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Future manned space exploration missions will require collaborative activities with human 
astronaut and robotic agents.  Proposed mission planning and execution architectures rely 
on reactive task planning, focusing on real-time information sharing between ground 
personnel, astronauts, and rovers.  We present a planning/scheduling strategy that 
autonomously optimizes initial task plans/schedules over the human-robot team based on 
specified mission goals, but that also scales computationally to enable reactive replanning 
based on modifications to mission goals, revised resource utilization profiles, 
anomalies/emergencies, and astronaut directives.  Collaborative exploration task models and 
search control algorithms are presented and evaluated in terms of computational complexity 
versus solution optimality.  The implemented software was evaluated over teams of 
simulated and real rovers collaborating with a human companion.  These tests demonstrate 
that the planning tool can reliably trade execution time for solution optimality when 
required and that the planner/scheduler is able to capably respond to detected anomalies.   

I.  Introduction 

stronauts and robots must collaborate effectively to safely and efficiently explore harsh extraterrestrial 
environments.  The team goal is to efficiently complete a set of science or construction/maintenance activities 

at potentially disparate locations. Each agent (rover or astronaut) has a limited set of competences that constrains the 
individual agent’s abilities but that enables the aggregate team to perform a wide range of tasks. For example, every 
astronaut may be able to pick up a rock but only “geologist” astronauts are able to identify which rocks are of 
scientific interest. Typical rovers have a suite of sensors and more sample storage capacity than an astronaut but 
would be more limited in their ability to select targets (e.g., rocks) of interest and rapidly collect desirable samples.  

Multiple competences can be required to perform even a simple task. For instance, a rock sampling task might 
require not only a geologist to identify and pick up the rock, but also a rover to store the sample and return it to the 
base station. The planning tool must decide which agents can perform the task and when they will execute the task 
together.  Scenarios ranging from sampling to habitat construction may require a specific task ordering (precedence). 
For example, before collecting a rock sample in an unknown area, it would be advantageous to first take high 
resolution pictures of the surroundings, select site(s) of interest, and then organize astronaut/rover teams with 
appropriate competences to explore sites of interest.  Although rovers may encounter unexpected environmental 
conditions and improbable internal states, a robust robotic system will follow the specified plan to the best of its 
abilities.  The very creativity and adaptability that make an astronaut a valuable explorer challenge a robot-astronaut 
planner.  Although trained astronauts will do their best to accomplish assigned tasks, they are more likely than 
rovers to deviate from a planned task schedule due to the imprecise models used to estimate speed, traversal paths, 
and resource use (e.g., oxygen).  Astronaut safety must be a top priority, even at the expense of goal achievement. 
Future rovers and astronauts will likely carry backup life support equipment for emergency situations (e.g., astronaut 
depleting his/her oxygen or unable to move due to injury).  As team manager, either human or AI planner/executive 
should therefore be able to detect the emergency situation and respond to it in a quick and appropriate manner.  

Another scenario where astronauts might behave unexpectedly is opportunistic exploration, situations in which 
they choose to deviate from the current plan to explore a site/perform a task they perceive as higher-priority.  Since 
astronauts are indisputably the superior “creative” intellect given current technology, a planning system must 
support such deviations.  Because the astronaut chooses not to accomplish the original planned task set, the plan is 
no longer valid.  Both emergency and voluntary plan deviations require rapid detection and replanning/plan repair 
capabilities, primarily for safety in the former case and for efficiency, especially given cooperative tasks, in the 
latter case. 
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Unexpected cooperation is yet another scenario that could arise.  An astronaut could require assistance from a 
rover to complete a task, or a rover could lose a capability (e.g., broken sensor) and require assistance from an 
astronaut or rover to continue its task or return to base.  For example, a “geologist” astronaut may opportunistically 
encounter a rock outcropping of potential interest but requires specific sensors or tools only possessed by a rover 
teammate to analyze, extract, or stow the geological sample.  Although such situations must be handled expediently 
to prevent inefficiency for the team and frustration for the astronaut(s), safety is again the top priority. 

Due to power and life support constraints as well as the inherent dangers of Extravehicular Activity (EVA), 
maximizing exploration productivity over the mission is critical.  In planning terms, given a set of tasks or goals, it 
is important to identify and successfully execute a plan that maximizes the number of tasks accomplished while 
maintaining safety and minimizing overall execution time. Given traversal requirements, this problem can be related 
to the Multi Traveling Salesman Problem1 but has significantly more constraints.  In our situation the salesmen are 
not allowed to go everywhere, and “cities” are ordered, which makes traditional heuristics impossible to apply. Even 
if capability constraints reduce the search space, the problem of finding the optimal task allocation remains NP-hard, 
implying exponential time to compute the solution. Obviously, for large-scale, long-duration missions, exponential 
computational time renders full plan/schedule optimization an unrealistic requirement.  

