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This paper presents a framework for multi-objective and multidisciplinary design optimization using high-
fidelity analysis tools. In this framework the aerodynamic performance is evaluated based on a Navier–Stokes
equation solver, and the structure dynamics is computed using commercially available finite element software. We
employ a genetic algorithm as a robust design optimization tool to facilitate the multi-objective optimization. We
also use the response surface approach to tackle the difficulties associated with the organizational complexity and
computational burden inherent in the multidisciplinary optimization. The coupling between the fluid solver and
structural solver is realized through a thin-plate spline interpolation algorithm. The proposed approach is then
used to perform aerostructural optimization of a three-dimensional transonic compressor blade. Our numerical
results show that this method can improve the existing design and reduce the required computational time by
orders of magnitude.

I. Introduction

W ITH the advancement of computational power and compu-
tational methods, researchers have used optimization tech-

niques to improve the performance of complex system, such as air-
craft engine. In this instance, Oyama et al. minimized the entropy
generation of the NASA rotor67 blade,1 Benini improved the to-
tal pressure ratio and the adiabatic efficiency of the NASA rotor37
blade,2 Mengistu and Ghaly3 performed multipoint design of differ-
ent compressor rotors to improve their aerodynamic performance,
and Lian and Liou4 carried out multi-objective optimization of the
NASA rotor67 blade. These analyses were focused on a single-
discipline response, namely, the aerodynamic aspect. However,
compressor design is inherently multidisciplinary, and a success-
ful design should involve a combination of a variety of disciplines
including aerodynamics, structure dynamics, acoustics, and control
theory.5 In addition, the present design procedures are usually based
on sequential discipline optimization, which might be insufficient
to provide a satisfactory result. The resulting solution might sat-
isfy some, but not all of the requirements. In that case, the coupled
multidisciplinary optimization (MDO) design technique is required.

The applications of MDO to compressor designs give rise to con-
siderable challenges. First, the computational expense associated
with MDO is usually much higher than the sum of the costs asso-
ciated with each single-discipline optimization. Second, organiza-
tional complexity imposes another challenge.6 For example, differ-
ent analysis codes can run on different machines at different sites.
For these two reasons, a direct coupling of an optimizer with multi-
disciplinary analysis tools might be practically difficult, especially
when a large number of design variables and computationally inten-
sive tools are involved. Third, noisy or jagged response from some
disciplines deteriorates the coupling effect and can lead to local
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optimal design solutions. Last, in our multi-objective compressor
design problem, the objectives are competing.4 Instead of having
a single optimal solution, our studied problems have a set of com-
promised solutions (Pareto-optimal solutions) in which none of the
solution is better than the other with respect to all objectives. Tradi-
tional optimization methods usually convert such a multi-objective
optimization problem into a single-objective problem by introduc-
ing additional parameters that favor a specific Pareto-optimal solu-
tion. To find more Pareto-optimal solutions, we need to start over
by changing the values of parameters.

The response surface technique is particularly suitable for MDO.
This technique usually approximates the objective and constraint
functions with low-order polynomials, which are fitted to a set of
preselected design points. With the approximation models, the com-
putational cost is greatly reduced. Moreover, because response sur-
face technique preselects the design points, it provides a simple way
to connect different codes from various disciplines.6 Consequently,
this reduces the organizational complexity and facilitates a loose
coupling among different modules. When multi-objective optimiza-
tion is encountered in MDO, we can facilitate the computation with
evolutionary algorithms (EAs). EA’s population approach can be
exploited to emphasize all compromised solutions in a population
equally and to preserve a diverse set of multiple compromised so-
lutions using a niche-preserving operator.7 As a consequence, EAs
can find as many Pareto-optimal solutions as possible in one run.
For these reasons we focus on integrating the response surface tech-
nique with a genetic algorithm to perform multidisciplinary and
multi-objective optimization designs.

