
Dynamically Relevant Local Coordinates for Halo Orbits

Eric D. Gustafson∗ and Daniel J. Scheeres†

A local coordinate system based on the eigenstructure of the Halo orbit is proposed. We show that one only
needs to keep track of six intuitive scalars to easily understand the qualitative dynamic evolution of spacecraft
states near a halo orbit. Special attention is given to the center subspace and the space associated with the unity
eigenvalues of the monodromy matrix. Examples are given for halo orbits in the Hill Three-Body Problem.

I. Introduction

Halo orbits have shown great usefulness in space missions. The Wilkinson Microwave Anisotropty Probe (WMAP),
near the Earth-Sun L2 point is studying the cosmic microwave background radiation and the origins of the universe
while the Solar and Heliospheric Observatory (SOHO) is currently studying the Sun from an orbit about L1. Dynami-
cal Systems Theory, when applied to halo orbits, has allowed missions such as Genesis to use very little fuel while still
accomplishing complicated objectives. Our goal is to make the analysis of trajectories near halo orbits more intuitive.

When one numerically integrates a halo orbit, the simulation is typically carried out in a Lagrangian or Hamiltonian
coordinate frame. When studying trajectories close to the periodic orbit, the dynamics may be linearized using the
same frame in which the full nonlinear simulation was computed. This frame does not provide clear insight on how
the spacecraft moves when it is in close proximity to a halo orbit. We propose a more dynamically intuitive local
coordinate system based on the eigenstructure of the linearization. This method provides a simple way to compute and
understand spacecraft motion near a halo orbit in terms of the local dynamical manifolds.

The monodromy matrix associated with a particular halo orbit is defined as the state transition matrix (STM)
evaluated after one period of the orbit (T ), denoted by Φ(T,0). The interpretation of Φ(T,0) is that it maps the local
state forward by one orbit period. Therefore, the eigenstructure of Φ(T,0) describes how spacecrafts behave near the
nominal halo orbit. For all Hamiltonian systems, the STM is symplectic, and in the cases we study, Φ(T,0) has the
following six eigenvalues:

• Stable real eigenvalue, λs, |λs|< 1

• Unstable real eigenvalue, λu, |λu|> 1

• Two neutrally stable eigenvalues, λ± = e±iθ , |λ±|= 1

• Two unity eigenvalues with algebraic multiplicity two, λ1 = 1

The underlying Hamiltonian nature of the system allows us to analytically derive a left and right eigenvector of
Φ(T,0). For any small deviation in the direction of the dynamic flow, the state will be mapped to itself after one
period. In other words, the direction of the flow is a right eigenvector of Φ(T,0) associated with the unity eigenvalue.
Additionally, when we combine the knowledge that these linear deviations do not capture changes in energy and
periodic orbits of a given energy are isolated in phase space for a Hamiltonian system,1, 2 we can determine that this is
the only available eigenvector for the unity eigenvalue. In other words, the unity eigenvalue has algebraic multiplicity
two and geometric multiplicity one. Therefore, the monodromy matrix is defective, i.e., there is not a full linearly
independent basis of eigenvectors which we can use to decompose the state. The direction that is not spanned by the
five available eigenvectors is the gradient of the energy with respect to the state; dH

dX . This defectiveness is also present
in other simple astrodynamic problems such as the planar restricted two-body problem. Also, it is easy to show that( dH

dX

)T
is a left-eigenvector of the monodromy matrix.
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We wish to choose coordinates to describe the state which convey dynamical meaning. Instead of carrying over
the coordinate basis from the linearization of the Lagrangian or Hamiltonian coordinate frame, we will make use the
linear manifolds, surface of section, and energy concepts. The energy component is the only component that cannot be
dealt with using the available eigenvectors of the monodromy matrix. The six coordinates necessary to fully quantify
the state, which be described in more detail shortly, are

1. component along the unstable manifold, au

2. component along the stable manifold, as

3. pseudo-magnitude of state projected into the center subspace, ρ

4. pseudo-angle of the state projected into the center subspace, γ

5. deviation from the surface of section (downtrack deviation), ad

6. deviation in energy, δH

The unstable and stable components are straightforward to calculate by taking the dot product of the left eigenvector of
Φ(T,0) with the local state. The center components, and the components associated with the unity eigenvalues merit
more attention, however.

