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ABSTRACT

Approximation methods have successfully solved a
variety of global optimization problems. One of the
major remaining challenges involves problems where
the feasible design space consists of disconnected re-
gions. Traditionally, researchers have attempted to
solve such problems by combining global and local
searching algorithms such as Simulated Annealing
and SQP. While this approach is often successful, it
is not efficient in terms of the number of function
evaluations required. When the design problem is
comprised of expensive functions such as computer
simulations, new techniques must be applied. We
use an approximation-based global optimization al-
gorithm, superEGO, to solve such problems. We
propose taking advantage of superEGO’s flexibility
to design alternative search strategies that locate
multiple feasible regions in a new way. The tech-
nique was successfully applied to two analytical ex-
amples and required far fewer function calls than
three competing techniques.

Keywords: Global Optimization, Disconnected
Feasible Region, Approximations, Constrained Op-
timization

1 INTRODUCTION

Approximations have been used extensively in de-
sign optimization to address the problems inherent
to the use of computer simulations 2! Two of
the main difficulties are the computational expense
of the objective and/or constraint functions and the
discontinuous or noisy behavior of the responses. A
wide variety of algorithms exist for utilizing approx-
imations to overcome these problems by providing
a smooth function that is inexpensive to compute.
The framework used here is a constrained, nonlinear
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optimization algorithm known as superEGO'2, an
extension of the EGO algorithm '°.

The algorithm works by taking an initial sam-
ple and fitting kriging approximations to the data®.
It then uses an infill sampling criterion (ISC) as
the objective function for an auxiliary optimization
problem that selects the next design point to eval-
uate. The kriging models are iteratively updated
with the new samples until the termination criterion
is reached (e.g., the maximum number of samples is
reached). The flowchart of the superEGO algorithm
is shown in Figure 1.
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Figure 1: Flowchart of the superEGO algorithm

To demonstrate superEGQO’s search strategy
for traditional optimization problems, a one-
dimensional multimodal example is shown in Figure
2. The w-shaped dashed line is the true objective
function we wish to minimize, while the solid line is
the kriging approximation conditional to the sample
points shown as circles. The plot at the bottom is
the sampling criterion, normalized to facilitate com-
parisons between iterations.

Observing the progression of the algorithm, one
can see that it searches for the optimum by look-
ing for points of good local improvement as well as
regions of high model uncertainty where there is a
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(a) Initialization (b) Iteration 2

(c) Iteration 4

(d) Iteration 6

Figure 2: Demonstration of superEGO. Dashed line
is the true function to be minimized, solid line is the
approximation, circles are the sample points. The
plot at the bottom is the sampling criterion.

possibility of an overlooked optimum. After the ini-
tial sample of 4 points is taken, the resulting kriging
model is a poor fit compared to the true function.
However, the ISC leads the algorithm to sample
points where the uncertainty in the model is high-
est. After two iterations, the model has improved in
the region of the local optimum on the right. Two
iterations later, the region on the right has been ex-
plored somewhat, but the uncertainty in the model
on the left portion of the model drives superEGO
to sample points in that region. After six iterations,
both local optima have been discovered and the true
solution has been found quite accurately.

The search behavior is controlled by the choice of
sampling criterion. In the above example, the ex-
pected improvement function'® was used as the ISC
in order to locate the minimum of the test function.
SuperEGO can use any one of 16 predefined crite-
ria, and the flexibility of the algorithm allows for
any ISC to be incorporated quite easily. It is this
flexibility that allows us to expand upon the current
capabilities of superEGO by introducing new search
strategies 2.

While the framework has been applied to a vari-
ety of optimization problems, some interesting chal-
lenges remain. The specific difficulty addressed in
this work is how to solve global optimization prob-
lems where the feasible region is relatively small
and/or disconnected. Typically, a combination of
global and local techniques is applied in an attempt
to sweep through the space, searching for feasible
regions and then finding their associated local min-
ima. For example, one may use a multistart SQP
or clustering algorithm, possibly combined heuristi-
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cally with a global search such as Simulated Anneal-
ing. While this is often effective, it generally requires
a large number of function evaluations. Here we ex-
plore the approximation-based framework described
above to solve such problems using fewer function
evaluations.