Our objectives are to maximize the compressor stage pressure
ratio and to minimize the compressor weight of a transonic com-
pressor blade under a set of real-world constraints. To faithfully
represent a variety of nonlinear phenomena in the compressor blade
study, such as shock waves and boundary-layer separation, which are
crucial to accurately evaluate the blade aerodynamic performance,
we use high-fidelity computational-fluid-dynamics (CFD) analysis
tools. Early aerostructural optimization, mainly caused by the avail-
ability of computing resources, largely relies on empirical or simple
one-dimensional models with a small number of design variables,
which is true especially at the conceptual design level and prelim-
inary design level. With the recent advancement in optimization
methods and affordable computing power, such rudimentary mod-
els need to be improved, and high-fidelity modeling represents the
trend in MDO applications. For example, Borland et al.8 performed
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aerostructural optimization of a high-speed civil transport using the
thin Navier–Stokes equations and a finite element based structural
model; Martins et al.9 used a Reynolds-averaged Navier–Stokes
code and a finite element structural solver to optimize a natural
laminar-flow supersonic business jet. Giunta10 and Maute et al.11

also used high-fidelity models in their works. In our work we use
a three-dimensional Navier–Stokes solver to analyze the aerody-
namic performance of the compressor blade. A commercial soft-
ware ANSYS is adopted as the computational structure dynamics
(CSD) solver to perform static aeroelastic analysis. Each objective
function is approximated with a computationally cheap surrogate
model. A genetic algorithm is then applied on the surrogate models
for a set of Pareto-optimal solutions. At last, representative solu-
tions are chosen from the Pareto-optimal front and validated by the
high-fidelity tools.

This paper is constructed as follows: 1) formulating the multi-
objective and multidisciplinary problem; 2) introducing the analy-
sis tools for the participating disciplines; 3) presenting the coupling
approach between the two disciplines through an interpolation tech-
nique; 4) introducing the optimization method; and 5) performing
multi-objective and multidisciplinary optimization for a transonic
compressor blade.

II. Problem Formulation
The NASA rotor67 chosen for study is a low-aspect-ratio design

rotor and is the first-stage rotor of a two-stage fan. The rotor de-
sign pressure ratio is 1.63 at a mass flow rate of 33.25 kg/s. The
design rotational speed is 16,043 rpm, which yields a tip speed of
429 m/s and an inlet tip relative Mach number of 1.38. The rotor
has 22 blades. Based on the average span and root axial chord, it
has an aspect ratio of 1.56. The rotor solidity varies from 3.11 at the
hub to 1.29 at the tip. The inlet and exit tip diameters are 51.4 and
48.5 cm, respectively, and the inlet and exit hub/tip radius ratios are
0.375 and 0.478, respectively. The Reynolds number based on the
hub chord length and inlet flow velocity is 1.797 × 106. The rotor is
made of generic titanium, which has a density of 4500 kg/m3 and a
yield limit of 7.86 × 108 Pa. Its Young’s modulus is 1.16 × 1011 Pa,
and Poisson’s ratio is 0.32. It is noted here that all of these property
values are taken in average sense.

The blade geometry is obtained by superimposing a perturbation
blade on the baseline. The perturbation blade is obtained by linearly
interpolating four blade profiles along the span (hub, 31% span,
62% span, and tip). Each profile is defined by a mean camber line
and thickness distributions and is parameterized by a third-order
B-spline curve. The thickness distribution is determined by five
design variables and the camber by three design variables. Conse-
quently, eight design variables are used to represent a blade profile,
resulting in 32 design variables for the rotor-blade surface. By doing
this, we can recover the baseline geometry by setting all of the de-
sign variables to zero. To make the optimization results comparable
to those of the baseline configuration, we maintain the chord dis-
tribution along the span and fix the meridional contour of the hub,
casing, the sweep, and lean.

The multi-objective and multidisciplinary design optimization
problem can be formulated as follows:

Maximize:

p02/p01

Minimize:

W

Subject to:

SF > 1.5

|ṁ − ṁ0|
ṁ0 < 0.005

xi L ≤ xi ≤ xiU i = 1, . . . , n

where p01 is the inlet total pressure, p02 is the outlet total pressure,
p02/p01 is the stage pressure rise, W is the blade weight, and SF is
the safety factor. In deterministic design, the safety factor is defined
as

SF = RN /SN (1)

where SN and RN are the nominal values of the von Mises stress
and yield stress, respectively. The maximal von Mises stress, which
is typically used design stress for complex loading condition, is
defined as follows:

SN =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
(2)

whereσ1,σ2, andσ3 are the principle stresses. ṁ is the mass flow rate,
subscript 0 represents the baseline design, xi is the design variable
that is used to parameterize the blade geometry, xi L and xiU are the
lower and upper bounds of the design variable, respectively, and n
is the number of design variables. In our problem we take the lower
bound as 95% of the baseline value and the upper bound as 105% of
the baseline value. In this multidisciplinary optimization problem,
the aerodynamic objective is to maximize the stage pressure ratio,
and the structural objective is to minimize the structural weight of
the airfoil only. (The hub or bore under the airfoil is unchanged.)
The aerodynamic constraint is imposed to ensure that the new design
has mass flow rate comparable to the baseline design; the structural
constraint is enforced so that the safety factor of the new design
is higher than a threshold safety factor. In aerospace engineering
design, the safety factor is set as 1.4 or 1.5.