For the center manifold, we propose the use of pseudo-magnitude and pseudo-angle components, ρ and γ . This is
to give more clear insight as to how the coordinates change with time. For example, with no control acting, γ will be
nearly constant throughout the motion and ρ will be periodic with the same period as the halo orbit.

The downtrack deviation, ad , may be computed by a simple dot product in the same way as the hyperbolic man-
ifolds. The remaining component may be taken as either the energy deviation or the generalized left-eigenvector dot
product. Each has its own advantages and disadvantages. The generalized eigenvector arguably gives a more elegant
computation, however, if a primary interest of the analysis is the deviation in energy, then it may be more useful to
simply use it as a coordinate.

Halo orbits and the STM for the examples in this paper were integrated using an 8th order accurate, arbitrary
precision, symplectic Runge-Kutta integration scheme with precision set to 256 bits.3 Initial conditions for the halo
orbits were found by the method developed by Howell.4 Throughout this paper, we assume the state and STM are
expressed in the Hamiltonian frame unless noted otherwise.

II. Definitions

A. Hamiltonian Systems

A Hamiltonian system is one whose motion is determined by a scalar function H(q,p, t), where the generalized
coordinates are q, the generalized momenta are p, and t is time. Both q and p are elements of Rn. In this analysis, we
will assume a time-invariant Hamiltonian as that is representative of many astrodynamic systems. The equations of
motion are

q̇ =
∂H
∂p

(1a)

ṗ =−∂H
∂q

. (1b)

Defining the matrix J as

J =

[
0n×n In

−In 0n×n

]
(2)

and concatenating the states into X =
[
qT pT

]T
∈R2n, we have an alternative description of the equations of motion:

Ẋ = J
∂H
∂X

. (3)

Any solution to Eq. (3), X(t;X0), is said to be periodic if for some T > 0, x(t +T ) = X(t) for all times t.
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Hamiltonian and Lagrangian systems are, of course, closely related. Let the Lagrangian coordinates be q and q̇;
the generalized coordinates and generalized velocities. Then our Hamiltonian coordinates will be q and p≡ q̇+ω×q.
The vector ω is the angular velocity between the two frames. The collection of the states can be called XL for the

Lagrangian frame, where XL =
[
qT q̇T

]T
.

Writing this relation in a more compact form, we have

X =

[
I3 03×3

ω̃ I3

]
XL

= Tω XL.

Also from this we have that Φ(T,0) = Tω ΦL(T,0)T−ω and dH
dXL

= T T
ω

dH
dX .

B. Eigenvalues and Eigenvectors

In this section we define the left and right eigenvectors for a matrix A. It is assumed that the dimensions of A are n×n,
and that A has a full set of n independent eigenvectors (left or right).

A right-eigenvector (a column vector), vR
i , and its associated eigenvalue, λi, are defined to satisfy the following

relation:
AvR

i = λivR
i (4)

Similarly, a left-eigenvector (a row vector), vL
i , satisfies

vL
i A = λivL

i (5)

Eqs. (4) and (5) hold for each of the n eigenvalues of the A, however, a more compact notion may be achieved by
placing the right-eigenvectors into the columns of matrix R and the left-eigenvectors into the rows of matrix L such
that the ith column of R is vR

i and the ith row of L is vL
i :

R =
[
vR

1 | vR
2 | · · · | vR

n

]
(6)

L =



vL
1

—
vL

2
—
...

