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Radial Turbine Preliminary Aerodynamic Design Optimization 
for Expander Cycle Liquid Rocket Engine  

Yolanda Mack*, Raphael Haftka†, Lisa Griffin‡, Lauren Snellgrove§, Daniel Dorney**,  
Frank Huber†† and Wei Shyy‡‡, 

A response surface-based dual-objective design optimization was conducted in the 
preliminary design of a compact radial turbine for an expander cycle rocket engine. The 
optimization objective was to increase the efficiency of the turbine while maintaining low 
turbine weight. Polynomial response surface approximations were used as surrogates, and 
the accuracies of such approximations improve by limiting the size of the domain and the 
number of variables for each response of interest. The optimization was accomplished in 
three stages using an approximate, one-dimensional model. In the first stage, a relatively 
small number of points were used to identify approximate constraint boundaries of the 
feasible domain and to reduce the number of variables used to approximate each one of the 
constraints. In the second stage, a moderate number of points in this approximate feasible 
domain were used to identify the region where both objectives had reasonable values. The 
last stage focused on obtaining high accuracy approximation in the region of interest with 
large number of points. The approximations were used to identify the Pareto front and to 
perform a global sensitivity analysis. Significant improvement was achieved compared to a 
baseline design. 

I. Introduction 
N rocket engines, a turbine is used to drive the pumps that deliver fuel and oxygen to the combustion chamber.  
Cryogenic fuel is heated, resulting in a phase change to a gaseous state. The increased pressure drives the turbine. 

However, the survivability of turbine blades limits the degree to which the fuel can be heated. In a gas generator 
cycle, the fuel is preheated using a gas generator. The heated, vaporized gas is sent through the turbine and then to 
the combustion chamber. In a preburner cycle such as the Space Shuttle Main Engine, both the fuel and oxidizer are 
preheated using separate preburners to run individual fuel pumps1. An expander cycle is a type of rocket engine 
cycle with improved fuel delivery efficiency as compared to other rocket engine cycles. This is due to that fact that it 
does not require a portion of the fuel to run the fuel and oxidizer pumps. It has an advantage over the preburner or 
gas generator cycle because it does not need a second combustion device. Instead, the fuel is heated using waste heat 
from the thrust chamber cooling jacket. Because the expander cycle has fewer components, engine reliability is 
increased. 
 To help reduce the complexity of future engines, NASA is considering using an expander cycle. The expander 
cycle eliminates the need for a preburner or a gas generator, thus resulting in a simpler and more reliable system. 
Current expander cycle rocket engines in use are Pratt and Whitney’s RL-60 and the Ariane 5 ESC-B. An expander 
cycle schematic is shown in Figure 1. In the expander cycle, the unburned fuel is preheated by being passed through 
tubes used to cool the combustion chamber. This heated gas is passed through the turbine used to drive the fuel and 
oxidizer pumps. The fuel is then sent to the combustion chamber where it is combusted. In the expander cycle, the 
engine is limited by the amount of power that the turbine can deliver. There is a limited amount of heat available 
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from the combustion process with which to preheat the fuel, resulting in low chamber pressure and temperature. 
This can be an advantage because lower fuel temperatures can improve turbine reliability. However, the low 
chamber pressure means that the turbine work output is also limited.   
 

 
 

Turbine work can be increased in two ways: increasing the available energy in the drive gas or improving the 
efficiency by which the turbine can extract the available energy. Increasing the available energy for a given fluid is 
accomplished by increasing the turbine inlet temperature. To increase the turbine inlet temperature in an expander 
cycle, a higher heat flux from the thrust chamber to the cooling fuel is needed. Obtaining this higher heat flux is 
problematic in several ways. First, materials and manufacturing development is necessary to produce a thrust 
chamber with high heat flux capability. This work is an ongoing area of technology development. Second, to enable 
a higher heat exchange, increased surface area and contact time between the thrust chamber and cooling fuel is 
needed. These requirements lead to a larger, and heavier, thrust chamber. In addition, significantly raising the 
turbine inlet temperature defeats the expander cycle’s advantage of maintaining a benign turbine environment. The 
second approach to increasing turbine work is to raise the turbine efficiency. If the turbine inlet temperature is held 
constant, an increase in turbine work is directly proportional to efficiency increase. If the required work can be 
achieved with moderate efficiency, an improvement in that efficiency can be traded for reduced inlet temperatures, 
providing better design environment margins. 

