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Abstract 

The motivation for the present study stems from the 
importance of delamination buckling as a viable mode 
of failure in laminated composite plates. This part 
of the study focuses on the prediction of the buckling 
loads and modes of unilaterally constrained rectangu- 
lar plates. The laminated plates were modeled along 
the lines of classical lamination plate theory. Due to 
the out-of-plane thickness ratio of the delaminated near 
surface plies to  that of the sublaminate (parent), the 
sublaminate was modeled as an infinitely rigid founda- 
tion which constrained the plate's out-of-plane response 
t o  be of one sign. The foundation was modeled as exten- 
sional springs exhibiting a nonlinear force-displacement 
relationship such that its stiffness as well as the plate's 
buckling mode sign can be controlled in a continuous 
fashion allowing the simulation of a rigid and tension- 
less foundation. Preliminary investigations of the buck- 
ling loads and modes of rectangular plates attached to 
such foundations and subjected to a uniform inplane 
stress field showed the validity of this model for the 
cases investigated and compared t o  previous exact re- 
sults reported in the literature. 

Introduction 

The use of composite materials is becoming more fre- 
quent in today's modern structures. Such widely-used 
materials'can be seen in many different applications 
especially in the aerospace industry. The desire to use 
composite materials over non-composite materials (e.g., 
metals) can be attributed mainly to  the fact that com- 
posite materials exhibit a higher stiffnesslweight ratio 
over their counterparts. The most commonly used type 
of composites, particularly in the aerospace industry, is 
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laminated fibrous composites. In laminated composite 
plates the problem of delamination, which is the separa- 
tion of plies, is of great importance since it resembles a 

viable mode of failure. The term "delamination failure" 
has two distinct implications. The first is when a failure 
occurs due to  ply delamination which can be caused by 
high interlaminar stresses, or by fiber microbuckling in 
the case of fibrous laminated composites. The second 
is when the presence of a delamination prior to loading 
causes the composite structure t o  respond to the ap- 
plied stresses in a certain way that will eventually lead 
to failure. It is the latter situation that is the focus of a 
current investigation being conducted by the authors. 

The presence of a delaminated region between the 
surface plies in a laminated composite plate and the re- 
maining portion of the laminate introduces the type of 
response that is observed when analyzing a thin elastic 
plate resting unattached on an elastic foundation. In a 
compressive load environment, near surface plies that 
are initially delaminated will undergo buckling prior to 
their growth [I]. When this occurs, the buckled dis- 
placements are of one sign, because the supporting sub- 
laminate ( ~ a r e n t )  essentially acts like a rigid founda- 
tion. The models of delamination buckling and growth 
[2,3] display an interesting variety of behaviors depend- 
ing upon the dimensions of the delamination, the load 
at which it is introduced as well as its history, the elas- 
tic properties, and the fracture energy. The growth of 
the delamination may be stable, unstable, or an unsta- 
ble growth followed by a stable growth. At present, 
a global theory allowing the precise prediction of fail- 
ure by delamination growth in real structures does not 
exist. 

Ye [4] pointed out that the characteristics of two- 
dimensional delamination growth near a curved edge 
may differ significantly from those of one dimensional 
delamination near a straight edge in composite lami- 
nates. The author also pointed out that the role of 
out-of-plane delamination opening displacement on de- 
lamination growth needs further detailed identification. 

In the investigation at hand we are interested in 



studying the stability and growth of delaminated near 
surface plies that are formed adjacent to  a circular 
cutout in compressively stressed laminated plates. Such 
a situation was observed in the results of experimen- 
tal work reported in [5]. The study is conducted in 
two parts. In part I, the analysis is restricted t o  de- 
lamination~ of a rectangular planform and wh,ich are 
subjected to  a uniaxial compression load. In part 11, 
the more general problem of delaminations conform- 
ing to  planform of a curved annular sector (as reported 
in [5], to  be formed adjacent to circular cutouts) in a 
non-homogeneous stress field (that which corresponds 
to  the linear elastic solution of a remotely compressed 
anisotropic plate containing a circular cutout) is consid- 
ered. Since a new approach to handling delamination 
buckling problems conforming to constraints imposed 
by the physical situation is introduced here, a two part 
study as described above was warranted. The present 
paper is limited t o  issues pertaining t o  part I. 