—
vL

n


(7)

Additionally, define the matrix D to be a matrix with the eigenvalues on the diagonal and zeros elsewhere:

Di j =

λi, i = j

0, i 6= j
(8)

Now, Eqs. (4) and (5) may be written as
AR = RD (9)

and
LA = DL (10)

Premultiplying and postmultiplying Eq. (9) by R−1 yields (R−1)A = D(R−1), which is of the same form as Eq. (10)
and therefore L can be defined to be R−1, which gives us the left-eigenvectors from the right-eigenvectors. Also, note
that A may be decomposed as

A = RDL

= λ1vR
1 vL

1 + · · ·+λnvR
n vL

n (11)
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C. Symplectic Matrices

A symplectic matrix, M, is one which satisfies
MTJM = J. (12)

Symplectic matrices have many useful properties, one of which is that given an eigenvalue, λ , and corresponding
right eigenvector, v, then λ−1 is also an eigenvalue and corresponds to the left eigenvector (Jv)T. Also worth noting
is that if M is real, then the eigenvalues occur in complex conjugate pairs, so that if λ is complex and |λ | 6= 1 with
eigenvector v, then λ−1, λ , and λ

−1
are all eigenvalues corresponding to left eigenvector (Jv)T, right eigenvector v,

and left eigenvector (Jv)T, respectively.
Another useful property is ease of inversion: the inverse of a symplectic matrix is simply

M−1 =−JMTJ,

which follows immediately from Eq. (12).

III. Properties of Left & Right Eigenvectors

A. Dot Products

When L is defined as R−1, L forms a dual basis, and the dot products between the left and right-eigenvectors have the
special property that

vL
i ·vR

j = δi j, (13)

where δi j is the Kronecker delta. This property can be derived by considering the multiplication of L and R:

LR =


vL

1
—
...

—
vL

n


[
vR

1 | · · · | vR
n

]

=


vL

1vR
1 vL

1vR
2 vL

1vR
n

vL
2vR

1 vL
2vR

2 · · ·
...

. . .
vL

nvR
1 vL

nvR
n



=


vL

1 ·vR
1 vL

1 ·vR
2 vL

1 ·vR
n

vL
2 ·vR

1 vL
2 ·vR

2 · · ·
...

. . .
vL

n ·vR
1 vL

n ·vR
n


or

(LR)i j = vL
i ·vR

j

Since LR = I, this implies that vL
i ·vR

j = δi j

B. Projections of Dynamic State onto Left-Eigenvectors

1. Continuous Time Systems

For a continuous-time, linear, time-varying system, ẋ = A(t)x with state transition matrix Φ(t,0), we have

x(t) = Φ(t,0)x0

Define the time-varying eigenvalues and left-eigenvectors of the state transition matrix as µi(t) and vL
i (t), respectively.

Dotting the left-eigenvectors with the previous equation gives

vL
i (t)x(t) = vL

i (t)Φ(t,0)x0

= µi(t)vL
i (t)x0
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Therefore, the time history of a left-eigenvector dotted with the state is simply the left-eigenvector dotted with the
initial state, multiplied by the eigenvalue.

When this is applied to a linear time-invariant system, further simplifications can be made. First, note that the state
transition matrix is equal to the matrix exponential of At,

Φ(t,0) = eAt

Second, note that the eigenvectors of eAt can be taken to be the same as the eigenvectors of A and the eigenvalues
of eAt are simply µi(t) = eλit , where λi are defined as the eigenvalues of A. This gives a useful simplification of the
time-varying result:

vL
i x(t) = µi(t)vL

i x0

= eλitvL
i x0

2. Discrete Time Systems

As could be expected, similar results exists for a discrete-time system. For a discrete-time, linear, time-varying system,
x(k +1) = A(k)x(k) with state transition matrix Ψ(k,0) = A(k−1) · · ·A(0), we have

x(k) = Ψ(k,0)x(0)

Define the time-varying eigenvalues and left-eigenvectors of the state transition matrix as µi(k) and vL
i (k), respectively.

