e.g., the applied

field in B« and the Hall field EOy is shorted) it should still be shown
that the undrifted form of the carrier distribution function is permissible
in the presence of E . when v >> Iwcl. By following the system of Eas. 6.32
through 6.41, but where now E_, is retained and on‘= E, =0, so that

Eq. 6.163 replaces Eq. 6.33, it can be found that

2

Y —e oo (- 2 )exp( )exp[ (er V]
. ii 3 <-j 2—95:> 308 [1 ] :Ezz ( (dn - v/w,)cos 6 +2sin 6 > }

E
2
- o' o'T 1+ <ﬁn - 3—-)
wC

(6.176)

Inspection of this result shows that for v >> |wc| the last term should

give a negligible contribution so that

2

(e ()

& UE . N (v +v2 +v3)
) (e s e () eam)
n=- BV (2nvy) 2y
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thus validating the assumption of a negligible drift velocity. The RF
number density can also be found directly, without approximation, for the
exact carrier distribution function fo of Egq. 6.176 (although the result

is not in closed form) by the following procedure. From the transformation

of Eq. 6.163 with Eoy = 0 it can be determined that Eq. 6.176 can be

written as

N vV o+ vE o+ R E v2
f = 9 exp <- z ) - 2X exp <— —Z—>

° (2e?)® 2v2 B v2 22

T oT

2 2 2

. (v, + B /B)) B v2
exp \ - - "€xp | - —\/—_—-—— exp | - =

’ 2 2 B,vy 2y

E
. v 0X
o jn-— v +< +—-—->]
PRGN D)l A
: JBv2 X J Bo NG
n=-o0 oT . v
b)) ]
w

¢

Yy T on/Bo
. exp [J'n tan (_y—v__> ] . (6.178)

X
From Eq. 6.50, with Eoy = 0, it follows that

0

‘ nE 6
fl(e) = m;w exp(jad) exp(-jb sin 6) [ (sz “/:3 Jm(b) exp‘[j(m - a)e']
afo(e') W, 0
. ——3;;-— a"' - o L/; Jﬁ(b) exp[j(m - a)e']fo(e') dG'J , (6.179)

where a = (w - jv)/wC and b = ku/wc.
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Use of Eq. 6.178 in Eq. 6.179 obtains f (8) which applied to Eg. 6.51
1

provides the following:

. [ 3
JT]ElxNo [ < on >2 } Z Z Si(ll,n)
— -\ = =T
Ewcvé Vo BoVT I,n=-0 i=1
Nl = - 24 —~ , (6.180)
.V on D(Z,n
bEd o {' < ffzr—___'> } E: 2 - 1
2
OV 2 BV l,n=-w

where

" 00 2 C
e = 21 Jf J, < E?'> exp (— E > > A °T 4 qu , (6.181)
1 2v .

0 (¢ T k 0X
(Dc Bovr_%
(E /B> ul 2
g = oX 0O f J£<i—u Jn<—j >exp<—————>uH(lZ,n) du ,
2 1+ (jn - v/w )? 0 c B,V 2v§
(6.182)
where
2 22
H(z,n) = - U._ <Jn - — - Jjn + <Jn - 14 —g_'.z;nl J _ <l<.9.
2 w w b I-n \ »
Vi ¢ c
v . . u2 2
-2jljn - — Jl-n<b)+—n jn-—|+j—-—\jn-—)+n
e c v ve c
T T
2 2
(2o D) 2 £ n ) s (2)
n w w, 2v§ V% w, n+2 \ w
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R e

primemy R

U.2 3
. exp <— ——>u K(L,n) du , (6.184)
2y

where
K(f,n) = 2 <’n -7 <'55 + [ <5n - ) - jJ
? J w, -n , w,
ku . v . ku
Tpn-2 <5§_> ¥ [(Jn ) w—> ¥ J} p-n+e (w_> » (6:185)
c c c
and
D(,n) =f°°J<k—u J<—.j exp L(,n)u au , (6.186)
? 0 1 W, n ¢
where

2B vz[l + (jn - v/w

L(L,n) = Jz_n<£l—l-> -

(6.187)
This is a general result valid for any charge carrier species. The
integrals are not readily solved except for Eil which can be obtained using
Eq. 6.168 and correspondsto the earlier result of Eq. 6.169. Inspection
of Egs. 6.180 through 6.187 under the condition v >> |wc| shows that even

though the drift velocity is negligible,.e.g., Eq. 6.177, the full
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dependence of the distribution function fo on 6 can introduce additional
nonnegligible terms in the RF number density beyond those of Eq. 6.169.
Thus, in general, the dispersion relation obtained by first approximating
the carrier distribution function fo through > |a%] can differ
significantly from the result for the dispersion relation (for the exact
function fo) in the limit v > Ia%|. As a consequence, in the presence
of a static magnetic field the use of a complex temperature, such as

Eq. 6.171, to account for carrier heating effects is not in general
justified. In addition there is the problem that when v >> |ﬂ5| the
resonances are not well isolated so that examining a particular resonance,
i.e., selecting only one £ value,is a poor approximation. This explains
some of the anomalous behavior which can arise for undrifted carriers when
the resonance approximation is made. For example, if Eq. 6.172 is used in
. Egs. 6.133 and 6.134, it can be found that the electrokinetic energy density
of such carriers can bes negative due to the field on'

Conclusive statements regarding the effects of the dependence of
the carrier distribution function fo on 6 require a rigorous solution of
Eq. 6.180 which is not attempted in the present tract. This already
cumbersome expression for the RF number density is further compounded by
questions regarding the accuracy of a constant collision frequency assumed
in the presence of carrier heating. Some qualitative statements regardiné
the effects of the field on are still possible for the charge carrier
with |¢b| >> y. For example, inspection of Egs. 6.180 through 6.187
shows that the £/ = O resonance now gives a contribution to the RF number
density when EOX # 0. In addition, the effective collision frequency

concept is still valid where now at the £Zth resonance
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. 2
L oexp |- | —— D(4,n)
vto= v |1 - Z P[ <\E;OVT> } n : (6.188)

n=-co T

Inspection of Eqs. 6.186 and 6.187 shows that for IQE! >> vy, the function
D(£,n) itself exhibits a resonance form at n = t 1l; however, cancellations
occur when the summation is made so that these terms have no special
significance. An interesting case which can readily be analyzed is the

small wave number limit (k —0) when £ = 0. If Idél >> w,v Eg. 6.180 is

approximated by

JnE, N {%xp [- <'TJZE§5——->2 ] ij le_(0,m) + 83(o,n)1}
o'T

n=-o

N =~ - - —~ (6.189)
1 o) 2
2a>cvé {a +j —+— exp [- <——-—O£—> :I Z D(O,n)}
w v3 J2 B v
c T o' T n=-o
and by permitting k - 0 in Egs. 6.180 through 6.187 Eq. 6.189 becomes
J" 2 <‘ on “
“upg e[ (=) |} 2 .
oT 3 [op¢
N (k »0) - - M(—,a ),
1 N 2 2B2v2 -
T o o T
(6.190)

where again M is the confluent hypergeometric function. Note that implicit
in Eq. 6.190 is the result, derived from Eq. 6.188, that the effective
collision frequency v' — 0 as k - 0. This result is expected to be a good

approximation, provided that |d£’ > kv, w, v, for finite k, and hence

T

the field on introduces an entirely new mode, corresponding to £ = 0, in

which the effect of the carrier collisions on the wave dispersion can be
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negligible. In addition for E_ # 0 tables®! provide that M > 0 and

as a result if Egs. 6.133% and 6.134 are used in Eg. 6.190 it can be shown
that this mode has a negative electrokinetic energy density. Thus, since
the carrier drift velocity plays no explicit role, the field on introduces
a negative kinetic energy wave without the traditional requirement of
hydrodynamic theory that v_ > wr/k where V_ k. In the present case by

using Eq. 6.176 in Eq. 6.25 it is found that

2 2 2
_ on { Jr b on h onv
g 2 2 2
J2 B v, e 2B2v2 - <l+v_>
L o ¢ 02
- 2 c
2 (002
Eix a% Eix A
cml2, 1, 22)- — — 1 (3 3 22)
2BOVT 2B3vEw [ < Y o3} 16 % 2BOVT
oTtc o o
c C
(6.191)

for the component of drift velocity Il k.

