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Abstract

In this paper we review numerical schemes for
the Euler equations that always preserve the positiv-
ity of density and pressure. We show that any one-
dimensional first-order accurate positivity preserv-
ing scheme with reasonable time step restrictions
can be always promoted to a multidimensional high-
resolution positivity preserving scheme, also with
reasonable restrictions on the time step. We fur-
ther study the underlying mechanism of the loss of
positivity and provide a general condition for a one-
dimensional numerical scheme to be positivity pre-
serving. This condition may become useful for anal-
ysis of complicated nonlinear schemes that prohibit
analytical treatment.

I. Introduction

As computational fluid dynamics reaches matu-
rity in a sense of being widely used in engineering
design, issues such as reliability and robustness of
computations become increasingly important. A ro-
bust code is one that produces reliable answers for
arbitrary data with no retuning. Few codes achieve
this without sacrificing accuracy. In particular, Eu-
ler codes often fail because either the density or the
pressure in some cell becomes negative. This causes
the sound speed in that cell to become imaginary.
From a mathematical viewpoint, subsequent time
steps do not correspond to a well-posed problem,
and so computations must be stopped. This situa-
tion, for example, happens in situations where a flow
at some initially high Mach number expands round a
corner; then we expect that the pressure and density
will fall to very low values, perhaps even to vacuum
conditions. Small negative values may approximate
the true solution within the truncation error of the
scheme, but are nevertheless unacceptable. The is-
sue is therefore distinct from that of accuracy.
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Codes that are based on solving the equations in
conservation form are particularly vulnerable, be-
cause the internal energy in a cell has to be com-
puted as the difference between the (conserved) total
energy and the kinetic energy. The latter is found
from conserved values of mass and momentum. At
high Mach numbers the internal energy appears as
the small difference of two large quantities, and is
therefore prone to large percentage errors.

Einfeldt et a/.1 introduced, the term 'positively
conservative' to refer to a conservative scheme that
would, given physically meaningful data, predict
positive density and pressure for all time. For
one-dimensional flows they proved that the Go-
dunov scheme2 is positively conservative, but any
Godunov-type scheme based on a linearized Rie-
mann problem, for example Roe's scheme,3 does not
have this property. Neither does another elaborate
scheme, Osher's scheme,4 have this property since
it is known to fail to compute interactions of strong
shocks. On the other hand, it is not hard to prove
that the Lax-Friedrichs scheme always preserves the
positivity of density and pressure, but the dissipa-
tion properties of this scheme are far inferior to these
of Roe's and Osher's schemes.

The apparent failure of early accurate approxi-
mate schemes to handle extreme flow conditions has
added one more criterion to the design of an approxi-
mate Riemann solver - positive conservation. Today
several first-order schemes qualify to be positively
conservative in one space dimension. Among them
are Einfeldt's modification (HLLE)5 of the Harten-
Lax-van Leer6 (HLL) scheme, and the further mod-
ification (HLLEMR) derived in Charrier et a/.7
and Flandrin,8 Liou's9 recently reported AUSM+

scheme, and Donat and Marquina's10 combined Roe-
Lax-Friedrichs scheme. Many gas-kinetic schemes
have been shown to be positivity preserving (for ex-
ample, see Khobalatte and Perthame,11 Xu et a/.,12

Perthame and Shu,13 Estivalezes and Villedieu,14

and Tang and Xu15), some of them up to second
order. However, extending a given one-dimensional
first-order positively conservative scheme to more di-
mensions and better accuracy does not generally ap-
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pear to be an obvious task. For example, Donat and
Marquina10 report that a straightforward higher or-
der version of their scheme sometimes fails to com-
pute strong rarefactions. Tang and Xu15 note that
an example can be constructed in which their elabo-
rate collisional Boltzmann scheme does not preserve
positivity. This conclusion is rather unfortunate
since the corresponding positive collisionless Boltz-
mann scheme is fairly diffusive. This shows that the
design of an accurate, efficient and robust scheme
still remains an open issue.