Dotting the left-eigenvectors with the previous equation gives

vL
i (k)x(k) = vL

i (k)Ψ(k,0)x(0)

= µi(k)vL
i (k)x0

As in the continuous-time case, simplifications can be made when the system is time-invariant. First, note that the
state transition matrix is equal to the A matrix to a power,

Ψ(k,0) = Ak

Just as in the continuous-time case, the eigenvectors of the state transition matrix are the same as the A matrix. Also,
the eigenvalues of Ak are simply µi(k) = λ k

i , where λi are defined as the eigenvalues of A. These results give the the
simplified relation that

vL
i x(k) = µi(k)vL

i x0

= λ
k
i vL

i x0

IV. Floquet Theory

Let us consider a time-varying linear system ẋ = A(t)x, with A(t) being periodic with period T , i.e. A(t + T ) =
A(t). An abbreviated statement of Floquet theory states that for any fundamental solution matrix, Ψ(t), there exists
a nonsingular matrix Q such that Ψ(t + T ) = Ψ(t)Q. For a more detailed description of Floquet theory, see Chen,
page 153.5 If we apply Floquet theory to the state transition matrix Φ(t2, t1), which is a fundamental solution matrix
satisfying Φ(t1, t1) = I, we have

Φ(t +T,0) = Φ(t,0)Φ(T,0) (14)

The state transition matrix spanning a length of time equal to one period of the dynamics, Φ(T,0), is known as the
monodromy matrix. We may recursively apply Eq. (14) to derive other useful identities, such as

Φ(t +2T,0) = Φ(t +T,0)Φ(T,0)

= Φ(t,0)Φ2(T,0)
...

Φ(t +nT,0) = Φ(t,0)Φn(T,0)
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In general, we can write the state transition matrix between any two times as a function only of Φ(t,0), t ∈ [0,T ]
(including the monodromy matrix):

Φ(t2 +nT, t1 +mT ) = Φ(t2,0)Φn−m(T,0)Φ−1(t1,0) (15)

An example particularly suited to our analysis is the state transition matrix which maps a state at a given time, t,
to a time that is one period in the future, t +T :

Φ(t +T, t) = Φ(t,0)Φ(T,0)Φ−1(t,0) (16)

V. Monodromy Matrix Manifold Projections

Suppose Φ(T,0) is defined as the monodromy matrix for a periodic 3-D halo orbit. Let us consider a monodromy
matrix with the following six eigenvalues.

• Stable real eigenvalue, λs, |λs|< 1

• Unstable real eigenvalue, λu = λ−1
s , (|λu|> 1)

• Two neutrally stable eigenvalues, λ± = e±iθ , |λ±|= 1

• Two unity eigenvalues with algebraic multiplicity two, λ1 = 1

A. Jacobi Integral Eigenvectors

We can derive a left and right eigenvector of Φ(T,0) from Hamiltonian dynamics. The direction of the dynamic flow
is J dH

dX , and any small deviation in that direction will map to itself after one period. That is,

J
dH
dX

= Φ(T,0)J
dH
dX

, (17)

or that J dH
dX is a right eigenvector of Φ(T,0) associated with the unity eigenvalue. Additionally, when we combine

the knowledge that these linear deviations do not capture changes in energy and periodic orbits of a given energy
are isolated in phase space for a Hamiltonian system1, 2 (with the exception of certain bifurcation points), we can
determine that this is the only available eigenvector for the unity eigenvalue. In other words, the unity eigenvalue
has algebraic multiplicity two and geometric multiplicity one and Φ(T,0) is defective. Therefore, there is not a full
linearly independent basis of eigenvectors which we can use to decompose the state. The direction that is not spanned
by the five available eigenvectors is the gradient of the energy with respect to the state; dH

dX . We will use this in the

next section. This is because
( dH

dX

)T
is a left-eigenvector of the monodromy matrix as discussed in section II-C.