Reliable and efficient contingency response is also an important problem to address. Unexpected events that occur 
during EVA must be detected and reactively managed. A challenge is then to provide a planning tool that is able to 
compute, within a given time constraint, a valid plan that takes into consideration the specifics of the “unexpected” 
emergency situation.  A “coordination executive” must also be guaranteed to detect at least safety-critical 
emergencies and to efficiently relay updated response plans to the team.  Acting as a mission control or base station, 
a planning system must be able to plan actions that coordinate activities among all members of the astronaut-rover 
team. Planning parallel activities can also require extra computation and dedicated data structures, especially when 
multiple agents must cooperatively execute one or more tasks.   

This paper describes a centralized planner/scheduler tool to manage a hybrid rover-astronaut team, focusing on 
real-time contingency response.  Collaborative exploration scenarios studied include observation, sampling, and 
rescue tasks.  A search strategy with branching factor control trades planning time with search space completeness.  
The planner reacts quickly to anomalies when required but also can build optimal plans that minimize deployment 
time while maximizing science return translated to goals/tasks.  A six-wheeled rover was constructed with stereo 
vision-based navigation, path planning for target/waypoint tracking and obstacle avoidance, and onboard control, 
enabling navigation in unmapped environments.  A human astronaut interacts with the real rover and a group of 
simulated (virtual) rovers.  Rather than work offline with the scheduler through a collaborative scheduling tool, the 
scheduler allocates a default set of tasks to the astronaut but then provides the capability for the astronaut to redirect 
their activities in real-time based on perceived opportunities and hazards as well as his/her evolving preferences.   

Below, following a review of planning/scheduling technologies, astronaut and rover models are presented in the 
context of state features, tasks, constraints, and costs.  A search algorithm with branching factor control allows 
adjustment of the optimality-time tradeoff for to support offline and online (reactive) scheduling.  The planner is 
situated in a real-time plan monitor and dispatching system, connecting multiple physical and simulated rovers as 
well as astronauts.  Results from a series of simulation and hardware-based tests are presented to evaluate 
performance, particularly for real-time reaction to a suite of astronaut and hazard-driven anomaly scenarios.   

II. Planning/Scheduling Background 

A planning process identifies a set of actions that transforms the world from an initial state to a desired goal state 
or states. Due to the large number of possible states, this problem is usually NP-hard, requiring time exponential in 
the number of actions and features to compute a solution. Typical algorithms reduce the search space thus improve 
worst and average-case execution times.  Classical planning techniques deal with restricted-state transition problems 
approximated as deterministic (each action results in a unique new state), static (if no actions are applied the world 
remains the same), finite (the system has a finite number of states), and fully-observable (the state of the world is 
known). Classical planning is also referred as STRIPS planning, one of the earliest planning systems.2 

The most straightforward planning technique is forward search where states are expanded until the desired state 
is found. Forward search includes algorithms like A*, best-first-search, breadth-first-search, and uniform cost 
search.  Backward search is the inverse of forward search:  the search begins from the goal state and regresses to the 
initial state. STRIPS is a reduced version of backward search that identifies a satisfying solution relatively 
efficiently but that may not always find an existing solution due to an incomplete search strategy.  Partial Order 
Planning (POP) was thus introduced,3 maintaining computational efficiency similar to STRIPS but enabling solution 
to problems such as the Sussman Anomaly through least-commitment action ordering. UCPOP was perhaps the 
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most common POP planner and is still used, particularly for education purposes.3  Plan-space planning (PSP) was 
produced through further evolution.  In a PSP procedure, the initial plan is composed of two actions a0 and a∞. The 
procedure refines this initial plan by solving open goals and threats.  

Because classical planning techniques do not scale to large problems, strategies such as Simple Temporal Logic 
and Hierarchical Task Networks were developed.  Their main advancement was the exploitation of domain expertise 
within the planner, utilizing domain-specific rules to control and constrain the search space.  Recent planning-graph 
techniques develop a solution through a procedure that bridges state space planning and plan space planning. The 
solution is specified as a sequence of action sets that incorporate precedence and exclusion constraints.  Graphplan 
techniques were introduced in and are considered a significant representational advance.4 

The development of control rules in Simple Temporal Logic (STL) has improved the performance of forward 
search algorithms. STL is a logical formalism that enables the search algorithm to prune nodes.  STL was first 
introduced by Bacchus and Kabanza;5 this implementation remains among the most efficient.   The Hierarchical 
Task Network (HTN) is a practical technique with broad application.6  The input of an HTN planning problem 
includes methods that can be viewed as domain dependent “recipes”. The planning process consists of recursively 
decomposing non-primitive tasks until primitive tasks are reached. 