2 METHODOLOGY

New challenges in approximation-based optimiza-
tion arise when constraints are introduced. Sev-
eral methods have been proposed for incorporating
inequality constraints into the algorithm!2. The
method preferred by this author is to include the
constraints directly in the ISC subproblem formula-
tion. It has been shown to produce accurate results
and can be applied regardless of the choice of sam-
pling criterion. The resulting ISC subproblem is of
the form:

min [SC(x) (1)
subject t0:  fezp(x) <O
ginewp(x) S 0 3

where I.5C(x) is the infill sampling criterion, Geqp(x)
is the predicted value of the kriging model for each
expensive constraint, and ginesp(x) is the actual
value for each inexpensive constraint. We distin-
guish between functions that are expensive to com-
pute and must be modeled with kriging approxima-
tions, and functions that are inexpensive enough to
evaluate directly during the ISC subproblem. By
doing so, one can easily incorporate inexpensive con-
straint information into the search process, making
for a more efficient approach 4.

Simply optimizing the expected improvement
function subject to the constraints as shown above
does not guarantee that solutions to the original de-
sign problem can be efficiently generated if the fea-
sible space is difficult to locate or model. In order to
search the design space better, we propose two crite-
ria: one for locating an initial feasible point, and one
for locating subsequent feasible points in unexplored
regions.

2.1 Locating an initial feasible point

When no feasible point has yet been found, one can
simply search for the location in the design space
that yields the highest probability of feasibility. One
way to quantify this is to assume the constraints are
independent and multiply the probability that each
one is satisfied:

m

max ISCy(x) = [[P(gi(x) <0),

i=1

(2)
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Because the inexpensive functions are evaluated
directly, the probability of feasibility is simply:

L
Rnemp = {O

For expensive constraints, the kriging model is used
to estimate the probability of feasibility as:

0— gewp(x)> 7

G~

if ginezp(x) S 0
otherwise '

(3)

(4)

where @ is the Gaussian cumulative distribution
function, Gezp(x) is the kriging estimate of the con-
straint function and 62(x) is its associated kriging
variance. While a constraint boundary of 0 is shown
in the equations above, the user is free to set any
constraint tolerance they wish. Also, the examples
shown utilize kriging models; but any approximating
function may be used, provided it has an associated
measure for the local uncertainty in the model (i.e.,
the variance).

To illustrate the behavior of the criterion, a two-
dimensional example with one constraint function
is introduced. The objective is a simple quadratic
function, and the Branin test function? is applied as
a constraint. The example problem, referred to here
as the newBranin example, is of the form:

min f(x) = — (z; — 10)? — (25 — 15)? (5)
51 , 5 2

s.to: g(x) = <x2 ~ e + —x1 — 6) +...
™ T

1
10(1—)cosx1+10§5.
8

A contour plot of the newBranin example is shown
in Figure 3. The problem consists of three discon-
nected feasible regions (shown as dashed lines).

A plot of the ISC] criterion using an initial 21
point sample (none of which are feasible) is shown
in Figure 4. Because there is only one constraint
function, 1.SC1 is the probability that the constraint
in Equation (5) will be satisfied. As expected, there
are three regions of high probability of feasibility.
The remainder of the design space is very unlikely
to be feasible and therefore has a value for IS5C;
close to zero.

Optimizing the I.SCy criterion searches for points
where the probability of feasibility is highest. Of
course, this will only work for cases where feasible
points have yet to be found. Otherwise, there will
be a region of probability 1, and the algorithm will
simply continue sampling in that region. Therefore,
a second strategy must be employed to find subse-
quent feasible points.

Figure 3: Contour plot of the newBranin exam-
ple. Feasible region boundaries are shown as dashed
lines, local optima as circles, and the global optimum
as an asterisk.

Figure 4: Mesh and contour plot of ISC; for the
newBranin example. Sample points are shown as
circles.

2.2 Locating subsequent feasible points

Once an initial feasible point has been found, the
challenge is to force the algorithm to search else-
where for other feasible regions. We propose using
an approach similar to tunnelling® whereby the ISC
subproblem maximizes the distance from the current
best point while searching for areas that have a high
probability of feasibility. The two terms in the crite-
rion are the probability (P) and the distance to the
nearest feasible point (D).

max [SCy(x) = HPi Dy, (6)

i=1

where P is calculated by Equations (3) and (4) and
the distance, D, is calculated as

D= min (xfeas - X||) . (7)

Tfeas range

Dividing the distance by the range is done to balance
the magnitudes of the distance in each dimension.
Failure to do so might lead to the distance portion
of I5Cy being dominated by one design variable.
Multiplying the distance by the probability has the
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effect of reducing the value of the criterion wherever
there is a low probability of feasibility.

