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ABSTRACT

The optimal placement of statistical control maneuvers
are analyzed for maintaining position near an unstable
equilibrium point. We develop this idea for the libration
points in the Hill 3-body problem, but the analysis can
be generalized to other unstable systems, and is applied
to the restricted 3-body problem as well. This paper first
reviews the basics of statistical fuel usage in the context
of orbit determination errors and their mapping in time.
Using linear theory we derive several explicit targeting
formulae for driving a spacecraft back to a fixed point.
The mean and standard deviation of these schemes are
analyzed for our special case, and explicit solutions for
them are found. Using these results we can derive the
fuel-optimal spacing of the maneuvers in time in order to
control a spacecraft to the vicinity of an unstable libra-
tion point.

Statistical maneuver design

To plan for the navigation of a spacecraft, it is nec-
essary to develop a statistical model for the amount of
fuel that will be needed to keep the spacecraft on course.
This problem has been considered in the standard 2-Body
Problem by Battin [3], and has been applied to analy-
sis of motion in unstable libration point orbits by Far-
quhar [4] and Gomez et.al [5]. In this paper we recon-
sider the question of optimal timing of control maneu-
vers given statistical errors in orbit determination [1]. In
its most general form, the problem can be stated as fol-
lows. Given an error in position and velocity relative to
the nominal trajectory at time to of the form δro, δvo,
what is the mean and variance in the cost of the maneu-
vers to reduce the system back to δr = δv = 0 at some
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future time. Generally, the errors in position and velocity
arise from the previous maneuver and can be thought of
as errors in knowledge of the spacecraft state. Practically,
maneuver execution errors must also be incorporated, but
we ignore these in this paper.

For a general trajectory, a minimum of two maneuvers
are required to get back on track. One maneuver to tar-
get back to the trajectory at some future time, and a sec-
ond maneuver to reduce the relative velocity to zero at
that crossing. Of course, at the time when the trajectory
crossing occurs, errors from the epoch of the last ma-
neuver manifest themselves in a new set of dispersions,
which must themselves be corrected. By considering the
new dispersions to be uncorrelated with the initial dis-
persions (a conservative assumption in general), we can
isolate these effects from each other and perform an anal-
ysis on the two maneuvers alone. For the design of these
maneuvers, we have two free parameters, the time at
which we perform the first correction maneuver, t1, and
the time at which the trajectory crossing (and the second
maneuver) will occur, t2. For a more general approach,
we also derive a discrete linear quadratic controller and
apply it to our problem, where now the control sequence
consists of a maneuver of the same form after a charac-
teristic time interval.

The cost of a general correction maneuver can always
be expressed as a formula of the form:

∆Vi = |Ψixo| (1)

where Ψi is a time varying matrix in general and xo rep-
resents the state deviation measured at some initial epoch
to. To compute the statistical cost of these maneuvers re-
quires us to compute the mean and variance:

∆V =
∫
∞

∆V f(xo)dxo (2)

σ2
∆V =

∫
∞

(
∆V − ∆V

)2
f(xo)dxo (3)

= (∆V )2 − ∆V
2

(4)

Assuming that the measurement noise has zero mean
and a gaussian distribution, the probability density func-
tion of the initial conditions can be written as:

f(x0) =
1

(2π)N/2
√
|Λ0|

e−
1
2 xT

0 Λ0x0 (5)
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where N is the total dimension of the system phase
space and Λ0 is the initial information matrix.

If we implement a series of M such maneuvers, each
with the same assumed statistical and dynamical repre-
sentation, the total mean maneuver cost is M∆V and the
total variance is Mσ2

∆V . Thus, if we wish to estimate the
statistical cost of performing this sequence of maneuvers
to within an n-sigma probability value (1-D Gaussian),
we find:

∆Vstat = M

[
∆V +

n√
M

σ∆V

]
(6)

Thus, as the number of maneuvers becomes large we see
that the total (predicted) statistical cost can be approxi-
mated as:

∆Vstat ∼ M∆V (7)

Assume we wish to control a trajectory over an ex-
tended period of time T∞, and that we perform a ma-
neuver (or repeat a maneuver sequence) after every time
T , resulting in a total of M = T∞/T maneuvers. Then
the total statistical cost of this sequence of maneuvers is:

∆Vstat ∼ T∞
∆V

T
(8)

and for an arbitrary length of time T∞ we see that to
optimize fuel usage we need to choose the time interval
between maneuvers T to minimize ∆V /T . In the fol-
lowing discussion we will use a set definition for T equal
to the time between the determination of the state error
xo, to, and the first maneuver of our sequence, t1.