It is important to stress here that positivity alone
does not mean robustness. For example, the posi-
tivity of density and pressure preserves the meaning
of physical entropy, but the maximum entropy prin-
ciple, which is crucial for convergence studies, does
not automatically follow from positivity. Moreover,
it seems to be extremely difficult to prove this prin-
ciple for high-resolution schemes.11 Also, the pos-
itivity of a numerical scheme could mean its weak
nonlinear stability since one could rigorously derive
the maximum allowable time step. However, it was
demonstrated by Quirk16 that even entropy satis-
fying positive schemes do sometimes produce lim-
ited forms of instability, usually when shocks are al-
most aligned with the grid. Finally, the accuracy of
computed solutions deserves special attention. At
near-vacuum conditions, pressure is the difference
of two large quantities, hence it may not be accu-
rately computed in certain flow regions, although it
is guaranteed to remain positive. This means that
positive conservation does not ensure uniform accu-
racy. Whether this is acceptable may depend on
the context. Nevertheless, it is highly desirable to
preserve the physical admissibility of computed so-
lutions, therefore positive conservation appears to
be a good solid step in the quest for robust compu-
tations.

In this paper, following the analysis of Linde and
Roe,17 we will show that any one-dimensional first-
order accurate positively conservative scheme can
be promoted to more dimensions and formally to
at least second-order accuracy. Provided that the
time step limitations for the first order scheme are
reasonable the time step requirements for its pro-
moted analogue will also be reasonable. This sim-
plifies positivity analysis to one dimension and first
order. For one-dimensional schemes we will discuss
the underlying mechanism of positivity loss and de-
rive a positivity criterion that can be applied to any
existing or future finite volume scheme.

II. Positive Conservation in
Higher Dimensions

Consider the Euler equations in conservation
form,
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and Fy(U) and F^(U) are defined in a similar way.
Here, p is the mass, mx — pu, my = pv and mz = pw
are the momenta, and E is the total energy of a gas
per unit volume. For ideal gases p = (7 — 1)(E —
|m|2/2p), where 7 is the adiabatic constant.

The main tool in our work will be the analysis
of dynamics of conserved gas states in the set of
physically admissible states defined by

G={U\p>0 and E - |m|2/2/» 0} . (3)

It is straightforward to show that G is an open con-
vex cone, i.e. for any Ui, U2 6 G and any positive
Oil and a2, aiUi + a2U2 6 G (note that this is
more general than a convex linear combination of
admissible states).

It is important to state clearly what we mean by
positive conservation. We say a finite volume scheme
is positively conservative if there exists a constant
C, such that the scheme can update any physical
initial data an arbitrary number of times with a CFL
number not less than C.

We assume that a one-dimensional first-order ac-
curate positively conservative Godunov-type scheme
is available, and it is positive under a CFL-like condi-
tion At < Ax/A, where A is a scalar quantity related
to the characteristic velocity which determines the
allowable time step. Different schemes will have dif-
ferent values of A. For example, we could take it to
beequalto A(Uz,,U7i) = max{|uz,| + ai, \uR\ + aR},
where a is the sound speed, which is a sensible choice
of the characteristic velocity. Other than that we
do no need to know any specific details about the
scheme. We only make natural assumptions that
the scheme is consistent and invariant with respect
to coordinate transformations.

84



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

A. First-Order Schemes

Let us consider a typical first-order accurate finite
volume scheme on an arbitrary computational grid.
The state in cell i, which is surrounded by a set of
neighbors w,-, is updated according to

U>' = U< - tr E f-«(u'. U;0%> (4)

where Fn; (U,-,U^) is the numerical flux normal to
face ij, Uij is the normal vector pointing from cell
i to cell j, Sij is the area of face ij, Vf is the
volume of cell i, and At is the time step. Since
Ejgwi

 F^(Vi)Sij = 0, then for any aijtj € wit

which will be determined later, such that 0 < or,-j <

At

1 and J
follows,

where

<*ij = 1 we can rewrite Equation 4 as

(5)

(6)

- ̂ AF".; (7)

(8)

~1

In the last step TJJ is an orthogonal matrix that
defines a local rotation of state U from the co-
ordinate frame {x,y,z} to a face oriented frame
{nij,Tuj,T2ij}, i.e. Tij : (p, mx , my , mx, E)T H->
(p,mai.,mTlij,mT:ii.,E)T, where TUJ and T-UJ are
two arbitrarily chosen tangential vectors.