To illustrate the behavior of ISCs, we continue
the same newBranin example. After the initial 21
point design, ISC, guides superEGO to sample a
point inside the feasible region in the upper left por-
tion of the design space. I1SC5 is then used to dis-
tinguish between these regions of likely feasibility by
their distance from the one feasible sample point. A
plot of the sampling criterion is shown in Figure 5.
The initial sample points are shown as circles, and
the only feasible point is shown as an x.

Observe how the surface takes a noticeable dip in
the immediate vicinity of the known feasible point.
The algorithm is guided to the center of the feasible
region farthest away. Once that location is sampled,
only the middle feasible region is left unexplored.
Figure 6 shows I SCs after two feasible points have
been found. Note that the criterion has small values
in the immediate neighborhood of those points, but
high values in the middle region where the constraint
is likely to be satisfied and there are no nearby fea-
sible points. Thus utilizing I.SC; followed by I5C,
successfully locates all three feasible regions in just
three iterations.

Figure 5: Mesh and contour plot of ISCs for the
newBranin example. Initial sample points are shown
as circles, and the only feasible sample is shown as
an x.

Figure 6: Mesh and contour plot of ISCy for the
newBranin example after an additional iteration.
Initial sample points are shown as circles, and the
two feasible samples are shown as x’s.

2.3 Implementation

Equipped with the necessary tools to locate feasible
points throughout the design space, one must decide
how to implement the search strategy logic. Ideally,
one would locate an initial feasible point, find the
local optimum in its vicinity, then move on to locate
new feasible regions and their associated local op-
tima. The only missing tool then is the local search
criterion. For this work, we attempt to find local
optima by finding the minimum of the approximate
model as:

min  ISC3(x) = §(x) (8)
gewp<x) <

subject to: 0
ginexp(x) é 0 )

where g(x) and §ezp(x) are the kriging models of
the objective and expensive constraint functions, re-
spectively, and ginesp(x) are inexpensive constraint
functions.

Putting these criteria together, we have the fol-
lowing search strategy which will be referred to as
Search Strategy 1:

1. Take an initial sample of the true functions, and
model the expensive functions with kriging ap-
proximations.

2. If no feasible point has yet been sampled, solve
an unconstrained ISC subproblem using I5CY,
otherwise go to 3.

3. Locate local optimum of new feasible region us-
ing ISC35 as a constrained ISC subproblem. If
at least ncluster points have already been sam-
pled within tol; of the last iterate, then go to
4.

4. Attempt to find an additional feasible point us-
ing 1S5C5 as an unconstrained ISC subproblem.
Once a feasible point is sampled at least tols
away from other feasible samples, begin an-
other local search (go to 3). Terminate once
max fCount function calls have been made.

In our current implementation, we have tested
the parameter values ncluster=3, tol;=0.5% and
tola=5% where the latter two are percentages of
the maximum Euclidean distance of the design space
(i.e., corner to corner). The user is free to specify
the max fCount as they see fit, but a value of 50 x d
where d is the number of design variables tends to
produce adequate results.

A shortcoming of Search Strategy 1 is that it does
not consider information about the objective func-
tion when searching for new feasible regions in Step
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4. This may cause the algorithm to search in re-
gions of poor objective function values if these are
locations where there is a high probability of finding
a new feasible region. To address this issue, Search
Strategy 2 introduces a constraint into the ISC sub-
problem of Step 4 whereby the probability of the
objective being at least as good as the current best
value f,.;, must exceed some threshold Pj,;:

m

max ISCy(x) = HPi - D; 9)
i=1

SUbjeCt to: P(Y(X) S fmzn) > Ptol )

where Y (x) is the true objective at the candidate
point and P, = 90% by default. Incorporating
this constraint restricts superEGO to search for new
feasible regions only where it is likely to improve
upon the best point. Search Strategy 2 is identical
to Search Strategy 1 except that I.SC5 in Step 4 is
replaced by 1S5Cy.

In all cases, the global searching, gradient-free DI-
RECT algorithm of Jones® is used to solve the ISC
subproblem (either constrained or unconstrained).
Because DIRECT is an interval method (i.e., it
finds solutions by sequentially subdividing the de-
sign space), it is possible that it can choose the same
exact design point in different iterations. Sampling
identical locations would cause numerical instabili-
ties for the kriging approximations, therefore some
slight adjustments were made to the search strate-
gies to accommodate such situations. While this is
not a frequent occurrence, it has been observed in
several instances as design points begin to cluster
around the best known solution.