One way to improve turbine efficiency is to use a radial turbine. Radial inflow turbines perform better than axial 
turbines at high velocity ratios, exhibit better tolerance to blade incidence changes, and have lower stresses than 
axial designs. Radial turbines have been used successfully in automotive applications2, but are not often used in 
rocket engines due to their relatively large size and weight. The size of compact radial turbines makes them 
applicable to rocket engine cycles when a high velocity ratio is involved. 

The radial turbine design must provide maximum efficiency while keeping the overall weight of the turbine low. 
This necessitates a multi-objective optimization. A response surface analysis3 provides an efficient means of 
tackling the optimization problem. Response surfaces have been successfully used in prior rocket component design 
optimizations6,7,8. Papila et al. performed a preliminary optimization of an axial turbine4,5 via a response surface 
analysis followed by a detailed shape design6,9 using response surface analysis and neural networks. Similarly, the 
research presented here represents the preliminary optimization of a radial turbine using a simplified 1-D radial 
turbine model adapted from the 1-D Meanline10 code utilized by Papila et al. The 1-D code is verified using 3-D 
simulations. Using response surface analysis, an accurate surrogate model will be constructed to predict the radial 
turbine weight and the efficiency across the selected design space. Because the radial turbine represents a new 
design, the feasible design space is initially unknown. Techniques including design constraint boundary 
identification and design space reduction are necessary to obtain an accurate response surface approximation (RSA). 

II. Problem Description 
  
The radial turbine performance was simulated using the 1-D Meanline10 code. Using a 1-D code allowed for the 

availability of relatively inexpensive computations. To determine whether using the 1-D code was feasible for 

 
Figure 1. Expander cycle. 
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optimization purposes, a 3-D verification study was conducted. Once the Meanline code was verified, the radial 
turbine optimization could proceed. 

A. Verification Study 
Three-dimensional unsteady Navier-Stokes simulations were performed for the baseline radial turbine design, 

and the predicted performance parameters were compared with the results of the Meanline analysis. Simulations 
were performed at three rotational speeds: the baseline rotational speed of 122,000 RPM, a low speed of 103,700 
RPM and a high-speed of 140,300 RPM. A 2-vane/1-rotor model was used. The simulations were run with and 
without tip clearance, and the computational grids contained approximately 1.1 million grid points. 

The PHANTOM code was used to perform the numerical simulations11. The governing equations in the 
PHANTOM code are the three-dimensional, unsteady, Navier-Stokes equations. The equations have been written in 
the Generalized Equation Set (GES) format12, enabling it to be used for both liquids and gases at operating 
conditions ranging from incompressible to supersonic flow. A modified Baldwin-Lomax turbulence model is used 
for turbulence closure13. In addition to the perfect gas approximation, the code contains two options for the fluid 
properties. The first option is based on the equations of state, thermodynamic departure functions, and 
corresponding state principles constructed by Oefelein14. The second option is based on splines generated from the 
NIST Tables15. A detailed description of the code/algorithm development, as well as its application to several 
turbine and pump test cases, is presented in Refs. 11 and 16. 

 Figure 2 shows static pressure contours (psi) at the mid-height of the turbine for the baseline rotational speed of 
122,000 RPM. This figure illustrates the geometry of the turbine, and the contours indicate that the pressure 
decrease is nearly evenly divided between the vane and the rotor. In fact, the reaction was approximately 0.60 for 
each of the three 3-D simulations as compared to 0.55 for the 1-D simulation. Figure 3 contains the predicted total-
to-static efficiencies from the Meanline and CFD analyses. The CFD results include values with and without tip 
clearance. In general, fair agreement is observed between the Meanline and CFD results. The trends are qualitatively 
similar, but the Meanline analysis predicts higher efficiencies. There is approximately a four-point difference in the 
quantitative values. The quantitative differences in the results are not surprising considering the lack of experimental 
data available to anchor the Meanline code. The differences in the predictions with and without tip clearance 
decrease with increasing rotational speed. Figure 4 shows the predicted work from the Meanline and CFD analyses. 
The trends are again similar between the Meanline and CFD analyses, but the Meanline values are consistently 5-6% 
higher than the CFD values. 