Previous work relevent to  that reported here was un- 
dertaken by Seide [6], who considered isotropic, sim- 
ply supported, infinite plates. Similar issues relating 
to  problems of constraint plate deformation have been 
considered by other researchers in different contexts. 
In [7], Weitsman presented an approximate solution for 
the problem of contact between an elastic plate and a 
semi infinite elastic half space. In [8,9], the same author 
presented several examples of beam/plate type struc- 
tures resting on an elastic half space and subjected to  
transverse distributed and concentrated loads. In these 
investigations the extent of the contact area that de- 
velops between the beam/plate and the half space was 
determined by an approximate technique. The case of a 
beam that is subjected to a single concentrated trans- 
verse force and resting on a rigid foundation was ad- 
dressed by Civelek and Erdogan [lo]. Gladwell [ll] con- 
sidered a variety of plane, frictionless, unbonded con- 
tact problems and provided approximate solutions in 
terms of Chebyshev polynomials. Some corrections to 
the earlier work by Weitsman [9] was provided in this 
article. More recently, Celep [12], addressed the be- 
havior of transversely loaded rectangular elastic plates 
resting on a tensionless Winkler foundation. In this in- 
vestigation Galerkin's method [13] was used t o  obtain 
results for the areas of contact as well as plate displace- 
ment distributions. A finite element solution for the 
unilateral contact problem of the heavy elastica was 
presented by Kooi [14]. Soong and Choi [15] addressed 
the problem of an elastica that involves continuous and 
multiple discrete contact with a boundary. These in- 
vestigations presented examples in which the elastica 
curvature assumes values which are less than the cur- 
vature of the restraining boundary, thus resulting in 
line contact. Roorda [16], in a recent article, presented 

many aspects of unilateral buckling problems. 
None of the models that have been presented to date 

include the physical constraint condition on the buck- 
led displacement being of one sign. This constraint can 
play a significant role in the quantitative prediction of 
delamination buckling as was shown by Shahwan and 
Waas [17]. In that study, investigations on the buck- 
ling behavior of an isotropic, infinitely long, simply sup- 
ported plate, showed an increase of 33% in the buckling 
load when the plate was unilaterally constrained. Fur- 
ther, using the exact solution of the governing differen- 
tial equations, the authors [17] presented values for the 
% increase in the buckling load for unilaterally con- 
strained specially orthotropic composite plates. Fur- 
thermore, it is reasonable t o  postulate that the growth 
behavior would also be significantly affected if this con- 
straint is accounted for. In addition, delamination 
buckling and growth in the presence of non-uniform pre- 
buckled stress state has not been investigated. Such a 
situation is of great practical value. Delamination for- 
mation at free edges and around cutouts are situations 
that fall into this category. 

Problem formulation 

Due to the fact that the delaminated surface plies 
must undergo an out-of-plane buckling prior to  their 
growth, it is important to investigate first the buckling 
behavior of such plies. This can be done along the lines 
of classical laminated plate theory (CLT). The surface 
plies are modeled as a laminated composite plate with 
a number of plies that  is equal to  the number of de- 
laminated surface plies. Since the current investigation 
is concentrating on the case of a laminated plate with 
a circular hole, with the delamination being near the 
edge of the hole, the geometry of the modeled plate 
will be assumed to have a shape of an annular sector. 
This geometry is an approximation t o  the actual situa- 
tion. The plate will have clamped boundary conditions 
around all of its edges except at the free edge (the edge 
that is shared by the delaminated region and the hole). 
The entire structure, i.e., the laminate that includes the 
hole as well as the delamination, will be subjected to 
a uniaxial and uniform compressive far field stress. In 
order to  include in this model the physical constraint 
imposed on the plate's buckled displacements, a non- 
linear elastic foundation model was implemented which 
has the special property of being tensionless. Although 
a completely tensionless springs model was desirable, it 
was not numerically stable; for the cases where the ex- 
act results are known [17], it resulted in values for the 
buckling load that were lower than these exact values. 
As a result, the ratio of the tension to  the compression 
stiffnesses was taken to be a small number (e.g., for a 



bilinear foundation model, this ratio was taken to be 
1 m). 
An exact closed-form solution for this problem can- 

not be obtained. As such, an approximate method of 
solution must be followed to formulate the equations 
governing the plate's response. From the expression 
of the total potential energy (I) ,  one can operate ei- 
ther on its functional form directly (e.g., Rayleigh-Ritz 
method), or on its first variation form (e.g., Galerkin 
method). 

where II = total potential energy, 
a = plate's dimension in the x-direction, 
b = plate's dimension in the y-direction, 
Dij = plate bending stiffnesses, 
w = plate out-of-plane displacement, 
x ,  y = spatial coordinates, 
Nl l  = pre-buckling inplane compressive load, 
W f  = strain energy density of the foundation, 
q(2, y) = distributed transverse load. 

After the proper coordinate transformation (1) can be 
modified and used for circular plates. The strain energy 
density of the elastic foundation W f  is defined as, 

where k = stiffness parameter, 
f (6) = force-displacement shape function. 