It can be stated then that the dc electric field Eo I k when taken
fully into account leads to significant new wave properties with energy
characteristics quite different from the hydrodynamic theory. Similar

hen a al = = i
phenomen so occur for the case | =E =0 with Eoy #0 (E% 1 k) as

discussed in Appendix G. No attempt is made herein to actually develop the

dispersion relations resulting from the general number density, Eq. 6.180, due

to its complexity, but Eq. 6.190 indicates that unstable wave behavior is to be

expected when a carrier with |a£| >> (a»v,va) interacts with a secondary

carrier with IQEI < v. In addition, since v'(k - 0) -0 in Eq. 6.190,
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it may be possible that for finite wave numbers the effective collision
frequency actually becomes negative. The important point here is that when
carrier heating occurs in the presence of a static magnetic field the

effects of collisions on the wave propagation can be significantly reduced.

6.6 The Ordinary Mode in Solid-State Plasmas

When the geometry is retained with B l Q, k Q, with the applied
static electric field on and the Hall field Eoy’ the ordinary mode is
defined as the electromagnetic mode with Ei I 2 and El = Bly_§. For
isotropic media with negligible Hall drift velocities this mode is well
defined by the component €,z of the effective dielectric constant,

(e = T+ o/jawc). If the RF magnetic field Bly is retained and N = 0 is

set, since there is no RF bunching, Eq. 6.32 becomes

5 of
. 18
3o - kvxs)fls *tngB <§ys v s " Vxs BV > i <' ox év oy 5V >

of . of . of s
2 22 - v B 2 = -y f . (6.192)
S 78 1y BVXS s718

+ ——
* 0 E, BVZS nsvstly BVZS

The following coordinate systems, previously used, will be needed:

v, -V = u_ cos® = v__ cos 6B sin @
XS 0s S rs
v = u sin6 = v _sin 6 sin ¢
ys S . IS
’ = V_ cos u = v__ sin 6.1
V.o s o, ug rs ¢ (6.193)

from which the following can be found:
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o0
o P27 0
J[L/l/\ deS dv s dvZS = Jf Jf U[\ uS duS de deS
¥ 0 0 -0

[T
= v sin @ dv_ d8 dp . (6.194)
0 0 0 rs rs

Only the drifted Maxwellian, Eq. 6.18, and the drifted degenerate function,
Eq. 6.70, are studied in the following with their respective distribution
functionssuperscripted by M and D for clarity. The term EOx is assumed to
be negligible; therefore, the method of Egs. 6.34 through 6.37 provides

the following where now a = (o - kvos - va)/abs and bs = kus/wbsz

! n.E kv v
1s . ; _ _ sz ___0os zs M
R J(as - by cos e)ffs - w ( w > > Tos (6.195)
cs Vg

and

af?v D nsElz kvos vzs Bfgs
0 j(as - by cos e>f1s - - > dv > ? (6.196)
wherein the following were used:

SfM v - BfM v éfM v
o8 _ _ _Xs oS fM }
v > os ’ ov

XS v ys v z8 s

o _ )A(Mi ﬁi_h<%s
ov xs ~ Vos’) ¥ ov ? évys v ov ?

XS rs rs rs rs
M v [ o
ov B ov > (6.197)
z8 7S rs
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and Bly = -(k/w)ElZ corresponding to variation as exp[j(wt - kx)]. Let
the right-hand side of Eqs. 6.195 and 6.196 be designated R' and R,
respectively. It can readily be demonstrated that RM’D is independent

of 6. Thus the solutionsfor f?éD are found in the same manner as that

for the le term in Egs. 6.38 and 6.39, leading to

kvos
fM o © JnSEJ_Z < B w > VZS M
lS(9) = zi }: Jm(bs)Jh(bs) — . f exp[j(n - m)6]
m=-00 N=-c0 s VTS
(6.198)
and Ky
) ) (-J')TISEIZ < - wOS > v
D _ ZS
fls(e) - ZS zij Jm<bs2Jﬁ(bs) a%s(n - as) Voo
==00 N=-00

3¢
. <5V_0§ expli(n - m)8] . (6.199)
rs

Since the ordinary mode is dependent solely on €, only the RF current

. A AL .
density J , = le(gl = Elzz) is required where

}: b/l/l/\ vzsfls(e vXS dvys deS = }: Jﬁz,s . (6.200)

S

Use of Egs. 6.198 and 6.199 in Eg. 6.200 then gives the following:

-\
© 2 5 _ 2
_ E: ) Jea e Im(xs) ] ® - kv . L kv
1%Z,8 w=-kv  -Jv - mw 17 w ’ S
os s cs

(6.201)
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and

k
00 jeng N E <l -

v
os>
s 'sT1z w / o Ny kv
3P E: - Jf JF J2 < *° sin é)
12,8 o _(m - as) 0 Yo MmN\,

S cs

. < afgs . p
* cos® @ sin o ve dv_ . do (6.202)
§§rs rs o rs

and since, from Eq. 6.70,

afgs Mg 6
v b [6(vrs) B 6(vrs B VFS)] ? (6.203)
rs TV

then

[¢¢]

je3e® E. (o - kv ) x kv,

= }: + gps l?m — jos Jf sin ¢ cos® o Ji <}5¥E§ sin é> dp .
. aubs S 0 cs

(6.204)
Employing Eq. 6.201 in the usual manner in Maxwell's equations leads to the
dispersion relation for the Maxwellian distribution function,
-\
2

0
5 s . fps(w - kvos)e Im(kS)
k%c® - of + A v — (6.205)
o s cs

s
S m=-o

If now (vaS/AES) -0, it is true that I () -0 except for I (1) -1

and Eq. 6.204 becomes

o (o - kv )
k2c2 - o2 + }: bS °8 = o , (6.206)
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which is identically the result found from hydrodynamic theory. Significant

E

deviations from the hydrodynamic theory can then occur if kVTs

the most interesting of which is the possible resonant behavior

>
o

w - kvo - mwcs ~ 0 leading to a slow-cyclotron-type mode. Similar

S
statements can be made for the degenerate distribution function since if
kas/abs -0 in Eq. 6.204% only the m = O term survives in the summation
and consequently the hydrodynamic result, Eq. 6.206, is obtained exactly
when the integration is then performed. In the general case this integral
cannot be readily evaluated; however, this integral by inspection is
always positive or zero and hence qualitatively behaves similar to the
-\

function e ° I (A ).