Hill Model and Motion
about the Libration Points

Scaling of the equations

Let us introduce the 3-dimensional equations for the
Hill 3-Body problem [6]:

ẍ − 2ωẏ = − µ

r3
x + 3ω2x (9)

ÿ + 2ωẋ = − µ

r3
y (10)

z̈ = − µ

r3
z (11)

where ω is the rotation rate of the secondary around the
primary, µ = GM , M is the mass of the secondary and
x,y,z denote the position of the spacecraft in the vicinity
of the secondary.

Transforming these equations into nondimensional form

gives us the length scale: l =
(

µ
ω2

)1/3
and the time scale

1
ω (for the Restricted 3-Body Problem, the length scale is
instead the distance between the two primaries). Let Λ0

be the information matrix corresponding to these nondi-
mensional equations, then:

Λ0 =
[

1/σ 2
r 0

0 1/σ 2
v

]
(12)

with σr = σrd

l and σv = σvd

lω , σrd and σvd correspond
to the variance of the error in position and velocity, re-
spectively, due to orbit determination errors. In the fol-
lowing, we will take σrd/σvd = 106. All the following
computations have been made using a nondimensional
information matrix Λ = σ2

rΛ0:

Λ0 =
[

1 0
0 ω2

E(σrd/σvd)2

]
(13)

The results of the nondimensional statistical analysis will
be the mean maneuver cost rate with units of length over
time squared, represented as ∆v

∆τ , where ∆v is the mean
maneuver cost and ∆τ is the time interval between ma-
neuvers. Even though the normalized Hill problem has
no parameter, there is a parameter in the information ma-

trix, ω2
(

σrd

σvd

)2

, which varies according to the ratio of

position to velocity accuracy and with the rotation rate of
the secondary about the primary. An additional parame-
ter is σr = σrd/l. Unless otherwise specified, the plots
show the value ∆v

∆τ . To transform these to dimensional

costs in km/s2, we use:

∆vd

∆t
= σrdω

2 ∆v

∆τ
(14)

To get the maneuver rate in (km/s)/secondary period:

∆vd

∆t
= 2πσrdω

∆v

∆τ
(15)

Libration Points of the Hill Problem

The general nondimensional equations of motion for
the Hill 3-Body Problem are:

ẍ − 2ẏ = − x

r3
+ 3x (16)

ÿ + 2ẋ = − y

r3
(17)

z̈ = − z

r3
(18)

This system has two equilibrium points: x = ±3−1/3,
y = z = 0. As the linear motion along the z
axis is decoupled from linearized motion in the x-y
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plane, the following analysis will only consider mo-
tion in the x-y plane. Let us linearize the system
around the equilibrium points x = ±3−1/3, using

δx =
[

δx δy δẋ δẏ
]T

:

δẋ =




0 0 1 0
0 0 0 1
9 0 0 2
0 −3 −2 0


 δx (19)

Let us call the above matrix U . Integrating this equation
gives δx = Φ(t, t0,x0)δx0 with:

Φ(t, t0,x0) = eU(t−t0) (20)

The eigenvalues of U are ±λ1 = ±
√

1 + 2
√

7 and
±jλ2 = ±j

√
2
√

7 − 1. The eigenvectors correspond-
ing to these eigenvalues define the direction of the stable
and unstable manifolds in phase space.
Writing eUt = α1U

3 + α2U
2 + α3U + α4I , for each

eigenvalue λ we find:

eλt = α1λ
3 + α2λ

2 + α3λ + α4 (21)

Solving this system leads to:

α1 =
sinh (λ1t)/λ1 − sinh (λ2t)/λ2

λ2
1 + λ2

2

(22)

α2 =
cosh (λ1t) − cosh (λ2t)

λ2
1 + λ2

2

(23)

α3 =
λ2

2 sinh (λ1t)/λ1 + λ2
1 sinh (λ2t)/λ2

λ2
1 + λ2

2

(24)

α4 =
λ2

2 cosh (λ1t) + λ2
1 cosh (λ2t)

λ2
1 + λ2

2

(25)

Computing U2 and U3 and replacing the αi by their val-
ues gives Φ(t, t0,x0) = [Φ1 Φ2]:

Φ1 =
1

2
√

7




√
7a + 4b −3c

−9c
√

7a − 2b

9(2c +
√

7d) −3b

−9b 3(4c −
√

7d)




(26)

Φ2 =
1

2
√

7




2c +
√

7d b

−b −(4c −
√

7d)√
7a + 2b c + 2

√
7d

−(c + 2
√

7d)
√

7a − 4b




(27)

where:
a = cosh(λ1t) + cos(λ2t)

b = cosh(λ1t) − cos(λ2t)

c = sinh(λ1t)
λ1

− sin(λ2t)
λ2

d = sinh(λ1t)
λ1

+ sin(λ2t)
λ2

As this gives us the general expression of Φ(t, t0, x0),
the computation of the matrix exponential is not needed.

