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A new Reynolds stress anisotropy closure that includes nonlocal and nonequilibrium
effects in turbulent flows has been obtained from a recently proposed nonlocal anisotropy
formulation. This formulation is based on a new nonlocal derivation of the rapid pressure-
strain correlation, which rigorously accounts for nonlocal effects on the anisotropy due to
spatial variations in the mean velocity gradient tensor. The present nonlocal and nonequi-
librium anisotropy model is obtained as a quasi-linear solution to the anisotropy transport
equation, and directly replaces the classical local equilibrium Boussinesq closure in stan-
dard two-equation turbulence models. This allows straightforward implementation of the
present approach in existing computational frameworks for solving the Reynolds averaged
Navier-Stokes equations. Here we present the first assessment of the model in inhomoge-
neous flows – where nonlocal effects are expected to be important – by comparing with
results from direct numerical simulations of turbulent channel flow.

I. Introduction

Due to the often prohibitive computational resources required for large eddy simulations (LES) and direct
numerical simulations (DNS) of even relatively basic turbulent flows, the vast majority of simulations for
practical problems will continue to be done within the Reynolds-averaged Navier-Stokes (RANS) framework.
The single-point RANS equations are obtained from the continuity and momentum equations as

∂ρ

∂t
+

∂ (ρui)
∂xi

= 0 , (1)

ρ
Dui

Dt
= − ∂p

∂xi
+

∂

∂xj

[
2μSij − 2

3
μSnnδij − ρu′

iu
′
j

]
, (2)

where D/Dt is the mean flow material derivative and Sij is the mean strain rate tensor, defined as

Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3)

In order to solve (1)-(3), a closure model for the Reynolds stress tensor u′
iu

′
j appearing in (2) is required.

This can be written in terms of its isotropic (2
3kδij) and anisotropic parts as

u′
iu

′
j =

2
3
kδij −

(
u′

iu
′
j

)
aniso

, (4)

where k ≡ 1
2u′

iu
′
i is the turbulence kinetic energy. The anisotropic part is equivalently written in terms of

the Reynolds stress anisotropy tensor aij , defined as

aij ≡ − (u′
iu

′
j)aniso

k
=

u′
iu

′
j

k
− 2

3
δij , (5)

1 of 18

American Institute of Aeronautics and Astronautics

39th AIAA Fluid Dynamics Conference
22 - 25 June 2009, San Antonio, Texas

AIAA 2009-4162

Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



and closing the system in (1)-(3) requires a suitable model for the anisotropy in (5).
The evolution of the anisotropy in turbulent flows fundamentally involves nonlocal and nonequilibrium

effects, both of which must be accurately predicted in order to provide high-fidelity solutions of the RANS
equations in (1)-(3). Here nonlocality refers to a pressure-based effect arising from the pressure-strain
correlation in the exact transport equation for the anisotropy.1,2 The nonlocal nature of the anisotropy
evolution can also be seen from the double Biot-Savart representation for the Reynolds stresses, namely

u′
iu

′
j(x, t) =

1
4π

∫ ∞

−∞

1
4π

∫ ∞

−∞
εiklεjmn ω′

k(x̌, t)ω′
m(x̂, t)

(xl − x̌l)
|x − x̌|3

(xn − x̂n)
|x − x̂|3 dx̌ dx̂ , (6)

where the stresses depend on the two-point vorticity fluctuation correlation at all points in the flow. Due
to the strong spatial variations of mean flow quantities in the wall-normal direction, nonlocal effects are
particularly significant in wall bounded flows, although other inhomogeneous flows (e.g. free shear flows)
also involve a certain degree of nonlocality.

Nonequilibrium effects on the anisotropy evolution have been discussed elsewhere,3 and are fundamentally
tied to the importance of Lagrangian history effects on the local anisotropy. That is, the anisotropy at any
location and time depends on the prior history of the anisotropy along mean-flow pathlines. Nonequilibrium
effects are perhaps most obvious in unsteadily strained homogeneous turbulence, where the anisotropy does
not respond instantly to changes in the applied strain (for example in impulsively4 and periodically5 sheared
turbulence), although nonequilibrium effects are also significant in strongly inhomogeneous flows where flow
properties can vary dramatically along mean pathlines (for example across shock waves in compressible
flows).

Despite the importance of nonlocal and nonequilibrium effects in even relatively basic problems however,
nearly all prior models for the anisotropy neglect nonlocal effects, including second-order Reynolds stress
transport models. Moreover, nonequilibrium effects are neglected in the most widely used linear and nonlinear
eddy viscosity models (the assumptions used to obtain these and other models are summarized in a number
of comprehensive reviews6,7). In particular, the overwhelmingly popular standard k − ε and k − ω two-
equation models are based on the classical equilibrium Boussinesq closure, which assumes the anisotropy to
be directly proportional to the local instantaneous mean strain rate tensor, namely

aij = −2
νT

k
Sij , (7)

where νT is the eddy viscosity. Despite the widespread popularity of models based on (7), the direct
dependence on Sij in (7) explicitly neglects nonlocal and nonequilibrium effects on the anisotropy.

In the following we depart from prior approaches and develop a new anisotropy closure that includes
both nonlocal and nonequilibrium effects in turbulent flows, but does so within a relatively simple approach
that is readily implemented in existing two-equation frameworks for solving (1)-(3). The present closure
seeks to include the principal nonequilibrium dynamics of aij contained in full Reynolds stress transport
models, while additionally accounting for nonlocal effects due to spatial variations in the mean strain rate
tensor. This is accomplished by solving a quasi-linearized form of a recently proposed1 nonlocal anisotropy
transport equation that is based on a new nonlocal representation for the rapid pressure-strain correlation.
The resulting model for the anisotropy replaces the local instantaneous mean strain rate Sij appearing in the
Boussinesq hypothesis with a nonlocal, nonequilibrium effective strain rate S̃ij . The purely nonequilibrium
form of this tensor was originally proposed in Ref. [3], and in the following the effective strain is extended
to include nonlocal effects on the anisotropy evolution. The present closure is shown in the following to
provide good agreement with results from DNS of fully-developed turbulent channel flow, where strong
spatial variations in the near-wall region lead to substantial nonlocal effects on the anisotropy.