Let us denote Uij = TijU,- and Uji = Tf/Uf . Note
that the orthogonality of the rotation matrix ensures
that the new rotated states are physically admissi-
ble. Then using the rotational invariance of the flux
function, i.e.

2i,-Fny(U,-, U,-) = V, (9)

we can write

Therefore the new state is a superposition of states
that could have arisen from some one-dimensional
calculation on a grid with the equivalent cell size

(11)

AX X

Figure 1: Equivalent one-dimensional problem.

Clearly, if all U^ are physically admissible, then so
is LP.

In the equivalent one-dimensional problem (see
Figure 1) the left neighbor has the same state as
the cell under consideration. This trivial Riemann
problem that will be solved exactly by any consistent
Riemann solver. Therefore U11 will be physically ad-
missible if

If we recall the definition of A, the above inequality
becomes,

At max(|um-| + a,-, \unj \ + dj)Sij < otij Vt. (13)

There are still unknown parameters a^- in the
above expression. To maximize the allowable time
step we require that all inequalities in 13 are vio-
lated simultaneously. Then for each i we can add
the inequalities to obtain

A«
i max(K;| nj

where we used $3j6wi atj — 1- This gives us a CFL-
like condition on the time step and proves that given
a first-order one-dimensional positively conservative
scheme one can always build a first-order multidi-
mensional positively conservative scheme for the Eu-
ler equations.

B. Second-Order Schemes

Let us now consider a computational grid con-
sisting of arbitrary convex cells. In order to im-
prove both spatial and time resolution of a numeri-
cal scheme some reconstruction and time evolution
techniques are needed. In the following we will con-
sider a simple formally second-order accurate finite
volume scheme.
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In order to remain strictly conservative and keep
the exact account of all variables we suggest to re-
construct the conservative variables. This eliminates
the problem of recovery of the primitive variables
from the conservative ones and vice versa discussed
by van Leer.18 From the analysis point of view,
with this approach no interpolation related second-
order error is introduced during the reconstruction
step. Any reconstruction method (for example, see
Barth19) may be used to compute the gradients of
the conserved variables. For example, the very flex-
ible least square approach can be used.

To prevent undesired spurious oscillations in nu-
merical solutions and inhibit possible negative val-
ues of density and pressure that may appear due
to linear reconstruction, a limiter must be applied
to the reconstructed gradients. There is substan-
tial freedom in which variables should be limited.
Since extensive numerical experiments in the past
have shown that limiting the primitive variables pro-
duces good results, we apply the limiter to the recon-
structed conserved variables in such a way that the
primitive variables are limited. We omit the details
of the limiting procedure here; they can be found in
Linde and Roe.17 We only mention the main result
that the positivity and nearly perfect monotonicity
of the overall reconstruction step can be guaranteed
by checking only the nodes of a computational cell.

As far as the time evolution step concerned, it
is possible to obtain positivity results only for rela-
tively simple convex time evolution schemes. Prob-
ably the simplest one of them is the classical Heun20

scheme which is also known to be TVD stable.21

This scheme can be written in the following form,

? = U,- - AfRes[U, i]

where

Res[U, i] = £ Fnj, (U0- ,
' '

(15)

(16)

(17)

Here, for cell i we have introduced its extrapolated
face centroid states,

U« = U4 + &(VU),- • (ry - P,-), (18)

where r,- is the centroid of the cell, r,-j is the centroid
efface ij, (VU),- is the gradient matrix, and $,- is the
single scalar limiter. Since both stages of the Heun
scheme contain an essentially the same operator, we
only need to analyze the following generic equation,