The similar trends between the 1-D Meanline code and 3-D CFD analyses indicate that the optimization can be 
confidently performed on the 1-D Meanline code. It can be expected that for a given turbine speed the Meanline 
code will over-predict the total-to-static efficiency by an expected degree. The predicted optimum point based on the 
1-D Meanline code will likely yield overly optimistic results, but the predicted degree of improvement should 
translate to the 3-D CFD analysis.  
 
 

 
Figure 2. Mid-height static pressure (psi) contours at 122,000 rpm. 
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Figure 3. Predicted Meanline and CFD total-to-static efficiencies. 
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Figure 4. Predicted Meanline and CFD work. 
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B. Optimization Procedure 
The purpose of the design optimization is to maximize the turbine total-to-static efficiency while minimizing the 

turbine weight. A total of six design variables were identified as input variables to the Meanline code. The ranges of 
the design variables were set based on current radial turbine design practices. Additionally, five constraints were 
identified. In addition to the objective variables, the constraints are outputs from the Meanline code and are 
functions of the design variables. Two of the five constraints are structural constraints, two are geometric 
constraints, and one is an aerodynamic constraint. The aerodynamic constraints are based on general guidelines. The 
descriptions of all variables are given in Table 1. It was unknown in what way the constraints depended on the 
design variables, so it was possible that certain combinations of the design variables would cause constraint 
violations. It was also unknown whether the selected ranges would result in feasible designs. A response surface 
analysis was used to help clarify these unknown factors. 
 

Table 1. Variable names and descriptions. 

Objective Variable Description Baseline design 
Wrotor  Relative measure of “goodness” for overall weight 1.147 
ηts Total-to-static efficiency 85% 
Design Variable  MIN Baseline MAX 
RPM Rotational Speed 80,000 122,000 150,000 
React Percentage of stage pressure drop across rotor 0.45 0.55 0.70 
U/C isen Isentropic velocity ratio 0.50 0.61 0.65 
Tip Flw Ratio of flow parameter to a choked flow parameter 0.30 0.25 0.48 
Dhex% Exit hub diameter as a % of inlet diameter 0.10 0.58 0.40 
AnsqrFrac Used to calculate annulus area (stress indicator) 0.50 0.83 1.0 
Constraints  Desired Range 
Tip Spd Tip speed (ft/sec) (stress indicator) ≤ 2500 
AN2 Annulus area times speed squared (stress indicator) ≤ 850 
β1 Blade inlet flow angle 0 ≤ β1 ≤ 40 

Cx2/Utip Recirculation flow coefficient (indication of pumping 
upstream) ≥ 0.20 

Rsex/Rsin Ratio of the shroud radius at the exit to the shroud 
radius at the inlet ≤ 0.85 

 
The optimization problem is 
 

 Maximize ηts and Minimize Wrotor 
 

such that 
 

 

80000 150000
0.45 0.70
0.50 0.65
0.30 0.48
0.10 % 0.40
0.50 1.0

RPM
React
U/C isen
Tip Flw
Dhex
AnsqrFrac

≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

 (1) 

 
In multi-objective optimizations the objectives often conflict, so that minimizing one objective function will 

increase the second objective function. A common method of dealing with conflicting objectives is by using a single 
composite objective function, such as a weighted sum or a desirability function. This approach will provide a single 
optimum point for each parameter setting in the composite function. However, in many cases, the desirability 
function or reasonable weights for the different objectives are not known before a solution is obtained. In this case, it 
is desirable to obtain a number of solutions that represent the best possible combination of objectives. If one 
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function is plotted versus the other function, the best possible solutions will be represented by a curve that leads 
from the optimum of one function to the optimum of the second function. The points along the curve will be the best 
“trade-off” solutions. In mathematical terms, the curve represents a set of non-dominated points called the Pareto-
optimal set.  