II. Formulation of the Nonlocal Anisotropy Transport Equation

The present anisotropy closure for nonlocal and nonequilibrium effects is obtained from a recently pro-
posed1 nonlocal transport equation for the anisotropy. This transport equation is based on a new nonlocal
formulation for the rapid pressure-strain correlation in turbulent flows, and allows more accurate predictions
of the anisotropy in the presence of strong spatial variations in the mean velocity gradient field.
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II.A. Exact Anisotropy Transport Equation

From the definition of the Reynolds stress anisotropy in (5), the exact anisotropy transport equation can be
obtained from

Daij

Dt
=

1
k

(
Du′

iu
′
j

Dt
− u′

iu
′
j

k

Dk

Dt

)
. (8)

On the right-hand side, the transport equation for the Reynolds stresses u′
iu

′
j can be written6 as

Du′
iu

′
j

Dt
= Pij + Πij − εij + Dij . (9)

In (9), Pij is the production tensor

Pij ≡ −u′
iu

′
l

∂uj

∂xl
− u′

ju
′
l

∂ui

∂xl
, (10)

Πij is the pressure-strain rate correlation tensor given by

Πij(x) ≡ 2
ρ

p′(x)S′
ij(x) , (11)

with the fluctuating strain rate tensor S′
ij defined as

S′
ij ≡ 1

2

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)
, (12)

εij is the dissipation rate tensor given by

εij ≡ 2ν
∂u′

i

∂xl

∂u′
j

∂xl
, (13)

and Dij accounts for viscous, turbulent, and pressure transport and is defined as

Dij ≡ − ∂

∂xl

(
u′

iu
′
ju

′
l +

p′

ρ
u′

jδli +
p′

ρ
u′

iδjl − ν
∂u′

iu
′
j

∂xl

)
. (14)

The corresponding transport equation for the turbulence kinetic energy k is obtained from the trace of (9)
as

Dk

Dt
= P − ε + D , (15)

where P ≡ Pnn/2, D ≡ Dnn/2, ε ≡ εnn/2, and Πnn ≡ 0 in incompressible turbulence. Substituting (9)
and (15) into (8), and employing the definition of the anisotropy in (5), gives the exact anisotropy transport
equation

Daij

Dt
= −

(
P

ε
− 1

)
ε

k
aij +

1
k

[
Pij − 2

3
Pδij

]
+

1
k

Πij − 1
k

[
εij − 2

3
εδij

]
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
. (16)

The production term in (16) can be fully expanded in terms of aij , Sij , and the antisymmetric part of the
mean velocity gradient tensor W ij , defined as

W ij ≡ 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (17)

to obtain the exact form[
Pij − 2

3
Pδij

]
= −4

3
kSij − k(ailSlj + Silalj − 2

3
anlSnlδij) + k(ailW lj − W ilalj) , (18)

where the kinetic energy production P is given by

P = −k aij Sij . (19)
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With (18), the exact transport equation for aij is then

Daij

Dt
= −

(
P

ε
− 1

)
ε

k
aij − 4

3
Sij −

(
ailSlj + Silalj − 2

3
anlSnlδij

)
(20)

+
(
ailW lj − W ilalj

)
+

1
k

Πij − 1
k

[
εij − 2

3
εδij

]
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
.

In (20), k is given by (15), P is given by (19), and the remaining unclosed terms are Πij , εij , and Dij . The
dissipation is here given by its high-Reynolds number isotropic form, namely

εij =
2
3
εδij , (21)

and a number of standard models for Dij have been summarized in Ref. [6]. Thus, the only remaining
unclosed term in (20) is the pressure-strain correlation Πij .

II.B. Pressure-Strain Correlation Πij

Nearly all models for the pressure-strain correlation Πij , defined in (11), are typically related to the exact
integral for the pressure fluctuation p′, which is obtained from the Poisson equation8

1
ρ
∇2p′ = −2

∂uk

∂xl

∂u′
l

∂xk
− ∂2

∂xk∂xl

(
u′

ku′
l − u′

ku′
l

)
. (22)

This equation permits the Green’s function solution9

1
ρ
p′(x) =

1
4π

∫
R

[
2
∂uk

∂x̂l

∂u′
l

∂x̂k
+

∂2

∂x̂k∂x̂l

(
u′

ku′
l − u′

ku′
l

)]
x̂

dx̂
|x − x̂| , (23)

and from (11) and (23) Πij is then given by

Πij(x) =
1
2π

∫
R

[
2
∂uk

∂x̂l

∂u′
l

∂x̂k
+

∂2

∂x̂k∂x̂l

(
u′

ku′
l − u′

ku′
l

)]
x̂

S′
ij(x)

dx̂
|x − x̂| , (24)

where the integration spans the entire flow domain R. Beginning with Chou,9 it has been common to write
p′ in terms of slow, rapid, and wall parts as

p′ = p′(s) + p′(r) + p′(w) , (25)

defined by their respective Poisson equations from (22) as

1
ρ
∇2p′(s) = − ∂2

∂xk∂xl

(
u′

ku′
l − u′

ku′
l

)
, (26)

1
ρ
∇2p′(r) = −2

∂uk

∂xl

∂u′
l

∂xk
, (27)

1
ρ
∇2p′(w) = 0 . (28)

The effect of p′(w) is significant only in the extreme near-wall region of wall-bounded flows8,10 and will not
be considered further in the following. The remaining p′(s) and p′(r) parts produce corresponding slow and
rapid contributions, here denoted by Π(s)

ij and Π(r)
ij , respectively, to the pressure-strain correlation Πij in

(11), with Green’s function solutions of (26) and (27) giving these as

Π(s)
ij (x) =

1
2π

∫
R

∂2 (u′
ku′

l)x̂
∂x̂k∂x̂l

S′
ij(x)

d3x̂
|x − x̂| , (29)

Π(r)
ij (x) =

1
π

∫
R

∂uk(x̂)
∂x̂l

∂u′
l(x̂)

∂x̂k
S′

ij(x)
d3x̂

|x − x̂| . (30)

With the relation Πij = Π(s)
ij +Π(r)

ij , the integrals in (29) and (30) provide an exact representation for Πij in

(20), although developing fundamentally-based yet practically implementable forms for Π(s)
ij and Π(r)

ij from
(29) and (30) remains one of the primary challenges in turbulence research.
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II.C. Nonlocal Form of the Rapid Pressure-Strain Correlation Π(r)
ij

