

American Institute of Aeronautics and Astronautics

1

Human-Robot Team Task Scheduling for Planetary Surface Missions

 Maxime F. Ransan1 Ella M. Atkins2
Laboratoire D'Analyse et d'Architecture des Systemes University of Michigan

Future manned space exploration missions will require collaborative activities with human
astronaut and robotic agents. Proposed mission planning and execution architectures rely
on reactive task planning, focusing on real-time information sharing between ground
personnel, astronauts, and rovers. We present a planning/scheduling strategy that
autonomously optimizes initial task plans/schedules over the human-robot team based on
specified mission goals, but that also scales computationally to enable reactive replanning
based on modifications to mission goals, revised resource utilization profiles,
anomalies/emergencies, and astronaut directives. Collaborative exploration task models and
search control algorithms are presented and evaluated in terms of computational complexity
versus solution optimality. The implemented software was evaluated over teams of
simulated and real rovers collaborating with a human companion. These tests demonstrate
that the planning tool can reliably trade execution time for solution optimality when
required and that the planner/scheduler is able to capably respond to detected anomalies.

I. Introduction

stronauts and robots must collaborate effectively to safely and efficiently explore harsh extraterrestrial
environments. The team goal is to efficiently complete a set of science or construction/maintenance activities

at potentially disparate locations. Each agent (rover or astronaut) has a limited set of competences that constrains the
individual agent’s abilities but that enables the aggregate team to perform a wide range of tasks. For example, every
astronaut may be able to pick up a rock but only “geologist” astronauts are able to identify which rocks are of
scientific interest. Typical rovers have a suite of sensors and more sample storage capacity than an astronaut but
would be more limited in their ability to select targets (e.g., rocks) of interest and rapidly collect desirable samples.

Multiple competences can be required to perform even a simple task. For instance, a rock sampling task might
require not only a geologist to identify and pick up the rock, but also a rover to store the sample and return it to the
base station. The planning tool must decide which agents can perform the task and when they will execute the task
together. Scenarios ranging from sampling to habitat construction may require a specific task ordering (precedence).
For example, before collecting a rock sample in an unknown area, it would be advantageous to first take high
resolution pictures of the surroundings, select site(s) of interest, and then organize astronaut/rover teams with
appropriate competences to explore sites of interest. Although rovers may encounter unexpected environmental
conditions and improbable internal states, a robust robotic system will follow the specified plan to the best of its
abilities. The very creativity and adaptability that make an astronaut a valuable explorer challenge a robot-astronaut
planner. Although trained astronauts will do their best to accomplish assigned tasks, they are more likely than
rovers to deviate from a planned task schedule due to the imprecise models used to estimate speed, traversal paths,
and resource use (e.g., oxygen). Astronaut safety must be a top priority, even at the expense of goal achievement.
Future rovers and astronauts will likely carry backup life support equipment for emergency situations (e.g., astronaut
depleting his/her oxygen or unable to move due to injury). As team manager, either human or AI planner/executive
should therefore be able to detect the emergency situation and respond to it in a quick and appropriate manner.

Another scenario where astronauts might behave unexpectedly is opportunistic exploration, situations in which
they choose to deviate from the current plan to explore a site/perform a task they perceive as higher-priority. Since
astronauts are indisputably the superior “creative” intellect given current technology, a planning system must
support such deviations. Because the astronaut chooses not to accomplish the original planned task set, the plan is
no longer valid. Both emergency and voluntary plan deviations require rapid detection and replanning/plan repair
capabilities, primarily for safety in the former case and for efficiency, especially given cooperative tasks, in the
latter case.

1 PhD Student., Laboratoire D'Analyse et d'Architecture des Systemes (LAAS-CNRS), 7 avenue du Colonel Roche 31000,
Toulouse, France, Student Member.
2 Associate Professor, Aerospace Engineering Dept., University of Michigan, Ann Arbor, MI 48109, Associate Fellow.

A

AIAA <i>Infotech@Aerospace</i> 2007 Conference and Exhibit
7 - 10 May 2007, Rohnert Park, California

AIAA 2007-2972

Copyright © 2007 by Maxime Ransan and Ella Atkins. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

American Institute of Aeronautics and Astronautics

2

Unexpected cooperation is yet another scenario that could arise. An astronaut could require assistance from a
rover to complete a task, or a rover could lose a capability (e.g., broken sensor) and require assistance from an
astronaut or rover to continue its task or return to base. For example, a “geologist” astronaut may opportunistically
encounter a rock outcropping of potential interest but requires specific sensors or tools only possessed by a rover
teammate to analyze, extract, or stow the geological sample. Although such situations must be handled expediently
to prevent inefficiency for the team and frustration for the astronaut(s), safety is again the top priority.

Due to power and life support constraints as well as the inherent dangers of Extravehicular Activity (EVA),
maximizing exploration productivity over the mission is critical. In planning terms, given a set of tasks or goals, it
is important to identify and successfully execute a plan that maximizes the number of tasks accomplished while
maintaining safety and minimizing overall execution time. Given traversal requirements, this problem can be related
to the Multi Traveling Salesman Problem1 but has significantly more constraints. In our situation the salesmen are
not allowed to go everywhere, and “cities” are ordered, which makes traditional heuristics impossible to apply. Even
if capability constraints reduce the search space, the problem of finding the optimal task allocation remains NP-hard,
implying exponential time to compute the solution. Obviously, for large-scale, long-duration missions, exponential
computational time renders full plan/schedule optimization an unrealistic requirement.