These eigenvectors may also be derived for the Lagrangian frame by appropriate transformations. In our case, the

angular velocity between the frames is ω =
[
0 0 1

]T
. Starting with the knowledge that J dH

dX is a right eigenvector
for the Hamiltonian system (Eq. (17)), we can convert to the Lagrangian frame to find that

Tω ΦL(T,0)T−ω JT T
−ω

dH
dXL

= JT T
−ω

dH
dXL

ΦL(T,0)
[

T−ω JT T
−ω

dH
dXL

]
=
[

T−ω JT T
−ω

dH
dXL

]
(18)

or that
[
T−ω JT T

−ω
dH
dXL

]
is a right-eigenvector for the Lagrangian system. Note that

T−ω JT T
−ω =

[
03×3 I3 + ω̃

−I3 2ω̃

]

Similarly, starting with the left eigenvector of the Hamiltonian system,
[ dH

dX

]T
, we have[

T T
−ω

dH
dXL

]T

[Tω ΦL(T,0)T−ω ] =
[

T T
−ω

dH
dXL

]T

[
dH
dXL

]T

ΦL(T,0) =
[

dH
dXL

]T

(19)
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Therefore,
[

dH
dXL

]T
is a left-eigenvector of the Lagrangian system.

B. Complex Eigenvectors

Define the right-eigenvectors associated with these eigenvalues as vR
s , vR

u , v±R. The left-eigenvectors, vL
s , vL

u , v±L, are
defined as before. Decomposing the monodromy matrix as in Eq. (11) gives

Φ(T,0) = λsvR
s vL

s +λuvR
u vL

u +λ+vR
+vL

+ +λ−vR
−vL
−

This form is not particularly useful for physical insight since the eigenvalues and eigenvectors associated with the
center manifold are complex. However, we may rearrange to obtain purely real quantities for the eigenvectors.

Instead of using the complex eigenvectors associated with λ±, it is useful to decompose them into two real vectors
αR and β R. Assuming the eigenvectors associated with λ± are vR

±, we can partition the eigenvectors into real and
imaginary parts as follows.:

vR
± =

1√
2

(
α

R(±)riβ R) (20a)

vL
± =

1√
2

(
α

L(∓)`iβ L
)

(20b)

From this definition, we can derive identities that α and β must satisfy by taking the dot product of right-
eigenvectors with the left-eigenvectors:

vL
± ·vR

± =
1
2

(
α

L ·αR(±)riαL ·β R(∓)`iαR ·β L− (∓)`(±)r
β

L ·β R
)

Dotting vL
+ with vR

+, we have
1
2
(
α

L ·αR +β
L ·β R + i(αL ·β R−α

R ·β L)
)

= 1 (21)

Dotting vL
− with vR

+ gives
1
2
(
α

L ·αR−β
L ·β R + i(αR ·β L +α

L ·β R)
)

= 0 (22)

Equating the real and imaginary parts of Eqs. (21) and (22) give the following identities:

α
L ·αR = β

L ·β R = 1 (23)

α
L ·β R = α

R ·β L = 0 (24)

The contribution to the monodromy matrix from a complex pair of eigenvalues is

λ+vR
+vL

+ +λ−vR
−vL
− =

1
2
(αR + iβ R)(αL− iβ L)eiθ +

1
2
(αR− iβ R)(αL + iβ L)e−iθ

=
1
2
(αR

α
L +β

R
β

L)(eiθ + e−iθ )+
1
2

i(β R
α

L−α
R

β
L)(eiθ − e−iθ )

= cosθ(αR
α

L +β
R

β
L)+ sinθ(αR

β
L−β

R
α

L)

C. Dynamic Coordinates

We wish to choose coordinates to describe the state which convey dynamical meaning. Instead of carrying over the
coordinate basis from the linearization of the Lagrangian or Hamiltonian coordinate frame, we will make use the linear
manifolds, surface of section, and energy concepts. The energy component is the only component that cannot be dealt
with using the available eigenvectors of the monodromy matrix. The six coordinates necessary to fully quantify the
state, which be described in more detail shortly, are

1. component along the unstable manifold, au

2. component along the stable manifold, as

3. pseudo-magnitude of state projected into the center subspace, ρ

7 of 16

American Institute of Aeronautics and Astronautics



4. pseudo-angle of the state projected into the center subspace, γ

5. deviation from the surface of section (downtrack deviation), ad

6. deviation in energy, δH

Defining the columns of the matrix MR as the directions along which to take projections, we have