While purely local representations for Π(s)
ij and Π(r)

ij have been used to formulate a number of relatively
successful second-order Reynolds stress transport (e.g. Launder, Reece, and Rodi11 and Speziale, Sarkar,
and Gatski12) and algebraic stress (e.g. Gatski and Speziale,13 Girimaji,14 and Wallin and Johansson15)
models, these approaches fundamentally assume that the mean velocity gradient in (30) is homogeneous. By
contrast, the approach developed herein accounts for effects due to spatial variations in the mean velocity
gradient on the rapid correlation Π(r)

ij through Taylor expansion of uk(x̂)/∂xl in (30) about the point x.
This gives

∂uk(r + x)
∂rl

= Akl(x) + rm
∂Akl(x)

∂xm
+

1
2
rmrp

∂2Akl(x)
∂xm∂xp

+ · · · + 1
n!

(rmrp . . .)
∂nAkl

∂xm∂xp . . .
+ · · · , (31)

where r ≡ x̂−x, n is the order of the expansion, and for convenience we have defined Akl(x) ≡ ∂uk(x)/∂xl.
It can be shown that substitution of (31) into (30) then yields

Π(r)
ij (x) =

∞∑
n=0

[
∂nAkl(x)

∂xm∂xp . . .

] [
(mp...)M

(n)
iljk(x) +(mp...) M

(n)
jlik(x)

]
, (32)

with

(mp...)M
(n)
iljk(x) ≡ − 1

2πn!

∫ ∞

−∞

[rmrp . . .

rn

]
rn−1 ∂2Ril(x, r)

∂rjrk
dr , (33)

where Ril(r) denotes the two-point velocity fluctuation correlation

Ril(r) ≡ u′
i(x)u′

l(r + x) . (34)

For the nth-order term in (32) there are n derivatives of Akl as well as n total indices (mp . . .) in (mp...)M
(n)
iljk.

Implementation of (32) in (20) thus requires a solution for the (mp...)M
(n)
iljk integrals in (33).

The principal hypothesis in the present approach is that the nonlocality in the rapid pressure-strain
correlation is substantially due to spatial variations in Akl, and in order to address these effects the velocity
fluctuation correlation Ril(r) can be given by its homogeneous isotropic form, namely

Ril(r) =
2
3
k

[
f(r)δil +

r

2
df

dr

(
δil − rirl

r2

)]
, (35)

with

f(r) ≡ 3
2

u′(x + r)u′(x)
k

, (36)

where k is the turbulence kinetic energy. It can be shown1 using (35) in (33) that

(mp...)M
(n)
iljk = − k

6πn!

[∫ ∞

0

rn df

dr
dr

∫
Ω

aijkl
rmrp . . .

rn
dΩ +

∫ ∞

0

rn+1 d2f

dr2
dr

∫
Ω

bijkl
rmrp . . .

rn
dΩ (37)

+
∫ ∞

0

rn+2 d3f

dr3
dr

∫
Ω

cijkl
rmrp . . .

rn
dΩ

]
,

where dΩ = sin θ dθ dφ, and the coefficients aijkl, bijkl, and cijkl are defined as

aijkl ≡ 3δjkδil − δijδkl − δjlδki − 3αjkδil + δijαlk + δjlαik + δikαlj + δklαij + δkjαil − 3βiljk , (38a)

bijkl ≡ δilδjk + 3αjkδil − δijαlk − δljαik − δikαlj − δklαij − δkjαil + 3βiljk , (38b)

cijkl ≡ δilαjk − βiljk , (38c)

with
αij ≡ rirj

r2
, βijkl ≡ rirjrkrl

r4
. (39)
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Solution of the integrals over r in (37) requires a representation for the longitudinal correlation function
f(r) defined in (36). Using the standard high-Reynolds number exponential approximation for f(r), namely

f(r/Λ) = e−r/Λ , (40)

where

Λ ≡ Cλ
k3/2

ε
(41)

is the integral length scale, as shown in Ref. [1] solution of (37) yields the final result

Π(r)
ij = k

∞∑
n=1

C
(n)
2 Λ2n−2

(∇2
)n−1

Sij , (42)

where the coefficients C
(n)
2 are given by

C
(n)
2 =

16n2 − 16n + 36
3(2n + 3)(4n2 − 1)

. (43)

The formulation in (42) and (43) accounts for nonlocal effects on the rapid correlation Π(r)
ij due to spatial

variations in the mean velocity gradient tensor. The principal approximation used in the derivation is the
high-Reynolds number representation for f(r) in (40), although it has been shown1 through comparisons
with experimental and computational data that this representation is relatively accurate in a variety of free
shear and wall bounded flows.

II.D. The Nonlocal Anisotropy Transport Equation

Combining Π(r)
ij in (42) with the standard local representation for Π(s)

ij , namely16

1
k

Π(s)
ij = −C1

ε

k
aij , (44)

and the higher-order anisotropic terms found in most prior pressure-strain models (e.g. Refs. [11,12])

1
k

Π(aniso)
ij = C3

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ C4

(
ailW lj − W ilalj

)
, (45)

we obtain a nonlocal model for Πij as

1
k

Πij = −C1
ε

k
aij +

∞∑
n=1

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
(46)

−C3

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ C4

(
ailW lj − W ilalj

)
,

where the C
(n)
2 coefficients are given by (43). The anisotropic terms in (45) are required to account for the

fact that (42) is obtained using the isotropic formulation for Ril(r) in (35). The model in (46) accounts for
nonlocal effects due to spatial variations in the mean strain rate tensor, and in homogeneous flows, for which
local models of Πij are relatively successful, all Laplacians of Sij in (46) are zero and the model recovers
prior purely local forms.