It is important to note that unlike the purely transverse mode
(g I @0) studied in Chapter V the ordinary mode does not present any
problems associated with nonlocal effects which alter the resonance

structure. To study the instability characteristics of the ordinary mode

define the effective plasma frequency, a%, by the equation

2 -\
(@) = of e S () (6.207)

for the Maxwellian distribution function, and by

(@) = 3.2 | o 2 g g2 ———kVFS 1 a 6.208
o = 349 ; sin ¢ cos® @ J- = sin ¢ ) do (6.208)
cs

for the degenerate case. For fundamental resonant interactions

k=~ (o + abs>/vos’ so that if A 2 1, the dispersion relation for either
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the Maxwellian or degenerate cases can be approximated for a two-carrier

system from Egs. 6.205 through 6.208, with m = 1 by

1\ L 'y - k
oo o (eg) (o= kv ) (wp,) (@-dv )
k=c= - o + —— + — = = 0 . (6.209)
w - kv Jv, w w = kv Jv W
ol 1 Ci 02 2 ca

Simplify further by assuming that v ~ 0 and lvOll << ¢ so that the
coupled-mode form is obtained in which the coupling term appears on the

right-hand side,

w' )2
. X _ 1 ) .
(w - kv - v, - wCl)(w v, - wcz) = s (w kvOl)(w v, ahz)
2
(w),)
- k2c2 (o - Koy = v, - w01)w » (6.210)

where o << kc has been used. Inspection of this result shows that to

. achieve the coupling strength required for unstable wave behavior it is
necessary that at least one of the carriers satisfy (wﬁ)g/k202 2 1.
Practically speaking, to avoid excessive Joule heating, this in turn requires
a carrier species with large number density and negligible drift velocity

in the direction of the applied electric field. For real k, Eq. 6.210

is solved as

1l

+6 +6 6 + + + + + + +
a2(1 o) kv 6+ (kv +o, )(1 6 )+, (1+8)+3dv(1+6)

Cl

+gv,(L+e ) ¥ JR , (6.211)

where

= + + 5 + - . 2
R (v, 8, + (kv g+ gvy + o YA +6)) - (o + v )1 +6))]

+ 4o 9 j j 6.212
Golog v ) ey, +av) o, (6.212)
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and >

. (6.213)

k2c2

Upon inspection of this result is is found that one of the carriers can

have a very large collision frequency without diminishing the possibility

for instability. For example, if v2 >> vl, @, <0, wbg > 0, and

k ~ 1+6 )+ |w 1+6 1 +6 + 6 ) instability occurs at
oo, 11 +0) + fa, [(1+0)]/(1+e +0) y

w =|o (L +6)/(L+6 +6) provided that
r Ca 1 1 2

vV

vl #6 )2 . (6.21k4)
1 2

In general instabilities of the ordinary mode are more difficult to achieve
than the quasi-static hybrid mode since roughly speaking in the latter
2 2

case the coupling constant is proportional to (a@/va) or (ab/ka) s
whereas in the ordinary mode it is proportional to (ab/kc)z.

As in the hybrid mode study it is also of interest to study the
effects of carrier heating on the cyclotron modes by taking the dc electric
field fully into account in the carrier distribution function fo. This

aspect is presented and discussed in Appendix H.

6.7 Summary and Discussion

A rigorous analysis of the wavespossible in the configuration with
k 1 B for various distribution functions has shown several important
results brought about by the kinetic theory which have no correspondence
in a hydrodynamic analysis. This has made it possible to relate experimental

data to the cyclotron harmonic structure of the hybrid-hybrid kinetic
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dispersion relation. Also, the kinetic approach can take carrier heating
effects into account explicitly. This has indicated that entirely new
modes can appear in which the collisions play no role and unstable wave
interaction is now possible in the fast wave regime (vo < a%/k). In this
case the coupling of the longitudinal and transverse fields of the hybrid
mode 1s increased, so that strictly speaking, the quasi-static assumption
should be lifted and the full hybrid mode form examined.

A study of the variation of the carrier collision frequency with
carrier speed has demonstrated that the use of a constant collision frequency
is actually an excellent approximation since it is strictly accurate for
the degenerate distribution function and it only introduces small quantitative
changes for the Maxwellian"distribution function.

An investigation of the ordinary mode in kinetic theory has revealed
that cyclotron-resonant behavior is present although unless the charge
carrier densities are larger and at least one of the carrier species has
a small collision frequency (v << w) unstable interactions are difficult

to achieve.



CHAPTER VII. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

7.1l Summary and Conclusions

The primary purpose of this theoretical investigation has been to
obtain an improved understanding of instability phenomena in plasma media.
This is based on a study of the electrokinetic power and energy properties
of the basic carrier modes present when the plasma medium is subject to
applied static electric and magnetic fields. Particular emphaéis has been
placed on the investigation of solid-state plasmas in which case carrier
collisions and thermal diffusion must be taken into account to obtain a
meaningful analysis.

A discussion will be given of how the present work alleviates the
problems associated with previous studies in this area. These previous
studies have been incomplete and/or incorrect in the following respects:

1. The hydrodynamic expreséion for the electrokinetic power flow
developed by Chu®* for space-charge waves has been explicitly used as a
meaningful expression when carrier collisions and thermal diffusion are
included.®”, %2 This is incorrect since to balance the electromagnetic
power flow it is not necessarily sufficient that the Chu electrokinetic
power flow be negative.

2. The hydrodynamic development of thé electrokinetic power for the
cyclotron modes has been obtained on a normal mode basis.71 This is
incorrect since the coupled-mode technique ignores both the presence of
the RF fields and the fact that the normal mode described by

w - kvO -, ~ 0 is in a nonlocal regime for finite carrier temperatures

so that cyclotron resonance phenomena should be included. In addition

-23h -
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past interpretations of the cyclotron mode electrokinetic power properties,
since carrier bunching is absens, have been based upon a second-order RF
electric field™® or upon a transverse gradient of the fundamental RF
electric field.®® The former is incorrect because the second-order RF
electric field has zero time average and hence cannot contribute to the
second-order conservation of power. Even if this field is extended to
_include a time-average component this would be due to a charge separation
effect related to the evolvement of the instability as opposed to any
direct relationship with the linear dispersion relation. 1In the latter
case®® the explanation of the power properties based upon the RF electric
field gradient is false simply because this gradient is not in general
present.

3. No attempt has been made to ascertain the electrokinetic power
properties of the hybrid mode which results when k1 §0 and since this
is a basic carrier mode the previous analyses are incomplete.

L. In the application of the electrokinetic power concept no
distinction has been made between convective and absolute instabilities,
although it is usually implied that a mode which is active (i.e., a source
mode) in a convective instability can also be active in an absolute
instability.

5. There has been no published work relating the dispersion equation
root structure in complex-k space based upon the mathematical causality
criteria of Briggs12 to the root behavior based upon the more physical
approach of analysis of the carrier-mode power and energy properties.

6. In developing the expressionsrelated to the conservation of power

and energy, no satisfactory explanation has yet been provided for the
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meaning and effects of the second-order time-averaged currents and fields
which arise in a general second-order analysis.

T. Because of the manner in which the Chu definition of the electro-
kinetic power is obtained, no attempt has been made to extend the concept
of electrokinetic power flow and energy to the kinetic theory. As a
result, in addition to nonlocal effects, phenomena associated with the
carrier distribution function, such as anisotropic carrier temperature
and carrier heating, have not been explored on a power or energy basis. ,

The problems associated with items 1, 2, and 3 relating to
convective instabilities were overcome in Chapter IT by adopting a more
general expression for the carrier-mode electrokinetic power flow based
upon an examination of Poynting's theorem. In this manner the thermal
kinetic power flow and the power flow associated with carrier collisions
are incorporated directly into this carrier-mode electrokinetic power
flow (Pk). Since the electromagnetic power flow must be positive for
kr > 0 this expression Pk must then be negative to conserve power properly,
whereas the Chu electrokinetic power can be negative without necessarily
satisfying conservation. For space-charge waves the carrier-mode electro-
kinetic power flow, Py, reduces to that of the Chu theorem when collisions
and thermal diffusion are absent.

When this more general approach is applied to the helicon-cyclotron
modes discussed in item 2 it is found that the carrier waves must first
be separated into their right- and left-hand circularly polarized modes.
It is then self-consistently determined, by employing quasi-linear theory,
that by proceeding to a full second-order analysis the source of power

for the active mode is directly related to dc carrier slowing as opposed
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to the presence of any second-order RF electric field or gradient of the
RF electric field. The general formulation for completeness is also
readily applied to obtain the electrokinetic power flow for the hybrid
carrier mode.

As a by-product, the quasi-linear theory applied to decaying
electromagnetic waves is used in Appendix C to explain the experimental
observation®® of the induction of a dc voltage in the direction of the
Poynting vector when helicons propagate through a solid-state plasma.
This general phenomenon is termed the second-order Hall effect.