In this study, an elitist non-dominated sorting genetic algorithm NSGA-II17 with a parallel archiving strategy to 
overcome the Pareto drift problem19 is used as the multi-objective optimizer to generate Pareto optimal solutions. 
The description of the algorithm is given as follows: 

 
1. Randomly initialize a population (designs in the design space) of size npop. 
2. Compute objectives and constraints for each design. 
3. Rank the population using non-domination criteria. Many individuals can have the same rank with the best 

individuals given the designation of rank-1. Initialize an archive with all the non-dominated solutions. 
4. Compute the crowding distance. This distance finds the relative closeness of a solution to other solutions in 

the function space and is used to differentiate between the solutions on same rank. 
5. Employ genetic operators—selection, crossover, and mutation—to create intermediate population of size 

npop. 
6. Evaluate objectives and constraints for this intermediate population. 
7. Combine the two (parent and intermediate) populations, rank them, and compute the crowding distance. 
8. Update the archive: 

• Compare archive solutions with rank-1 solutions in the combined population. 
• Remove all dominated solutions from the archive. 
• Add all rank-1 solutions in the current population which are non-dominated with respect to the 

archive. 
9. Select a new population npop from the best individuals based on the ranks and the crowding distances. 
10. Go to step 3 and repeat until the termination criteria is reached, which in the current study is chosen to be 

the number of generations. 
 

Other popular methods of constructing the Pareto-optimal set can be found in Knowles et al.20 and contained 
references. 

III. Response Surface and Global Sensitivity Analysis Techniques 

A. Response Surface Methodology 
The response surface method assumes that the system response y can be expressed as a function of its design 

variables ξ1, ξ2,…, ξN plus an error term ε that encompasses effects such as measurement error, numerical error, and 
error from background noise: 

 
 ( )1 2, , , Ny f ξ ξ ξ ε= +K  (2) 

 
The response surface method usually assumes a polynomial approximation for ( )f ξ ε+ . Thus, the 

approximated response can now be written in terms of the scaled variables x1, x2,…, xN as 
 
 ( )1 2ˆ , , , Ny f x x x= K  (3) 

 
For N design variables, the first order model is given as 

  
  0 1 1 2 2ˆ N Ny x x xβ β β β= + + + +L  (4) 
 

and the second order model is given as 
 

 2
0

1 1 2

ˆ
N N N

j j jj j ij i j
j j i j

y x x x xβ β β β
= = < =

= + + +∑ ∑ ∑ ∑   (5) 
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The pattern can be continued for third-order models, etc. 

The response surface parameters β0, βj, βjj, and βij can be determined using the method of least squares. These 
coefficients are chosen via least squares regression to minimize the sum of the squares of the errors between the 
approximated response and the actual response. The function to be minimized is called the loss function, and the 
least squares loss function is given by 

 ( )2

1

ˆ
n

i i
i

L y y
=

= −∑  (6) 

 
where n is the number of design points. A more general form of the loss function allows some flexibility in the 
selection of a surrogate model. The general form is given by 
 

 
1

ˆ
n

p
i i

i
L y y

=

= −∑  (7) 

 
where p = 2 for least square regression. 
 In matrix notation, the response is given as 

 

 y = Xβ  (8) 
 

The matrix β can then be determined using the equation  
 

 ( )′ ′-1β = X X X y  (9) 

 
The first measure of the quality of a response surface is the coefficient of multiple determination, R2. This value 

describes the amount of reduction in the variability of the response using the regressor variables. In the case of least 
squares regression, it is equal to one minus the sum of the squares of the errors (SSE) divided by the total sum of 
squares (SST): 

 

 2 1 E

T

SSR
SS

= −   (10) 

where 

 ( )2

1

ˆ
n

E i i
i

SS y y
=

= −∑  (11) 

 

 
2

2

1 1

1n n

T i i
i i

SS y y
n= =

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ ∑  (12) 

 
and n is the total number of points. An estimate of the standard deviation of the error in the response surface is the 
root mean square (RMS) error. The RMS error is a second measure of response surface quality and is given by 

    

 ˆ ESSRMS error
n m

σ ≈ =
−

  (13) 

 
where m is the number of terms in the function approximation. 

Based on Eq.(10), it can be seen that the range of R2 is 0 ≤ R2 ≤ 1. A value close to one implies a good fit. 
However, this equation does not take into account the number of terms in the approximating function. Adding terms 
to the function approximation will always increase the value of R2, but will not necessarily improve the function’s 
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prediction capability. In this case, it is advantageous to use the adjusted coefficient of multiple determination, R2
adj. 