III. Fluid Solver
A high-fidelity CFD tool, TRAF3D (Ref. 12), is used to ana-

lyze the blade performance. TRAF3D solves the following three-
dimensional, unsteady, Reynolds-averaged Navier–Stokes equa-
tions for a rotating blade passage in conservative form in curvilinear
coordinates,

∂Q
∂t

+ ∂F
∂ξ

+ ∂G
∂η

+ ∂H
∂ζ

= ∂Fv

∂ξ
+ ∂Gv

∂η
+ ∂Hv

∂ζ
+ S (3)

The conservative variable vector and fluxes are

Q = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ

ρu

ρv

ρw

ρe

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, F = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρU

ρuU + ξx p

ρvU + ξy p

ρwU + ξz p

ρhU + ξt p

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

G = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρV

ρuV + ηx p

ρvV + ηy p

ρwV + ηz p

ρhV + ηt p

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, H = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρW

ρuW + ζx p

ρvW + ζy p

ρwW + ζz p

ρhW + ζt p

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

S = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

0

ρ�w

−ρ�v

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(4)

where ρ, u, v, w, p, T , e, and h denote the density, velocity com-
ponents in the x , y, and z directions, pressure, temperature, specific
total energy, and specific total enthalpy, respectively, and � is the
angular velocity of the rotating Cartesian system. J is the Jacobian
of transformation

J −1 = xξ yηzζ + xη yζ zξ + xζ yξ zη − xξ yζ zη − xη yξ zζ − xζ yηzξ (5)



882 LIAN AND LIOU

U , V , W are the contravariant velocities,

U = ξt + ξx u + ξyv + ξzw, V = ηt + ηx u + ηyv + ηzw

W = ζt + ζx u + ζyv + ζzw (6)

and the transformation metrics are defined by

ξx = J (yηzζ − yζ zη), ξy = J (zηxζ − zζ xη)

ξz = J (xη yζ − xζ yη)

ηx = J (yζ zξ − yξ zζ ), ηy = J (zζ xξ − zξ xζ )

ηz = J (xζ yξ − xξ yζ ) (7)

ζx = J (yξ zη − yηzξ ), ζy = J (zξ xη − zηxξ )

ζz = J (xξ yη − xη yξ )

ξt = xtξx + ytξy + ztξz, ηt = xtηx + ytηy + ztηz

ζt = xtζx + ytζy + ztζz

xt = 0, yt = −�z, zt = �y (8)

The viscous term are written as

Fv = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

ξxτxx + ξyτxy + ξzτxz

ξxτyx + ξyτyy + ξzτyz

ξxτzx + ξyτzy + ξzτzz

ξxβx + ξyβy + ξzβz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Gv = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

ηxτxx + ηyτxy + ηzτxz

ηxτyx + ηyτyy + ηzτyz

ηxτzx + ηyτzy + ηzτzz

ηxβx + ηyβy + ηzβz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Hv = J −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0

ζxτxx + ζyτxy + ζzτxz

ζxτyx + ζyτyy + ζzτyz

ζxτzx + ζyτzy + ζzτzz

ζxβx + ζyβy + ζzβz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(9)

where

τxx = 2μux + λ(ux + vy + wz), τyy = 2μvy + λ(ux + vy + wz)

τzz = 2μwz + λ(ux + vy + wz), τxy = τyx = μ(uy + vx )

τxz = τzx = μ(uz + wx ), τyz = τzy = μ(vz + wy)

βx = uτxx + vτxy + wτxz + kTx

βy = uτyx + vτyy + wτyz + kTy

βz = uτzx + vτzy + wτzz + kTz (10)

Based on the Stokes hypothesis, λ is taken to be − 2
3
μ. The pressure

is obtained based on the equation of state. The molecular coeffi-
cient of viscosity μ is determined as a function of temperature by
the Sutherland’s law. The space discretization uses a second-order
central difference scheme with eigenvalue scaling used to weigh the
artificial dissipation terms. The system of equations is advanced in
time using an explicit four-stage Runge–Kutta scheme. The two-
layer eddy-viscosity model of Baldwin and Lomax is used as the
turbulence closure. The molecular viscosity μ and the molecular
thermal conductivity k are replaced with,

μ = μl + μt (11)

k = cp[(μ/Pr)l + (μ/Pr)t] (12)

Fig. 1 Structured grid for single passage with 0.6 ×× 106 nodes.

where cp is the specific heat at constant pressure, Pr is the Prandtl
number, and the subscripts l and t represent laminar and turbulent,
respectively.