MR =
[
vR

u vR
s αR β R vR

d vR
H

]
The columns of MR are assumed to be normalized unit vectors, except for αR and β R, which are defined as in Eq.
(20a). In their respective order, the first five columns of MR are the unstable eigenvector, stable eigenvector, the α and
β vectors (from the two complex conjugate pair eigenvectors which are assumed to be normalized), and the downtrack

eigenvector; vR
d = J dH

dX
|J dH

dX |
. The last column is the gradient of the energy with respect to the state: vR

H = dH/dX
|dH/dX | .

Define the dual basis as ML = (MR)−1. Due to our definition of MR (we aren’t strictly using only eigenvectors),
the rows of ML are no longer left-eigenvectors of the monodromy matrix, however, the fact that they form a dual basis
still gives us the useful property that vL

i · vR
j = δi j. With this in mind, let us partition ML as

ML =



vL
u

vL
s

αL

β L

vL
d

vL
H


The coordinates of along the unstable, stable, and downtrack manifolds as well as the coordinate along the energy

gradient direction are given by simple dot products:

au = x ·vL
u

as = x ·vL
s

ad = x ·vL
d

δH = x ·vL
H

For the center manifold, we can assume that the state is partitioned into x = · · ·+aαR +bβ R + · · · . The coefficients
a and b are found by dotting with the left vectors; a = x ·αL and b = x ·β L. Now if we assume that a = ρ cosγ and
b = ρ sinγ , we can solve for our center manifold components, ρ and γ:

ρ =
√

a2 +b2

γ = tan−1 b
a

It should be noted that ρ and γ are not strictly a magnitude and angle since, in general, α and β are not orthogonal.
Nevertheless, they still provide a useful interpretation of how the state projects into the center manifold. For instance,
with no control acting, γ will be nearly constant throughout the motion.

D. Generalized Eigenvectors

An alternative choice to using the energy gradient for capturing the local state is to use a generalized eigenvector. Let
the columns of the matrix R̂ be the true and generalized eigenvectors. This method has the advantage that when the
dual basis is computed by L̂ = R̂−1, the rows of L̂ are either true left eigenvectors or the generalized left eigenvector.
The disadvantage is that to calculate the energy deviation using this generalized left eigenvector, we have to account
for the fact that the generalized left eigenvector will generally have components in the energy gradient direction as
well as the other directions. Therefore, the calculation of energy deviation is more straightforward using the energy
gradient as the remaining direction. Since energy deviation is a desired coordinate to use for this analysis, the energy
gradient is a more natural choice.
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As defined in Chen,5 the vector v is a generalized eigenvector of grade k of matrix A associated with eigenvalue λ

if and only if

(A−λ I)kv = 0 (25)

(A−λ I)k−1v 6= 0 (26)

In general, the computation proceeds by finding the smallest integer k such that rank((A−λ I)k) = n−m, where n
is the dimension of A and m is the algebraic multiplicity of λ . In our case, the algebraic multiplicity of λ = 1 is two
and one true eigenvector is guaranteed to exist, therefore we know we only need to consider k = 2. To find a solution
to Eqs. (25) and (26), we may begin by inserting the eigenvectors of (Φ− I)2 into the matrix Rg. We then note which
columns of (Φ− I)2Rg are the zero vector and which columns of (Φ− I)Rg are not the zero vector. The intersection
of these two sets of columns results in one vector, g. Any multiple of this vector may be taken as the generalized
eigenvector, vg = αg, where α is scalar. Once vg is chosen, the corresponding true eigenvector, v, is then given by

v = (Φ− I)vg.

To keep v a unit vector like the other eigenvectors, we may choose the generalized eigenvector to be scaled as

vg =± g
||(Φ− I)g||

.