This measure of fit accounts for the number of terms by penalizing against nonessential terms. It is given by 
 

  ( )2 211 1adj
nR R
n m
−⎛ ⎞= − −⎜ ⎟−⎝ ⎠

 (14) 

B. Design of Experiments 
Data points were initially selected based on a face-centered central composite design of experiments3 (DOE) for 

a total of 77 data points within the selected design variable ranges. The face-centered central composite design uses 
the corners and center faces of an N-dimensional cube for point selection. Other DOEs used in the process of 
refining the range of interest include Latin Hypercube Sampling17 and the factorial design3. Latin-hypercube is a 
stratified sampling technique where the ranges of the design variables are divided into either equal intervals or 
intervals reflecting a distribution function, and a point is randomly selected from each interval. This insures that the 
points selected cover the entire design space. Full factorial designs distribute points uniformly in design space. 

C. Global Sensitivity Analysis 
Unlike local sensitivity where the partial derivatives are used to locally estimate the sensitivity of an objective to 

a specific design variable, global sensitivity allows the study of overall model behavior and is a measure of the 
contribution of an independent variable to the total variance of the dependent data. Global sensitivity analyses allow 
a variety of issues to be addressed. Of particular interest in the context of the present study are 

    
1. Variables prioritization, i.e., ranking a set of design variables according to their contribution to the 

output variability 
2. Evidence or absence of parameter interactions 
3. Regions of interest in the parameter space if additional samples become available 
4. Model validation, i.e., whether the model reproduces well known behavior of the process of interest 

 
A detailed discussion of global sensitivity methods and applications can be found in Sobol21, Homma and Saltelli22, 
Saltelli et al.,23 and the references therein.   

A surrogate model f(x) of a square integrable objective as a function of a vector of independent design variables, 
x, is assumed and modeled as uniformly distributed random variables. The surrogate model as given in Eq. (5) can 
be decomposed as the sum of functions of increasing dimensionality as 

 
 ( ) ( ) ( ) ( )0 12 1 2, , , ,x i i ij i j N N

i i j
f f f x f x x f x x x

<

= + + + +∑ ∑ KL K  (15) 

 
where  

 
0

d
1

x 0
xf f

=
= ∫   

 
If the following condition 

 

 
1

1

...
0

0
si i kf dx =∫  (16) 

 
is imposed for k = i1, …, is, then the decomposition described in Eq. (15) is unique. 

In this context, the total variance denoted as V(f) can be shown to be equal to 
 

 1
1 1

( )
n

i ij N
i i j N

V f V V V
= ≤ ≤ ≤

= + + +∑ ∑ KL  (17) 
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where each of the terms in Eq. (17) represents the partial contribution, or partial variance, of the independent 
variables (Vi), or set of variables to the total variance, and provides an indication of their relative importance. The 
partial variances can be calculated using the following expressions: 

 

 
( [ | ])
( [ | , ])

i i

ij i j i j

V V E f x
V V E f x x V V
=
= − −

 (18) 

 

and so on, where V and E denote variance and the expected value respectively. Note that [ ]
1

0
| i i iE f x f dx= ∫    

and
1 2

0
( [ | ])i i iV E f x f dx= ∫ . All integrals were calculated by direct integration of Eq. (5) as a function of x. Now 

the sensitivity indices can be computed corresponding to the independent variables and set of variables. For 
example, the first and second order sensitivity indices can be computed as 
 

 ,
( ) ( )

iji
i ij

VVS S
V f V f

= =  (19)    

 
Under the independent model inputs assumption, the sum of the sensitivity indices is equal to one. 

IV. Results and Discussion 

Phase 1: Initial Design of Experiments and Constraint Violations 
 The values of the objective functions were obtained using the Meanline10 code. Of the 77 solutions from the 
initial DOE, seven cases failed and 60 cases violated one or more of the five constraints, resulting in only 10 
successful cases. Before the optimization could be conducted, a feasible design space needed to be identified. 
Because there was limited information on the dependencies of the output constraints on the design variables, 
response surface analyses were used to determine these dependencies. Response surfaces were used to properly 
scale the design variable ranges and identify irregular constraint boundaries. 