Associated with items 3 and 4, a kinetic-electromagnetic-
electrostatic energy theorem is derived in Chapter III which shows that a
general expression (Wk) fo? the carrier-mode electrokinetic energy density
can be obtained from the requirement of conservation of energy. This
plays a similar role for absolute instabilities, as does the carrier mode
electrokinetic power flow (Pk) of Chapter II for convective instabilities.
The énergy theorem also explains the behavior of an unstable root in
complex-k space as W, is varied to test for Briggs' causality criteria.
The theorem demonstrates the fact that in this dynamic state as the wave
blows up more quickly in time (ai — -») it must correspondingly decrease

its spatial growth rate (ki - -»); otherwise the energy is not conserved.

Analysis of a particular dispersion relation can now be iimited to those
frequencies and wave numbers which provide negative electrokinetic power
and energy modes.

In Chapter IV the quasi-linear theory is employed to determine
the significanqe of the second-order products described in item 6 and

shows that such products are directly related to the evolvement of the
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instability from the point and time of initiation. They are also
generated by the distortion of the potential energy of the system due to
the reactive effects of the growing RF fields upon the interacting
carrier(s). The meaning of the quasi-linear theory is explained and it
is shown that this is a valuable analytical technique for handling the
difficult problem of nonlinear wave propagation in inhomogeneous media.

In connection with item 7 the electrokinetic power concept is
extended to kinetic theory in Chapter V for the basic carrier modes and
the major carrier distribution functions of interest. Comparison with
the hydrodynamic theory of Chapter II shows that in many cases this
hydrodynamic approach has been improperly used and the limitatjions on its
applicability are pointed.out. In particular, near the cyclotron resonance
point, it is found that Maxwellian plasmas may exhibit a resonance-wave
slowing in the presence of self-consistent spatially growing waves,
even for small carrier number densities. This phenomenon is discussed in
relation to the microwave emission observed from n-InSb in the configuration
k B -

From a detailed analysis of wave propagation normal to the static
magnetic field undertaken in Chapter VI, it is found that the harmonic
nature of the microwave emission from n-InSb in the configuration where
k1l B, is in excellent agreement with computer results based on the
electron-hole hybrid-hybrid interaction. 1In this regard, an examination
of the effects of the variation of the carrier collision frequency with
carrier speed indicates that the use of thé constant collision frequency
approximation is well justified. A rigorous study of carrier heating

shows that an important quasi-static hybrid mode can arise for Maxwellian



_259..

plasmas when carrier heating is included in the equilibrium dc state

of the distribution function. This mode has a negligibly small effective
collision frequency, exhibits synchronous behavior (e.gs, 0= kvO when

EO 1 3), and possesses a negative electrokinetic energy density independent

of the sign of (w - krvo)°

7.2 Recommendations for Further Study

From a practical viewpoint the present theoretical work is of
most benefit in suggesting experimental studies related to the interaction
of external radiation with matter as well as the generation of useful
instabilities in'SOlid-state plasmas.

In Appendix C it is illustrated that external electromagnetic
radiation will produce a second-order dc electric field in the steady state
in semiconductors due to the action of the Lorentz force. Thus it is
expected that a pulse of radiation in passing through the material with
exponential decay will generate a second-order unidirectional transient
current.

In particular, assume now a material with some hysteresis in its
dc I-V characteristic such that if the current exceeds some critical
value, Icrit’ the material switches to a second state which will persist
when the current is removed. .The point is now made that instead of
supplying the current directly by attaching leads from the material to
a current source, by the second-order Hall effect, this unidirectional
current can be generated by external radiation. Indeed if the radiation
has a sufficiently large power density the critical current, Icrit’ can

be attained. In addition, if the radiation is focused, the current
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(which is in the direction of wave propagation) will be localized if

the pulse length is much less than the time characteristic of diffusion
processes. Such localized switching action has been observed in thin-film
amorphous semiconductors by employing focused pulsed laser radiation.®*

In the work cited® the theory behind the observed effect is ndt
clear and it is herein suggested that further study be given to the
second-order Hall effect to determine if it is responsible. Such switching
action is being studied for possible application to high-density memory
storage systems.

The second-order Hall effect occurs in any medium with mobile charge
carriers under the influence of radiation, with the strength of this
effect proportional to the damping decrement ki and the radiation power
density. Thus it is suggested that with the present availability of
high-power radiation sources (e.g., focused laser beam) important
technologies can be derived wherein either the induced unidirectional
current or unidirectional voltage (induced electrostatic effect) are used
"to advantage.

The study of Chapter IV utilizing the quasi-linear theory to study
potential energy effects raises some important questions regarding the
saturation length, maximum growth constant, etc., of an unstable system.

As an example of this it can be asked by what means (e.g., doping) can
these potential energy effects be used to enhance or quench the evolvement
of the instability.

The correlation that was effected between the causality criteria
of Briggs and the conservation of energy is wérthy of further study.

For example, to test a root with k ,k, >0 (at W = 0) for convective
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instability Briggs' criteriatl

2 requires that k; = - as @ - -, whereas
that of Sturrockl3 requires only that w; < 0 when ki = 0. The conservation
of energy approach, however, would appear to state that it is sufficient
proof of causality if an increase in the total energy density is balanced
by a decrease in the total power (e.g., if the stored energy in a closed
volume increases, it must be balanced by less energy leaving that volume).
This latter approach may lead to a simpler approach for assessing causality.
This is particularly important with regard to the kinetic theory since the
causality criteria of Briggs is often difficult to apply.

There are also fundamental problems raised between the concepts of
causality and energy conservation. Thus, is there a one-to-one correspon-
dence between all noncausal solutions and the violation of conservation of
energy? Can it be shown that the advanced potential solutions of Maxwell's
equations violate energy conservation?

Further study is also suggested to correctly analyze the residue
associated with the cyclotron resonance when k is complex and w is
assumed real. The general problem of a residue is handled (even in
collisionless plasmas) by introducing a small amount of damping so that
the Landau pole, for example, is written as w - kvX S0 - kvx - Jjv. 1In
this case for real k it is only with w; > 0 (damped wave) that the pole
can exist, as is well known. However, when the magnetic field is present
and k is complex, the correct interpretation is not clear.

In Chapter VI it is felt that additional theoretical work is
warranted in the study of carrier heating effects on the wave behavior.
Although it has been commonly asserted that such effects are negligible

if the drift velocity is small compared to the carrier thermal velocity,
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the present work indicates that this is not the case since an entirely
new mode can appear corresponding to the extra degree of freedom in the
system.

Finally, in the experimental study of instabilities in solid-state
plasmas, the theoretical studies of Chapters V and VI suggest strongly
that attempts be made to couple directly to the bulk of the material
(as opposed to an antenna approach based on surface charge oscillations)
by the use of high-dielectric constant end plates to match the waveguide

field to the field in the bulk.



APPENDIX A. KINETIC POWER OF SPACE-CHARGE WAVES TO SECOND ORDER

Tt has been shown®® that the kinetic power of the slow space-charge
wave is dependent only on first-order variables. Since the presentation
given therein is vague the theorem is rederived.