With the isotropic formulation for εij in (21), the nonlocal pressure-strain correlation in (46) can be
incorporated in the exact aij transport equation in (20) to give

Daij

Dt
= − α1

ε

k
aij + α2Sij +

∞∑
n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
(47)

+ α3

(
ailSlj + Silalj − 2

3
anlSnlδij

)
+ α4

(
ailW lj − W ilalj

)
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
,
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where once again the C
(n)
2 coefficients are defined in (43) and the αi are given by

α1 =
P

ε
− 1 + C1 , α2 = C

(1)
2 − 4

3
, α3 = C3 − 1 , α4 = C4 − 1 . (48)

We do not specify new values of C1, C3, and C4 here, and standard values of these coefficients can be found
elsewhere.11,12 The equation in (47) is thus a new nonlocal anisotropy transport equation that accounts for
nonlocal effects due to spatial variations in the mean strain rate tensor.

III. Present Anisotropy Model for Nonlocal and Nonequilibrium Effects

A number of different approaches can be taken for solving (47). First, (47) can be solved as a complete
set of six coupled partial differential equations to obtain a new nonlocal Reynolds stress transport model that
improves upon existing approaches (e.g. Refs. [11,12]) in strongly inhomogeneous flows. Second, the Daij/Dt
term on the left-hand side of (47) can be neglected to obtain a nonlocal algebraic stress model similar to
those developed, for example, by Gatski and Speziale,13 Girimaji,14 and Wallin and Johansson.15 However,
in the following Daij/Dt will be retained in (47) to obtain a new computationally simple representation for
the anisotropy that accounts for both nonlocal and nonequilibrium effects in turbulent flows.

III.A. Quasi-Linear Nonlocal Anisotropy Transport Equation

As discussed previously,3,17 quasi-linearization of the anisotropy dynamics is sufficient to retain the most
important dynamics governing the evolution of the anisotropy in the majority of common problems. This
quasi-linearization is physically motivated by the substantial linearity of the vorticity dynamics in turbulent
flows,18 where the Reynolds stress anisotropy is rigorously connected to the vorticity through the relation in
(6).

Retaining only the first three terms on the right-hand side of (47) gives a nonlocal quasi-linear equation
for the anisotropy evolution as

Daij

Dt
= − 1

Λm
aij + α2Sij +

∞∑
n=2

[
C

(n)
2 Λ2n−2

(∇2
)n−1

Sij

]
, (49)

where the C
(n)
2 coefficients are given in (43), α2 is given in (48), and we have denoted the resulting turbulence

memory time scale Λm as

Λm ≡ CΛ
k

ε
with CΛ ≡ 1

α1
. (50)

Despite the dependence of α1 on P/ε, as noted in (48), a constant value for CΛ has been determined previously
as3 CΛ = 0.26.

While the nonlocal quasi-linear equation in (49) lacks many of the higher-order nonlinear interactions
in (47), it still contains the principal dynamics governing the evolution of the anisotropy in most common
turbulence problems. The equation in (49) contains a “slow” (−aij/Λm), a “fast” (α2Sij), and a nonlocal
(via the Laplacians of Sij) contribution to the anisotropy evolution. The “fast” term accounts for the direct
response of the turbulence to changes in the mean strain, while the “slow” term accounts for the decreasing
effect over time of the prior straining history on the local anisotropy. The nonlocal term in (49) accounts for
the effects of spatial variations in the mean strain on the anisotropy evolution, and has not been addressed
by prior closure approaches.

III.B. The Nonlocal Effective Strain Rate Tensor

Here we will integrate (49) directly to obtain a relatively simple anisotropy model that can be readily
implemented in conventional two-equation frameworks for closing the RANS equations in (1)-(3). Defining
the nonlocal tensor Tij as

Tij ≡ Sij +
∞∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
, (51)
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the quasi-linear equation in (49) is solved exactly as

aij(t) =
∫ t

t0

α2Tij(τ)h(t − τ)Dτ + aij(t0) exp
[
−

∫ t

t0

1
Λm(t′)

Dt′
]

, (52)

where t0 is the initial time and h(t−τ) is the impulse response function that represents the effective “memory”
of the turbulence, namely

h(t − τ) ≡ exp
[
−

∫ t

τ

[Λm(t′)]−1
Dt′

]
. (53)

The histories of both Tij and the time scale Λm along mean-flow pathlines are accounted for in (52) and
(53). Expanding the inverse of the relaxation time scale Λm(t′) around the current time t and integrating,
(53) can be written as

h(t − τ) = exp
[
− (t − τ)

Λm(t)
+

1
2
(t − τ)2

D (1/Λm)
Dt

+ . . .

]
. (54)

Here it is assumed that the derivative terms in (54) are negligible relative to the leading term, thus ignoring
the explicit time history of Λm in the aij dynamics. However, the history of Λm in (50) is still accounted
for indirectly through the dynamical equations for k and ε found in most standard two-equation model
frameworks.

Setting t0 → −∞ and assuming aij(−∞) ≡ 0, the solution for aij from (52) becomes a convolution
integral of the form

aij(t) =
∫ t

−∞
α2Tij(τ)e−(t−τ)/Λm(t)Dτ . (55)

By noting13 that Cμ in standard linear eddy viscosity models is related to the αi in (48) as Cμ ≡ −α2/2α1,
the convolution in (55) can be equivalently written, with (50), as

aij(t) = −2Cμ
k

ε

1
Λm(t)

∫ t

−∞
Tij(τ)e−(t−τ)/Λm(t)Dτ . (56)

Since Λm(t) is a constant with respect to the integration variable τ , the effective strain tensor S̃ij can be
defined as

S̃ij(t) =
∫ t

−∞
Tij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ , (57)

in terms of which the nonlocal, nonequilibrium anisotropy closure can be written in a form analogous to the
traditional equilibrium Boussinesq hypothesis in (7) as

aij(t) = −2
νT

k
S̃ij(t) , (58)

where the eddy viscosity νT is defined in the context of a k − ε model as νT = Cμk2/ε. From (51) and (57),
the nonlocal effective strain rate S̃ij is written in terms of Sij as

S̃ij =
∫ t

−∞
Sij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ +

∞∑
n=2

C
(n)
2

α2

∫ t

−∞

[
Λ2n−2

(∇2
)n−1

Sij

]
τ

e−(t−τ)/Λm

Λm
Dτ . (59)

It is possible3 to write the convolution integrals in (57) and (59) in purely time local form through Taylor
expansion of Tij about the current time t, which gives

S̃ij(t) = Sij(t) +
∞∑

m=1

(−Λm)m DmSij

Dtm

∣∣∣∣
t

+
∞∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
t

(60)

+
∞∑

n=2

∞∑
m=1

C
(n)
2

α2
(−Λm)m Dm

Dtm

[
Λ2n−2

(∇2
)n−1

Sij

]
t

.