Control Strategies

2-maneuver control sequence

In this section, the statistical cost of two maneuvers per-
formed at different times is computed. A maneuver is
made at t1 = n∆τ based on a solution at time t0 to null
the error in position at time t2, and a maneuver is made
at t2 = n∆τ + (t2 − t1) to null the error in velocity.
Let us give the general formula to compute the first cor-
rection maneuver ∆V1 to null the spacecraft position er-
ror at t2, and the second correction maneuver ∆V2 to null
the relative speed of the spacecraft at t2. Let:

Φ =
[

φrr φrv

φvr φvv

]
(28)

φ1(t2, t1) = φ−1
rv (t2, t1)φrr(t2, t1) (29)

φ2(t2, t1) = φvv(t2, t1)φ−1
rv (t2, t1)φrr(t2, t1)

−φvr(t2, t1) (30)

Then:

∆V1 = −[φ1(t2, t1)φrr(t1, t0) + φvr(t1, t0)]δr0

−[φ1(t2, t1)φrv(t1, t0) + φvv(t1, t0)]δv0

(31)

∆V2 = φ2(t2, t1)[φrr(t1, t0)δr0 + φrv(t1, t0)δv0]
(32)

Using the notation of the Appendix, the computation of
|∆V | is made using:
K = Λ
For |∆V1|: Ψ = Ψ1 (∆V1 = Ψ1δx0).
For |∆V2|: Ψ = Ψ2 (∆V2 = Ψ2δx0).
The general formula used is:

∆V =

√
2
π

√
λ + µ EllipticE

(√
2µ

λ + µ

)

(33)
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with:

λ = (aT
1 K−1a1 + a2

T K−1a2)/2 (34)

µ =
√

(aT
1 K−1a1 − a2

T K−1a2)2/4 + (aT
1 K−1a2)2

(35)

Ψ =
[

a1

a2

]
(36)

where EllipticE is the complete elliptic integral of the
second kind.
Figure [1] shows the variation of the minimum of the
costs when the interval t2 − t1 is varying. For each value
of t2−t1, the total cost (|∆V1|+|∆V2|)/(t1−t0) is com-
puted for a range of values of t1−t0 to find the minimum
cost. This plot shows that the influence of this period is
only important when t2 − t1 is such that the matrix φrv

is singular. At t2 − t1 constant, the minimum occurs for
∆τ = 0.4, quite close to the characteristic time of the un-
stable mode, 1/λ1. Then, the minimum of the cost vary-
ing t2 − t1 is the same in each interval, about 46.2. The
cost has been computed taking the nondimensional norm
of the velocity needed to correct the position divided by
the nondimensional period between the manœuvers ∆τ .
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Figure 1: Separated maneuvers: optimal cost

Overlaid 2-maneuver control sequences

The maneuvers to null the position at t2 + ∆τ and to
null the velocity at t2 can be performed simultaneously.
As only the magnitude of the velocity is important for
computing the optimal cost, we hope to find a better min-
imum for |∆V1 + ∆V2| than for |∆V1| + |∆V2|. More
generally, the case t2 − t1 = k(t1 − t0) where k is an
integer will also be investigated.

Correction in the computation of the mean
and the variance

At time t2 = nτ two maneuvers are performed simul-
taneously: one maneuver to null the position at a time τ
later and one to null the velocity due to the previous cor-
rection. The new correction is ∆V = ∆V1 +∆V2 where
∆V1 = Ψ1δx1 is the correction to null the state error δx1

determined τ before and ∆V2 = Ψ2δx0 is the correction
to null the velocity due to the error δx0 determined 2τ
before. Therefore, the new correction ∆V depends on
two independant gaussian variables δx1 and δx0.
Using the notation of the appendix, the computation is
made using (33):
Ψ = [Ψ1Ψ2] 8 × 2 matrix

K =
[

Λ 0
0 Λ

]

Note that we have the freedom to introduce different er-
ror statistics for δx0 and δx1 but we keep them equal for
simplicity.