(19)

As before, we would like to express the cell cen-
troid state in terms of a convex linear combination
of corresponding face centroid states, i.e. for each i
we want to find a set of coefficients &j, 0 < £y < 1,
such that

fc = l and (20)

Note, since generally <^i(VU)j ^ 0, the choice of
these coefficients is not arbitrary, and Equation 18
shows that we must require

r« = (21)

Thus coefficients fy are related to the geometry of
the cell. Unless the cell is a simplex, the above
equation admits multiple solutions. However, Equa-
tion 21 relates the centroid of the cell to the centroids
of its faces, therefore a very natural solution can be
found. By dividing a two-dimensional cell into tri-
angles with a common vertex at the centroid, or a
three-dimensional cell into pyramids, we can show
that all the requirements are satisfied by

(r,j — r,) -
(22)

where &dtm — I/dimension. This formula shows why
we require the convexity of the cells. If a cell is not
convex, its centroid may not belong to the cell. Then
some of its coefficients £,-j will be negative. However,
second-order accuracy would be questionable in that
cell anyway, and by setting the limiter to zero we
could return to the first-order case for which the
shape of the cell is irrelevant.

Now we will try to reduce the generic multidimen-
sional problem to a set of one-dimensional ones, as it
was done in the previous subsection. Let us choose
some aij > 0 and /?y such that a,-j + /?,-j = 1 (note,
we do not require /?<j > 0). The actual values of
these coefficients will be determined later. Notic-
ing that in general £;-6w. Fnij.(U,v,-)S,-j ^ 0 we can
rewrite Equation 19 several times to obtain

(23)

(24)

86



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

Density Pressure
0.2

0.15

Q- 0.1

0.05

V
-1 -0.5 0 0.5

x
-1 -0.5 0 0.5

x

Figure 2: Double rarefaction problem. Solutions are — exact, • • • first-order and - - - second-order.

where AFnii is defined as before, except now face
centroid states are used in the definition. If we again
introduce Uij = TijUij and Uji = lyU,,-, we can
complete the splitting,

j€<*>;

where WJ' is again found from Equation 11 with
Ax = £ijOtijVi/Sij. If all terms under the summa-
tion signs in the last equation belong to the set of
physically admissible states, the scheme will be pos-
itively conservative.

The first sum above contains the solutions
to equivalent one-dimensional problems discussed
above, therefore we immediately conclude that the
time step should satisfy

A* max( \unij \ + ay , \unji \ + (26)

The terms in the second sum can be computed ex-
actly, and it is not hard to show (see the Appendix
of Linde and Roe17) that their positivity will be pre-
served if

(27)

To maximize the allowable time step we require
that for a given face Inequalities 26 and 27 are vio-
lated simultaneously. Then we can add the inequal-
ities to obtain

A« (28)

where Ay = max(|unij.y | + ay, \uaijii\ + aji). At this
point we no longer have any free parameters left, so,
making use of Equation 22, we can finally express
the time step in the following form,

<
«5<Km(ry -r.-)

Ay + Unnij
(29)

This proves that given a first-order one-dimensional
positively conservative scheme and a computational
grid consisting of convex cells we can always build
a multidimensional formally second-order accurate
scheme for the Euler equations.

Similar conditions on the time steps for first and
second-order schemes were obtained by Perthame
and Shu.13 On examining Equations 14 and 29 it
becomes clear that the positivity requirements are
not much more stringent than the requirements that
come from a linear stability analysis.19 Since the al-
lowable time steps always remain finite, there is no
limit to the time for which calculations can be con-
tinued. Thus we conclude that for a well-behaved
one-dimensional positively conservative scheme mul-
tidimensional extensions do not come at significant
cost.

C. Computational Results

To demonstrate the robustness of the proposed
method we apply it to test problems with very ex-
treme initial conditions. In all computations we set
7 = 1.4 and use the HLLE flux function. The latter
could, of course, be replaced with any other posi-
tively conservative flux function.
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Figure 3: Results for a M = 2.5 corner expansion at t = 0.6.