As planning is the problem of finding a valid set of actions to achieve a goal, scheduling focuses on time and 
resource allocation for this set of actions.  Historically, these two problems have often been treated separately; with 
the set of actions to perform tabulated for most scheduling algorithms.  Such separation is optional, however.  
Scheduling can be seen as an optimization problem where different criteria are minimized depending on the 
application. Cost criteria minimized by schedulers include makespan (maximum ending time of the schedule), the 
total number of late actions, the peak resource usage, and total quantity of resources required.  General multi-task, 
multi-processor scheduling problems are NP-hard, but approximation techniques have been implemented to scale 
large problems.  Anderson et al provide a survey of scheduling methods.7  Integrated approaches to planning and 
scheduling are also available, such as a method based on chronicles, the sets of timelines for every state variable.8  

Classical planning assumes that every action produces a unique state but there are numerous real-world situations 
where this is not the case.  When dealing with hardware, failures or off-nominal events can occur, implying that 
several states can potentially be reached with non-negligible probability when executing an action. This class of 
problem is called planning under uncertainty.  The two solutions approaches are to avoid the complexity by 
detecting the unexpected state and computing a new plan from this state, and/or to employ a derivative of a Markov 
Decision Process (MDP) or Model Checker to build policies that apply over the most likely states.6 

Multi-agent planning has received significant attention since many systems are composed of multiple entities, 
such as the astronaut/rover teams in this paper. The goal of general multi-agent planners is the global achievement of 
a common goal (set).  Both centralized and decentralized approaches have been studied.  In a centralized planner, 
each agent receives directives from a central entity and feeds back status and state information.  This architecture 
enables a global view of the entire system and effective coordination through common knowledge. However 
centralized systems are only possible when all the agents can communicate and overhead may be incurred from the 
substantial information sharing requirements.  Additionally, redundancy must be incorporated to enable robust, 
fault-tolerant operation.  Distributed systems are more difficult to robustly design and maintain since no global view 
of the world is available to any agent. The main advantage is that goal achievement does not depend on a unique 
entity, ensuring greater overall safety in terms of redundancy.  Although many multi-agent algorithms exist, a 
number of market-oriented techniques have been successful at task allocation across multiple agents.9  Based on 
their current status each agent sends a bid or creates an auction, allowing agents to efficiently balance their task sets.  

Space exploration researchers have begun to practically apply planning/scheduling algorithms.  The Remote 
Agent Experiment demonstrated that planning/scheduling was possible onboard a spacecraft.10  More recently task 
planning/scheduling systems such as ASPEN, incorporating an iterative repair algorithm to facilitate dynamic 
response, have been successfully operated long term and have gained the trust of scientists as viable and productive 
alternatives to manual schedule generation and oversight.11  Activity planning and execution for a rover team has 
previously been investigated with systems such as CLEaR (Closed-Loop Execution and Recovery).12  CLEaR relies 
on ASPEN, which incorporates an iterative repair algorithm to facilitate dynamic response.  This system has been 
successfully demonstrated with multiple rovers but has not yet been extended to reason about direct collaboration 
with humans.  Other researchers have specifically focused on the interaction between humans and robots, but 
typically rely on the humans for planning/scheduling rather than autonomous planning/scheduling tools.13   
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III. Planning System and Knowledge Representation 
Analogous to a mission control or base station directing and monitoring a human/robot EVA team, a centralized 

planning and execution system has been implemented, as illustrated in Figure 1.  The planner directs the activities of 
each mobile “agent” based on its goals and feedback from the agents (e.g., locations, available energy, capabilities).  
The planner also responds to directives issued by the astronaut team members.  Such directives range from “I need 
help” to “I’m doing another task” to “Tell a rover to execute a new task” (e.g., defined by the astronaut).  With the 
centralized planning structure, communication between astronauts and rovers is limited to data associated with the 
accomplishment of common tasks, with all other messages relayed through the planning/execution system.   

  Our application is composed of three interacting components:  a team planner, a coordination executive, and the 
mobile agents deployed in the field (or simulated to facilitate experiments with many rovers).  The centralized 
planning module takes the current state of the world and computes a plan, a scheduled set of high-level tasks or 
actions, for all mobile agents so that the maximum number of high-priority tasks can be accomplished by the team in 
a minimum amount of time. The implemented design-to-time algorithm can be configured to react quickly and 
possibly suboptimally or to consume the additional time needed for plan optimization. The execution module 
controls the flow of information between the central planner and the distributed set of rovers and astronauts, 
dispatching actions in real-time in accordance with the nominal policy and any dynamic updates. The execution 
agent also gathers and processes available state information from the rovers/astronauts to enable detection of off-
nominal events.  The executive is responsible for managing the reaction to off-nominal occurrences, either by 
adjusting the policy (e.g., task execution timings) or by notifying the planner that a new/modified plan must be 
created.  For instance, when an astronaut requires help, the execution module will receive the information, detect the 
event, notify the rovers, and call for the planner to compute an emergency plan as quickly as possible.  Each rover 
and astronaut is either a physical mobile entity or is simulated by a unique process that communicates with the 
execution module with the same protocol as a real agent would utilize. Rovers are assumed to understand high-level 
directives (task descriptions) and either to correctly execute them or return an annotated error message indicating the 
task was not successfully accomplished. The software is configured such that the simple simulated agents can be 
replaced with “real” robotic and astronaut agents. 

Based on anticipated planetary 
surface missions, a set of state 
features and operators are 
defined to characterize the task-
level goals, agents, and 
associated resource usage 
requirements and availability.  
Three state variable types were 
defined and uniquely indexed 
(i):  tasks (taski), rovers (roveri), 
and astronauts (astronauti). 