The first term on the right-hand side of (60) is the equilibrium response of the anisotropy to the mean strain
Sij found in the local equilibrium Boussinesq closure in (7). The second term on the right in (60) accounts for
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nonequilibrium effects in the flow, while the third term accounts for nonlocal effects due to spatial variations
in the mean velocity gradient. The last term in (60) is a mixed term that addresses both nonequilibrium
and nonlocal effects, and is only expected to be significant in flows that exhibit both strong nonequilibrium
and inhomogeneity. The form for S̃ij in (60) is appropriate for implementation in existing computational
frameworks for solving (1)-(3), where typically only local and instantaneous flow variables are available.

The closure in (58) with (59) or (60) thus accounts for nonequilibrium effects via the history-dependent
convolution integrals (or material derivatives D/Dt), as well as spatially nonlocal effects via the Laplacians of
Sij . In homogeneous flows, all Laplacians of Sij are zero and the second term on the right-hand side of (59),
and the third and fourth terms on the right-hand side of (60), can be neglected. The resulting formulation
for S̃ij is then identical to the previously derived3 purely nonequilibrium model for the anisotropy.

III.C. Practical Implementation of Nonlocal, Nonequilibrium Closure

As a practical matter, implementation of the nonlocal, nonequilibrium closure in (58) with (60) in existing
computational frameworks requires calculation of numerous Laplacians and material derivatives of Sij . How-
ever, these higher-order derivatives may lead to stability issues associated with solving (1)-(3) in engineering
simulations, and will certainly increase the required computational resources. Consequently, in nearly all
applications of the present closure, it will be necessary to truncate the series expansions in (60) at finite n
and m for which computational issues are not expected to be prohibitive.

While the exact truncation order of the series in (60) is ultimately determined by the specific user,
application, and available computing resources, truncation of (60) imposes restrictions on the limits of the r
integrals in (37) and the τ integrals in (57) or (59). The present approach accounts for nonlocal effects in the
rapid pressure-strain correlation through Taylor expansion of Akl(x̂) about the point x, which gives the series
in (32) with the integral coefficients in (37). Similarly, the time-local nonequilibrium effects in (60) (given
by the D/Dt terms) are obtained through Taylor expansion of Tij(τ) in (57) about the current location and
time (x, t). However, truncating the series (60) is equivalent to truncating the expansions for Akl(x̂) and
Tij(τ), and this can result in errors for the representations of Akl(x̂) and Tij(τ) outside a certain region
centered on x and t. In order to avoid these errors, we here replace the infinite limits on the integrals in (37)
and (57) with finite bounds related to the order of the expansions for Akl(x̂) and Tij(τ). For truncations of
(32) at order N , we integrate r in (37) from 0 to the length scale R, and for truncations of the expansion for
Tij at order M we replace −∞ in the lower integration bound of (57) with the parameter Γ. Both R and Γ
are related to the orders N and M of the expansions, as well as to the degree of local variation in Akl and
Tij . In general, only for N → ∞ and M → ∞ can we set R → ∞ and Γ → −∞.

It can be shown that integration of the r integrals in (37) from 0 to R using the exponential f(r) in (40)
gives

Π(r)
ij = k

N∑
n=1

C
(n)
2 Λ2n−2

(∇2
)n−1

Sij , (61)

where N denotes the order of the truncation and the coefficients C
(n)
2 are now written as

C
(n)
2 =

32n

3(2n + 3)(2n − 1)

[
γ

(2n−2)
1 (R/Λ)

]
+

4(2n − 9)
3(2n + 3)

[
γ

(2n−2)
2 (R/Λ)

]
− 8n(2n − 5)

3(2n + 3)(2n + 1)

[
γ

(2n−2)
3 (R/Λ)

]
,

(62)
with

γ
(n)
j (x) ≡ 1 − e−x

n+j∑
i=1

xn+j−i

(n + j − i)!
. (63)

As shown in Figure 1, for any n the γ
(n)
j coefficients are bounded by 0 and 1, and behave as damping

functions. In the limit R/Λ → ∞ in (62), (63) gives simply γ
(n)
j = 1. As the order n increases, the γ

(n)
j

coefficients in Fig. 1 decrease for any particular value of R/Λ. As a result, for finite R/Λ the higher-order n
terms make a relatively smaller contribution to the final result.

Integration of (57) from Γ to t using the time-local series expansion3 for Tij in the integrand then gives

S̃ij(t) =
M∑

m=0

(−Λm)m DmTij

Dtm

[
γ

(m)
1

(
t − Γ
Λm

)]
, (64)
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Figure 1. Parameter γ
(n)
j from (63) as a function of R/Λ for n = 0 (a), n = 2 (b), n = 4 (c), and n = 6 (d).

where the damping function γ
(m)
1 is defined in (63). For Γ → −∞ we obtain γ

(m)
1 → 1, and the result in

(60) is recovered. By analogy with the coefficients C
(n)
2 in (61), we can define

B(m) ≡ γ
(m)
1

(
t − Γ
Λm

)
, (65)

which from (64) gives

S̃ij(t) = B(0)

[
Tij +

M∑
m=1

B(m)

B(0)
(−Λm)m DmTij

Dtm

]
. (66)

Using (61)-(63) and (66), the nonlocal, nonequilibrium effective strain rate S̃ij in (60) can thus be written
as

S̃ij(t) = Sij(t) +
M∑

m=1

B(m)

B(0)
(−Λm)m DmSij

Dtm

∣∣∣∣
t

+
N∑

n=2

[
C

(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
t

(67)

+
N∑

n=2

M∑
m=1

C
(n)
2

α2

B(m)

B(0)
(−Λm)m Dm

Dtm

[
Λ2n−2

(∇2
)n−1

Sij

]
t

,

where N and M are the highest orders of the series expansions, the C
(n)
2 are defined in (62), and the B(m)

are defined in (65). With (67) the anisotropy closure is still given by (58), where C
(1)
2 and B(0) have been

absorbed into the definition of the eddy viscosity νT .