Optimization of |∆V | = |∆V1 + ∆V2| when
t2 − t1 = k(t1 − t0)

Let us now plot the cost of the maneuvers when the
maneuver to null the position and the maneuver to null
the velocity are made at the same time. Figure [2] shows
the curves corresponding to the cost of the simultane-
ous maneuvers, the cost of the maneuver to null the posi-
tion alone, ∆V1, the cost to null the velocity alone, ∆V2

and the sum of these two maneuvers if they were done
separately. As expected, the cost of the maneuvers done
separately is higher than the cost of the maneuvers done
simultaneously.
A minimum of 53.3 is achieved when the maneuvers are
made separately and t2 − t1 = t1 − t0 = 0.54 (this is
worse than the minimum obtained by varying t2 − t1).
When the maneuvers are made simultaneously, the new
optimal time interval is T = 0.54 and the new minimum
is 45.1, reducing the cost of the maneuvers by 2.4%.

Let us now compare the values of the period and of
the minimum when t2 − t1 = k(t1 − t0). In this case,
maneuvers are made every time interval τ targeting the
equilibrium point a time kτ later. Figure [3] shows that
a new problem arises when k varies. When t2 − t1 is
such that φrv is singular, the linear corrections become
infinite.
For k = 3, the new optimal cost is 37.5 for a period
T = 0.4. Evaluating higher values of k give other min-
ima around 38, not better than the previous one. As a
consequence, a new optimal cost is found for simulta-
neous maneuvers and k = 3. In comparison with the
separated maneuvers, it improves the cost by 18.8%.
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Stable Manifold Targeting

Another approach to control is to make corrections
to target the spacecraft to a state vector corresponding
to the stable manifold of the equilibrium point. We
hope to decrease the cost of the manoeuvers by target-
ing a point in state space closer than the origin. Let
us write the new ∆V1 and ∆V2 using us as the stan-
dard direction on which we want to target the spacecraft,
where [us − λ1us] is the eigenvector corresponding
to the stable manifold. As a result, the final position of
the spacecraft at t2, after the second maneuver, will be
η[us − λ1us] and the spacecraft should approach the
equilibrium point along the stable manifold. Then with
t = t2 − t1, if δx1 and δv1 specify the position and ve-
locity at the time t1 of the first maneuver:

∆V1 = φrv(t)−1(η1us − φrr(t)δx1) − δv1 (37)

∆V2 = (−λ1I − φvvφ−1
rv )η2us + (φvvφ−1

rv φrr − φvr)δx1

(38)

Using the stable manifold targeting method, we tried sev-
eral strategies to minimize the cost. The minimization of
|∆V1| + |∆V2| gives similar results to the minimization
of |∆V1|2 + |∆V2|2, which has the advantage of having
an analytical solution for η. This approach removes the
singularities found above, but does not reduce the mini-
mal cost.

LQR Control Algorithm

LQR method

Now let us formulate the problem in terms of digital
control:
x(k + 1) = Gx(k) + Hu(k) + w(k)

where G = Φ, H =




0 0
0 0
1 0
0 1


, u(k) = ∆V (k), and w

is a gaussian noise representing the orbit determination
error such that:
E[w(k)] = 0, E[w(j)wT (k)] = Λ−1δjk = Qwδjk

Using this equation, let us find the optimal control
law u(k) that will minimize:

J = E

[
SN +

N−1∑
k=0

xT (k)Qx(k) + uT (k)Ru(k)

]

(39)

with: SN = xT (N)P (N)x(N)
Let:

P (k) = Q + GT P (k + 1)G − GT P (k + 1)H
[R + HT P (k + 1)H]−1HT P (k + 1)G

(40)

K(k) = [R + HT P (k + 1)H]−1HT P (k + 1)G
(41)

Using these parameters, it can be shown [2] that the con-
trol vector that minimizes J is given by the equation:
u(k) = −K(k)x(k).
Finally:

Jmin = xT (0)P (0)x(0)

+E

[
N−1∑
k=0

trace[P (k + 1)Qw]

]
(42)

Let us now consider the steady-state quadratic optimal
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control. Taking the limit N → ∞, the optimal con-
trol solution becomes a steady state solution and the time
varying gain matrix K(k) becomes a constant gain ma-
trix K.
For N = ∞, the performance index may be modified to:

J = E

[ ∞∑
k=0

xT (k)Qx(k) + uT (k)Ru(k)

]
(43)

Where the steady state matrix, P is solution of the Alge-
braic Riccati Equation:
P = Q + GT PG − GT PH[R + HT PH]−1HT PG
K = [R + HT PH]−1HT PG
A problem arises with the cost function J because as
trace[PQw] is finite and not necessarily equal to zero,
J is infinite. However, as it is shown in the following, if:

J = lim
k→∞

E
[
xT (k)Qx(k) + uT (k)Ru(k)

]
(44)