Reliable and efficient contingency response is also an important problem to address. Unexpected events that occur
during EVA must be detected and reactively managed. A challenge is then to provide a planning tool that is able to
compute, within a given time constraint, a valid plan that takes into consideration the specifics of the “unexpected”
emergency situation. A “coordination executive” must also be guaranteed to detect at least safety-critical
emergencies and to efficiently relay updated response plans to the team. Acting as a mission control or base station,
a planning system must be able to plan actions that coordinate activities among all members of the astronaut-rover
team. Planning parallel activities can also require extra computation and dedicated data structures, especially when
multiple agents must cooperatively execute one or more tasks.

This paper describes a centralized planner/scheduler tool to manage a hybrid rover-astronaut team, focusing on
real-time contingency response. Collaborative exploration scenarios studied include observation, sampling, and
rescue tasks. A search strategy with branching factor control trades planning time with search space completeness.
The planner reacts quickly to anomalies when required but also can build optimal plans that minimize deployment
time while maximizing science return translated to goals/tasks. A six-wheeled rover was constructed with stereo
vision-based navigation, path planning for target/waypoint tracking and obstacle avoidance, and onboard control,
enabling navigation in unmapped environments. A human astronaut interacts with the real rover and a group of
simulated (virtual) rovers. Rather than work offline with the scheduler through a collaborative scheduling tool, the
scheduler allocates a default set of tasks to the astronaut but then provides the capability for the astronaut to redirect
their activities in real-time based on perceived opportunities and hazards as well as his/her evolving preferences.

Below, following a review of planning/scheduling technologies, astronaut and rover models are presented in the
context of state features, tasks, constraints, and costs. A search algorithm with branching factor control allows
adjustment of the optimality-time tradeoff for to support offline and online (reactive) scheduling. The planner is
situated in a real-time plan monitor and dispatching system, connecting multiple physical and simulated rovers as
well as astronauts. Results from a series of simulation and hardware-based tests are presented to evaluate
performance, particularly for real-time reaction to a suite of astronaut and hazard-driven anomaly scenarios.

II. Planning/Scheduling Background

A planning process identifies a set of actions that transforms the world from an initial state to a desired goal state
or states. Due to the large number of possible states, this problem is usually NP-hard, requiring time exponential in
the number of actions and features to compute a solution. Typical algorithms reduce the search space thus improve
worst and average-case execution times. Classical planning techniques deal with restricted-state transition problems
approximated as deterministic (each action results in a unique new state), static (if no actions are applied the world
remains the same), finite (the system has a finite number of states), and fully-observable (the state of the world is
known). Classical planning is also referred as STRIPS planning, one of the earliest planning systems.2

The most straightforward planning technique is forward search where states are expanded until the desired state
is found. Forward search includes algorithms like A*, best-first-search, breadth-first-search, and uniform cost
search. Backward search is the inverse of forward search: the search begins from the goal state and regresses to the
initial state. STRIPS is a reduced version of backward search that identifies a satisfying solution relatively
efficiently but that may not always find an existing solution due to an incomplete search strategy. Partial Order
Planning (POP) was thus introduced,3 maintaining computational efficiency similar to STRIPS but enabling solution
to problems such as the Sussman Anomaly through least-commitment action ordering. UCPOP was perhaps the

American Institute of Aeronautics and Astronautics

3

most common POP planner and is still used, particularly for education purposes.3 Plan-space planning (PSP) was
produced through further evolution. In a PSP procedure, the initial plan is composed of two actions a0 and a∞. The
procedure refines this initial plan by solving open goals and threats.

Because classical planning techniques do not scale to large problems, strategies such as Simple Temporal Logic
and Hierarchical Task Networks were developed. Their main advancement was the exploitation of domain expertise
within the planner, utilizing domain-specific rules to control and constrain the search space. Recent planning-graph
techniques develop a solution through a procedure that bridges state space planning and plan space planning. The
solution is specified as a sequence of action sets that incorporate precedence and exclusion constraints. Graphplan
techniques were introduced in and are considered a significant representational advance.4

The development of control rules in Simple Temporal Logic (STL) has improved the performance of forward
search algorithms. STL is a logical formalism that enables the search algorithm to prune nodes. STL was first
introduced by Bacchus and Kabanza;5 this implementation remains among the most efficient. The Hierarchical
Task Network (HTN) is a practical technique with broad application.6 The input of an HTN planning problem
includes methods that can be viewed as domain dependent “recipes”. The planning process consists of recursively
decomposing non-primitive tasks until primitive tasks are reached.

As planning is the problem of finding a valid set of actions to achieve a goal, scheduling focuses on time and
resource allocation for this set of actions. Historically, these two problems have often been treated separately; with
the set of actions to perform tabulated for most scheduling algorithms. Such separation is optional, however.
Scheduling can be seen as an optimization problem where different criteria are minimized depending on the
application. Cost criteria minimized by schedulers include makespan (maximum ending time of the schedule), the
total number of late actions, the peak resource usage, and total quantity of resources required. General multi-task,
multi-processor scheduling problems are NP-hard, but approximation techniques have been implemented to scale
large problems. Anderson et al provide a survey of scheduling methods.7 Integrated approaches to planning and
scheduling are also available, such as a method based on chronicles, the sets of timelines for every state variable.8

Classical planning assumes that every action produces a unique state but there are numerous real-world situations
where this is not the case. When dealing with hardware, failures or off-nominal events can occur, implying that
several states can potentially be reached with non-negligible probability when executing an action. This class of
problem is called planning under uncertainty. The two solutions approaches are to avoid the complexity by
detecting the unexpected state and computing a new plan from this state, and/or to employ a derivative of a Markov
Decision Process (MDP) or Model Checker to build policies that apply over the most likely states.6