Each task (taski) is defined by 
the attributes {location, type, 
required competences, 
preconditions, energy, and 
duration}.  Locations are 
discrete instantiated symbols 
defined by x and y coordinates 
(e.g., loc1 is situated at (45.2 , 
17.2)).  The tasks represent goals 
that the rovers and astronauts 
must complete and are defined 
as a certain type, implying a 
required set of competences 
needed for the task to be 
accomplished.  Preconditions (previous actions) are provided for situations in which execution of a certain task 
requires the agent to have already executed another set of tasks.  In the current implementation, each task has a 
constant (approximate) energy cost, representing the level of effort (resource expenditure) expected to accomplish 
this task.  For the rover, this cost would represent power and fuel required, while for the astronaut, it would 

Coordination 
Executive Team Planner

Mission Planner and Executor

World state & 
task execution status 

Actions

→Position updates
→Task Status
→Sensor Data
→Agent Requests

→High level actions
→Rover sensor info 
(to astronaut) 

Figure 1: Planning & Coordination of a Multi-agent Rover-Astronaut Team.
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represent physical exertion level and associated oxygen use.  Constant expected duration (execution time) values are 
also specified for each task. 

Similar to the task state variable, each rover has an (x, y) location and a set of competences.  For this research, 
rovers are presumed to be fully able to navigate between task locations and to nominally be successful with the tasks 
they are equipped to handle. Rovers can also help an astronaut in an emergency (e.g., by providing oxygen or power 
when the astronaut runs low) or when the astronaut requires a specific tool onboard the rover.   Rovers have a 
limited amount of onboard energy, a value diminished by each traversal and task execution. 

Astronauts are capable of accomplishing many of the same tasks the rovers can complete, thus they are included 
as “mobile agent” resources within the planner.  However, they also may elect not to execute the planned activities 
assigned to them. One of the reasons to have humans in the field is to capitalize on their superior sensing and 
reasoning abilities. While astronauts are trained to accept instructions, they also will not prefer to be strictly “pawns” 
of a computerized planning agent.  In practice, the astronaut might decide to select a different task based on his 
preference or observations.  In this work, we assume the astronaut will inform the planner of such deviations.   We 
hypothesize in this research that the astronaut will prefer to provide input to the scheduling process in real-time 
rather than through an offline negotiation process.  

In our world model, rovers and astronauts, more generally labeled “agents”, can perform four different actions that 
change world state:  (1) Navigate between locations (Goto (agent_i, from_loc, to_loc)), (2) Perform a 
task (Execute (agent_j, task_k), (3) Rescue an astronaut (Rescue (agent_l, 
astronaut_m)), or (4) Cooperatively perform a task (Cooperate({rover1,astronaut2}, 
task4)).  A coherent list of preconditions must be true in the current state for an action to be applicable, 
including conditions ranging from “task and rover must be at the same location before rover can execute the task” to 
safety and competency checks.  For instance, a rover assigned to an astronaut rescue will not be redirected until the 
rescue is complete.  

 
A.  Planner/Scheduler 

We have implemented a recursive, time-controlled best first search algorithm to schedule the set of actions.  A 
plan is typically a list of ordered actions with no indication of whether they can be executed in parallel or not.  In 
order to deal with this issue we added two variables to each action: start and end time. Start time is the time when 
the action becomes applicable and end time is when the task is expected to end, deviation from which is dynamically 
fed back to the executor upon task completion.  Each time a new action is added to the plan, the previous set of 
planned actions is evaluated to find the appropriate start time based on agent and task dependencies.  For each agent 
to execute an action, the agent dependency function finds the time at which previously-scheduled actions will be 
completed.  The latest end time over all collaborating agents determines the start time of the new action.  Task 
dependency reconciles the preconditions that must be satisfied.   

This work presumes energy is a constraint rather than a quantity to be optimized.  Currently, the cost function g(n) 
is set to the largest end time over all mobile agent timelines for the set of actions from initial state to node n. The 
expected time required for task execution is tabulated or computed as a function of expected traversal distance.  The 
planner’s goal is to complete the maximum number of tasks in a minimum amount of time.  Since limited time can 
be spent doing EVA, plan optimality in terms of mission time is a major concern, suggesting offline optimization 
will be highly useful to plan exploration activities. However, since optimal planning may require substantial 
(exponential) time, a more timely (real-time) search tool must also be available for use when needed.  Our anytime 
implementation spawns different instances of best first search and stores results in a partial plan format. When a 
time limit is reached, the search process is interrupted and the best partial plan is returned.  To find different plans in 
each best first search instantiation, we randomly select the node to expand rather than select the next entry in the 
cost-ordered open list. This strategy is effective despite the loss of cost ordering because all tasks have equal value 
in our current implementation, and best-first search prioritizes high-depth solutions due to its design.  This method is 
analogous to optimization techniques that elect to explore different regions of the input space to avoid local minima.   