If DIRECT cannot locate a unique candidate
point within the function call limit, superEGO
switches sampling criteria for one iteration, and
searches for the location of maximum uncertainty in
the kriging models. Doing so helps in two ways. It
ensures that the algorithm can continue searching by
providing a candidate that has not yet been sampled,
and it improves the model accuracy by sampling the
region of greatest uncertainty.

Another difficulty that arises during the solution
of the ISC subproblem is the possibility that no fea-
sible solution exists due to the inaccuracy in the
models of the constraint functions. When DIRECT
is unable to locate a feasible point, superEGO per-
forms one iteration using the maximum uncertainty
criterion instead. At each iteration, superEGO ver-
ifies the acceptability of the next candidate and re-
acts accordingly as often as needed until DIRECT is
able to find a unique, feasible solution to the original
ISC subproblem.

5

3 EXAMPLES

In this section, we evaluate how well the proposed
methodology locates the optimum of a problem with
disconnected feasible regions. We compare it against
three other algorithms: Sequential Quadratic Pro-
gramming (SQP)!!, Simulated Annealing (SA)®,
and DIvided RECTangles (DIRECT)%7. SQP is
among the most widely used optimization algo-
rithms. It is a deterministic, gradient-based algo-
rithm that finds local solutions efficiently. SA is
a stochastic, derivative-free algorithm that requires
many more function evaluations to find a good solu-
tion, but is less likely to get trapped in local optima
than SQP. DIRECT is a deterministic, derivative-
free algorithm that also performs global searching,
but tends to be more efficient than global algorithms
such as SA or genetic algorithms.

3.1 Problem Description

To measure how well each algorithm locates the so-
lution, we counted the number of function evalua-
tions required before a feasible point was sampled
within a box the size of +1% of the design space
range centered around the true solution. Each algo-
rithm must be handled slightly differently in order
to create a meaningful comparison, which we refer
to as the x4, metric.

The superEGO algorithm is strongly impacted by
the selection of the initial sample, therefore ten dif-
ferent ten-point Latin hypercube design of experi-
ments (DOE) were applied. The x194 metric was
computed after each run and the average value was
recorded. The results of the DIRECT algorithm
were straightforward to compare because it is de-
terministic and does not require a starting point.

Both the SQP and SA algorithms are strongly in-
fluenced by the starting point. Additionally, the SA
algorithm is stochastic (i.e., it will result in a differ-
ent search path each time because it uses random
numbers). Each algorithm was started from 100 lo-
cations in a 10 by 10 grid around the design space.
Not every run converged to a point within the zg
boundaries, so an effective x;¢, metric was computed
as the average of the successful runs divided by the
success rate. For example, if SQP required on aver-
age 100 function calls to first evaluate a point within
the z19, boundaries, but half of the runs never suc-
cessfully found the solution, then the effective xg
metric value would be 100/50%=200 function calls.

The first example is the newBranin example used
in the previous section. However, the constraint was
set to g(x) < 2 rather than g(x) <5 as was used in
Equation (5), in order to make the feasible regions
somewhat smaller for this example (see Figure 7).
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The three feasible regions cover approximately 3%
of the design space in total, making it difficult to
locate the true optimum at x,=[3.2143 0.9633] at
the center of the square in Figure 7.

15

Figure 7: Contour plot of the newBranin example.
Feasible region boundaries are shown as dashed lines
and the global optimum as an asterisk.

The second example is the Gomez #3 test func-
tion®, shown in Figure 8. The problem statement
is

min f(x) = (4 — 2.12% + 21 /3)23 4 - -
+ xy1x9 + (—4 + 423) 22
s. to: g(x) : —sin (47wx1) + 2sin? (2725) <0

(10)

defined over the range —1 < z; < 1,4 = 1,2.
The example is quite difficult to solve because the
sine terms in the constraint function create 20 dis-
connected feasible regions that cover approximately
19% of the design space in total. The true solution
lies at x,=[0.1093 -0.6234]. Gradient-based meth-
ods are not able to solve such problems efficiently
because they require a large number of multistarts
before the global solution can be found with any
confidence. Approximation-based methods also have
difficulty with this problem because the constraint
function is quite challenging to model accurately.