For a single passage, the chordwise, tangential, and spanwise
grid point numbers are 201, 53, and 57, respectively. This leads
to 0.6 × 106 nodes per single passage. The structured CFD grid is
shown in Fig. 1. We assume periodicity in the flow over a single
blade passage and only need to compute one passage. At the inlet,
the flow angles, total pressure, and total temperature are specified,
while the outgoing Riemann invariant is taken from the interior
according to the theory of characteristics. At the subsonic-axial out-
let, the average value of the static pressure at the hub is prescribed,
and the density and velocity components are extrapolated together
with the circumferential distribution of pressure. On the solid wall
we apply a constant temperature boundary condition and extrapolate
the pressure from the interior points. The no-slip boundary condi-
tion and the temperature condition are used together to compute
density and total energy.13 We set periodic phantom cell values to
impose the periodic condition from blade passage to blade passage.
We use phantom cells to overlap the real ones where the grid is not
periodic. The values of dependent variables in the phantom cells
are computed using linear interpolations. The clearance region is
handled by imposing periodicity conditions across the airfoil. The
capability of this code has been validated by comparing the com-
putational results to experimental data.12,13 For each simulation, a
converged solution is assumed when the residuals of the continu-
ity equation, momentum equations, and energy equation all have
dropped by an order of four.

IV. Finite Element Model and Structural Solver
The blade has a root chord of 9.14 cm. The blade thickness, which

is about 9.5% of the root chord, is much smaller than either the chord
or span dimension. We also know from the wind-tunnel test that at
the operating condition the blade deflection is much smaller than
the blade thickness. For these reasons, we model the blade with
quadrilateral plate element, which is a commonly used element for
modeling plates, shells, and membranes. This element can represent
in-plate, bending, and transverse shear behavior. The element has
six degrees of freedom at each node: translations in the nodal x , y,
and z directions and rotations about the nodal x , y, and z axes. For
each element we assume element-constant thickness and element-
constant pressure. By doing this we avoid zero-thickness elements
at the leading and trailing edges. The blade is structurally fixed at the
hub. Therefore, the nodes at the hub are fully constrained. A grid-
sensitivity test is performed, and the results are shown in Table 1.
For all of the grids, the variation of mass is fairly small. The maximal
displacement approaches 1.29 mm with the increase of grid size; the
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Table 1 Grid-sensitivity test for CSD grid

Weight, Maximal displacement, Maximal shear,
Grid size kg m MPa

20 × 20 0.2273 0.125E–2 450.9
30 × 30 0.2285 0.127E–2 449.7
40 × 40 0.2292 0.129E–2 455.8
50 × 50 0.2296 0.129E–2 460.7
60 × 60 0.2299 0.129E–2 461.2

Fig. 2 Quadrilateral shell element mesh for the blade.

variation of maximal shear is less than 0.11% between grid 50 × 50
and grid 60 × 60. Based on these, we choose a grid size of 50 × 50
in our future test. This results in 2401 shell elements and 14,700
degrees of freedom. The CSD mesh for the blade is shown in Fig. 2.

Commercial software ANSYS is adopted as our structural solver.
It solves the following structural equilibrium equation:

K d = F (13)

where K is the stiffness matrix, d is the displacement vector, and
F is the force vector, which includes the aerodynamic pressure force
and centrifugal force.