We first study a symmetric M = 5 double rar-
efaction wave problem. The initial distribution for
this problem is PL = PR = 7, UL = — 1, UR = 1,
PL — PR = 0.2, and the y and z velocity components
are set to zero. Note that the initial conditions are
chosen to produce vacuum at x = 0. Figure 2 shows
the resulting first- and second-order accurate distri-
butions of density and pressure at t = 0.6 obtained
on a computational grid with 200 points. Although
both schemes can run at the maximum allowable
time step, we find that accuracy is improved by set-
ting the time step to half its maximum value. Both
schemes produce a good approximation to the ex-
act density distribution, but they noticeably over-
estimate the value of pressure in the middle of the
expansion fan. This illustrates our comment that
an admissible solution is not necessarily an accurate
one.

We have also constructed an artificial test prob-
lem to illustrate the performance of our method in
two dimensions. If an ideal gas having specific heat
ratio of 1.4 diffract around a 90° corner in a Prandtl-
Meyer fan at a Mach number greater than 2.56 it will
form a vacuum. In our problem, an L-shaped region
is initially filled with air traveling to the right at
M = 2.5 (the initial conditions are /> = ? , « = ! ,
v = 0, p — 0.8). This yields a transient flow that
comes very close to cavitation. We prefer this test,
despite its unrealistic initial data, to the commonly
used alternative test in which a shock wave propa-
gates along the upper branch into stationary air, be-

cause even in the limit of infinite pressure ration the
flow induced behind the shock cannot be faster than
M = 1.89. The present test is therefore more strin-
gent. Figure 3 presents the results from the first-
and the second-order schemes obtained on a 400x400
computational grid. In the calculations both pres-
sure and density fall be three orders of magnitude
and remain well-behaved. We do not believe that
near the corner the percentage accuracy of pressure
computation is very good, because at the corner the
Mach number reaches the maximum value of only
10. This value is lower than the corresponding an-
alytical estimate. Nevertheless, the scheme predicts
correctly that pressure and density near the corner
are very small, while preserving their positivity and
without compromising the accuracy elsewhere.

III. Positive Conservation in
One Dimension

The above discussion demonstrated that given a
one-dimensional first-order positively conservative
scheme it is not hard to promote the scheme to
higher order and more dimensions. Thus the funda-
mentals of positive conservation can be studied al-
most entirely in one dimension. Therefore from this
point on we will restrict ourselves to one-dimensional
problems. For simplicity purpose only genuinely
one-dimensional (no tangential slip) problems will
be considered, although this simplification can be

88



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

omitted, and it is possible to extend all results to
complete one-dimensional problems.

In order to perform multidimensional analysis we
had to assume an underlying positively conservative
scheme. However, the design of such a scheme is a
difficult task by itself. Only a few one-dimensional
first-order schemes have been proven to be positively
conservative, and the proofs are sometimes involved
and specific to a particular scheme. Some elaborate
nonlinear schemes are so complicated that they sim-
ply do not admit analytical treatment. However, one
would like to know their positivity properties. Hence
it would be very useful to develop a general method
for systematic positivity analysis. To do this one in-
evitably has to answer the question: which schemes
are positively conservative, and why do some fail?

Let us recall that any finite volume scheme can be
reduced to the equivalent one-dimensional problem
described by Equation 11. We are going to be inter-
ested only in the dynamics of the left state. All the
properties of the right state will be exactly the same
due to the invariance of the scheme under coordi-
nate transformations, in particular reflections. We
can therefore treat the right state as a parameter.

Let us rewrite the equivalent one-dimensional
problem in the following way,

where U/, and UR are the initial left and right
states, cr = Ai/Az, and

H(UL, UR, a) = <r (F(UL) - F(UL, (31)

We can think of the scheme as of a nonlinear map:
in the space of conserved states the new state is ob-
tained from the old one by adding vector H. To
preserve positivity this map must produce a physi-
cally admissible state for any U^ G G, \!R 6 G and
<r > 0, i.e. the set of physically admissible states
must be an invariant cone for the map.