III.D. Representation for Radius of Convergence R

Closure of the anisotropy using (58) with (67) requires formulations for R appearing in the C
(n)
2 coefficients

given by (62), and for Γ appearing in the B(m) coefficients given by (65). While the parameter Γ is important
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in nonequilibrium turbulent flows, here we focus simply on the representation for R, which is most relevant
for the fully-developed turbulent channel flow tests of the present closure presented in the next section.

As noted in Section III.C, R is fundamentally determined by competition between two opposing effects,
one physical and the other practical. From a physical standpoint, R should be as large as possible in order
to obtain good agreement between the result in (61) with (62) and the full integral solution for Π(r)

ij in
(30), which is strictly defined as an integral over (−∞,∞). This would suggest that good agreement requires
R → ∞, or at the very least R � Λ. At the same time however, the largest allowable value of R is practically
limited by the size of the region in which truncations of (31) are good approximations to the exact Akl(x+r).
Fundamentally, the accuracy of the approximation at any point is determined by both the order N and the
smoothness of Akl near the point of interest. In general, the allowable R increases as N increases, or the
local inhomogeneity in Akl decreases. Conversely, for small N or rapidly varying Akl the allowable R will
generally become relatively small. Only in the limit N → ∞ does the allowable radius R go to ∞.

Thus, we can make the following exact statement: R is strictly defined as the radius of the largest spherical
region centered on x in which the N th-order truncation of (31) is in good agreement with the exact value of
Akl(x+r) within the region. To obtain good agreement with the integral in (30), R should ideally be greater
than Λ, although this condition may be impractical for the relatively small N permitted by the available
computational resources and issues of stability. As a result, a good approximation to the full integral for
Π(r)

ij in (30) may be obtained for values of R near Λ. In the following we will let R ∝ Λ, and consequently

the ratio R/Λ appearing in the γ
(n)
j damping coefficients in (63) is constant everywhere in the flow. It will

be seen from comparisons with DNS of fully-developed turbulent channel flow that for truncation at N = 2
in (67), the value

R

Λ
= 0.85 , (68)

is sufficient to give good agreement with DNS results down to y+ ≈ 16 in the near-wall region.

IV. Tests in Fully-Developed Turbulent Channel Flow

In order to assess the accuracy of the new anisotropy closure given by (58) with (60) or (67), here
we consider fully-developed turbulent channel flow, for which nonequilibrium effects can be neglected (an
assessment of the nonequilibrium aspects of the present closure are presented in Refs. [3,17]). The equilibrium
Boussinesq hypothesis provides relatively accurate predictions of the anisotropy in this flow near the channel
centerline, but substantially over-predicts the anisotropy magnitude in the near-wall region where the mean
shear varies dramatically. This failure is due in large part to the neglect of nonlocal effects in the pressure-
strain formulation.

In the following we will use results from various channel flow DNS studies in order to assess the accuracy of
the nonlocal rapid pressure strain correlation and the resulting nonlocal, nonequilibrium anisotropy closure.
We first show how a nonlocal equilibrium closure can be obtained from (58) with (60) or (67). This closure
is then applied to the log-layer region for which an analytical study can be performed, and then finally the
nonlocal closure is evaluated using DNS of various fully-developed turbulent channel flow test cases.

It should be noted that while the present closure is expected to provide improved predictions for the
anisotropy in any flow with a spatially varying mean velocity gradient field, the turbulent channel flow is
a particularly attractive validation case due to the availability of a number of high-quality DNS databases.
From a practical standpoint, calculation of the higher-order Laplacians of Sij in (60) requires high-resolution
validation data, and such data is simply not currently available for other canonical inhomogeneous flows,
such as the turbulent jet and mixing layer.

IV.A. Present Closure in Equilibrium Turbulent Flows

The anisotropy closure in (58) expresses aij in terms of the effective strain S̃ij , which is defined as a
convolution integral over the nonlocal tensor Tij in (57). The effective strain accounts for both nonlocal and
nonequilibrium effects on the anisotropy in turbulent flows. For turbulent flows near equilibrium however,
the turbulence memory time scale Λm is, by definition, much less than the time scale over which Tij varies.
For the purposes of the present analysis, we can denote this latter time scale by ΛT . In such equilibrium
flows the representation for S̃ij in (57) becomes greatly simplified, and in particular nonequilibrium history
effects on the anisotropy evolution can be neglected in the closure representation.
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The nonlocal equilibrium closure can be formally derived by taking the limit of S̃ij in (57) as (Λm/ΛT ) →
0. Making the change of variables x = −(t − τ)/(Λm/ΛT ), (57) can be rewritten as

S̃ij(t) =
∫ 0

−∞
Tij

(
t +

Λm

ΛT
x

)
ex/ΛT

ΛT
dx . (69)

In the limit Λm/ΛT → 0, (69) then yields the equilibrium relation

lim
Λm/ΛT →0

S̃ij(t) = Tij(t) , (70)

and consequently there is no longer any history-dependence in S̃ij .
With (70) and the definition of Tij in (51), the nonlocal equilibrium anisotropy closure is obtained from

(58) as

aij = −2
νT

k

[
Sij +

N∑
n=2

C
(n)
2

α2
Λ2n−2

(∇2
)n−1

Sij

]
, (71)

where the C
(n)
2 are given by (43) for N → ∞ and (62) for finite N , with α2 = C

(1)
2 − 4/3. The first term in

the square brackets is the local equilibrium response of the anisotropy, which corresponds to the equilibrium
Boussinesq hypothesis in (7). By contrast to the Boussinesq hypothesis however, the series of Laplacians
in (71) additionally accounts for nonlocal effects due to inhomogeneities in the mean strain rate tensor. It
will be seen herein from tests in fully developed turbulent channel flow that these additional terms give
dramatically improved agreement with DNS results when compared to results from the local equilibrium
Boussinesq hypothesis.