The planning time limit also enables the planner to be tuned appropriately prior to execution, effecting a design-
to-time strategy through branching factor control in concert with the anytime algorithm described above.  Managing 
computation time is a critical issue, particularly when the plan must be adapted in real-time. Controlling the width of 
the search graph also enables control of optimality versus planning time.  The selection among candidate actions for 
each node is made with the distance-based traversal cost function. For instance, when the branching factor is two, 
only the two best (closest) applicable tasks for that agent will be selected. This timeliness feature compromises 
optimality; however, since fewer partial plans are explored during the search the computation of the plan is much 
faster. This trade off is inevitable and considered acceptable for our application given the obvious need to rapidly 
replan, particularly when an astronaut requests emergency assistance.  Branching factor selection is tightly coupled 
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to the time allowed to compute the plan.  If a long period of time is allocated for the calculation of the plan then it is 
more advantageous to have a large branching factor. When developing a rescue plan, a small branching factor is 
better able to limit the search space with our closest-distance heuristic.  

 
B.  Coordination Executive 
Once the centralized planner develops or updates a team activity plan, the Coordination Executive must 
communicate this plan to the mobile agents (human and robotic) and supervise/monitor its execution throughout.  
Coordination Executive design goals require the following capabilities:  (1) Dispatch commands to each agent at the 
appropriate time, (2) Provide real-time monitoring capability both to dispatch tasks correctly and to identify 
discrepancies between actual and predicted task execution times and states,  and (3) Direct the decision-making 
processes required to handle unexpected or anomalous events, requiring invocation of replanning and redirection of 
agents when a response has been planned. 

The Coordination Executive is a 
multi-threaded C++ program as shown in 
Figure 2.  The Command thread splits 
into as many sub-threads as there are 
agents in the field. Each sends the 
appropriate command when it becomes 
applicable.  When an unexpected event is 
detected related threads are temporarily 
halted then redirected with a new activity 
list once available.  The update Agent i 
threads are the communication threads 
that collect data from the mobile agents 
and update the Executive’s knowledge of 
agent state (position, orientation, energy, etc).  The Monitoring thread periodically checks the status of every agent 
and reports nominal task execution status including completion times as well as detecting unexpected events. This 
thread alerts every other thread when an anomaly occurs and a new plan needs to be computed. The Planner / [Plan] 
Display thread  is in charge of first computing a new plan using the planning tool described earlier and then of 
displaying execution information at the screen.  In the Figure 2 implementation, the Planner is an “agent” the 
Coordination Executive can invoke as needed.  Upon startup, the Executive first calls the Planner with the specified 
set of tasks to accomplish.  Once the planner returns the initial plan/schedule, the Executor begins directing all 
mobile agents in accordance with this plan, calling the Planner again as required to prepare contingency responses.  
The planner never directs or invokes the Coordination Executive except through the Executive’s interpretation of the 
planned task schedules.   

IV.  Results 
Initial simulation-based tests were used to validate the scheduling algorithm and software architecture while 
assessing complexity and optimality of results.   Next, simulations were used to evaluate the planner’s ability to 
trade computational complexity with optimality.  
Tests with the real rover and a single astronaut 
agent were also conducted in indoor and outdoor 
environments.  This paper focuses on the 
planner/scheduler system and its use for 
exploration missions; details of the six-wheel rover 
hardware and software, particularly the machine 
vision navigation and path planning algorithms, are 
available elsewhere.14,15 

 
A.  Multi-Agent Simulations  
Each rover was simulated with a single process 
executed as navigation, task execution, message 
processing (RX), and update generation (TX) 
threads.  Navigation includes nominal motions plus 
perturbations (noise) to provide more realistic 
deviations from the expected execution profile.  

Command Thread

Agent 1 
Command 

Thread.

Agent n 
Command 

Thread.

Monitoring 
Thread

Planner / Display 
Thread

Update Thread 
Agent 1

Update Thread 
Agent n

Figure 2: Coordination Executive. 

Cooperative Tasks

Navigation between waypoint

Tasks:  (Water test / Drilling / Take picture / Take 
picture with astronaut approval / Rock sampling

wait time

Figure 3: Base Scenario –Schedule and Expected Resource Use.
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Each astronaut was simulated in an analogous 
fashion, except that the software was augmented 
to enable generation of requests for assistance 
and self-initiated deviations from nominal plans.  
As a baseline scenario, 3 rovers and 1 astronaut 
were assigned 6 tasks and were given 10 
locations (4 initial agent locations plus one per 
task).  Figure 3 shows the temporal 
representation of the plan with tasks inserted 
along a timeline based on their expected 
execution times.  For this example, the planner’s 
time limit was set to 10 seconds during which 
2684 partial plans were stored using a branching 
factor of 4. The planner successfully finds a plan 
that accomplishes every task.  All simulations 
were completed on a Dell Laptop with a 1Ghz 
Pentium 3 processor and 512 Mb of RAM under 
the Fedora Core 3 Linux distribution. Figure 4 
illustrates plan execution by the simulated 
agents. We can see that the execution times are 
slightly different than the ones expected; this is 
due to the fact that in simulation task duration is 
randomly generated with a Gaussian centered 
on the expected value. 