As Tonks72 has shown, the kinetic power may be written in the
present case as

P = =J , (A.1)

since all variables are one dimensional. To second order, the velocity

may be written as
— - 2 -
Vo= v+ cos (wt er) + vz(x) + 1V cos (wt er) s (A.2)

where V , V2<X)’ and V2 are time-independent. V wvaries as exp(kix) and
1 1

the functions vz(x) and V2 vary as exp(2kix). Similarly, the current density

to second order may be written as
— - 1 -
J o= J +J, cos (wt er) + Jz(x) + Jé cos 2(uwt er) s (A.3)

where J , Jé(x), and J' are also time-independent, J varies as exp(kix)

1 2 1

and the functionsJ (x) and J' vary as exp(Ekix). From the time-averaged
2 2

continuity equation, when the current density is equated from outside the

interaction region (Jg) to that within [JO + Jé(x)], it is seen that

J(x) = 0 . (A.L)

-2k3-
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If all contributions are retained to second order,
2 _ 2 2 2 _ - +
Jv J Vg + IV cos (ast er) + 23 vV cos (wt er) 2J6v0v2(x)
t2J v v cos 2(wt - k x) + J v2 cos(wt - k x) + 2T vV, cos®(wt - k_x)
002 T 10 T 101 T

271 - . .
+ vOJé cos 2(wt er) (A.5)
When the time average of both sides of Eq. A.5 is considered, the following
is obtained:

1 > ’
5 IV + 2Jovov2(x) FYV I (A.6)

Time average (Jv°) = Jbvi +
MacColl® has performed a mean-value analysis applicable to the present
case which shows that

V2
S
ve) = - 2 (8.7)
o
so that the second-order variable contribution in Eq. A.6 is annulled

and the time average of Eq. A.l becomes
. - L1 2
Time average (Pk) = & (Jbvo + vOVlJi) s (A.8)
verifying that it is sufficient to know the fundamental fields to determine

the carrier mode kinetic power. In addition, the second-order longitudinal

force equation is
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d BV (X> d
e [V2 cos 2(at - er)] A ——%g—— VS [V2 cos 2(wt - er)]

v cos(wt - er) %; [Vl cos(at - er)] = nE2 .« (A.9)

The differentiations having been performed and the time-average real

part having been taken, Eg. A.7 then shows, as expected, that
Time average [Re(EZ)] = 0 . (A.10)

Equation A.2 shows that

Time average (v) = v, o+ vz(x) . (A.11)

On the basis of Egs. A.T and 2.54, the kinetic power flow may be expressed

directly in terms of the beam slowing with distance,

by 3 v (x)olw - kv )
Re(P,) = - ——>2 re. ., (A.12)

k 2 2.2
(o= kv )"+ kivo]

Similarly, from Eg. 2.58, the circuit power may be written as

LeaPav®
PP o PO jf v (x) 2. 4s , (A.13)
circuit 2 D
(o - kv)

which gives the power (e.g., in watts) directly in terms of the beam

slowing.



APPENDIX B. VERIFICATION OF THE CYCLOTRON-MODE KINETIC POWER

Since a complex transformation has been used (Eg. 2.6) it should
be verified that the power expressions obtained are physically valid.

From Egs. 2.46 and 2.47, invoking the exponential dependence expl[j(at - kx)l,

kv
. - R
jlw - kvo)vly SV, =00 < = Ely (B.1)
and
( kvo
i - + = - —— . °
jlw kvo)vlZ OV 1 = B, (B.2)

These equations having been used, the contribution to the source function is

* % ar, * *
E. . J_+E_J = jlw=-%kv)v. v. -0V v
1y 1y 1Z 12 niw - kvoi o’ 1y 1y c 1z 1y

+ ] k * rov
iw - vo)vlzvlZ 0¥y, Ty . (B.3)

Since the circularly polarized modes are uncoupled, one of these modes is
selected, e.g., (-) mode, so that the following definitions can be made

(in isotropic media):

Vg = vl explj(wt - kx)]

and

v, = V. exp [j <;m - kx + %-)J s (B.4)

where Vl is independent of x. The use of these definitions in Eq. B.3

provides the following:

-oh6-
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2kix
N N 200 |V [% e Jo- kv - o)
Re(EE.J _+E J ) = Re (B.5)
1y 1y 12 12 n w .- kvo
Use of Eq. B.l in Eq. 2.48 shows that
V.. F 2Vl expljlot - kx)] . (B.6)
From Eg. 2.7 the following result is readily derived:
M Jolw - kvo - mh) N
Re(El_Ji_) = Re <’ kvo> OV, Y, > s (B.7)
which from Eq. B.6 may be written as
| | 2kix
by |V |12 p e jlo-kv - )
* _ 1 0 0 c
Re(E, _J) ) = : Re< 5 > . (B.8)
Comparison of Egs. B.5 and B.8 shows that
* * 1 *
Re(Elley + ElZJlZ) = 3 Re(El_Jl_) s (B.9)

which verifies the physical significance of power terms in the transformed
system and explains the factor of one half in the Poynting expression of

Eq. 2.22. Taking the real part in Eq. B.8 gives

M w kv o |v. |2
Re(E. J° ) = eroc 4 ) (B.10)

- ) 2 2.2
nl(w krvo) + kivo]

which is to be used in the kinetic power discussion.



-2L8-

An alternative proof which brings into play the dispersion relation
can be shown. For isotropic systems, regardless of the number of carrier
species present or the form of the interacting circuit, it is in general
true that the dispersion relation for the purely transverse interaction

may be written as

[-;b ibJ [ Eiz } B [ Z } ) (B.11)

from which the following can be found:

1 )
y = .T.J . (Bolz)

Equations B.1l and B.2 are solved for the RF velocities of the sth carrier

species in terms of the fields as

(s) Ng(w - kv S)Ely _ _
iy T ole? - (o ? kv )Z] e = W55 # g 2:22)
CcS [o}S]
and
() | O Wogdhy )
iz T wle? - (o - kv_)2] Tes 0T VOS) ’ (524
¢S] oS

where EQ. B.12 has been used. Equations B.13% and B.1L4 are then sufficient
to obtain the following:
2 2
EQbSe ]Elyf k.v

* * ios
Re(E J +E J.) = L (Y,
J ol(w-kv - )2+ k2 ]
r cS 1l 08

) 5 (B.15)

oS

this provides the same information as that of Egs. B.9 and B.10.
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If one returns to the (-) mode formulation these results indicate
clearly the dynamical reasons why the modes with.aé < 0 (slow-cyclotron
mode, helicon mode, etc.) have the negative kinetic power property under
growth conditions (ki > 0). Since there are no collisions in the present
analysis, taking the real part of Eq. B.3 shows directly that the only
power exchange between the fields and the carriers arises due to the
current le from the field Ely and the current le from the field Elz'
When w, < 0 and ki > 0, the viewpoint can be adopted that the field
Ely(ElZ) acting through the static magnetic field produces a contribution
to JlZ(le) which is 180 degrees out of phase with ElZ(Ely). Self-
consistently then, when ki > 0 and &b < 0, the carriers supply net power
to the fields. It will be.shown in Chapter II that this power is
ultimately derived from the dc carrier motion. Note the important result

that this phenomenon is not explicitly dependent upon the sign of

(w - krvo)'



APPENDIX C. THE MEASUREMENT OF POWER UTILIZING THE SECOND-ORDER HALL EFFECT

The nature of the second-order time-averaged dc electric field E2_
is studied. With reference to Fig. C.l, a circularly polarized electro-
magnetic waveguide mode propagates through an undrifted n-type semiconductor

sample (e.g., n-InSb). From Eq. 2.26, since v, =0 and for the closed

system with one carrier species Jé_ = 0, it must be that for the cold plasma
model
OE
- - 1 i- )2
EZ‘ = -Re ( B30 Vl_ —gx——> X (c.1)

within the sample. Equation 2.7 becomes, when collisions are introduced

into the analysis,
nE = Jlw - jv - a%) v . (¢.2)

From Eq. C.2, the result may be found for Eg. C.1l:

(w. - o)k, - vk
g = . .c i Ly

- o # . (c.3)

l—

The second-order field E2_, although varying with distance iﬁ the direction
of wave propagation, can be considered a second-order Hall electric field

" since it is set up in the same mamner as the well known zeroth-order
phenomenon. Indeed, this field has been studied ®® using linear polarization,
no static magnetic field, and germanium samples to construct Hall-effect

wattmeters for the measurement of RF power.
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SOURCE WAVEGUIDE FOR CIRCULARLY
/ POLARIZED MODE