Let us consider the set of physically admissible
states in more detail. For one-dimensional flows this
set is defined by p > 0 and |m| < ^/2pE. This set is
shown in Figure 4. Notice that the whole boundary
of the set corresponds to condition p = 0, while only
one ray on its surface corresponds to p = 0. There
is only way to produce an unphysical state - it is to
cross this boundary somewhere. Since crossing it at
a point where p = 0 is highly unlikely, it is clear that
the point of crossing will always correspond to pres-
sure, but usually not density, becoming negative; a
conclusion which is definitely supported by numeri-
cal evidence. This shows that naming the positivity
problem the problem of low densities, as it was done

Figure 4: Dynamics of conserved states in the ad-
missible cone. Dashed lines denote the physical tra-
jectories, and the arrows show possible numerical
motion of the states.

in Einfeldt et a/.,1 is a bit misleading. It would make
more sense to call it the problem of low pressures (or
even better temperatures).

Consider two initial states that belong to set G.
For these two states one can solve the Riemann prob-
lem and find the trajectories of both states in the ad-
missible cone. Only expansion waves can connect a
physical state to vacuum (for example, see Liu and
Smoller22), therefore only these waves are relevant
to our analysis. If the initial states are such that23

+ 7aL 7-1OR, (32)

the trajectories will intersect at the origin (an even-
tual vacuum), but do not otherwise lie on the surface
unless they are initially placed on it. In a numeri-
cal calculation, the trajectory within one time step
is always a straight line, and it must mimic the be-
havior of the exact trajectory by never crossing the
boundary of the set of admissible states.

As we have mentioned above the new left state in
the generic problem is obtained by adding vector H
to the old state. If the new state happens to be in
G, then no action has to be taken. It may, however,
happen that the new state will lie outside of the set
of physically admissible states. Then by reducing
the time step, or equivalently a, we can bring this
state back into the set. This procedure can be re-
peated until one of the states reaches the boundary
of set G. Then two possibilities exist: the state re-
mains in G, or it tries to leave it. It the latter cases
simple reduction of the time step does not help any-
more, and so computations must be stopped. That
this does indeed happen is known from numerical
experience. For instance, for Roe's original scheme3

applied to Sjogreen's1 test problem there is a finite
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U

Figure 5: Whenever a conserved state reaches the
boundary of the physically admissible set, it must
not cross the boundary, i.e. vector H must point
inward.

time until which calculations can be continued. No
mater how small a time step is chosen, the scheme
will fail after this time is reached. This shows that
the lack of positivity for a numerical scheme is man-
ifested in its inability to properly advance conserved
states very close to the boundary of the set of ad-
missible states.

The above argument suggests that studying the
dynamics of conserved states near the boundary of
set G is sufficient to deduce the positivity properties
of a particular scheme. In order to do this we enlarge
set G by including its boundary, i.e. we consider its
closure G. Let us put the left state on the boundary
of G and denote this special choice of the state by
U°L = (PL,PLUL, |PLU|)- The boundary of G is a
smooth surface, therefore the normal to this surface
exists at every surface point except the origin. It is
not hard to show that at point U^ the unit inward
normal, which is basically the gradient of pressure,
is given by

2' + 2 '«?
(33)

Clearly, the left state will not leave the set of phys-
ically admissible states if for any choice of the right
state, H(U<

L,UR,a) points inward (see Figure 5),
that is if

If this condition is met, a non-zero a can be found
such that the new state does not become unphysical.

The equality sign in the above expression is also a
possibility, and in that case the exact expression for
H(U£, UR, a) can be obtained. In fact, since G is a
convex cone, the only way for H to be orthogonal to
v and at the same time belong to G is to lie along a
ray connecting Tj£ to the vertex of the cone. Then
we know that H(U^,Uft,<r) = aU^, where a is
some scalar number.