Then: J = trace[PQw]
Taking R = I , we have:

|∆V |2 = lim
k→∞

uT (k)Ru(k) (45)

And:

J = |∆V |2 + lim
k→∞

xT (k)Qx(k) (46)

Let us now find |∆V |2:
Let PX(k + 1) = E[x(k + 1)xT (k + 1)], then:
PX(k + 1) = (G − HK)PX(k)(G − HK)T + Qw

As the characteristic roots of G−HK are inside the unit
circle, the effects of the initial condition PX(0) gradu-
ally diminish and PX approaches a stationary value. This
value is given by the solution of the Lyapunov equation:

PX = (G − HK)PX(G − HK)T + Qw (47)

Finally:

lim
k→∞

E[xT (k)Qx(k)] = trace[PXQ] (48)

lim
k→∞

E[uT (k)Ru(k)] = trace[KPXKT ] (49)

As a result:

|∆V |2 = trace[PQw] − trace[PXQ]
= trace[KPXKT ] (50)

The parameter studied in the previous sections is |∆V |.
As a consequence, we need to estimate this parameter
with the LQR method in order to have a comparison
between the two controls. First of all:
σ2

∆V = |∆V |2 − |∆V |2 ≥ 0 implies that

|∆V | ≤
√

trace[KPXKT ].

Then, using:

x(k + 1) =
k∑

j=0

(G − HK)jw(k − j) (51)

we find:

∆V (k + 1) =
k∑

j=0

φ(j)w(k − j) (52)

with: φ(j) = −K(G − HK)j

Still using the method of computation of |∆V | described
in the appendix, this gives:

|∆V (k)| =

√
2
π

√
λ + µ EllipticE

(√
2µ

λ + µ

)

(53)

where λ and µ are finite series which converge rapidly to
a solution that does not depend on k, which is consistent
with the existence of a limit for PX(k).

Using this method, it becomes necessary to check
the average spacecraft distance from the origin. Indeed
if the spacecraft drifts too far from the equilibrium point,
the linearization approximation cannot be kept. The
average distance from the origin can also be studied
using the same method as above with a series for λ and
µ.

With S = diag(1, 1, 0, 0), T =
[

1 0 0 0
0 1 0 0

]
and

φd(j) = T (G − HK)j :

d(k + 1) =

∣∣∣∣∣∣
k∑

j=0

φd(j)w(k − j)

∣∣∣∣∣∣ (54)

lim
k→∞

d(k)2 = trace[PXS] (55)

Implementation of LQR Method

In this part, the performance of the methods are com-
pared (Figure [4]). For the average distance from the ori-
gin using the first method (labeled dp in Figure [4]), we
compute the average distance in the case where t1−t0 =
t2−t1. Three different matrices Q have been considered.
Q = 0.05S implies that there is nearly no requirement on
the position of the spacecraft. As can be seen in the next
graph, the achievement in the cost is good, 30.6 instead
of the previous 37.5, but the tradeoff is that the position
is more than twice as far from the origin. Q = 500 im-
plies that the requirement on the position is strong and
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Figure 4: LQR Method: Optimal Cost

therefore the spacecraft will stay close to the origin. As
expected, the best cost is now worse than 37.5: 44.5.
Considering the case Q = 5S, we find that the average
distances from the origin are nearly the same for the two
control methods. However, a new optimal cost is ob-
tained of about 35.3. It seems that the LQR method im-
proves the optimal cost without deterioring the average
distance from the equilibrium point of the spacecraft.
Note that if we take the ratio σr/σv = ω/σvd with ω

equal to the rotation rate of the Moon around the Earth,
we find that targeting the origin gives the optimal cost of
19.9 for k = 3 whereas the optimal costs for the LQR
method are 16.5, 18 and 22.4 for Q = 0.05S, Q = 5S
and Q = 500S respectively. Therefore, we can conclude
that the LQR method gives better results than the method
of targeting the equilibrium point in this case as well.

7



Comparison and Discussion of
Optimal Approach

Testing the validity of the model

Our linear control has also been implemented using
the non-linear model. One must be careful in the
implementation of the controller to take into account the
fact that the LQR method uses the previous state error to
correct the trajectory whereas the method targeting the
origin uses the previous state error minus what the state
would be if the model was behaving linearly.

Procedure of computation: LQR method

- from x(k), the non-linear equations are integrated
over the period T to obtain x(k + 1)′.

- x(k + 1) = x(k + 1)′ − HK(x(k) − xeq) + w(k)

Procedure of computation: Targeting the Equilibrium
Point t2 − t1 = k(t1 − t0)

- from x(k), the non-linear equations are integrated
over the period T to obtain x(k + 1)′.