A second test scenario demonstrates the 
importance of branching factor selection as well 
as the behavior of the planner.  Two robotic 
agents are capable of independently performing 
the 3 drilling tasks to be performed at 3 
different locations. Two branching factors were 
tested, with results illustrated in Figure 5. First 
the branching factor was set to one which 
implies the planner will only perform a classic 
best-first search without looking at other 
possible plans. During a second test the 
branching factor was changed to two, enlarging the search space.  Two of the three tasks are close to the two rovers 
while the remaining one is far away.  With a branching factor of 1, the planner selects the locations that are closest 
since the branches at a single level are ranked by past rather than future cost.  Accordingly the two rovers are sent to 
the two closest tasks while the remaining task is scheduled at the next level and executed by the closest rover given 
their positions after the first task has completed. The best plan, however, takes advantage of the fact that two of the 
three tasks are very close and can be executed by the same agent. This optimized solution is found when the 
branching factor is set to two, enabling the search algorithm to find the alternate solution that sends one of the agents 
directly to the most distant task.  Overall, the difference in execution time was 8.6 out of a total 29.9 seconds for the 
“slower” branching factor one solution.  This trend was repeatedly observed as task complexity and problem size 
scaled, as illustrated by the 100-task example shown in Figure 6 which requires substantial time to fully optimize, 
but as illustrated 30 seconds is sufficient to generate a viable plan. 

In addition to temporal constraints, an important capability of the planning system is to deal with unexpected 
events resulting from emergencies, opportunities, or poorly modeled task execution timings or effects.  In this work, 
focus is placed on emergency response, which is the most critical situation to handle during rover-astronaut 
exploration activities.  Consider the emergency situation where the astronaut calls for help. Although more generally 
specifics of the emergency would be required to ensure appropriate response, in this work the response to such an 
event is to redirect an agent with life support equipment to the astronaut, with preference to redirect the closest rover 
(the first-level response automatically selected by the planner given branching factor of 1).  Figure 7 illustrates such 
a response with 24 tasks allocated among 3 rovers and one astronaut. All mobile agents possessed life support 
equipment. The planner was allowed 30 seconds for the original plan computation and 0.5 seconds to plan the 
emergency response, sufficient to generate the plans shown in Figure 7. 

The action of taking a picture took more time 
that expected in this case.

Execution Time 
(during simulation)

Navigation time is higher than expected due to 
a lower speed of rover 3 at that time.

Expected 
Schedule

Figure 4: Planned and Actual Task Execution Times. 

Plan with branching factor = 1 Plan with branching factor = 2

Drill TasksRovers

Tasks are slightly offset from execution site to enhance visibility

Figure 5: Plan variance with branching factor (top view). 
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a) Overhead view of agents, task sites 
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Figure 6: 100-task scenario:  Partial plan and schedule after 30 planning seconds. 
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Figure 7: Contingency response to astronaut request for emergency assistance.  
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B.  Computational Complexity vs.  Optimality  
To examine the trade off between optimality and computational time we further characterized planner 

performance over the example with 24 tasks. Not all of these tasks could be executed due to energy constraints, but 
depending on the ordering of the task execution, plans with 16 to 20 accomplished tasks could be found. Figure 8 
shows the results obtained for different planner computation times. Each point in the graph is an average of five 
experiments and the standard deviation was taken into account when fitting the curve.  The inverse of the standard 
deviation was used to computes weights in the error term:   

 ( )( )
2

1
2

1∑
=

−=
n

i
ii

i

xfyerror
σ

                   (1) 

where yi is the value of the ith experimental point, f(xi) is the fitted value of the ith experimental point, σi is the 
standard deviation of the ith experimental point.  To compare the planner results of the different runs of the planner 
for the same problem we created a post-process plan scoring function. This function is a quantitative measure of 
plan quality, first ranking plans in order of number of tasks completed and secondarily ranking by execution time for 
plan sets that complete the same number of tasks:   

( ) ( )
boundlowerboundupper

timeexecutiontasksofplanscore
__

___#
−

+=                               (2) 

where upper_bound = the maximum 
amount of time the execution of i tasks 
could require and lower_bound = the 
minimum amount of time the execution of i 
tasks could require.  This grading system 
ensures a plan with a greater number of 
tasks will always have a larger score, while 
secondarily incorporating task execution 
times. This function was only used to 
compare different solutions, not to guide 
the search process itself.   

Figure 8 shows the tradeoff between 
optimality and computation time for this 
24-task example. As expected, solution 
quality improves with planning time.   For 
instance, ~10 seconds are required to plan 
20 actions. The graph approaches an 
asymptote of 21 tasks which suggests the 
maximum score possible with a branching 
factor of four is not the “perfect” score of 
24. This situation exists for two reasons:  (1) 
Not all nodes are exhaustively searched in 
the graph with branching factor four, so the 
asymptote is not reached even with the 
higher time limits examined, and (2) Given 
resource constraints, no solution may exist 
in which all 24 tasks can be scheduled.  For 
the 24-task scenario, planner statistics were 
collected with branching factors 2, 4, and 6.  