V. Aerostructural Coupling
In our MDO problem we assume that the compressor operates

at its design condition and the structural response of the compres-
sor blade is static. In addition, based on the fact from Table 1 that
the structural deformation is small, we can further assume that the
aerodynamic pressure distribution does not change with the struc-
tural deformation. Therefore the coupling is one way only, that is,
aero-to-stress. If the blade is manufactured, the manufactured blade
should deviate from the optimized blade. The reason is to use the
structural deformation to offset such deviation and bring the blade
to its optimized shape and therefore compensate the effects of struc-
tural deformations on aerodynamic performance. This approach is
called jig-shape approach in MDO literature.6 As a consequence,
we only need to transfer the aerodynamic forces from the CFD
grid to the CSD grid. This greatly simplifies our aerostructural cou-
pling. The studied blade rotational speed does not vary much during
most of the flight; it is therefore safe to consider the structural con-
straint under operational condition. The jig-shape approach is effec-
tive under such circumstance. For situations where flight conditions
vary a lot, such as helicopter rotor blades, the jig-shape approach
can only partially compensate the effects of structural deforma-
tions. More sophisticated methods should be used to consider the
interaction between the aerodynamic and structural response. Inter-
ested readers are referred to the work of Friedmann,14 Chattopad-
hyay and McCarthy,15 Yuan and Friedmann,16 Livne and Li,17 and
Walsh et al.18

a) Pressure contours on the
CSD grid

b) Pressure contours on the
CFD grid

Fig. 3 Comparison of pressure contours on the CFD and CSD grids.

The CFD solver and CSD solver do not necessarily share identi-
cal grid points at the interface; therefore, interpolations are required
to allow the information exchange. Smith et al.19 evaluated suit-
able methods to exchange information between the CFD and CSD
grids. In our problem, we need to map the aerodynamic pressure
forces from the CFD grid to the CSD grid. A thin-plate spline inter-
polation method20 is adopted for this purpose. The thin-plate spline
interpolation is a global interpolation method, and it is invariant with
respect to rotations and translations. A one-dimensional version of
the interpolation is

P(x) =
N∑

i = 1

αi |x − xi |2 log |x − xi | (14)

where P(x) is the pressure distribution function on the CSD grid,
αi is the undetermined coefficient, N is the number of monitored
CFD nodes on the interface, and xi are their locations. Once the flow
equations are solved, we can transform the pressure from the CFD
grid to the CSD grid:

Pcsd = GPcfd (15)

where G is the interpolation matrix derived from Eq. (14). It was
pointed out by Brown that the transfer of pressure forces from
the CFD grid to the CSD grid must ensure the consistency and
conservation.21 The TPS interpolation is derived based on the prin-
ciple of virtual work and thus automatically guarantees the con-
servation of energy between the flow and the structural systems.22

Figure 3 shows that the interpolated pressure contours on the CSD
grid match well the pressure contours on the CFD grid.

VI. Optimization Method
We choose a genetic algorithm as the optimizer for our multi-

objective optimization problem. Genetic algorithms have been ex-
tensively used in various areas because of their broad applicability,
ease of coupling with other modules, and its global perspec-
tive. Another thrust behind their popularity is that genetic algo-
rithms can find multiple optimal solutions in one single simulation
run because of their population-based approach. This characteris-
tic makes genetic algorithms ideal candidates for multi-objective
optimization problems.

Nevertheless, a direct coupling of a genetic algorithm with mul-
tidisciplinary analysis tools is impractical for several reasons. First,
genetic algorithms usually suffer slow convergence and demand a
large number of calls to analysis. When computationally expensive
analysis tools are used, the required computational time impinges
its practical applications. This is further complicated by the mul-
tidisciplinary characteristic of the problem, which requires much
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more function evaluations than the sum of the function evaluations
of the single-discipline optimizations involved in the MDO. Sec-
ond, the synthesis of different discipline analysis tools into a central
program is difficult because the analysis tools are possibly exe-
cuted on different machines at different sites. Under such circum-
stances, a pragmatic approach is to couple the genetic algorithm
with computationally cheap surrogate models (approximation mod-
els) of the objective functions and/or constraints. The optimum of
the approximate model is then validated by the full analysis, and the
approximate model is thereafter updated. Depending on the prob-
lem requirement and available computational resource, this process
can repeat. This so-called sequential approximate optimization is a
popular approach in MDO.

Response surface technologies provide a convenient approach
to tackle the aforementioned difficulties. Response surface models
are usually orders of magnitude cheaper than the original problems
but still provide a good approximation. Response surface models
can smooth out a noisy response produced by some disciplines and
provide a simple way to connect codes from various disciplines.
Moreover, because the design points are preselected rather than
chosen by optimization algorithms, they can be repeatedly used for
designs with different objective functions and/or constraints. In this
work we choose the quadratic response surface model.