IV.B. Log-Layer Analysis

Before detailed quantitative comparisons are made with DNS validation data, we can first carry out an
analytical assessment of the nonlocal terms in (71) through consideration of the anisotropy in the channel
flow log-layer. Within this layer the velocity is given by

u+ =
1
κ

ln y+ + B , (72)

where κ = 0.41, B = 5.2, and u+ and y+ are defined as

u+ =
u

uτ
, y+ =

yuτ

ν
. (73)

The profile in (72) generally shows good agreement with DNS and experimental results well into the near-wall
region,8 often down to y+ ≈ 30. Within the log-layer, the mean shear S12 is given from (73) as

S12 =
1
2

∂u

∂y
=

1
2

u2
τ

ν

∂u+

∂y+
=

1
2

u2
τ

ν

1
κy+

. (74)

and the shear anisotropy a12 from (71) is thus given by

a12 = −2
νT

k
S12

[
1 − 17

21

(
Λ+

y+

)2

− 44
7

(
Λ+

y+

)4

− 11400
77

(
Λ+

y+

)6

+ · · ·
]

, (75)

where Λ+ ≡ Λuτ/ν and the C
(n)
2 coefficients from (43) have been used to obtain the result. By contrast, the

Boussinesq hypothesis in (7) gives the anisotropy in the log-layer as

a12 = −2
νT

k
S12 . (76)

Comparison of (75) with (76) shows that the magnitude of a12 is reduced in the log-layer by the nonlocal
correction terms. As will be seen in the following DNS comparisons, the Boussinesq hypothesis drastically
over-predicts the anisotropy magnitude in the near-wall region, and the reduction in the magnitude of a12

from (75) may thus be sufficient to give better agreement with DNS.
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Figure 2. Nondimensional shear parameter Sk/ε as a function of y+ in fully developed turbulent channel flow from
DNS by Iwamoto et al.19

IV.C. Comparisons with DNS

In the following, eight different Reynolds numbers from three different fully-developed turbulent channel flow
DNS databases are examined. The Reynolds number cases considered herein are (i) Reτ = 150, 300, 400,
650 from Iwamoto et al.,19 (ii) Reτ = 180 and 395 from Moser et al.,20 and (iii) Reτ = 550 and 950 from
Hoyas and Jimenez.21 Perhaps the main advantage of using these DNS databases for testing the present
closure is that all flow variables, including k and ε, are provided exactly. The specific closure relation for
the anisotropy can thus be tested without concerns about the representations for the additional turbulence
variables.

As discussed in Section III.C, as higher-order terms are retained in (71), an increasing number of Lapla-
cians of Sij must be calculated. However, the resolution of the DNS becomes an issue for large N , and in
the following we will consider the N = 2 truncation of (71), which gives

aij = −2
νT

k

⎡⎣Sij +
C

(2)
2(

C
(1)
2 − 4/3

)Λ2∇2Sij

⎤⎦ , (77)

where
C

(1)
2 =

32
15

γ
(0)
1 (R/Λ) − 28

15
γ

(0)
2 (R/Λ) +

8
15

γ
(0)
3 (R/Λ) , (78)

C
(2)
2 =

64
63

γ
(2)
1 (R/Λ) − 20

21
γ

(2)
2 (R/Λ) +

16
105

γ
(2)
3 (R/Λ) , (79)

and R/Λ is set to the constant value in (68).
In turbulent channel flow the local Reynolds number can become small in the near-wall region, resulting

in increasingly important viscous effects. As a result, Λ in (41) is here modified as

Λ = max
[
0.23

k3/2

ε
, CηηK

]
, (80)

where ηK =
(
ν3/ε

)1/4 is the Kolmogorov length scale and it will be seen that

Cη = 12.8 (81)
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gives good agreement with DNS for all Reynolds numbers. Note that in obtaining (80) from (41) we have
used Cλ = 0.23. This value comes from comparison of the exponential f(r) given by (40) with the inertial
range form for f(r) obtained from the Kolmogorov hypotheses, as discussed in Ref. [1].

Finally, the eddy viscosity in (77) is written in standard form by

νT = Cμ
k2

ε
, (82)

where here Cμ is given by the realizable Bradshaw hypothesis

Cμ =

{
0.09 for (Sk/ε) ≤ 3.4
0.31(Sk/ε)−1 for (Sk/ε) > 3.4

, (83)

and S ≡ [
2SijSji

]1/2
. Since Cμ ≡ −α2/2α1 and α1 depends on P/ε as in (48), Cμ must be limited in regions

where P/ε becomes large. In reality, the evolutions of P/ε and Sk/ε are closely linked, and the realizable
Cμ in (83) provides a relatively straightforward way of accounting for the dependence of Cμ on P/ε. Use
of (83) is particularly important in turbulent channel flow, since Sk/ε becomes large in the near-wall region
and reaches a maximum value of Sk/ε ≈ 18 at y+ ≈ 8 as shown in Figure 2.

Figure 3 compares the shear anisotropy a12 as a function of y+ predicted by (77)-(83) with results from
DNS. Results from the standard k − ε (SKE) model from (7) and (82) with Cμ = 0.09, and the realizable
k − ε (RKE) model from (7) with Cμ given by (83) are also shown. The SKE model shows good agreement
with DNS in the centerline of the channel, but dramatically over-predicts the anisotropy magnitude in the
near-wall region. The RKE model shows somewhat improved agreement in the near-wall region due to
the realizable Cμ in (83), which limits the anisotropy magnitude when Sk/ε becomes large near the wall.
However, the RKE model fails to capture the decrease in the anisotropy magnitude as the wall is approached.
By contrast, the closure in (77)-(83) agrees with the DNS results for all Reynolds numbers down to y+ ≈ 16,
at which point the present closure begins to over-predict the anisotropy magnitude.

The poor agreement between the present closure and DNS for y+ < 16 could be due to a number of
factors, in particular the neglect of inhomogeneities in the turbulence variables, the neglect of the anisotropy
in the dissipation tensor εij (which can become significant as the local Reynolds number decreases in the
near-wall region), and the increasingly two-dimensional nature of the turbulence near the wall. While the
closure in (77)-(83) does not explicitly address any of these effects, we can obtain a closure that agrees with
DNS for y+ < 16 by combining the present approach with prior ad hoc wall damping functions. Here we
introduce the blending function φ, given by

φ =
1
2
− 1

2
tanh

[
a

(
y+ − b+

)]
, (84)

and write the eddy viscosity from (82) as

νT = f (φ)
μ Cμ

k2

ε
, (85)

where Cμ is still given by (83) and f
(φ)
μ is a wall damping function given here in van Driest form as

f (φ)
μ = 1 − φ exp

(
− y+

A+

)
. (86)