Figure 9 shows curve fits computed from 
experimental results with branching factors 
2, 4, and 6.  These curves show two 
interesting dependencies of plan quality on 
branching factor.  As expected, we observe 
that solution quality increases with 
branching factor.  The second property is 
observed by focusing on the beginning of the graph where planning time is significantly restricted.  In this case, 
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Figure 8: Optimality vs. Computation Time with Branching Factor=4.
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Figure 9: Influence of Branching Factor (BF) on Plan Quality.
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small branching factors enable better planning results, illustrating that our distance-based heuristic used to define the 
reduced search-space is useful. With larger branching factor, the planner is more likely to explore costly nodes from 
a distance perspective, even though more nodes are eventually explored with sufficient time (thereby ultimately 
yielding an equal or higher-quality solution).  Since the search is severely limited due to the time constraint, the 
solution will be somewhat random. Conversely, when the branching factor is small the few explored plans use nodes 
close to the shortest-distance heuristic. This test indicates the combined heuristic-branching factor control strategy is 
useful for fast-response emergencies as well as situations enabling substantial but constrained deliberation times.   

  
B.  Deployed Platform Tests 
 

The first test scenario was designed to verify the planning system’s integration with a real rover and a real human. 
The system was composed of those 2 agents, and two “Take a Picture with Approval” tasks were specified. Only the 
rover was equipped with a camera, therefore the planning problem was trivialized to the rover sequentially 
completing the two tasks but requiring approval from the astronaut (thus the astronaut had to focus attention on the 
“take picture” task at least briefly).  At the discretion of the astronaut, a call for help may also be issued during plan 
execution to test both the planner and the rover reactions. The “Take a Picture with Approval” task consists of a 
sequence of three sub-actions for the rover: 1) tilt the camera pair to the horizon, 2) take a picture, and 3) tilt the 
camera back to its default configuration.  During the execution, the coordination executive and task planner reacted 
as expected, effectively managing task execution and the flow of information. It also provided a correct response to 
the emergency call from the astronaut.  Figure 10 shows the execution time line while Figure 11 shows the path 
followed by the rover during execution. We can clearly see that the rover is traveling more slowly than expected and 
that it does not follow the planned path. This is due to the fact that traversal time is computed using a straight line 
approximation between waypoints, without consideration of kinematic constraints. The closer the waypoints, the 
less accurate this approximation is, as the rover is taking a more circuitous path to account for required heading 
changes. As seen previously, dead reckoning results in increased position error over time, and orientation error also 
grows without magnetometer data (indoors).  We can clearly see in Figure 11 that the rover, when returning to its 
initial position to rescue the astronaut, is approximately 1 meter away from where it believes it has traversed. During 
execution the rover performs a 180 degree change of orientation resulting in a significant heading error.3 As error in 
heading has been observed to have significant influence in position error, this result was expected. 

 

Planned Schedule

Execution

Delay in the first goto
action

Emergency Call From 
the astronaut

Rover providing emergency 
assistance for the astronaut.

The Astronaut is not 
assigned any actions

 
Figure 10: Plan and Execution Schedule. 

                                                           
3 The magnetometer did not operate correctly in the lab thus heading error was more significant for indoor results. 
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Figure 11: Rover path during execution compared to the planned path. 

The rover is in its initial position and orientation; 
the astronaut, sitting at the table, is at the same 

location.

The rover is on its way to the first task.

The rover is accomplishing the first 
task. The picture on the right was 

stored by the coordination executive 
and sent to the astronaut for approval.

 

Figure 12: Execution snapshots from nominal plan execution. 
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While the rover is heading for the second task, the astronaut calls for help.

The rover has received a rescue order and is now traveling to reach the astronaut.

The rover has reached the astronaut’s position for rescue support.  
Figure 13: Execution snapshots for the emergency situation. 

Figures 12-13 show information displayed by the planner/executive and the view from an external camera for the 
task execution and rescue operation. The two images are synchronized. The planner/executive process displays the 
position of the agents on the field based on the information it receives from them. Although the rover’s position 
estimate may not be precise, the planner has no way to know the true position thus it displays position estimates as 
its best estimate of reality.  This error is illustrated by the last image of the sequence.  The coordination executive 
believes the planner has situated the rover in the same place as the astronaut, but by looking at the picture we can 
clearly see that the rover did not exactly return to its original position.  

An outdoor test with rover and astronaut was also conducted.  Figure 14 presents the internal map of the rover at 
different times during the traverse. We can clearly see the different obstacles in the last snapshot of the internal map. 
In the first image we see that the rover detects the four “obstacles” (markers) in front of it and chooses a path 
accordingly. A few seconds later, the rover perceives the second obstacle that appears to be intercepting the 
previously-planned trajectory. Consequently the rover re-computes a trajectory taking into account the terrain 
update.  The magnetometer enabled more precise heading computation outdoor, but due to the terrain difference 
(mud, grass) more slippage was encountered. Nevertheless position computation was more accurate in the outdoor 
environment. 