The adopted optimization method was successfully used to per-
form multi-objective optimizations of turbopumps and transonic
compressor blade.4 Later, it was augmented with a gradient-based
optimization method to enhance the convergence.23 In short, the
numerical implementation of this method has the following steps:
1) sampling the design candidates based on the statistical design of
experiment, 2) evaluating the objective functions and constraints us-
ing the high-fidelity tools, 3) constructing surrogate models for the
objective functions and constraints, 4) searching the Pareto-optimal
solutions based on the low-fidelity surrogate models using genetic
algorithm, 5) updating the Pareto-optimal with local search, and
6) choosing representative solutions from the Pareto front and vali-
dating them using the high-fidelity tools.

VII. Numerical Results
Our problem has 32 design variables; there are 561 undetermined

coefficients in the quadratic response surface approximation. With
the Latin hypercube design (LHD)24 we sample 1024 design points,
which represents an 80% overdetermined design. LHD is a popular
method in the design of experiment. LHD generally fills the whole
design space instead of focusing on the boundaries, and therefore it
provides more information within a design space and is suitable for
the approximation of computer experiments that mainly have sys-
tem error rather than random error. These 1024 design points are
first evaluated with the TRAF3D code to find the pressure ratio and
mass flow rate and to extract pressure on the blade surface. The blade
weight can be readily computed by integrating the blade volume.
The extracted pressure is then interpolated from the CFD grid to the
CSD grid with the thin-plate spline interpolation method. We then
use ANSYS to perform static structural analysis to find the maximal
von Mises stress on the blade. As shown in Eq. (1), we need to build
four response surfaces: two for the objective functions and two for
the constraints. The accuracy of these response surface approxima-
tions is evaluated by statistical measures, including the coefficient
of determination R2, the adjusted coefficient of determination R2

adj,
and the percentage of root mean square error %RMSE, which is the
ratio of rms error to the mean of response. Table 2 shows the test
results. The value of R2

adj for the pressure ratio, weight, and mass
flow rate is close to one, indicating that the quadratic response sur-
face models give accurate representations of the response functions.
The approximation of the maximal stress is not as good as the other
three, but it still has a R2 value of 0.9262, which means that more
than 92% of the variation around the mean can be accounted for by
the quadratic approximation.

The two objectives in Eq. (1) are competing. Instead of having a
single optimal solution, we expect a set of Pareto-optimal solutions.
To facilitate the optimization, we choose a genetic algorithm as our
optimizer. Following our previous practices4,23 in each generation,

Table 2 Statistical measures of the quadratic response surface
approximations

Error statistics p02/p01 W ṁ SN

R2 0.9949 0.9999 0.9979 0.9262

R2
adj

0.9888 0.9999 0.9954 0.8369

Mean response 1.667 0.2296 kg 33.43 kg/m3 464.2 MPa
%RMSE 0.3000e–3 0.1175e–3 0.1270e–3 0.2761e–1

Fig. 4 Convergence analysis with different generation sizes.

we set the population size of the genetic algorithm (GA) 10 times
of the number of design variables. In our case we have 32 design
variables; in each generation we sample 320 individuals. Figure 4
shows the Pareto-optimal fronts in terms of generation size. The
Pareto-optimal front consists of the Pareto-optimal solutions in the
context of multi-objective optimization. In the context of genetic
computation, we preserve every feasible solution from each gen-
eration in a pool, and each feasible solution Pi is then compared
with others from the pool. If no other solution has less weight and
larger pressure ratio than Pi , then Pi is a Pareto-optimal solution
and belongs to the front.

The Pareto front converges with the increase of generation size.
The convergence rate is fast at the beginning, but later it slows down.
We are still not likely to have a converged solution after 8000 gen-
erations. The reason lies in the fact that GAs employ probabilistic
operators and therefore have a slow convergence rate. A frequently
used remedy is to switch to local search when the convergence rate
is slow. We apply a gradient-based method after the 8000th gener-
ation. Commercially available software Design Optimization Tools
(DOT)25 is used for this purpose. In using DOT, we keep the weight
as the objective function and convert the pressure ratio function as
one constraint. The new problem therefore is a bounded optimiza-
tion problem with three constraints. With DOT each local search
begins with a point from the Pareto-optimal front at the 8000th gen-
eration. Some but not all solutions on the Pareto front can be updated,
and after the local search we need to reconstruct the Pareto front.
The updated Pareto-optimal front with 994 compromised solutions
is shown in Fig. 4. Overall, the updated front is better than those
exclusively from the genetic algorithm. Also, even though the initial
condition can affect the Pareto-optimal front, these effects diminish
with the increase of generation size. Different initial conditions are
tested in our current study, and no evident difference exists from the
initial conditions. We also perform optimization exclusively using
DOT based on the response surface model. To use DOT, we con-
vert the multi-objective problem in Eq. (1) into a single-objective
problem. We use the weighted sum method to scalarize the two ob-
jective functions into one single-objective function by multiplying
each objective with a weight function. This approach can give solu-
tions better than those from the hybrid method; however, it fails to
identify certain regions of the Pareto-optimal front. There are other
improvements to this approach; however, they are beyond the scope
of this work. For more detailed discussions in this aspect, readers
are referred to the work of Deb.7