The anisotropy is then given from the N = 2 truncation of (71) by

aij = −2
νT

k

⎡⎣Sij + (1 − φ)
C

(2)
2(

C
(1)
2 − 4/3

)Λ2∇2Sij

⎤⎦ . (87)

The blending function φ is 0 for y+ > b+ and 1 for y+ < b+, and thus f
(φ)
μ = 1 and (1 − φ) = 1 in (87) far

from the wall. Near the wall, where the present nonlocal contribution to aij becomes inaccurate as shown
in Fig. 3, the nonlocal Laplacian term in (87) is neglected due to (1 − φ) = 0 for y+ < b+ and the eddy
viscosity is damped as in (85) by the underlying wall damping function from (86). For the constants

a = 6 , b+ = 16 , A+ = 26 , (88)
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Figure 3. Shear anisotropy −a12 as a function of y+ for Reτ = 150 (a), Reτ = 180 (b), Reτ = 300 (c), Reτ = 395 (d),
Reτ = 400 (e), Reτ = 550 (f), Reτ = 650 (g), and Reτ = 950 (h) in fully-developed turbulent channel flow. Results from
the standard k − ε (SKE) model, the realizable k − ε (RKE) model, the nonlocal k − ε (NKE) model with N = 2 given in

(77)-(83), and the NKE model with N = 2 and f(φ)
μ in (84)-(88) are compared with DNS results from Iwamoto et al.19

(Reτ = 150, 300, 400, 650), Moser et al.20 (Reτ = 180, 395), and Hoyas and Jimenez21 (Reτ = 550, 950). Legend is given at
bottom of figure.
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Figure 4. Shear anisotropy −a12 as a function of Sk/ε for Reτ = 150 (a), Reτ = 180 (b), Reτ = 300 (c), Reτ = 395 (d),
Reτ = 400 (e), Reτ = 550 (f), Reτ = 650 (g), and Reτ = 950 (h) in fully-developed turbulent channel flow. Results from
the standard k − ε (SKE) model, the realizable k − ε (RKE) model, the nonlocal k − ε (NKE) model with N = 2 given in

(77)-(83), and the NKE model with N = 2 and f(φ)
μ in (84)-(88) are compared with DNS results from Iwamoto et al.19

(Reτ = 150, 300, 400, 650), Moser et al.20 (Reτ = 180, 395), and Hoyas and Jimenez21 (Reτ = 550, 950). Legend is given at
bottom of figure.
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Figure 3 shows that the present nonlocal Laplacian term can be smoothly blended with the wall damping
function for all Reynolds numbers, where the choice of constants in (88) allows the nonlocal term in (87) to
be applied down to y+ ≈ 16, at which point the model reverts to the damping function in (86). It should
be noted that for y+ < 3, the present blended model shows poor agreement with the DNS results; this is
due to the behavior of the damping function in (86) near the wall. Improved agreement might be obtained
through the choice of a different formulation for f

(φ)
μ (a number of alternative wall damping functions are

summarized in Ref. [6]), but such modifications will not be considered herein. The primary purpose of
the blended nonlocal-f (φ)

μ model in (84)-(88) is to provide a closure that allows integration to viscous walls
in existing computational frameworks for solving (1)-(3), and Fig. 3 shows that even with the van Driest
function in (86) the present blended approach closely agrees with DNS for nearly the entire channel height.

Finally, Figure 4 compares the shear anisotropy a12 as a function of the nondimensional shear parameter
Sk/ε from the present closure approach and the SKE and RKE models with corresponding results from
DNS. The dependence of a12 on Sk/ε is of particular importance because, as the DNS results in Fig. 4
show, the relation between a12 and Sk/ε becomes highly non-trivial near the wall, whereas the widely-used
SKE model incorrectly predicts a12 ∝ Sk/ε for all Sk/ε. Figure 4 shows that the RKE model limits the
anisotropy magnitude for large Sk/ε, which results in better agreement with the DNS than the SKE model,
but still the correct functional dependence of a12 on Sk/ε is not captured. By contrast, the present closure
in (77)-(83) shows good agreement with the DNS even as Sk/ε increases, and substantial departures from
the DNS results only occur at y+ ≈ 16 where Sk/ε ≈ 12. Consistent with the results in Fig. 3, improved
agreement is obtained using the blended nonlocal-f (φ)

μ model in (84)-(88).

V. Conclusions

A new Reynolds stress model including nonlocal and nonequilibrium effects in turbulent flows has been
obtained. The present closure is based on a recently proposed nonlocal formulation for the rapid pressure-
strain correlation, and is obtained as a quasi-linear solution to the anisotropy transport equation. The
model is written in a form analogous to the local equilibrium Boussinesq closure in (7), but expresses the
anisotropy in terms of the nonlocal, nonequilibrium effective strain rate S̃ij defined in (59) or (60). This
relatively simple formulation allows straightforward implementation of the present closure in existing two-
equation computational frameworks for solving the RANS equations in (1)-(3).

While S̃ij is given in complete time-local form by (60), practical considerations of computational resources
and stability will require truncation of the infinite series in (60). These truncations impose restrictions on
the integration limits of (37) and (57), and the effective strain rate is written in (67) for finite expansion
orders N and M . Comparisons of the closure in (58) and (67) with DNS of fully-developed turbulent channel
flow show that even for truncation of S̃ij in (67) at N = 2, the present closure gives good agreement with
DNS results down to y+ ≈ 16. This is a substantial improvement compared to predictions from the standard
and realizable k − ε models, which begin to show disagreements with DNS for y+ ≈ 60.

The accuracy of the present approach can be extended to locations less than y+ = 16 by blending the
nonlocal behavior of the model with traditional ad hoc wall damping functions, as outlined in (84)-(88).
Figures 3 and 4 show that the resulting blended model agrees with DNS essentially to the wall (with only
small disagreements for y+ < 3 due to the choice of damping function in (86)), and that the transition to the
wall damping function at y+ = 16 is relatively smooth. Despite the use of this damping function near the
wall, the present approach has the advantage of representing the anisotropy in a physically rigorous manner
for much of the channel, thus increasing the capability of the model to capture additional flow physics in
more complex flows. Future work will implement the present closure in full computational frameworks for
solving (1)-(3) in practical engineering problems.
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