The exact flux corresponding to U^, F(U£) =
W£,T_J£, is orthogonal to i/(U^), therefore from Equa-

tion 31 it follows that the positivity condition 34 is
equivalent to

F(U£,U«) . I / (U£)<0. (35)

Let us denote F = ( f p , f m , f E ) T - In this notation
the above equation becomes

0. (36)

The function in this inequality depends on five pa-
rameters, and must hold for any combination of
them. We can, however, use the properties of the
Euler equations to reduce the dimensionality of the
parameter space. Since the flux function in the Eu-
ler equations is a quasi-linear function of degree one,
and the Riemann problem is self similar, any consis-
tent numerical flux function must scale with density
and velocity, i.e.

PRUR
PL UL
PR'UR' ,MR\. (37)

Then it becomes clear that the positivity condition,
which can be rewritten in the following form,

frr fE
1U?RPR\UR\ \UR\pRU2

R PR\UR\3
< 0, (38)

actually depends on only three non-dimensional pa-
rameters and the sign of UR. Therefore without any
loss of generally we can set PR = 1, \UR\ = 1 and
suggest the following

POSITIVITY CONDITION: Let F(UL,Ufl) be a
one-dimensional numerical flux function for the Eu-
ler equations. Let UL and UR contain the following
primitive data,

PL = p,
PR = 1,

UL = u,
UR = ±1,

pL = 0,
PR = p.

Then the corresponding Godunov-type finite volume
scheme will be positively conservative if

-u2fp -u

for any

0 < p < oo,

—oo < u < oo,
0 <p< oo,

with the equality sign holding only if
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where a is some scalar number.

The positivity problem thus reduces to studying
the sign of only one functional form defined on a
three-dimensional parameter space. In some simple
cases this can be done analytically. The real use
for the above condition, however, comes when the
flux function is complicated enough to prohibit an-
alytical treatment. In that case finding the global
maximum of the form over the parameter space will
be sufficient to conclude whether the flux function
produces a positively conservative scheme. Even if
one has to scan the whole parameter space to find
the maximum, doing so is not going to be a major
difficulty with modern computers.

The parameter space may be further reduced for
the class of schemes whose flux function has the fol-
lowing property,

F(U,V) = (39)

lim

For this class of numerical schemes the flux func-
tion is a positive linear combination of two special
limiting cases, therefore only these two cases require
analysis. This eliminates the need to scan the full
range of/? in the condition; instead it is sufficient to
check only the limits p — > 0 and p — »• oo.

All flux vector splitting schemes, in particular sim-
ple gas-kinetic schemes, possess the above property.
Another subclass of schemes that have this property
are the schemes that can be written in conventional
form,24

2 2 ' '
with the dissipation matrix Q satisfying

For instance, the Lax-Friedrichs scheme belongs to
this subclass. Finally, it is not hard to see that
Donat and Marquina's10 flux function must satisfy
Equation 40 since its characteristic flux splitting is
not sensitive to scaling of either conservative state.
Most of these schemes are known to have a sub-
stantial amount of dissipation, and they are gener-
ally positively conservative. Also, the special form
of their flux function substantially simplifies anal-
ysis, therefore analytical results exist for many of
them.11'14-15

Unfortunately, the positivity condition does not
provide us with any information about the maxi-
mum allowable time step, which in certain situa-
tions may turn out to be fairly small. One has to

know the details of a particular flux function to find
this information. Nevertheless, the condition is al-
ready interesting because it can provide an insight
into whether such detailed analysis is necessary at
all. Also, it may justify the practice of reducing the
time step in some crash-prone situations.