Multi-agent planning has received significant attention since many systems are composed of multiple entities,
such as the astronaut/rover teams in this paper. The goal of general multi-agent planners is the global achievement of
a common goal (set). Both centralized and decentralized approaches have been studied. In a centralized planner,
each agent receives directives from a central entity and feeds back status and state information. This architecture
enables a global view of the entire system and effective coordination through common knowledge. However
centralized systems are only possible when all the agents can communicate and overhead may be incurred from the
substantial information sharing requirements. Additionally, redundancy must be incorporated to enable robust,
fault-tolerant operation. Distributed systems are more difficult to robustly design and maintain since no global view
of the world is available to any agent. The main advantage is that goal achievement does not depend on a unique
entity, ensuring greater overall safety in terms of redundancy. Although many multi-agent algorithms exist, a
number of market-oriented techniques have been successful at task allocation across multiple agents.9 Based on
their current status each agent sends a bid or creates an auction, allowing agents to efficiently balance their task sets.

Space exploration researchers have begun to practically apply planning/scheduling algorithms. The Remote
Agent Experiment demonstrated that planning/scheduling was possible onboard a spacecraft.10 More recently task
planning/scheduling systems such as ASPEN, incorporating an iterative repair algorithm to facilitate dynamic
response, have been successfully operated long term and have gained the trust of scientists as viable and productive
alternatives to manual schedule generation and oversight.11 Activity planning and execution for a rover team has
previously been investigated with systems such as CLEaR (Closed-Loop Execution and Recovery).12 CLEaR relies
on ASPEN, which incorporates an iterative repair algorithm to facilitate dynamic response. This system has been
successfully demonstrated with multiple rovers but has not yet been extended to reason about direct collaboration
with humans. Other researchers have specifically focused on the interaction between humans and robots, but
typically rely on the humans for planning/scheduling rather than autonomous planning/scheduling tools.13

American Institute of Aeronautics and Astronautics

4

III. Planning System and Knowledge Representation
Analogous to a mission control or base station directing and monitoring a human/robot EVA team, a centralized

planning and execution system has been implemented, as illustrated in Figure 1. The planner directs the activities of
each mobile “agent” based on its goals and feedback from the agents (e.g., locations, available energy, capabilities).
The planner also responds to directives issued by the astronaut team members. Such directives range from “I need
help” to “I’m doing another task” to “Tell a rover to execute a new task” (e.g., defined by the astronaut). With the
centralized planning structure, communication between astronauts and rovers is limited to data associated with the
accomplishment of common tasks, with all other messages relayed through the planning/execution system.

 Our application is composed of three interacting components: a team planner, a coordination executive, and the
mobile agents deployed in the field (or simulated to facilitate experiments with many rovers). The centralized
planning module takes the current state of the world and computes a plan, a scheduled set of high-level tasks or
actions, for all mobile agents so that the maximum number of high-priority tasks can be accomplished by the team in
a minimum amount of time. The implemented design-to-time algorithm can be configured to react quickly and
possibly suboptimally or to consume the additional time needed for plan optimization. The execution module
controls the flow of information between the central planner and the distributed set of rovers and astronauts,
dispatching actions in real-time in accordance with the nominal policy and any dynamic updates. The execution
agent also gathers and processes available state information from the rovers/astronauts to enable detection of off-
nominal events. The executive is responsible for managing the reaction to off-nominal occurrences, either by
adjusting the policy (e.g., task execution timings) or by notifying the planner that a new/modified plan must be
created. For instance, when an astronaut requires help, the execution module will receive the information, detect the
event, notify the rovers, and call for the planner to compute an emergency plan as quickly as possible. Each rover
and astronaut is either a physical mobile entity or is simulated by a unique process that communicates with the
execution module with the same protocol as a real agent would utilize. Rovers are assumed to understand high-level
directives (task descriptions) and either to correctly execute them or return an annotated error message indicating the
task was not successfully accomplished. The software is configured such that the simple simulated agents can be
replaced with “real” robotic and astronaut agents.

Based on anticipated planetary
surface missions, a set of state
features and operators are
defined to characterize the task-
level goals, agents, and
associated resource usage
requirements and availability.
Three state variable types were
defined and uniquely indexed
(i): tasks (taski), rovers (roveri),
and astronauts (astronauti).

Each task (taski) is defined by
the attributes {location, type,
required competences,
preconditions, energy, and
duration}. Locations are
discrete instantiated symbols
defined by x and y coordinates
(e.g., loc1 is situated at (45.2 ,
17.2)). The tasks represent goals
that the rovers and astronauts
must complete and are defined
as a certain type, implying a
required set of competences
needed for the task to be
accomplished. Preconditions (previous actions) are provided for situations in which execution of a certain task
requires the agent to have already executed another set of tasks. In the current implementation, each task has a
constant (approximate) energy cost, representing the level of effort (resource expenditure) expected to accomplish
this task. For the rover, this cost would represent power and fuel required, while for the astronaut, it would

Coordination
Executive Team Planner

Mission Planner and Executor

World state &
task execution status

Actions

→Position updates
→Task Status
→Sensor Data
→Agent Requests

→High level actions
→Rover sensor info
(to astronaut)

Figure 1: Planning & Coordination of a Multi-agent Rover-Astronaut Team.

American Institute of Aeronautics and Astronautics

5

represent physical exertion level and associated oxygen use. Constant expected duration (execution time) values are
also specified for each task.

Similar to the task state variable, each rover has an (x, y) location and a set of competences. For this research,
rovers are presumed to be fully able to navigate between task locations and to nominally be successful with the tasks
they are equipped to handle. Rovers can also help an astronaut in an emergency (e.g., by providing oxygen or power
when the astronaut runs low) or when the astronaut requires a specific tool onboard the rover. Rovers have a
limited amount of onboard energy, a value diminished by each traversal and task execution.