For the case of a linear elastic foundation, f ( 6 )  = 6, 
and hence W f  = $ k c 2 ,  where k being the linear stiff- 
ness. Nondimensionalizing (1) will result in the follow- 
ing expression for the total potential energy: 

where n b' a = -  
Dl1 h',  

h = plate thickness, 
3: = + 

b '  
y = f ,  
[ = (plate's aspect ratio), 
w = W  

h ' 

k b a=- 
r4 D l = '  

f (w) = non-dimensional form of f ( c )  , 
j ( x , y )  b 4  

Y) = Dll  h 1 

Calculating the first variation of II and applying the 
divergence theorem yields the following equation: 

where M,,, Myy ,  Mxy,  Vxl and Vy are the nondimen- 
sional moments and shear forces a t  the plate's boundary 
and are given in the following equations: 

Investigation of the stability of any equilibrium state 
requires the necessary and sufficient condition on the 
total potential energy II be stationary. From the theo- 
rem of minimum total potential energy, 



To determine the values of the buckling load and the be deformation-sign dependent. A typical model that 
corresponding mode, one can assume the following sep- pertains t o  this category is the bilinear model. 
arable form for w(x, y): 

( a l w  i f w > O  

where Aij are unknown constant coefficients, and 
4ij(z,  y) are the assumed deformation shape functions. 
4ij(x, y) must satisfy the plate's kinematic boundary 
conditions. In the Galerkin method formulation, the 
weight function that  must be multiplied by the govern- 
ing equation and integrated over their domain in order 
to minimize the error in approximating the plate's re- 
sponse, are taken to be the shape functions qhij(x, y). 
Since 4ij (x, y) are known functions, the first variation 
of w(x, y) is 

where F = spring force, 
a1 = k l  b4 

x' DiI ' 
= k 2  

" 4  Dl1 ' 
w = spring's (also plate's) displacement, 
k1 and k2 are the linear stiffness coefficients. 

Although this model is continuous, it is not differ- 
entiable and has an undefined stiffness at the origin 
(w = 0). Another model that is continuous as well 
differentiable is 

Substituting the above expression for 6w(x, y) into the 
expression for SII in conjunction with the statement of where F = spring force, 

minimum total potential energy theorem one arrives at a = &  
x4 D l l  1 

the following set of M x N  algebraic equations; k is the linear stiffness coefficient, 
/3 = spring (foundation) attachment coefficient. 

Dl2 D66 1' [ W , ~ ~ ~ ~  + (- + - ) W,~lyy 
Dl1 Dl1 In the above model, the foundation attachment can be 

D22 Dl6 0 2 6  
controlled by changing the value of the parameter P. 

+-W,YYYY + 4 (-w,=~Y + -WJYYY ) Large values of /3 implies less attachment. Theoreti- 
D l  1 Dl1 Dl1 

cally, /3 = oo implies the foundation is fully unattached, 
+ X T 2 w ~ x x  + a  n4 f (w)  - Q(x' 4(x' Y) dxdy while 4 = 0 implies the foundation is fully attached 

1 
- (MTT &j,z + Mzy mij, ,  - vZ mij)::! dy 

(note that if p = 0 the factor in (11) should be re- 
placed by 1 in order to  recover the linear case where 
F = cr w). Furthermore, the foundation (springs) stiff- 

- 
( ~ z y  4ij .x + Myy C i j , y  - VY mij);:: dx = 0. ness can be increased to  larger values by changing the 

value of a to simulate a stiffer foundation. 

Knowing the material properties Dij,  the transverse 
load parameter Q(x, y) and the function describing the 
foundation type f(w) the buckling load parameter X 
as well as the unknown coefficients Aij can be deter- 
mined using an incremental load technique. Since the 
values of Aij cannot be controlled individually, the al- 
gorithm increments the load parameter X and moni- 
tors the determinant of the incremental stiffness matrix. 
The buckling load and its corresponding mode were ob- 
tained when the incremental stiffness matrix became 
singular. 

The main distinction between this study and most of 
the previous ones lies in the elastic foundation model. 
The type of models needed to incorporate the physics of 
unilaterally constrained plates must exhibit not only a 
nonlinear force-displacement relationship but must also 

Results and Discussion 

Example results are presented for isotropic rectan- 
gular plates. Although the results given are for simply 
supported plates, the model as well as the approach are 
completely independent of the plate's boundary condi- 
tions. For large aspect ratio f ,  the buckling load pa- 
rameter X as well as its corresponding deformation are 
independent of the boundary conditions at x = 0 and 
x = f (except in the neighborhood of x = 0 and x = < 
where boundary effects are very significant). 