To verify the accuracy of our surrogate model, we validate
the Pareto-optimal solutions obtained from the response surface
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approximation. It will be very time consuming to verify all of those
solutions. Therefore, we select 19 representative solutions using the
K-means clustering technique, which chooses a subset of data to
reflect the distribution of the whole data.26 The validated results
together with the baseline design are shown in Fig. 5. The verified
Pareto front consists of 16 compromised solutions. Comparing with
the baseline design, all the solutions increase the stage pressure ratio
and reduce the weight. Some Pareto-optimal solutions increase the
pressure ratio as much as 1.88% and reduce the volume by 5.36%.
In Table 3 we compare characteristics between the baseline and two
new designs, which represent the design with the maximal pressure
ratio and design with the minimal weight. Both designs have a higher
isentropic efficiency than the rotor67. The minimal weight design
has larger mass flow rate, but the maximal pressure ratio design has
a smaller mass flow rate than the baseline design. Also we can see
from Table 3 that both designs satisfy the structural constraint.

The deformed blades of the baseline (only edges are shown) and
the new design are shown in Fig. 6. Here we focus on the design with
maximal pressure ratio for comparison. Compared with the new de-

Table 3 Rotor67 design performance

ṁ, Isentropic
Design point kg/s efficiency p02/p01 W/W0 SN

Minimal weight 33.716 0.9164 1.669 0.9464 1.556
Maximal 33.354 0.9154 1.697 0.9555 1.815

pressure ratio
Rotor67 33.446 0.9123 1.666 1.00 1.706

Fig. 5 Pareto-front optimal solutions for the rotor67.

a) Baseline b) Maximal pressure ratio design

Fig. 6 Comparison of blade deformation. The edge of the undeformed
blade is also shown for comparison.

a) Baseline

b) Maximal pressure ratio design

Fig. 7 Comparison of blade displacement.

sign, the baseline design has a more symmetrical deformation with
respect to the middle chord. For the baseline design, the maximal
deformation is 1.29 mm, which is much smaller than the blade thick-
ness. This also confirms the justification of using the shell model.
The maximal deformation occurs at the tip of the leading edge.
For the maximal pressure ratio design, the maximal deformation is
about 2.60 mm, which is more than twice as large as that of the
baseline design and occurs at the tip of the leading edge. It is seem-
ingly paradoxical that the new design has larger deformation but
smaller maximal von Mises stress than the baseline design. The ro-
tor blades are under both normal aerodynamic force and centrifugal
force. Under such complex load, the stress is not a linear function
of the strain or deformation. The deformation contours are shown
in Fig. 7. The edge of the undeformed blade is also shown for com-
parison purpose. The maximum values shown in plots are averaged
values, which differ from the reported maximum values taken at
specific nodes.

To better understand the von Mises stress distribution on the new
blade, we compare the stress contours on both the pressure and suc-
tion sides of the blade in Figs. 8 and 9. At the operational condition,
the deformation and von Mises stress are largely caused by the cen-
trifugal force other than caused by the aerodynamic pressure force.
Even though it is not labeled in the figures, the maximal von Mises
stress occurs at the blade root. We also observe that the maximal
von Mises stress in the maximal pressure ratio design is about 6%
less than that in the baseline. This has a collateral effect to make a
safer blade design.