Another interesting application of the positivity
condition is to revisit some existing schemes and see
whether previously unknown facts about them can
be uncovered. For example, we have applied the
condition to Roe's original scheme and readily found
that it does not pass the test, therefore the scheme is
not positively conservative. However, to our surprise
we have discovered that Roe's scheme with Harten's
entropy fix24 (6 = max(0,4(a/e — a^))) passes the
tests, and for a small enough time step it has no
problem computing Sjogreen's1 and even worse test
problems in which the vacuum state appears. Thus
for one-dimensional problems with no tangential slip
Roe's scheme with Harten's entropy fix is actually
positively conservative. Unfortunately, the scheme
loses this property when tangential slip is allowed,
although one can speculate that applying the fix to
the contact wave could restore the positivity of the
scheme.

To conclude this section we want to mention that
an extension of this method to full one-dimensional
problems is very similar. In the general case Equa-
tion 35 must be simply replaced with

F(U° ,U f l ) .V P (U°)<0 . (43)

In this case set G belongs to a five-dimensional con-
servative variable space, and the above inequality in-
volves a function of nine parameters. One can show
that with the above scaling arguments and a suit-
able choice of the coordinate system the parameter
space can be reduced to five dimensions (or to four if
the flux function satisfies Equation 40). This space,
however, is still quite large, therefore it would be
useful to find a subspace of the "worst cases" in this
space. More work in this direction needs to be done
to determine whether this is possible.

IV. Conclusions and Future
Work

In this paper we presented an extension of
first-order one-dimensional positively conservative
schemes for the Euler equations to more dimen-
sions and higher order. We have proven that a
multidimensional positively conservative scheme can
be designed in a fairly straightforward way pro-
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vided that a one-dimensional positively conservative
scheme with reasonable requirements on the time
step is available. By reasonable we mean that the
time step remains finite for any choice of conserved
states, even if some of them lie very close to the
boundary of the physically admissible sets. In this
case the resulting restrictions on the time step for
a multidimensional scheme are also going to be rea-
sonable and, in fact, comparable to the linear stabil-
ity requirements. In this sense positive conservation
is analogous to weak nonlinear stability. This con-
clusion is a direct consequence of the convexity of
the set of physically admissible conservative states.
In the constructed examples we have demonstrated
that the derived schemes do indeed preserve the pos-
itivity of density and pressure, although this prop-
erty may be accompanied by some local loss of ac-
curacy of the computed solutions.

With the understanding that positive conserva-
tion can be studied in one dimension, we have be-
gun the task of constructing tools for analyzing and
ensuring the positivity of one-dimensional schemes.
Based on the geometry of the Euler equations, we
have proposed a general positivity condition that can
be applied to any finite volume scheme, in particular
the ones whose complexity prohibits analytical stud-
ies. Unfortunately, the positivity condition does not
provide any information about the maximum allow-
able time step, which is a serious drawback from the
practical point of view. We believe that additional
details about a particular scheme are needed to ob-
tain such information. Nevertheless, the condition
appears very useful in uncovering the nature of the
loss of positivity

Although we have formulated the positivity con-
dition as a necessary condition, there are many rea-
sons to believe that it also is a sufficient condition.
To prove this claim one would have to show that
for any sequence of iterations the time step does not
converge to zero for a positively conservative scheme,
i.e. that the characteristic speed A remains finite in
the limit p —+ 0. Since expansion regions generally
correspond to smooth solutions, this result could fol-
low from the consistency of the scheme. From this
it would also follow that a consistent positively con-
servative scheme must be able to solve the Burgers
equation for velocity in the limit of vanishing pres-
sure. Some of our numerical experiments suggest
that this does indeed happen.

In one dimension we have been able to reduce
analysis to the problem of global maximum over
a three-dimensional parameter space. This prob-
lem can be studied using modern optimization tech-
niques. Since flux functions are usually fairly com-

plicated, it is hard to say a priori where this maxi-
mum is located for a particular flux function. More-
over, it can be shown that for some schemes the
maximum can be achieved at more than one point.
This shows that searching for the maximum may
not generally be trivial. Therefore, to reduce the
amount of work it may be worth looking for the re-
gion of the "worst cases" in the parameter space.
Physical intuition tells us that this region may turn
out to be universal for all sensible schemes. Clearly,
more work needs to be done to determine whether
our intuition serves us right.
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