- The case of the k first maneuvers, where only the
correction ∆V1 is performed, has to be considered
separately. As a result, in this case: x(n + 1) =
x(n + 1)′ + φ1xcorr(n) + w(n) whereas after kT ,
x(n + 1) = x(n + 1)′ + φ1xcorr(n) + φ2xcorr(n−
k) + w(n)

- the computation of xcorr(n) requires us to compute
what the state would be if the model were behaving
linearly, using K1 = −φ1: xcorr(n) = x(k)−xeq−∑n

j=1 Gn−j(G − HK1)xcorr(j − 1) for the k first

steps and xcorr(n) = x(k)−xeq−
∑k

j=1 Gk−j(G−
HK1)xcorr(n + j − k − 1) for the following steps.

Once these models were implemented, we tested them
to find what the maximum allowable variance is. For the
LQR method, taking the values of variance computed
before, we find that these values can be multiplied by
40000. This means that the model can correct position
errors of 40000 km and velocity errors of 40ms−1 in
velocity! For the method of targeting the equilibrium,
the values can be respectively multiplied by 32000,
32000, 24000 and 900 for k equal to 1, 2, 3 and 4. The
lower value of 900 corresponds to the period T = 0.4
for k = 4. Indeed for this particular value, we have seen
that the cost increases very rapidly due to the fact that
the matrix φrv is becoming singular.

Comparison between the results of the
simulations and the analytical conclusions

To compare the results of the simulations and the re-
sults of the analytical conclusions, we took the scaling
values of the Earth-Sun system. Figures [5] and [6] give
the accelerations necessary to control the spacecraft in
the Earth-Sun system in km/s/year, Figure [5] for the
LQR method with Q = 500S, Q = 5S and Q = 0.05S
and Figure [6] for the method of targeting the equilib-
rium with k = 1, k = 2, k = 3 and k = 4. These figures
have been generated with N = 400 maneuvers for the
non linear model. As can be seen, the comparisons give
good results, indicating that the nonlinear model will be
close to the analytical computations made using the lin-
ear model. The non-linear model seems to deviate more
from the analytical solution for the LQR method, mainly
due to the different scaling of the plots.

Application to the
Restricted 3-Body Problem

Now let us write the nondimensional equations of the
Restricted 3 Body Problem in two dimensions:

ẍ − 2ẏ = x − (1 − µ)(x + µ)
[(x + µ)2 + y2]3/2

− µ(x − 1 + µ)
[(x − 1 + µ)2 + y2]3/2

(56)

ÿ + 2ẋ = y − (1 − µ)y
[(x + µ)2 + y2]3/2

− µy

[(x − 1 + µ)2 + y2]3/2
(57)

There are five equilibrium points for this system. Two
of them, called L1 and L2, correspond to the two
equilibrium points of the Hill problem, µ corresponds
to the mass ratio of the smallest body mass to the the
sum of the two masses. For the Earth-Sun system, µ
is small and the problem can be approximated by the
Hill problem. However, for the Earth-Moon system,
µ = 0.0122, and the Hill approximation gives quite
different results from the Restricted 3-Body Problem, as
will be shown.

The linearization around the equilibrium points
[x1,2 0 0], where x1 = 0.99, x2 = 1.01 for the
Earth-Sun system and x1 = 0.837, x2 = 1.156 for the
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Figure 5: LQR Method: Cost of the Nonlinear Model vs Cost of the Linear Model

Earth-Moon system, gives:

δẋ =




0 0 1 0
0 0 0 1

1 + 2a 0 0 2
0 1 − a −2 0


 δx (58)

with: ai = 1−µ
|xi+µ|3 + µ

|xi−1+µ|3

Solving the charateristic polynomial of this new
matrix for these libration points gives two opposite
real eigenvalues ±λ1 and two complex conjugate
eigenvalues ±jλ2 as in the Hill problem. To compute
Φ(t, t0,x0), the polynomial decomposition of part one
can still be used with the αi (22).

Let us compare the characteristic exponent λ1 given by
the two problems for the Earth-Moon system:
For x1 = 0.837: λ1 = 2.93
For x2 = 1.156: λ1 = 2.15
Whereas for the Hill problem: λ1 = 2.51
Using the results from the previous part, these values
imply that the optimal control period will be smaller for
x1 = 0.837 than the optimal period given by the Hill

problem and greater for x2 = 1.156.