VI. Example: Planar Restricted Two-Body Problem

The planar restricted two-body problem has two properties that make it useful when studying the eigenstructure
of the monodromy matrix. First, periodic orbits are easily obtained analytically. Second, circular orbits have a time-
invariant linearization when the problem is formulated in a rotating frame. This allows for analytical computation of
the monodromy matrix by matrix exponentiation. The Hamiltonian for this simple system is6

H =
p2

r

2m
+

p2
θ

2mr2 −
µm
r

where m is the mass of the particle and µ is the gravitational parameter of the central body. The spatial coordinates
are r, the distance of the particle from the central body, and θ , the angle the particle makes in the plane with respect
to an inertial reference. The momenta coordinates are pr, the radial momentum (equal to mṙ) and pθ , the angular
momentum of the particle (equal to mr2θ̇ ). The dynamics for this system formulated as a Hamiltonian system are
given by

Ẋ = JHx =


pr
m
pθ

mr2
pθ

mr3 −
µm
r2

0


where X =

[
r θ pr pθ

]T
, J =

[
02×2 I2

−I2 02×2

]
, and Hx = ∂H

∂x . Taking m = µ = 1 for this example, a valid solution

to the nonlinear equations of motion is a circular orbit at a radius r = 1,

X(t) =
[
1 t 0 1

]T

The linearization about this time-varying solution is time-invariant because the θ coordinate does not actually appear
in the equations of motion:

δ Ẋ =


δ ṙ
δ θ̇

δ ṗr

δ ṗθ

=


0 0 1 0
−2 0 0 1
−1 0 0 2
0 0 0 0




δ r
δθ

δ pr

δ pθ

= AδX
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The state transition matrix may be calculated using a matrix exponential:

Φ(t) = eAt =


cos(t) 0 sin(t) 2(1− cos(t))
−2sin(t) 1 2(cos(t)−1) 4sin(t)−3t
−sin(t) 0 cos(t) 2sin(t)

0 0 0 1


These linear equations could also be obtained from the Clohessy-Wiltshire equations7 once converted from their
Lagrangian frame to this Hamiltonian frame. The eigenvalues of the A matrix are ±i and 0 (with multiplicity two).
Therefore, the eigenvalues of Φ(t) are e±it and 1 (with multiplicity two). The eigenvectors of both A and Φ(t) are[
1 ±2i ±i 0

]T
and

[
0 1 0 0

]T
which do not span the phase space. The eigenvector associated with the

unity eigenvalue of Φ could be predicted from the dynamics:

JHX =
[
0 1 0 0

]T

Additionally, the direction not spanned by the eigenvectors is the direction corresponding to the gradient of the Hamil-
tonian:

HX =
[
0 0 0 1

]T

In this case, the generalized eigenvector may be chosen as

vg =
[
0 0 0 −1/(6π)

]T

which results in the eigenvector

v =
[
0 1 0 0

]T
.

VII. Application to Hill Three-Body Problem

In this section we will study two cases of spacecraft control in the Hill three-body problem (H3BP) using continu-
ous thrust. In the first case, we limit ourselves to the planar motion of a spacecraft in the vicinity of one of the relative
equilibrium points, and in the second, we study a spacecraft perturbed from a nominal halo orbit.

The equations of motion for a spacecraft’s position in the H3BP, expressed in the standard Lagrangian frame, are8

ẍ−2ω ẏ =− µ

r3 x+3ω
2x+ax (27a)

ÿ+2ω ẋ =− µ

r3 y+ay (27b)

z̈ =− µ

r3 y−ω
2z+az, (27c)

where x, y, and z are the positions of the spacecraft in the rotating frame relative to the secondary body, ax, ay, and az
are the spacecraft control accelerations, ω is the angular velocity of the secondary body about the primary, µ = GM, M
is the mass of the secondary body, and r is the radius (r =