Astronauts are capable of accomplishing many of the same tasks the rovers can complete, thus they are included
as “mobile agent” resources within the planner. However, they also may elect not to execute the planned activities
assigned to them. One of the reasons to have humans in the field is to capitalize on their superior sensing and
reasoning abilities. While astronauts are trained to accept instructions, they also will not prefer to be strictly “pawns”
of a computerized planning agent. In practice, the astronaut might decide to select a different task based on his
preference or observations. In this work, we assume the astronaut will inform the planner of such deviations. We
hypothesize in this research that the astronaut will prefer to provide input to the scheduling process in real-time
rather than through an offline negotiation process.

In our world model, rovers and astronauts, more generally labeled “agents”, can perform four different actions that
change world state: (1) Navigate between locations (Goto (agent_i, from_loc, to_loc)), (2) Perform a
task (Execute (agent_j, task_k), (3) Rescue an astronaut (Rescue (agent_l,
astronaut_m)), or (4) Cooperatively perform a task (Cooperate({rover1,astronaut2},
task4)). A coherent list of preconditions must be true in the current state for an action to be applicable,
including conditions ranging from “task and rover must be at the same location before rover can execute the task” to
safety and competency checks. For instance, a rover assigned to an astronaut rescue will not be redirected until the
rescue is complete.

A. Planner/Scheduler

We have implemented a recursive, time-controlled best first search algorithm to schedule the set of actions. A
plan is typically a list of ordered actions with no indication of whether they can be executed in parallel or not. In
order to deal with this issue we added two variables to each action: start and end time. Start time is the time when
the action becomes applicable and end time is when the task is expected to end, deviation from which is dynamically
fed back to the executor upon task completion. Each time a new action is added to the plan, the previous set of
planned actions is evaluated to find the appropriate start time based on agent and task dependencies. For each agent
to execute an action, the agent dependency function finds the time at which previously-scheduled actions will be
completed. The latest end time over all collaborating agents determines the start time of the new action. Task
dependency reconciles the preconditions that must be satisfied.

This work presumes energy is a constraint rather than a quantity to be optimized. Currently, the cost function g(n)
is set to the largest end time over all mobile agent timelines for the set of actions from initial state to node n. The
expected time required for task execution is tabulated or computed as a function of expected traversal distance. The
planner’s goal is to complete the maximum number of tasks in a minimum amount of time. Since limited time can
be spent doing EVA, plan optimality in terms of mission time is a major concern, suggesting offline optimization
will be highly useful to plan exploration activities. However, since optimal planning may require substantial
(exponential) time, a more timely (real-time) search tool must also be available for use when needed. Our anytime
implementation spawns different instances of best first search and stores results in a partial plan format. When a
time limit is reached, the search process is interrupted and the best partial plan is returned. To find different plans in
each best first search instantiation, we randomly select the node to expand rather than select the next entry in the
cost-ordered open list. This strategy is effective despite the loss of cost ordering because all tasks have equal value
in our current implementation, and best-first search prioritizes high-depth solutions due to its design. This method is
analogous to optimization techniques that elect to explore different regions of the input space to avoid local minima.

The planning time limit also enables the planner to be tuned appropriately prior to execution, effecting a design-
to-time strategy through branching factor control in concert with the anytime algorithm described above. Managing
computation time is a critical issue, particularly when the plan must be adapted in real-time. Controlling the width of
the search graph also enables control of optimality versus planning time. The selection among candidate actions for
each node is made with the distance-based traversal cost function. For instance, when the branching factor is two,
only the two best (closest) applicable tasks for that agent will be selected. This timeliness feature compromises
optimality; however, since fewer partial plans are explored during the search the computation of the plan is much
faster. This trade off is inevitable and considered acceptable for our application given the obvious need to rapidly
replan, particularly when an astronaut requests emergency assistance. Branching factor selection is tightly coupled

American Institute of Aeronautics and Astronautics

6

to the time allowed to compute the plan. If a long period of time is allocated for the calculation of the plan then it is
more advantageous to have a large branching factor. When developing a rescue plan, a small branching factor is
better able to limit the search space with our closest-distance heuristic.

B. Coordination Executive
Once the centralized planner develops or updates a team activity plan, the Coordination Executive must
communicate this plan to the mobile agents (human and robotic) and supervise/monitor its execution throughout.
Coordination Executive design goals require the following capabilities: (1) Dispatch commands to each agent at the
appropriate time, (2) Provide real-time monitoring capability both to dispatch tasks correctly and to identify
discrepancies between actual and predicted task execution times and states, and (3) Direct the decision-making
processes required to handle unexpected or anomalous events, requiring invocation of replanning and redirection of
agents when a response has been planned.

The Coordination Executive is a
multi-threaded C++ program as shown in
Figure 2. The Command thread splits
into as many sub-threads as there are
agents in the field. Each sends the
appropriate command when it becomes
applicable. When an unexpected event is
detected related threads are temporarily
halted then redirected with a new activity
list once available. The update Agent i
threads are the communication threads
that collect data from the mobile agents
and update the Executive’s knowledge of
agent state (position, orientation, energy, etc). The Monitoring thread periodically checks the status of every agent
and reports nominal task execution status including completion times as well as detecting unexpected events. This
thread alerts every other thread when an anomaly occurs and a new plan needs to be computed. The Planner / [Plan]
Display thread is in charge of first computing a new plan using the planning tool described earlier and then of
displaying execution information at the screen. In the Figure 2 implementation, the Planner is an “agent” the
Coordination Executive can invoke as needed. Upon startup, the Executive first calls the Planner with the specified
set of tasks to accomplish. Once the planner returns the initial plan/schedule, the Executor begins directing all
mobile agents in accordance with this plan, calling the Planner again as required to prepare contingency responses.
The planner never directs or invokes the Coordination Executive except through the Executive’s interpretation of the
planned task schedules.