Tables (1) and (2) compare the results given by the
Restricted Three Body Problem with the results of the
Hill Problem. They show that the values predicted using
the Hill problem are close to the values predicted by the
Restricted 3-Body Problem for the Earth-Sun system.
For the Earth-Moon system, the values predicted by the
two models are quite different, however the results of
the Hill problem are close to the average of the L1 and
L2 results and thus can be used to estimate results. The
errors made in the two methods are proportional, and the
Hill Problem gives an expected cost between 22% and
26% higher than the real cost for x2 = 1.156 and gives
an expected cost between 20% and 23% lower than the
real cost for x1 = 0.837. The optimal maneuver periods
also change, as discussed above.
Figures (7) and (8) show a comparison of these costs for
the two systems and the two methods, taking x1 = 0.99
for the Earth-Sun system and x1 = 0.837 for the
Earth-Moon system. The results in the Earth-Moon
system are contracted in time because of the error made
in the eigenvalues.
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Figure 6: Targeting the Eq.: Cost of the Nonlinear Model vs Cost of the Linear Model

Main bodies Problem cost km/s/period period
Earth-Sun Hill S=100 5.35e-5 28.5 days

S=0.01 3.78e-5 18.6 days
3-Body S=100 5.30e-5 28.5 days
x0 = 1.01 S=0.01 3.74e-5 19.2 days
3-Body S=100 5.39e-5 27.9 days
x0 = 0.99 S=0.01 3.82e-5 18.6 days

Earth-Moon Hill S=100 3.60e-4 45.42 hours
S=0.01 2.75e-4 33.03 hours

3-Body S=100 2.95e-4 52.6 hours
x0 = 1.156 S=0.01 2.17e-4 38.2 hours
3-Body S=100 4.89e-4 39.2 hours
x0 = 0.837 S=0.01 3.53e-4 27.9 hours

Table 1: LQR method

Conclusions/Future Work

This paper compares different control strategies that
can be implemented to control a spacecraft about an un-
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Main bodies Problem cost km/s/period period
Earth-Sun Hill 4.70e-5 22.9 days

3-Body x0 = 1.01 4.65e-5 23.1 days
3-Body x0 = 0.99 4.75e-5 22.7 days

Earth-Moon Hill 3.36e-4 38.2 hours
3-Body x0 = 1.156 2.66e-4 44.4 hours
3-Body x0 = 0.837 4.32e-4 32.8 hours

Table 2: Targeting the equilibrium
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Figure 7: Targeting the Eq.: Comparison Hill Problem vs Restricted 3-Body Problem

stable equilibrium point. First an optimal statistical cost
has been found for simultaneous maneuvers targeting the
equilibrium point. This first control approach has been
extended to the more general method of targeting the sta-
ble manifold. We have shown that targeting the stable
manifold does not improve the results. The LQR method
and its tradeoff has been investigated, leading to an im-
provements of the statistical cost. All these results have
been checked by non-linear simulations. Finally the opti-
mal costs of the two controls have been compared for the
Hill problem and the Restricted 3 Body problem and are
very similar for the Earth-Sun system. We have found

that a maneuver spacing close to the characteristic time
of the unstable eigenvalue is optimal in all cases.
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Appendix

Procedure to compute
the mean and variance of |∆V |

The aim of this appendix is to give a general method for
the computation of the mean and variance of |∆V |:
The mean is given by |∆V | =

∫
∞ |∆V |f(x)dx

where f is the probability density function of a gaus-
sian distribution. The variance is given by σ2

∆V =∫
∞ |∆V |2f(x)dx

More explicitly, one can write:

|∆V | =
∫
∞

|Ψx|
√
|K|

(2π)N/2
e−

1
2 xT Kxdx (59)
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The main problem comes from the integration of the
norm of Ψx. Let us write:

u =




u1

u2

...
uN


 =




aT
1

aT
2
...

aT
N


x = Ax (60)

where:

[
aT
1

aT
2

]
= Ψ

A is a N × N matrix. Let us assume rank(Ψ) = 2 in
order that A can be chosen to be nonsingular. Using u as
the new variable, introduce H = A−T KA−1,with:

dx = du
|A| =

(
|H|
|K|

)1/2

du, where |.| stands for the

determinant of a matrix.
It is possible to write the new expression of the integral:

|∆V | =
∫
∞

√
u 2

1 + u 2
2

√
|H|

(2π)N/2
e−

1
2 uT Hudu

(61)

Then if H is a diagonal matrix of the form H =
diag(α β 1 1), integrating over u3, . . . , uN , the in-
tegral takes the new form:

|∆V | =
1
2π

∫
∞

√
u 2

1 + u 2
2 e−

αu 2
1 +βu 2

2
2

√
αβdu1du2

(62)