In the case of isotropic plates the value of X has an 
exact lower bound value, which is obtained when the 
elastic foundation is linear (as opposed to bilinear). Al- 
though this exact lower bound value can be obtained 



for the bilinear foundation model (lo),  it cannot as eas- 
ily be obtained for the Tanh(pw) model. Assuming an 
approximate deformation function w of the form 

the expression for )rlowerbound can be found to be, 

The fact that the effect of the end boundary condi- 
tions (at x = 0, x = <) on the buckling load and mode 
diminishes with increasing plate aspect ratio < can at- 
tributed to  the fact that,  when the plate gets longer, its 
response is governed mainly by the inner region (region 
away from x = 0 and x = <), and in turn this region 
does not "feel" the boundary effects. 

The elastic foundations models investigated in this 
study yielded results that are consistent with each other 
(bilinear model vs. the Tanh@w) model). Ideally 
the foundation model should have zero tensile stiffness 
( a l )  and an infinite compressive stiffness (aZ) .  In the 
bilinear foundation model (10) this was accomplished 
by assigning to the ratio of the tension stiffness a1 to 
that  of compression a 2  a value of &. This ratio 
was found to give physically as well as mathematically 
consistent results. In the Tanh(,Dw) model (11), the 
value of the attachment coefficient p was taken to be 
of the order of lo3 to  simulate a rigid foundation. It 
is worthwhile mentioning that the parameter ,D in the 
Tanh(@w) model has a similar meaning to the ratio 2 
in the bilinear model. 

As mentioned earlier, in this analysis Q(x, y) was not 
taken to be zero. However, it was established that X 
was independent of Q,,, and Q(x, y). For small as- 
pect ratio plates, different Q(x, y) resulted in slightly 
different buckling modes (due to  'end' effects) but this 
diminished with increasing plate aspect ratio <. A com- 
pletely negative Q(x, Y) (i.e., compressing the plate to- 
wards the foundation) will result in buckling loads that 
are extremely high. In [18], Allan shown that ,  a strip 
that is resting on a rigid foundation and subjected to 
a negative transverse pressure as well a compressive in- 
plane load will have an infinite buckling load. In this 
study, different transverse load distributions were in- 
vestigated, and it was observed that,  although there 
is no change (for the plates considered) in the buck- 
ling load and the periodic portion of the response, the 

'end effects' (2-boundary conditions) can be minimized 
if Q(x, y) has negative values near the plate's boundary. 

Figures 2 and 4 show plots of the 'response curves' 
for two different plates studied. The compressive load X 
is plotted against the normalized amplitude ratio -@k 11~4 ' 

The corresponding 'slope' of these plots is shown in Fig- 
ures 3 and 5. ((Ao[( is the amplitude of the unknown 
Galerkin coefficient's vector for X = 0. Thus, the local 
slopes are normalized with respect to  the initial slope. 
This normalized slope is a measure of the determinant 
of the incremental stiffness matrix. At buckling the in- 
cremental stiffness matrix becomes singular and hence 
the slope is zero. In Fig.(3), one can notice a sudden 
increase in the slope near the point of buckling. This 
is due to the plate "touching" the foundation and ex- 
periencing high stiffness. On the other hand, in Fig. 
(5) where the transverse load has negative as well as 
positive regions, this is not strongly present. Thus, the 
transverse load affects the plate response, but not the 
buckling load nor the mode. As can be seen from Fig- 
ures 2-4, the results obtained from the methodology 
presented here, are in very good agreement with previ- 
ously reported results [6]. 

Concluding Remarks 

A methodology is developed to obtain the buckling 
loads of unilaterally constrained plates. The problem 
arose in connection with the calculation of buckling 
loads of delaminated surface plies in laminated plates. 
The developed methodology is used to  calculate exam- 
ple results for isotropic rectangular plates. The results 
are shown to be in good agreement with 'exact' results 
available in the literature [6]. The methodology used in 
obtaining the 'exact' results was limited to  special plate 
configurations and it was the purpose of the first part of 
this study to develop a more general method to study 
the problem of plates of arbitrary shape applicable to 
surface delaminations in laminated plates. Results for 
orthotropic rectangular plates as well as for plates of 
different shapes (annular sectors) will be reported in 
the near future. 
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Fig.1 f ( w )  for the Tanh ( p w )  model vs. w ,  f ( w )  = 
3 w (1  - Tanh ( p w ) )  
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Fig.2 Buckling Load Parameter X vs. Normal- 
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Fig.3 Normalized Slope of X - IlAll curve vs. X 
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