IV. Results
Initial simulation-based tests were used to validate the scheduling algorithm and software architecture while
assessing complexity and optimality of results. Next, simulations were used to evaluate the planner’s ability to
trade computational complexity with optimality.
Tests with the real rover and a single astronaut
agent were also conducted in indoor and outdoor
environments. This paper focuses on the
planner/scheduler system and its use for
exploration missions; details of the six-wheel rover
hardware and software, particularly the machine
vision navigation and path planning algorithms, are
available elsewhere.14,15

A. Multi-Agent Simulations
Each rover was simulated with a single process
executed as navigation, task execution, message
processing (RX), and update generation (TX)
threads. Navigation includes nominal motions plus
perturbations (noise) to provide more realistic
deviations from the expected execution profile.

Command Thread

Agent 1
Command

Thread.

Agent n
Command

Thread.

Monitoring
Thread

Planner / Display
Thread

Update Thread
Agent 1

Update Thread
Agent n

Figure 2: Coordination Executive.

Cooperative Tasks

Navigation between waypoint

Tasks: (Water test / Drilling / Take picture / Take
picture with astronaut approval / Rock sampling

wait time

Figure 3: Base Scenario –Schedule and Expected Resource Use.

American Institute of Aeronautics and Astronautics

7

Each astronaut was simulated in an analogous
fashion, except that the software was augmented
to enable generation of requests for assistance
and self-initiated deviations from nominal plans.
As a baseline scenario, 3 rovers and 1 astronaut
were assigned 6 tasks and were given 10
locations (4 initial agent locations plus one per
task). Figure 3 shows the temporal
representation of the plan with tasks inserted
along a timeline based on their expected
execution times. For this example, the planner’s
time limit was set to 10 seconds during which
2684 partial plans were stored using a branching
factor of 4. The planner successfully finds a plan
that accomplishes every task. All simulations
were completed on a Dell Laptop with a 1Ghz
Pentium 3 processor and 512 Mb of RAM under
the Fedora Core 3 Linux distribution. Figure 4
illustrates plan execution by the simulated
agents. We can see that the execution times are
slightly different than the ones expected; this is
due to the fact that in simulation task duration is
randomly generated with a Gaussian centered
on the expected value.

A second test scenario demonstrates the
importance of branching factor selection as well
as the behavior of the planner. Two robotic
agents are capable of independently performing
the 3 drilling tasks to be performed at 3
different locations. Two branching factors were
tested, with results illustrated in Figure 5. First
the branching factor was set to one which
implies the planner will only perform a classic
best-first search without looking at other
possible plans. During a second test the
branching factor was changed to two, enlarging the search space. Two of the three tasks are close to the two rovers
while the remaining one is far away. With a branching factor of 1, the planner selects the locations that are closest
since the branches at a single level are ranked by past rather than future cost. Accordingly the two rovers are sent to
the two closest tasks while the remaining task is scheduled at the next level and executed by the closest rover given
their positions after the first task has completed. The best plan, however, takes advantage of the fact that two of the
three tasks are very close and can be executed by the same agent. This optimized solution is found when the
branching factor is set to two, enabling the search algorithm to find the alternate solution that sends one of the agents
directly to the most distant task. Overall, the difference in execution time was 8.6 out of a total 29.9 seconds for the
“slower” branching factor one solution. This trend was repeatedly observed as task complexity and problem size
scaled, as illustrated by the 100-task example shown in Figure 6 which requires substantial time to fully optimize,
but as illustrated 30 seconds is sufficient to generate a viable plan.

In addition to temporal constraints, an important capability of the planning system is to deal with unexpected
events resulting from emergencies, opportunities, or poorly modeled task execution timings or effects. In this work,
focus is placed on emergency response, which is the most critical situation to handle during rover-astronaut
exploration activities. Consider the emergency situation where the astronaut calls for help. Although more generally
specifics of the emergency would be required to ensure appropriate response, in this work the response to such an
event is to redirect an agent with life support equipment to the astronaut, with preference to redirect the closest rover
(the first-level response automatically selected by the planner given branching factor of 1). Figure 7 illustrates such
a response with 24 tasks allocated among 3 rovers and one astronaut. All mobile agents possessed life support
equipment. The planner was allowed 30 seconds for the original plan computation and 0.5 seconds to plan the
emergency response, sufficient to generate the plans shown in Figure 7.

The action of taking a picture took more time
that expected in this case.

Execution Time
(during simulation)

Navigation time is higher than expected due to
a lower speed of rover 3 at that time.

Expected
Schedule

Figure 4: Planned and Actual Task Execution Times.

Plan with branching factor = 1 Plan with branching factor = 2

Drill TasksRovers

Tasks are slightly offset from execution site to enhance visibility

Figure 5: Plan variance with branching factor (top view).

American Institute of Aeronautics and Astronautics

8

a) Overhead view of agents, task sites
and planned traversal

b) Schedule timeline

b) Energy use

40 60 80 100 120 140 160 180 200 220 240
0

50

100

en
er

gy

Astronaut (agent 0)

expected energy consumption
used energy during execution

40 60 80 100 120 140 160 180 200 220 240
0

50

100

en
er

gy

Rover 1 (agent 1)

expected energy consumption
used energy during execution

40 60 80 100 120 140 160 180 200 220 240
0

50

100

en
er

gy

Rover 2 (agent 2)

expected energy consumption
used energy during execution

40 60 80 100 120 140 160 180 200 220 240
0

50

100

en
er

gy

Rover 3 (agent 3)

expected energy consumption
used energy during execution

time (s)

Figure 6: 100-task scenario: Partial plan and schedule after 30 planning seconds.