\4

©
(a1
sl@

|

FIG. C.1 UTILIZATION OF THE SECOND-ORDER HALL EFFECT TO DETECT ELECTRO-

MAGNETIC POWER OF CIRCULARLY POLARIZED WAVES.
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Fquation 2.19 in the presence of collisions with Vo = 0 gives

v, |2 o, - ©)% + 2]
) = = fa- EQ:E - i . (C.4)
Ul
o

Re(Pez_

Using this result in Eq. C.3 gives

[(w - o)k, - vk ]
g (x) = Po % TV T Ty Re[P_, (x)] . (©.5)
2- k [(w, - w)2 + V2] ©

Since
i
P,.(x) = P, (0)e , (c.6)
where Pez_(o)'is the electromagnetic power at the top surface of the
sample and is the quantity to be measured (questions of reflected power
from the front or back surfaces of the sample are ignored in this analysis),
and ki < O corresponding to a decaying wave. The voltage developed across

the sample of length L (switch S in Fig. C.l is set to the V branch) is

L w [(o - o)k, -k v] 2k, L
V=-[E PR M rV(l-el>Re[P£_(O)].
Yo 2t 2kikr[(wb - w)® + 2] ©

(c.7)
Alternatively, by moving the switch S to the I branch, the short-
circuit current may be measured. Since E = 0, when collisions are

introduced into Eg. 2.26, the following results:

- = l'
V. = n Re <'23w V.. > . (c.8)
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The approximate current drawn is
I = ov (0)A , (¢.9)
2 o 2-

where A is the device cross-sectional area. Use of EQS; C¢.5 and C.8 in

C.9 shows the following:

2 - -
. _ nabA[(ab w)ki vkr]

2- 2 BRI
ve kr[(“é ®)? + 2]

Re[Pel_(O)] . (¢.10)

As an example, exactly at resonance (w = “é): of the right-hand polarized

A
mode (BO is then -x directed for n-type material), the current is

na@A
I_ = -—gelr, (0)] . (c.11)
27 V202 €r=

For example in indium antimonide at liquid nitrogen temperature when
typical values of a moderately pure sample®’ are used,a responsivity

may be found as

2 - ~ 2 < mA 2
R = ﬁET?;ijBST = 20 . (c.12)

W/cm?

The absolute power density of the incident radiation may then be measured
using this technique. In addition since the current should be a maximum

at ®, = as the magnetic field is tuned, the frequency of the radiation
is also measured. Because of the tuning properties of the magnetic field

the device is inherently wideband in nature. Although only a local theory
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is presented here, it may be possible to determine carrier effective
masses of materials of poor transmissivity (e.g., semimetals or metals)
by utilization of this technique, wherein the unknown sample becomes
the detector itself and the operating frequency w is known.

It is to be noted that many processes are known to possibly ocecur
which should be taken into account in a more detailed analysis. Thus the
second-order Hall current or voltage may be obscured by thermoelectric
effects at the metal-semiconductor junctions, generation and consequent
diffusion of electron-hole pairs if the incident photon energy exceeds the
bandgap energy, hot-electron effects, rectification at the contacts, etc.

For the warm plasma model a useful resonance is found which can
enhance the voltage across the sample. The force equation in the one

carrier case is given by

v? S _ < E
5; —Bi— = NE,_+nRe| m5pv > ) (C.13)

where
BEZ_
€ 5. < pg_ . (C.1k)
Ekix
Since the second-order variables vary as e , Egs. C.13 and C.1k4 can be

solved similar to Eq. C.3 to obtain

, (mb - w)k. - vk,
E_ = - lv 2 . (€.15)
2 Ll-kz 2 1l-
i T
2nw ( R >
“p

If Egs. C.4 and C.6 are used, the open-circuit voltage is found ag
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2k, L
T [(ah - wk, - vkr][l -e T ]
v = gklkr e Re[Pell—(O)] . (C.16)
[(w - w)? + vZ] < 11 >
g

TImplicit in solving for Ez— in Eq. C.14 is the assumption that the surface
recombination velocity of the top and bottom surfaces is zero. Inspection
of Eq. C.16 shows that by operating with ki = wp/EvT a resonance is possible
leading to large voltages, with the peak possible voltage limited by the
assumption pz_(O) << po inherent in the analysis. Within a restricted
frequency range it should always be possible by variation of W, d@’ or v

to obtain ki = -wp/EVT; As an example of this consider the detection of

the 10-p line of the 002 laser, so that w =~ 2 x 10** rad/s. At such high

frequencies it can be assumed that , << w, and consequently the dispersion

relation is

wPolo + jv)
k2e2 - (R 42— = 0 (©.17)
-
or /
o2 (w + Jv) \t'2
k = if@(l -—P———> . (¢.18)
¢ w(wf + v3)

From Eg. C.18, to satisfy the resonance condition ki = QP/EVT, it is

required that
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where o® + v& > ag has been assumed. This equation can be readily satisfied

with materials with v = w, corresponding to a low mobility of the free
carriers. In addition, since w ~ krc, the condition of locality, i.e.,
\w - Jv - ab‘ >> |va|, is well satisfied so that the use of the dispersion

equation in the form of Eq. C.18 is justified.



APPENDIX D. A STUDY OF DECAYING MODES BY KINETIC POWER CONCEPTS

For ki # 0, it is in general possible to cast many carrier

interactions in the form

Re jg (Boipouis F B © % = 0 (D.1)

where P, .. is always positive (kr > 0) or zero and P, is the

kinetic power flow. In general it can be assumed that the power flows
are purely longitudinal for the purposes of analysis (eeg., Q-directed)

so that Eq. D.1 mgy be written for real w as

2k, (P

+ = ° .
iY circult Pk) 0 (D 2)

<
Hence even for decaying interactions (ki < 0) the function P, = 0.

As an example, utilizing this, consider the kinetic power flow

of the longitudinal space-charge wave, Eq. 2.2, with drift velocity

2 wv 2 1
_—
&bew [ 2ki krvT |
BT TR 202 - )P+ [+ 2k kB (0:3).
T r i ir T

Inspection shows that the collisions provide Pk < 0 with ki < 0 and

that the thermal diffusion limits the possible damping to

\k.| < wv/2k v2, TFor purely electrostatic interactions P . ., 1s
1 rT : circuit

zero and hence from Eq. D.2, Pk = 0 so that
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ki = - ol b} (Du)‘J')
2k ve
r T

from which it is seen that the general effects of diffusion are to
reduce the damping.

Hence, in the definition of kinetic power flow, if ki # 0, the
kinetic power flow is always negative for the interaction to proceed
and in the presence of collisions knowledge of the sign of ki is

required to assess the meaning of the function Pk'



APPENDIX E. ELECTROKINETIC ENERGY DENSITY OF SPACE-CHARGE

WAVES TO SECOND ORDER

The kinetic energy properties of longitudinal space-charge waves
to second order can be derived in a similar manner to the kinetic power
derivation in Appendix A.

Consider first the case in which it can be assumed that k is purely
real. TFollowing Tonks, ‘2 the carrier mode kinetic energy density may

be defined as
W, = Z—oY -V - (E.1)

Since all variables are one dimensional the velocity to second order

can be written as
v o= v+ V' exp jlot - kx) + vz(t) + v; exp 2j(wt - kx) , (E.2)
1

where Vo V', v (t), and V' are independent of x. Similarly for the
17 2 2

charge density,
p = py ol exp (ot - kx) +p (t) o] exp 2j(ut - kx) ,  (E.3)

where po, o'y o (t) and p' are independent of x. Physical reasoning

. 1° 2 2
shows that for the charge to be conserved properly, in the interaction
region

pz(t) = 0 . (E,u)
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If all products are retained to second order, Egs. E.2, E.3, and E.k

provide in the interaction region,

-0, T
. = 2 42 +2 ' - 1
Re(pv « v) o,V povovz(t) poval cos(wrt kx) e
-2wit —2wit

' _ 1\2 2 _
+ EvaOVé e cos(2a%t 2kx) + po(Vl) e cos (a%t kx)