Two spanwise blade profiles and static-pressure coefficient are
shown in Figs. 10 and 11, representing the span of 10 and 90%,
respectively. At the 10% span, the high-pressure-ratio design has a
larger camber but less thickness than the rotor67 design. The thinner
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a) Baseline b) Maximal pressure ratio design

Fig. 8 Comparison of von Mises stress on the pressure side.

a) Baseline b) Maximal pressure ratio design

Fig. 9 Comparison of von Mises stress on the suction side.

a) Airfoil shape b) Pressure distribution

Fig. 10 Comparison between Pareto-optimal solutions and rotor67 at the 10% span from the hub.

airfoil contributes to the lighter weight of the new design. At the 90%
span, the high-pressure-ratio design has a slightly smaller camber
and thinner airfoil than the rotor67. Nevertheless, the pressure dif-
ference is rather large, indicating that transonic flow is sensitive
to the shape change. One noticeable change is the shock position.
The new design has a more forward shock wave than the rotor67.
Previously we studied the same problem without considering the
stress constraint.23 Here we also compare the design without struc-
tural constraint with that with structural constraint. The difference
between these two designs, in both blade profile and pressure dis-
tribution, is very small.

We use the pressure distribution on the suction side to interpret
the flow pattern. Figure 12 compares the difference between the
high-pressure design and the rotor67 design. Both designs have a
quite strong passage shock in the upper part of the rotor. In the
central part of the blade span, the passage shocks lose their inten-
sity and become weak. The new design has a more forward shock
than the rotor67 design. This observation is consistent with our find-
ing from the pressure distribution in Fig. 11. After the shock, flow
separates as a result of shock-boundary-layer interaction. This sep-
aration is evident in Fig. 13. Here, separation lines are characterized
by flows going toward the line while reattachment lines look like
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a) Airfoil shape

b) Pressure distribution

Fig. 11 Comparison between Pareto-optimal solutions and rotor67 at
90% span.

a) Rotor67 b) High-pressure-ratio design

Fig. 12 Pressure contours on the blade suction side.

flows are going away from the line. Comparing with the rotor67,
the new design has a smaller separation zone after the shock, which
is partially responsible for its higher stage pressure ratio. Numeri-
cal simulation shows the flow never reattaches after separation for
the baseline rotor67. These separation zones are also evident in the
streamwise velocity contours in Fig. 14, where the separation zone
is indicated with a negative velocity.

Each CFD analysis with the TRAF3D code takes about one hour
using a single Intel Intanium processor of 1.3 Ghz. With eight such
processors the turnaround time to evaluate the 1024 cases is about
128 hours (5.3 days). Each structural analysis takes less than 1 min
on a SGI machine with 677-MHz processor, and the total CPU time
is around 10 h. Because the genetic algorithm is applied directly on
the computationally cheap response surface models, the required

a) Rotor67

b) High-pressure-ratio design

Fig. 13 Streamlines close to the blade suction side.

a) Rotor67 b) High-pressure-ratio design

Fig. 14 Streamwise velocity contours close to the blade suction side.

CPU time is less than two hours even for the 8000-generation case.
The combined CPU time for the use of DOT and the construction of
the response surface models and Pareto-optimal front is less than two
hours. Overall we can finish the design within one week. Suppose
the genetic algorithm is directly applied on the high-fidelity tools
and we set the population size as 320 and generation size as 100; it
will take more than five months to finish the design using the same
eight processors.
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We employ the quadratic response surface approximations to
model the response surfaces. In general, quadratic approximations
are attractive for being computationally cheap and easy to imple-
ment. However, for many nonlinear problem their modeling capa-
bility might be limited. Other approaches such as the neural network
and kriging methods are proposed for nonlinear problems. It is our
vision to explore those methods in our future work.

VIII. Conclusions
We presented an approach to perform multi-objective and multi-

disciplinary design optimization using high-fidelity analysis tools,
genetic algorithms, and response surface approximation. This ef-
fort represents our first step in developing a high-fidelity frame-
work for multidisciplinary turbomachinery design, which is to in-
volve fluid mechanics, structure mechanics, dynamics, heat transfer,
acoustics, and control. In this work we have achieved the following:
1) using high-fidelity analysis tools to model the aerodynamic and
structural characteristics of the compressor blade, 2) employing re-
sponse surface technique to tackle the organizational complexity and
computational burden inherent in multidisciplinary design optimiza-
tion, 3) utilizing a genetic algorithm to facilitate the multi-objective
optimization, 4) transferring aerodynamic load through a suitable
interpolation algorithm, and 5) compensating the effect of struc-
tural deformations on aerodynamic performance with a jig-shape
approach. The proposed approach was used to perform aerostruc-
tural optimization of a transonic compressor blade. We achieved an
increase in the pressure ratio by 1.88% and reduction in the volume
by 5.36%. The new design also satisfied both the aerodynamic and
structural constraints.
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