Original Plan Contingency Response

Astronaut Calls
for Help Time response is controlled with the

modified best first search algorithm.

Rover 3 is sent to
rescue the astronaut

Rovers 1 and 3 are scheduled to accomplish a new
set of tasks. Some previously planned tasks will be

deleted while new tasks are added.

Figure 7: Contingency response to astronaut request for emergency assistance.

American Institute of Aeronautics and Astronautics

9

B. Computational Complexity vs. Optimality
To examine the trade off between optimality and computational time we further characterized planner

performance over the example with 24 tasks. Not all of these tasks could be executed due to energy constraints, but
depending on the ordering of the task execution, plans with 16 to 20 accomplished tasks could be found. Figure 8
shows the results obtained for different planner computation times. Each point in the graph is an average of five
experiments and the standard deviation was taken into account when fitting the curve. The inverse of the standard
deviation was used to computes weights in the error term:

 ()()
2

1
2

1∑
=

−=
n

i
ii

i

xfyerror
σ

 (1)

where yi is the value of the ith experimental point, f(xi) is the fitted value of the ith experimental point, σi is the
standard deviation of the ith experimental point. To compare the planner results of the different runs of the planner
for the same problem we created a post-process plan scoring function. This function is a quantitative measure of
plan quality, first ranking plans in order of number of tasks completed and secondarily ranking by execution time for
plan sets that complete the same number of tasks:

() ()
boundlowerboundupper

timeexecutiontasksofplanscore
__

___#
−

+= (2)

where upper_bound = the maximum
amount of time the execution of i tasks
could require and lower_bound = the
minimum amount of time the execution of i
tasks could require. This grading system
ensures a plan with a greater number of
tasks will always have a larger score, while
secondarily incorporating task execution
times. This function was only used to
compare different solutions, not to guide
the search process itself.

Figure 8 shows the tradeoff between
optimality and computation time for this
24-task example. As expected, solution
quality improves with planning time. For
instance, ~10 seconds are required to plan
20 actions. The graph approaches an
asymptote of 21 tasks which suggests the
maximum score possible with a branching
factor of four is not the “perfect” score of
24. This situation exists for two reasons: (1)
Not all nodes are exhaustively searched in
the graph with branching factor four, so the
asymptote is not reached even with the
higher time limits examined, and (2) Given
resource constraints, no solution may exist
in which all 24 tasks can be scheduled. For
the 24-task scenario, planner statistics were
collected with branching factors 2, 4, and 6.

Figure 9 shows curve fits computed from
experimental results with branching factors
2, 4, and 6. These curves show two
interesting dependencies of plan quality on
branching factor. As expected, we observe
that solution quality increases with
branching factor. The second property is
observed by focusing on the beginning of the graph where planning time is significantly restricted. In this case,

0 10 20 30 40 50 60 7017

17.5

18

18.5

19

19.5

20

20.5

21

time (s)

sc
or

e

Average over five runs

Curve fit

Figure 8: Optimality vs. Computation Time with Branching Factor=4.

0 10 20 30 40 50 60 70
17.5

18

18.5

19

19.5

20

20.5

21

time (s)

sc
or

e

curve fit - BF = 2
curve fit - BF = 4
curve fit - BF = 6

Figure 9: Influence of Branching Factor (BF) on Plan Quality.

American Institute of Aeronautics and Astronautics

10

small branching factors enable better planning results, illustrating that our distance-based heuristic used to define the
reduced search-space is useful. With larger branching factor, the planner is more likely to explore costly nodes from
a distance perspective, even though more nodes are eventually explored with sufficient time (thereby ultimately
yielding an equal or higher-quality solution). Since the search is severely limited due to the time constraint, the
solution will be somewhat random. Conversely, when the branching factor is small the few explored plans use nodes
close to the shortest-distance heuristic. This test indicates the combined heuristic-branching factor control strategy is
useful for fast-response emergencies as well as situations enabling substantial but constrained deliberation times.

B. Deployed Platform Tests

The first test scenario was designed to verify the planning system’s integration with a real rover and a real human.
The system was composed of those 2 agents, and two “Take a Picture with Approval” tasks were specified. Only the
rover was equipped with a camera, therefore the planning problem was trivialized to the rover sequentially
completing the two tasks but requiring approval from the astronaut (thus the astronaut had to focus attention on the
“take picture” task at least briefly). At the discretion of the astronaut, a call for help may also be issued during plan
execution to test both the planner and the rover reactions. The “Take a Picture with Approval” task consists of a
sequence of three sub-actions for the rover: 1) tilt the camera pair to the horizon, 2) take a picture, and 3) tilt the
camera back to its default configuration. During the execution, the coordination executive and task planner reacted
as expected, effectively managing task execution and the flow of information. It also provided a correct response to
the emergency call from the astronaut. Figure 10 shows the execution time line while Figure 11 shows the path
followed by the rover during execution. We can clearly see that the rover is traveling more slowly than expected and
that it does not follow the planned path. This is due to the fact that traversal time is computed using a straight line
approximation between waypoints, without consideration of kinematic constraints. The closer the waypoints, the
less accurate this approximation is, as the rover is taking a more circuitous path to account for required heading
changes. As seen previously, dead reckoning results in increased position error over time, and orientation error also
grows without magnetometer data (indoors). We can clearly see in Figure 11 that the rover, when returning to its
initial position to rescue the astronaut, is approximately 1 meter away from where it believes it has traversed. During
execution the rover performs a 180 degree change of orientation resulting in a significant heading error.3 As error in
heading has been observed to have significant influence in position error, this result was expected.