—mit -2aﬁt 5

' _ 1A -
+ plv§ e cos(wrt kx) + EVOlel e cos (a%t kx)
-2, t

+ o'V e T cos(Pat - 2kx) . (E.5)
2 0 r
From Eq. E.5 the function *
1 b/\L
<w> = o <pv -+ > = 5= pv * v dx (E.6)

can be obtained, which is a space average of the total carrier-mode
kinetic energy density over the device length L. If L = N(X/E), where N
is any positive integer greater than zero,

-Em&t '2&ﬁt
o (V') e ~ +20vv (t) +vp'V' e . (E.7)
00 2 O 1 1

- 2
2n <Wk> VS *
Note that for L # N(X/E), Ed. E.T is still an excellent approximation

if L >> A. As in Appendix A, MacColl's results®®:85 when interpreted as

a space average provide for the mean-square velocity in the interaction
region,

<> = 2 (E.8)
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Use of this result, together with the squared and space-averaged value

from Eq. E.2, gives

vv (t) = -F (V) e : (£.9)

Thus Eq. E.9 can be used in Eq. E.7 to obtain

2w, t

ve'V'e T, (E.10)

<W.> = l— Ve 4+ =
(0] 2T] O 1 1

k 21 Po
which shows that for the purely longitudinal space-charge modes it is
sufficient to know the first-order fields alone to determine the kinetic
energy density properties. Comparison of Eg. E.10 with Eq. A.8 shows
that bunching plays the same role in absolute as in convective instabilities.

In the more general case with ki # 0, the same space-averaging
techniques may be used. Whereas tﬁe case ki = 0 provided a minimum
device length L = x/e, when ki # 0, this minimum length becomes a
fuhction of ki. The spatially growing nature of the carrier mode does
not appear to play any fundamental role in the oscillation, however.©®®
As in the developments of Egs. A.1l and A.12 it is possible using
Eq. E.9 to express the kinetic energy density function <Wk> directly in ‘

terms of the beam slowing.



APPENDIX F. ELECTROKINETIC ENERGY DENSITY OF CYCLOTRON MODES

From Eq. 3.14 the fundamental field source function may be written

as *
% ( japo(arkvo—wb)vl_vl_
Re(El_Jl_) = Re | Tﬂw-kvo) > s (F.1)
so that, in general,
2 _ _ 2 o - 2
Re(E J* ) = poivl_| wi[(a% krvo) +wckrvo (a& kivo) ]+kivana%
1= 1- n - 2 _ 2
(a} krvo) +(a>i kivo)
(F.2)
From Eq. 3.18 and with the dependence assumed,
kv
[(w -k v )2+0 k v +(w, -k, v )2] - == 0 @
o v |2 r ro cro *i'io w re
O -
Wk = 4; . (F-B)
(w_-k v )2+(w,-k,v )2
T ro i"i'o
Thus in the case ki = 0,
po|v1—|2 (wr'krvo)2+ubkrvo+u§
W'k(ki =0) = T ' ’ (F.4)
(o_-k_v )2+
T ro i

so that in this case, once again, only the polarization w, < 0 corresponding
to the slow-cyclotron mode, helicon mode, etc.,gives a negative contribution
to the carrier mode kinetic energy and synchronism is preferred to optimize

the magnitude of the electrokinetic energy density.

-262-



APPENDIX G. EFFECT OF CARRIER HEATING TRANSVERSE TO k ON THE HYBRID MODE

For completeness in the study of the quasi-static hybrid mode the RF
number density is found for a carrier which is part of an equilibrium
Maxwellian distribution for the case Eo y y, B’ = BO Q, and k = k X. -

The carrier distribution function which includes carrier heating in the

presence of the dc fields was found in Eq. 6.41 as.

N u? 4+ e+ ve .
_ 0 jnb
I~ Iz &P <; ) EZ ‘< > ¢
(2JIV2)S 2

T =0

wv.. (3n - v/w. ) sin 6 - cos 6 7.
H (¢
¢ |:l = :| ) (G':L)
vé 1+ (jn - v/ah)g

where v.. =E /B, v. = v, +ucos 6, and v_ = u sin 6. The method used
H oy’ 7o’ 'x H y

A
then follows exactly that used for the case Eo = EOX X resulting in

N
N = 5 ) (G‘e)

where 2/ 5
-u<=/2v
2/ 2 ® ¢ ' J ( > <‘ _gi.>
.V -VH/VT ® ' Vp
D = 1+J—e TRv - v - 1
va 0 R A
T L, n=-c
~— 2 _ -
juv, [2(dn - v/w,)J <ku - 20 - D, J u
Juvy | =iJn I ien X J ku t-n \

e 2v§[l + (jn - v/wc)2

(G.3)
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and
2
_v2/2v2 L b /2V < ku >
00 l n
LA A
N = - w - kv, - JV - o, udn o,
0 H
Lyn=-0 i=]
(G.4)
where now, with the argument of In always understood as (-uvH/vi),
oh
_ 1 n u . n ku
e - 5[ & (5030 .. (B)
Vi (¢
dr
= n_(u _n ku
82(1’n> T2 [ du < 2 U > ' } Jinn < w, > ’
T
v - dI
H nf. v nv
88(£,n) =. {F = <§(n -1) - o > + I, [ Y
Wal1 + (jn - v/w )31 -
T c
2
. LV u | ku ku
-<Jn'_ J - wc>;;}} l:J/Z-n-z(wc>+Jl—n+2<cbc >J
T
and
v dI 2
H u . [ u
€ (L) = ‘ {'j"_'*'l [J ——-)
4 v§[1 + (jn - v/a)c)z] 2 du n 2v,]2j

46-2) o2

The most important aspect of the carrier heating is that the interacting £ =0

mode can now appear. This mode is of interest because w = ka and, since
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Vg NV in high mobility materials, interactions can occur at wuch smaller

wave numbers than the resonant interactions previously studied (e.g.,

k~|o |/v ). This carrier-heated mode has the additional attribute

for instability that the effect of the co].'l.isioné is negligible if

Iwcl >> y. To understand this, assume that Iwcl >> vy so that the resonance

approximation is reasonable and in particular for [ = O the effective

collision frequency is given from Eq. G.3 by

s T () ()

n(l)

. . v ku ( ku
N [E(Jn v/ )3, ( ; > 2§ I o, /

J_n Z)—) + .

[¢]

2v§[l + (jn - v/wc)z]

(¢.6)
Inspection of this result shows that the n = 0 and n = 1 terms give the

largest contributions in the sum resulting in

-v?/Ev‘2
e BT e -u2/2v§ - uv,
Re(v') = v l-———-—f e J§<—->I (—-)ugdu
2v; 0 D 1 v; ‘
.2 /n. 2
'VH/ EVT o =l /2v ' ku
- & [ e > > u du . (G.7)
2 \.
VT 0

For a limiting case v, — O (which corresponds to the disappearance of the

H
L =0 term in N) it can be found from Eq. G.7 that Re(v') - 0. Hence for

Vi N Vo it is 'clee}r from the behavior of the Bessel functions
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involved that for this more general case Re(v') << v. The possibility
that Re(v') < O for some range of (vH/vT) is also noted. In addition
inspection of the €, (4,n) function in Eq. G.5 shows that if la, | >> v
the collision frequency v should play an unimportant role in N. Thus
for the £ = 0 mode with lﬂél >> v the deleterious collisional effects are
negligible and‘instability is to be expected. In the constant collision
frequency approximation it is expected that these results are unaltered
when an increased value of v is selected, corresponding to the carrier
heating, provided |“E| >> v is maintained.