A final test was conducted to demonstrate the practical utility of this architecture as well as define its limitations. 
The test included the lab rover which is capable of not only taking pictures but also storing rock samples.  The 
astronaut is able to identify interesting rocks and grab them. Two additional simulated rovers are included during the 
test.  Figure 15 shows a picture displaying the experimental setup as well as the coordinate system.  Seven tasks 
were required in this problem, including three “Take Picture”, two “Drill Rock”, one “Water Test”, and 
one “Rock Sampling”. The latter task is important because the competences of each agent were defined so that 
this task had to be performed collaboratively by the real astronaut and the real rover.  Figure 16 shows the mission 
planner display including the computed plan. The planner was allowed 12 seconds for the plan computation.  As the 
number of task was small, the branching factor was set to 8 so that no node was pruned during the search.  Note the 
collaboration between the real astronaut and the real rover, with optimal (no-delay) execution requiring that they 
synchronously arrive at the same location to perform the rock sampling task. 
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OBSTACLE FREEUNKNOWN

 
Figure 14: Outdoor test: External view & internal terrain map. 
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Figure 15: Outdoor Experimental Configuration. 

 
As shown in Figure 16, the environment was designed such that simulated and real agents do not interfere during the 
plan so that the astronaut need not be aware of the virtual rover positions. Theoretically, nothing would prevent the 
planner from scheduling collaboration actions between a real and a simulated agent, although physical interaction 
would not be effective. For instance if the astronaut required a “water sensor” during execution of a task, the 
mission planner would have decided to send the simulated rover with this tool to the location of the astronaut.  The 
astronaut would then be alerted (through the GUI) that the rover was present, but of course no actual sensor would 
be delivered to the real astronaut by the virtual rover.   

This final test was successful.  The rover with the help of the “astronaut geologist” is able to sample rocks and 
accurately return to base. The Coordination Executive succeeds in monitoring the activity of both the simulated and 
the real rover. Figure 17 illustrates the milestones achieved during plan execution.  The primary difficulty 
encountered is that rover traversals require far more time than they are allotted in the schedule, requiring the 
astronaut to wait and requiring more total execution time than had been anticipated.  In future work, the straight-line 
path approximation will be converted at least in the final plan to a more realistic path based on the best-available 
terrain and obstacle models. 
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Figure 16: Collaborative Astronaut-Rover Plan.  
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Figure 17: Outdoor Mission Scenario and Task Sequence. 

V.  Conclusions and Future Work 
This paper has described a planning and execution system for astronaut-rover exploration teams tasked with 
collaboratively accomplishing planned tasks and maintaining safety and efficiency throughout.  The three main 
research thrusts were the development of a flexible planning tool that can trade execution time for solution 
optimality when required, the implementation of a coordination executive to manage the multi-agent system, and the 
development and integration of rover hardware and onboard navigation software to enable real-world testing. The 
resulting system has been demonstrated capable of managing in real-time a team of astronauts and rover by 
scheduling optimized plans for each agent and by providing safe response to emergency or unexpected events 
generated by the environment or by directive from an astronaut. 

Simulation results have demonstrated the robustness of the planner/scheduler over a wide range of situations and 
a large number of tasks. The implementation enables new users to easily implement new tasks and new agent types.  
Planner computation time is regulated, ensuring not only quick response when needed but also deep search of an 
optimal solution. A branch control strategy using a closest-point strategy has also been included in order to restrain 
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the search. Limiting the search space when little time is allowed for plan computation allows better plan quality 
while wide search space is used when a lot of time is available in order to explore more solution. 

This work requires significant extension before applicable to real collaborative planetary surface missions. 
Future work will increase system adaptability and the range of possible scenarios.  At this stage of the 
implementation, our model of an agent is simplistic. Parameters should be extended to include a comprehensive 
(relevant) set of skills, levels of attention, and willingness to be part of the team. Human and rover internal 
parameters may evolve during the execution; consequently the previous “optimal” plan may become less efficient 
over time. A combination of improvements to agent models and planning rules/heuristics must be made for this 
architecture to appropriately model and reason about the uniqueness of each human or robotic agent and his/her/its 
evolution during a mission. Collaborative dialogue is perhaps the biggest improvement needed for this architecture 
to work efficiently during larger-scale field trials.  The current executive sends each agent involved in task 
accomplishment an “execution command”. Even if the task is collaborative, no direct dialogue is now available 
since the goal was to efficiently place the correct set of agents at the right place at the right time. Direct 
communication between agents is a key to efficient task accomplishment, but this communication must be modeled 
in the planner/scheduler to realistically quantify resource costs and execution time requirements. 

The ultimate goal of this and follow-on work is to provide an automated planning/scheduling system for 
collaborative extraterrestrial exploration that can take full advantage of each agent’s capabilities while minimizing 
unnecessary delays. Humans and robots will soon be capable of routinely accomplishing tasks together.  
Planning/scheduling architectures and algorithms will improve the definition and execution of large-scale scenarios 
beyond what is possible with reactive plans.  
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