√
x2 + y2 + z2). These equations may be nondimensionalized

using the length scale l = (µ/ω2)1/3 and time scale τ = 1/ω . For the Earth-Sun system, µ = 3.986×105 km3/s2, ω =
1.991×10−7 rad/s, l = 2.159×106 km, and τ = 5.023×106 s. In this paper, we will study the nondimensionalized
system obtained by setting µ = ω = 1. When expressed in the Hamiltonian frame, we have the following first order
equations of motion:

ẋ = px + y (28a)
ẏ = py− x (28b)
ż = pz (28c)

ṗx = py−
x
r3 +2x (28d)

ṗy =−px− y− y
r3 (28e)

ṗz =− z
r3 − z (28f)
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A. Equilibrium Point of H3BP

This Hamiltonian system has two equilibrium points using no control at x =±3−1/3, py = x, and y = z = px = pz = 0.
Linearizing about either of these points and defining the perturbed state δx = [δx δy δ px δ py]T yields the linear
system

δ ẋ =


0 1 1 0
−1 0 0 1
8 0 0 1
0 −4 −1 0

δx+


0 0
0 0
1 0
0 1


[

ax

ay

]
.

This system has an unstable mode, a stable mode, and an oscillatory mode, associated with the eigenvalues +
√

1+2
√

7≈
2.5, −

√
1+2

√
7≈−2.5, and ± j

√
2
√

7−1≈±2.1 j, respectively.
We apply these coordinates to both controlled and uncontrolled trajectories near the equilibrium point. For the

controlled system, the control is the optimal control which drives the state from a perturbed position back to the
equilibrium point (the origin) in a finite time while minimizing the “energy” used;

J =
1
2

∫ t f

t0

(
a2

x +a2
y
)

dt.

In this example, we use t0 = 0 and t f = 4.
Figure 1 show the coordinates for an uncontrolled system. Note the each component behaves as expected – the

unstable component grows exponentially, the stable component converges exponentially, the pseudo-angle and pseudo-
magnitude are nearly constant.

The optimally controlled system’s coordinates are shown in Figure 2. As one would expect, the control acts
to quickly diminish the state along the unstable direction. The components along the stable, unstable, and pseudo-
magnitude directions are all 0 at the final time.

B. Halo Orbits in H3BP

From the two oscillatory modes mentioned in the previous section, we see that near the equilibrium point, the linearized
system is capable of producing planar periodic orbits. These orbits can also be found in the full nonlinear dynamics.
As the amplitude of these periodic orbits is increased, the eigenvalues of the monodromy matrix bifurcate and a new
family of periodic orbits is produced. This new family is called the family of “halo orbits”, which are no longer in the
plane and cannot be predicted using the equilibrium point linearization. The halo orbit used in this example, shown
in Figure 3, has initial conditions approximately x0 = 0.769,z0 = 0.18698, py0 = 0.853444,y0 = px0 = pz0 = 0, and
period T ≈ 3.07.

As in the planar case, we shown the behavior of an uncontrolled and an optimally controlled system. The optimal
control is still the “energy”, this time with three inputs;

J =
1
2

∫ t f

t0

(
a2

x +a2
y +a2

z
)

dt.

For these cases, we use t0 = 0 and t f = T .
Figure 4 show the coordinates for an uncontrolled system. Note the simplistic behavior of the coordinates; the

stable and unstable coordinates both decay and grow exponentially over an orbit, the pseudo-magnitude and downtrack
components are nearly periodic, the pseudo-angle is nearly constant, and energy deviation is extremely small. The
optimally controlled system’s coordinates are shown in Figure 5.

VIII. Conclusions

We propose a method to analyze motion near halo orbits. The Hamiltonian nature of the system allows for special
analysis of the eigenstructure of the monodromy matrix, particularly the direction not spanned by its eigenvectors. In
addition, special attention is given to the components of the center subspace in order to give more physical insight. We
show the eigenstructure of a simple circular orbit in the two body problem, and apply the coordinates to motion near
both an equilibrium point and a halo in the Hill three-body problem.
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Figure 1. Uncontrolled trajectory near equilibrium point
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Figure 2. Controlled trajectory near equilibrium point
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Figure 5. Controlled halo system
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