The physical reasoning for the appearance of the (interacting)
£ = 0 mode due to carrier heating is now discussed in relation to the
electrdn-hole interaction. From Eq. 6.118, when the effects of carrier
heating are not included in the analysis, the dispersion equation in the

resonance approximation for the electron-hole interaction is

N _)\_h

‘ 2 € 2
L. zabeabe e Iz(xe) . Mo, Wy € Im(xh) L
2 _ - _ st 2 _ _ I |
k v%e[labe (w kv o Jve)] k v%h[maEh (o kv Jvh)]
(¢.8)

If this equation is solved for £ = 0, it is readily seen that one root .

is given by w - kvOe - jvé = 0. This is a damped noninteracting electron

carrier wave given by Eq. 6.119 as

w = kv
T oe
and
-\

o = vl = v([l-e eIO()\.e)] , (@.9)

!
1 €

so that as A, -0 (i.e., B, - ®), w 0.
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On the other hand the dispersion equation in the resonance
approximation, for £ = O, with the effects of carrier heating included,

can be obtained from Eq. G.2, together with Poisson's equation (Eq. 6.67),

as
. 2 4
J(Dpe exp < > © o
1+ > Z Z f exp > ( > O n) u du
_ 2
vae(w kv, hovw io O 2

+[Mh] = 0o , (G.10)

wherein [h] represents the hole term which is not of direct significance.
The effect of the carrier heating then is to perturb the £ = 0 electron
carrier wave away from the solution given by Eq. G.9 since it is now

an interacting mode. Sinceﬂthe solution of Eq. G.9 shows a mode approaching
marginal instability as the magnetic field increases, this perturbation
need not be large to drive this root into instability. Note also that the
adopted viewpoint48 in which the growth rate must exceed the hole

collision frequency (when the dispersion equation is solved with Vy T 0)

is erroneous when a static magnetic field is present.

The important effect of the carrier heating of the electrons then
is that an extra degree of freedom of the system is permissible which
enables the electron carrier wave to interact. From a quantum viewpoint,
it is expected that this effect corresponds to the introduction of
additional available energy states for the system enabling more general
sets of motion by which the electrons can interact with the holes.

It is again pointed out that because of the strong dependence of

the coupling‘constant on the wave number (e.g., Eq. 6.79) for this
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interaction in general, the carrier heated £ = O mode interaction (with
> a}/voe) can readily dominate over the fundamental £ = 1 mode
interaction [with k =~ (o + lwbe|)/voel when @ << ’wce{.

It is hypothesized that the carrier-heated electron carrier wave
is potentially the most important carrier mode in solid-state plasmas.
This is because not only does it possess a small damping decrement in
the noninteracting state, but also, unlike the helicon mode, it is not

severely frequency limited.



APPENDIX H. EFFECTS OF CARRIER HEATING ON THE CYCLOTRON MODES

The cyclotron modes (k B, I Q) were studied in Chapter V, Section
5.3 neglecting carrier heating. If Eo L k it can be found by including
E, in Egs. 5.41 through 5.M+ that the right- and left-hahd circularly
polarized modes are now coupled. This case is difficult ﬁo analyze since
there are then at least four RF current components, e.g., le(Ely)’ le(Elz)’
JlZ(Ely), and le(Elz). Attention is therefore directed at the case
E I'k. By including this field in Egs. 5.41 through 5.52 the circularly

polarized components still separate and now

Bfl_ | jlw - kv, - o, - jv) ) E _ kvX 4G
i g AN LD el -l
X ox ot ox S X
(H.1)

where again

©0

FO(VX) = ff £ dvy dv, (H.2)
and
1
Go(vx) = 3 ff (v§ +v§)fO dvy dv, . (H.3)
=00

For self-conéistency Egs. H.2 and H.3 should be solved for the carrier
distribution function fo which includes any carrier effects due to on'

A .
This is done as follows: Since E | B, Il X, the dc equation,
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BflL

afOL af1L
| 2R e | erany e - 0

= +
where fo foL flL and foL

function in the absence of any applied fields, becomes

aflL ) <_Bo_ aflL _ afoL v,
v E o6 v nE 1L’
X 0x X 0X
where the definitions were made
v. = useinb , v. = ucos b
y 4

Then the functionsFo(vX) and GO(VX) can be split up as

00 00

]

Fo(vx) - FOL(VX) * FlL(V )

-00 =00

and

1[“’ on
= + —_— 3
Go(vx) G0L<Vx> GlL(vX) 2\ 0 k/; b foL du dg
R A
+§ff uadeudG .
0o Yo *
By integrating Eq. H.5 over (vy,vz) space it can be found that

aFlL v - BFoL

d +
. \/1/~foL dvy vz \/1/-f1L dvy dvz

(H.L)

is the known equilibrium carrier distribution

(H.5)

(H.6)

(H.T)

(H.8)

(H.9)
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wherein use was made of f%“(aflL/ae)de = 0. In a similar fashion

premultiplying by u® and integrating over (vy,vz) space Eq. H.5 generates

&G
1L v oL
+ = - lO
ov 1E 1L ov (£.10)
0X
In principle then since f . is known (and hence F . and GOL) Egs. H.9

and H.10 can be solved to obtain Fo(vx) and GO(VX). For example, if the

function fo is selected as a Maxwellian,

L
N Ve Ve e
f - —————— exp - F) (Ho ll)
oL 2val/2 < 2 >
(Ean) EVT

it can be found by proceeding in the aforementioned manner that

VN vV V2
F <Vk) = 3 Eo exp <; EX ,> exp < z .>
© L Mox 2n2E§X

oX

. [erf< \/;XVT . \/;:EO}{) + cl J ,  (H.12)

where erf(x) is the error function of argument x and where Cl is a constant
which can be determined by the conservation of particles requirement

ff; Fo(vx)dvx = NO. The point is cleay however, that the use of a complex
function such as Eq. H.12 in Eq. H.1 will lead to nontractable integrals

in attempting to solve for fl_. For the purpose of analysis assume then

that the system is such that the drifted Maxwellian carrier distribution

function,



N (Vx - VO)Z w2

f = .———-—Q—— exp - —e exp - — B (H.:LB)
© (2nv2)3/2 2ve 2v2
T T T

is appropriate even if on > BOVT. Equations 5.91 and 5.92 can then be

used in Eq. H.1 to obtain for this case

kvo
Bfl_ BN, <’ T o [ (vX - vo)2 .
S + jaf = exp | - —mm——— } s (H.1k4)
Yy - g Vor v 2v2
oX T T
where
w - kvx -, T Jv
a = = . (H.15)
Tox

When the integrating factor exp[[ a(v,) de] is noted, Eq. H.1l is sSolved as

kv
EN<-—9>
1-0 o )
exp <;J(alvx " azvxi>

1=
EBX JEE VT

v_ jav' ja (v!)? (v! - v )2
: fxe 11X 2 X exp(-—-}i———()—-)dv}; , (H.16)
C 2ve
2 T
where
w=-w - Jv
(¢ k
a = =—————— and a = = , (H.17)
1 ME o 2 2non

and 02 is a constant to be determined. Equation H.16 can be integrated

directly to obtain



kv [~ V-o . I
E N < - _.._O> ;2— + Jal
1- O w
T
f = exp <-J(a v+ a v%»: y erf |y v - +C
- = X X
. on 2n Voo 2 2 72 3
— -
(H.18)
2 2
where (bz% + 3a ) - 42 Xg_
Nx T % 2 ev
Y. = 5o €Xp » ’
1 272 72
2
1/2
= —_— - a
72 2V2 J 2>

and C 1s a new constant replacing C . Since it is necessary that £ -0
3 2 1

as v = to the function f exhibits a Stokes phenomenon characteristic of
l - .

the asymptotic expansion of analytic functions, with the result that

£_ = f (v, >0)+f

) ] (v, <0) (5.19)
1 1

1-
in which the constant Cs has one value for Vo > 0 and another value for

Ve < 0 such that in either half-space fl_ -0 as IvX| =, Tt is in this
manner that the constant C3 is determined in each half-space. The RF current
density is then obtained directly from J;_ =q f?w fl_ dﬁx. Even for the
result for fl_ of the drifted Maxwellian distribution function, Eq. H.18,
(which is the simplest possible distribution function which retains‘thermal

effects) this is a formidable task necessitating numerical computation and

has not been undertaken.
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