Planned Schedule

Execution

Delay in the first goto
action

Emergency Call From
the astronaut

Rover providing emergency
assistance for the astronaut.

The Astronaut is not
assigned any actions

Figure 10: Plan and Execution Schedule.

3 The magnetometer did not operate correctly in the lab thus heading error was more significant for indoor results.

American Institute of Aeronautics and Astronautics

11

Figure 11: Rover path during execution compared to the planned path.

The rover is in its initial position and orientation;
the astronaut, sitting at the table, is at the same

location.

The rover is on its way to the first task.

The rover is accomplishing the first
task. The picture on the right was

stored by the coordination executive
and sent to the astronaut for approval.

Figure 12: Execution snapshots from nominal plan execution.

American Institute of Aeronautics and Astronautics

12

While the rover is heading for the second task, the astronaut calls for help.

The rover has received a rescue order and is now traveling to reach the astronaut.

The rover has reached the astronaut’s position for rescue support.
Figure 13: Execution snapshots for the emergency situation.

Figures 12-13 show information displayed by the planner/executive and the view from an external camera for the
task execution and rescue operation. The two images are synchronized. The planner/executive process displays the
position of the agents on the field based on the information it receives from them. Although the rover’s position
estimate may not be precise, the planner has no way to know the true position thus it displays position estimates as
its best estimate of reality. This error is illustrated by the last image of the sequence. The coordination executive
believes the planner has situated the rover in the same place as the astronaut, but by looking at the picture we can
clearly see that the rover did not exactly return to its original position.

An outdoor test with rover and astronaut was also conducted. Figure 14 presents the internal map of the rover at
different times during the traverse. We can clearly see the different obstacles in the last snapshot of the internal map.
In the first image we see that the rover detects the four “obstacles” (markers) in front of it and chooses a path
accordingly. A few seconds later, the rover perceives the second obstacle that appears to be intercepting the
previously-planned trajectory. Consequently the rover re-computes a trajectory taking into account the terrain
update. The magnetometer enabled more precise heading computation outdoor, but due to the terrain difference
(mud, grass) more slippage was encountered. Nevertheless position computation was more accurate in the outdoor
environment.

A final test was conducted to demonstrate the practical utility of this architecture as well as define its limitations.
The test included the lab rover which is capable of not only taking pictures but also storing rock samples. The
astronaut is able to identify interesting rocks and grab them. Two additional simulated rovers are included during the
test. Figure 15 shows a picture displaying the experimental setup as well as the coordinate system. Seven tasks
were required in this problem, including three “Take Picture”, two “Drill Rock”, one “Water Test”, and
one “Rock Sampling”. The latter task is important because the competences of each agent were defined so that
this task had to be performed collaboratively by the real astronaut and the real rover. Figure 16 shows the mission
planner display including the computed plan. The planner was allowed 12 seconds for the plan computation. As the
number of task was small, the branching factor was set to 8 so that no node was pruned during the search. Note the
collaboration between the real astronaut and the real rover, with optimal (no-delay) execution requiring that they
synchronously arrive at the same location to perform the rock sampling task.

American Institute of Aeronautics and Astronautics

13

OBSTACLE FREEUNKNOWN

Figure 14: Outdoor test: External view & internal terrain map.

X axis

Y axis

(6m; 0)
Heading = ∏/2

Astronaut

Rover

(0 ; 0)

Mission
Planner

Figure 15: Outdoor Experimental Configuration.

As shown in Figure 16, the environment was designed such that simulated and real agents do not interfere during the
plan so that the astronaut need not be aware of the virtual rover positions. Theoretically, nothing would prevent the
planner from scheduling collaboration actions between a real and a simulated agent, although physical interaction
would not be effective. For instance if the astronaut required a “water sensor” during execution of a task, the
mission planner would have decided to send the simulated rover with this tool to the location of the astronaut. The
astronaut would then be alerted (through the GUI) that the rover was present, but of course no actual sensor would
be delivered to the real astronaut by the virtual rover.

This final test was successful. The rover with the help of the “astronaut geologist” is able to sample rocks and
accurately return to base. The Coordination Executive succeeds in monitoring the activity of both the simulated and
the real rover. Figure 17 illustrates the milestones achieved during plan execution. The primary difficulty
encountered is that rover traversals require far more time than they are allotted in the schedule, requiring the
astronaut to wait and requiring more total execution time than had been anticipated. In future work, the straight-line
path approximation will be converted at least in the final plan to a more realistic path based on the best-available
terrain and obstacle models.

American Institute of Aeronautics and Astronautics

14

Astronaut Real Rover2 simulated rovers

Drill
Test

Take Picture
Rock

Sampling

Water
Analysis

Figure 16: Collaborative Astronaut-Rover Plan.

ROCK SAMPLING
TAKE PICTURE

TAKE PICTURE

TRACK ORANGE BALL TO ASSIST
WITH RETURN TO BASE

TAKE PICTURE

Image from the rover
received by the coordination

executive

Approximate Rover Path
during Execution

Task
Location

Approximate Astronaut
Path during Execution

Figure 17: Outdoor Mission Scenario and Task Sequence.