3.2 Results

Table 1 shows the x1¢;, performance metrics for both
examples. SQP converged to a point within the x¢
boundaries for only 15 of the 100 runs in the new-
Branin example and 4 of 100 runs in the Gomez ex-
ample. The SA algorithm was successful for only 19
and 20 of the 100 runs in the newBranin and Gomez
examples, respectively. This supports the claim that
local search methods are prone to failure for prob-
lems with disconnected feasible regions, and that SA
is better at avoiding local optima than SQP.

6

Figure 8: Plot of the Gomez #3 test function. The
solid and dashed contours are the objective and con-
straint boundaries, respectively. The feasible space
is inside each of the dashed circles, and the optimum
is shown as an asterisk.

Table 1: Comparison of x,¢ performance metrics

Avg # of function calls

Algorithm newBranin Gomez
superEGO 1 22.2 66.3
superEGO 2 22.0 36.5
DIRECT 76 93
SQP 363 831
SA 5371 7150

The results from these two examples demon-
strate that the proposed search strategies enable
approximation-based algorithms to solve problems
with disconnected feasible regions successfully. Both
of the superEGO search strategies were able to lo-
cate the solution for each of the ten initial samples in
both examples (40 cases in all). More importantly,
the search was very efficient. Even when compared
to DIRECT, a global searching algorithm that is rel-
atively efficient, superEGO was able to find the so-
lution in fewer function evaluations. As expected,
SQP was less efficient due to the low percentage
of successful runs. Finally, SA was the least effi-
cient, requiring two orders of magnitude more func-
tion calls than superEGO.

Another observation from these examples is that
imposing the improvement constraint in Equation
(9) for Search Strategy 2 appeared to bolster the
efficiency of superEGO. Search Strategy 2 required
the same or fewer function evaluation in 8 of 10 runs
for identical initial DOE’s in the newBranin exam-
ple — 10 of 10 in the Gomez example. Comparing
each individual run, Search Strategy 2 required on
average only 0.8% fewer function calls for the new-
Branin example, but 40.5% fewer function calls for
the Gomez example. The improvement was much
more pronounced in the Gomez example because
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there were spurious feasible regions. By preventing
superEGO from searching areas of likely high ob-
jective function values, far fewer function calls were
wasted exploring suboptimal regions.

A consequence of the additional constraint was
that Search Strategy 2 often failed to find a unique
candidate sample point within the allotted 1000
function evaluations during the ISC subproblem for
15C5. The improvement constraint limited the area
of the design space superEGO could search, and
much of the remaining area had a sampling crite-
rion value near zero because it was either close to
an existing feasible point or likely to be infeasible.
As a result, Search Strategy 2 was forced to rely on
the substitution of the maximum variance criterion
more frequently than Search Strategy 1. This was
not significantly detrimental as it aided in model-
ing the constraint function, leading to more accurate
searches in subsequent iterations. On two of the 20
tests, the additional variance criterion iterations re-
sulted in Search Strategy 2 requiring more function
evaluations than Search Strategy 1 to find a solution
within the z1¢, boundaries. However, the difference
was very slight — one evaluation in one case, and 5
evaluations in the other. Moreover, Search Strategy
2 proved to be a more effective method for solving
problems with disconnected feasible regions.

4 CONCLUSIONS AND FUTURE WORK

While existing techniques can successfully solve
problems with disconnected feasible regions, they
often require a large number of function evalua-
tions. To address this shortcoming, a global search-
ing, approximation-based algorithm was employed.
Utilizing approximations of the constraint functions,
a new search strategy was introduced to locate an
initial feasible design point, refine the solution, then
search for new feasible regions, and repeat. The re-
sulting contribution is an efficient approach to solv-
ing problems where the feasible region is relatively
small or disconnected.

Of course, the benefits do not come without a
price. The drawback of the method is that each
iteration of the algorithm requires solving another
optimization problem to search for the next iterate.
Therefore, the proposed methodology should only be
applied if the objective and/or constraint functions
are expensive to compute, say, requiring more than
a minute of CPU time.

As this was an initial investigation of the search
strategy, there is still much room for improvement.
Most important would be an exploration of new
implementation strategies. More work needs to
be done to assess the impact of the parameters

7

ncluster, toly, tols and P;,. Entirely new imple-
mentations should also be explored. The heuris-
tic approach for switching between ISCy, ISCs (or
1S5C4), and ISC3 was successful here; however, there
may be more rigorous or efficient ways to proceed.
Statistical hypothesis testing may be an avenue to
bring more formality to the decisions of when to
alternate between looking for new feasible points
and refining existing solutions. Results to date
are promising, but further simulation-based stud-
ies must be performed to understand the remaining
challenges.
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