Let us now examine the hypothesis of H =
diag(α β 1 1) more closely, AT HA = K is equiv-
alent to:

αa1a
T
1 + βa2a

T
2 + a3a

T
3 + . . . + aNaT

N = K
(63)

Therefore taking the orthogonal x to (a2, . . . , aN ) gives:
αa1a

T
1 x = Kx ⇔ α(aT

1 x)a1 = Kx
As a result, x = K−1a1 must be orthogonal to a2. This
is only true for a particular matrix K. As the integration
must be performed for every K, a choice other than a2 is
needed in A. Let us introduce the new notation:

Ψ =
[

a1

a2

]
(64)

γ =
aT
1 K−1a2

aT
1 K−1a1

(65)

The last equality is possible for every a1 	= 0 as our
information matrix and its inverse are positive definite.
Let:

a2 = a2 − γa1 (66)

Then: aT
2 K−1a1 = 0

Finally, as we assumed rank(Ψ) = 2, a1 and a2 are
independent.

Now let us prove that if ak, k ≤ N , is orthogonal
to (K−1a1, . . . , K

−1ak−1), then ak is independent of
(a1, . . . , ak−1):
Let λ1, . . . , λk−1 not all equal to 0 such that:
ak =

∑k−1
j=1 λjaj

Then for all i ∈ [1, k − 1]: λia
T
i K−1ai = 0. As K−1 is

positive definite, it gives λi = 0. Contradiction.

Finally taking a3 in the orthogonal of (K−1a1, K
−1a2),

normalizing a3 such that aT
3 K−1a3 = 1, ... , aN in the

orthogonal of (K−1a1, . . . , K
−1aN−1), normalizing

aN such that aT
NK−1aN = 1, (a1, . . . , aN ) is a basis.

As a result, A is nonsingular and:

AK−1AT = H−1 ⇔ H = A−T KA−1 (67)

α and β are given by:

α−1 = aT
1 K−1a1 (68)

β−1 = aT
2 K−1a2 = a2

T K−1a2 −
(aT

1 K−1a2)2

aT
1 K−1a1

(69)

It gives: |Ψx| = [(aT
1 x)2 + (aT

2 x + γaT
1 x)2]1/2.

|Φx0| =
√

(1 + γ2)u 2
1 + u 2

2 + 2γu1u2 with u1 =
aT
1 x, u2 = aT

2 x.
As a consequence,

|∆V | = |Φx0|e−
αu 2

1 +βu 2
2

2
√

αβdu1du2 (70)

Taking for the new variables (v1, v2) = (
√

αu1,
√

βu2)
and then changing to polar coordinates gives the follow-
ing new expression for the integral:

|∆V | =
1
2π

∫
∞

Cθρ
2e−

ρ2

2 dρdθ (71)

with:

Cθ =

√
(1 + γ2) cos θ2

α
+

sin θ2

β
+

2γ cos θ sin θ√
αβ

(72)

To compute the integral of Cθ, let us write:

Cθ =

√
λ + 0.5

(
1 + γ2

α
− 1

β

)
cos 2θ +

γ√
αβ

sin 2θ

(73)
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with:
λ = 0.5

(
1+γ2

α + 1
β

)

Then, assuming µ 	= 0, |∆V | is given by:

|∆V | =
1√
2π

∫ π

0

√
λ + µ cos(2θ)dθ (74)

with:

λ = (aT
1 K−1a1 + a2

T K−1a2)/2 (75)

µ =
√

(aT
1 K−1a1 − a2

T G−1a2)2/4 + (aT
1 K−1a2)2

(76)

More explicitly:

∆V =

√
2
π

√
λ + µ EllipticE

(√
2µ

λ + µ

)

(77)

where EllipticE is defined as:

EllipticE(k) =
∫ π

2

0

(1 − k2 sin2 θ)
1
2 dθ (78)

and is the complete elliptic integral of the second kind.
It is easy to check that the integration is still valid when
µ = 0. The other particular case is when rank(Ψ) = 1.

In this case, it is trivial to check that |∆V | =
√

2
π

√
λ.

For this matrix Ψ, as λ = µ and EllipticE(1) = 1, the
formula above gives the same result.

The variance of the statistical cost of these maneu-
ver is fairly easy to compute once this method has been
developed for the mean:

σ2
∆V =

∫
∞

|∆V |2f(x0)dx0 − |∆V |2 (79)

σ2
∆V =

1
2π

∫
∞

C2
θρ3e−

ρ2

2 dρdθ − |∆V |2 (80)

σ2
∆V = 2λ − 2

π
(λ + µ) EllipticE2

(√
2µ

λ + µ

)

(81)
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