V. Conclusions and Future Work
This paper has described a planning and execution system for astronaut-rover exploration teams tasked with
collaboratively accomplishing planned tasks and maintaining safety and efficiency throughout. The three main
research thrusts were the development of a flexible planning tool that can trade execution time for solution
optimality when required, the implementation of a coordination executive to manage the multi-agent system, and the
development and integration of rover hardware and onboard navigation software to enable real-world testing. The
resulting system has been demonstrated capable of managing in real-time a team of astronauts and rover by
scheduling optimized plans for each agent and by providing safe response to emergency or unexpected events
generated by the environment or by directive from an astronaut.

Simulation results have demonstrated the robustness of the planner/scheduler over a wide range of situations and
a large number of tasks. The implementation enables new users to easily implement new tasks and new agent types.
Planner computation time is regulated, ensuring not only quick response when needed but also deep search of an
optimal solution. A branch control strategy using a closest-point strategy has also been included in order to restrain

American Institute of Aeronautics and Astronautics

15

the search. Limiting the search space when little time is allowed for plan computation allows better plan quality
while wide search space is used when a lot of time is available in order to explore more solution.

This work requires significant extension before applicable to real collaborative planetary surface missions.
Future work will increase system adaptability and the range of possible scenarios. At this stage of the
implementation, our model of an agent is simplistic. Parameters should be extended to include a comprehensive
(relevant) set of skills, levels of attention, and willingness to be part of the team. Human and rover internal
parameters may evolve during the execution; consequently the previous “optimal” plan may become less efficient
over time. A combination of improvements to agent models and planning rules/heuristics must be made for this
architecture to appropriately model and reason about the uniqueness of each human or robotic agent and his/her/its
evolution during a mission. Collaborative dialogue is perhaps the biggest improvement needed for this architecture
to work efficiently during larger-scale field trials. The current executive sends each agent involved in task
accomplishment an “execution command”. Even if the task is collaborative, no direct dialogue is now available
since the goal was to efficiently place the correct set of agents at the right place at the right time. Direct
communication between agents is a key to efficient task accomplishment, but this communication must be modeled
in the planner/scheduler to realistically quantify resource costs and execution time requirements.

The ultimate goal of this and follow-on work is to provide an automated planning/scheduling system for
collaborative extraterrestrial exploration that can take full advantage of each agent’s capabilities while minimizing
unnecessary delays. Humans and robots will soon be capable of routinely accomplishing tasks together.
Planning/scheduling architectures and algorithms will improve the definition and execution of large-scale scenarios
beyond what is possible with reactive plans.

VI. References
1 D. S. Johnson, L. A. McGeoch, "The Traveling Salesman Problem: A Case Study in Local Optimization," Local

Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra, eds., pp. 215-310. London: John Wiley and
Sons, 1997.

2 R. Fikes and N.Nilsson. “STRIPS: A new approach to the application of theorem proving to problem solving”.
Artificial Intelligence, 2(3-4): 189-208,1971

3 J. Penberthy and D.S. Weld. “UCPOP: a sound, complete, partial order planner for ADL”. In Proceedings of the
International Conference on Knowledge Representation and Reasoning (KR), pp 103-114,1992.

4 A.L. Blum and M.L. Furst. “Fast Planning through planning graph analysis”. Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1636-1642, 1995.

5 F. Bacchus and F. Kabanza, “Using temporal logics to express search control knowledge for planning,”
Artificial Intelligence,116:123-191, 2000.

6 M. Ghallab, D. Nau, and P. Traverso, Automated Planning, Theory and Practice, Morgan Kaufmann, 2004.
7 E. Anderson, C. Glass, and C.Potts. “Machine Scheduling”. In E.Aarts and J.Lenstra eds., Local Search in

Combinatorial Optimization, pp. 361-414 Wiley, 1997.
8 S. Tabbone and D. Ziou. “On the Behavior of the Laplacian of Gaussian for Junction Models”. In Second

Annual Joint Conference on Information Sciences, pages 304--307, NC, USA, 1995.
9 F. Ygge, H. Akkermans, “Decentralized Markets versus Central Control: A Comparative Study”, Journal Of

Artificial Intelligence Research 11 (1999) 301-333.
10 N. Muscettola, P. Nayak, B. Pell, and B. Williams. “Remote Agent: To Boldly Go Where No AI System Has

Gone Before”, Artificial Intelligence 103(1-2):5-48, August 1998.
11 S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, R. Lee, D. Mandl, S. Frye, B.

Trout, J. Hengemihle, J. D'Agostino, S. Shulman, S. Ungar, T. Brakke, D. Boyer, J. Van Gaasbeck, R. Greeley, T.
Doggett, V. Baker, J. Dohm, F. Ip, "The EO-1 Autonomous Science Agent," pp. 420-427, Third International Joint
Conference on Autonomous Agents and Multiagent Systems, Volume 1 (AAMAS'04), 2004.

12 T. Estlin, D. Gaines, F. Fisher, and R. Castano. "Coordinating Multiple Rovers with Interdependent Science
Objectives," Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi Agent
Systems, Utrecht, the Netherlands, July, 2005 (CL#03-1202).

13 T. Fong, C. Thorpe, and C. Baur, “Advanced Interfaces for Vehicle Teleoperation: Collaborative Control,
Sensor Fusion Displays, and Remote Driving Tools”, Autonomous Robots 11(1), July 2001.

14 M. Ransan and E. Atkins, “A Collaborative Model for Astronaut-Rover Exploration Teams,” AAAI-2006 Spring
Symposium on Human-Robot Teams, Palo Alto, CA, March 2006.

15 M. Ransan, Design and Implementation of a Collaborative Model for Astronaut-Rover Exploration Teams,
Master’s Thesis, Aerospace Engineering Department, University of Maryland, College Park, July 2006.