Response surfaces were fit to the output constraints. The change in each response surface with respect to changes 
in some of design variables was small, indicating that the response surfaces were largely insensitive to certain design 
variables. The accuracy of the response surfaces was not compromised when the identified design variables were 
neglected. Therefore, for each response surface, the effects of variables that contributed little to the response surface 
were removed. In this way, each response surface was simplified. The simplified dependencies are shown in Eq. 
(20). 

 

 

( )
( )
( )

( )
( )

2 2

1 1

, ,

, ,

, ,

AN AN AnsqrFrac

Tip Spd Tip Spd U/C isen

Cx2/Utip Cx2/Utip RPM U/C isen AnsqrFrac

React U/C isen Tip Flw

Rsex/Rsin Rsex/Rsin AnsqrFrac U/C isen Dhex%

β β

=

=

=

=

=

 (20) 

 
The information obtained from the response surfaces about the output constraint dependences were further used 

to develop constraints on the design variables. A response surface was constructed for each design variable as a 
function of the output constraint and the remaining design variables, for example 

 
 ( )1, ,React React U/Cisen Tip Flwβ=  (21) 

The most accurate response surfaces (R2
adj ≥ 0.99) were used to determine the design variable constraints. The 

output constraints were in turn set to the constraint limits. For example, a constraint on React was applied to 
coincide with the constraint β1 ≥ 0: 
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( )

( )
1 1

1

, , 0

0, ,

React U/Cisen Tip Flw

React React U/Cisen Tip Flw

β β

β

= ≥

⇒ ≤ =
 (22) 

 
Constraint boundary approximations were developed in this manner for each constraint. The equations used to 

define each constraint are given in Table A of the Appendix. As can be seen from Eq.(20), two of the five 
constraints (AN2 and Tip Spd) were simple limits on a single variable. For the single variable constraints, the 
variable ranges were simply reduced to match the constraint boundaries. The remaining constraints were more 
complex. However, one of the complex constraints (Rsex/Rsin) was automatically satisfied by the reduction of the 
variable ranges for the single variable constraints. The feasible region is shown in Figure 5. 

The remaining constraints involved three variables each. It was discovered that many low values of RPM 
violated the Cx2/Utip constraint. The region of violation was a function of RPM, U/C isen, and AnsqrFrac as shown 
in Figure 6. The β1 constraint was found to be the most demanding and resulted in a feasible design space as shown 
in Figure 7. Much of the original design space violated this constraint. It was also discovered that the constraint 
surface representing the bounds for β1 ≥ 40 lay outside of the original design variable range for React. In this case, 
the lower bound for React was sufficient to satisfy this constraint. 

 

 
 

 

Feasible Region

Infeasible Region

Feasible Region

Infeasible Region

Figure 5. Constraint regions for three 
constraints. Three of five constraints are 
automatically satisfied by the range reduction 
of two design variables.

Feasible Region

Infeasible Region

Feasible Region

Infeasible Region

 
Figure 6. Constraint surface for Cx2/Utip = 0.2. At higher 
values of AnsqrFrac and U/C isen, lower values of RPM are 
invalid. 
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The predictive capability of the constraints was tested using the available data set. The design variable values 

were input into the RSAs for the constraints. Using the RSAs, all points that violated the output constraints were 
correctly identified. Now that the feasible design space was accurately identified, data points could be placed in the 
feasible data region. The results and summary of the prediction of constraint violations are as follows: 

1. Response surfaces were constructed to determine the relationship between the output constraints and the 
design variables. 

2. The variable ranges were adjusted based on information from the constraint surfaces. 
3. A 3-level factorial design (729 points) was applied within new variable ranges. 
4. Points that violated the constraints (498 / 729 points) were eliminated based on RSAs of constraints. 

Using the response surface constraint approximations, 97% of the 231 new data points predicted to be feasible lay 
within the actual feasible design space region after simulation using the Meanline code. The points that were 
predicted to be feasible, but were actually found to be infeasible, often violated the β1 ≥ 0 requirement by a slight 
amount. 

Phase 2: Design Space Refinement 
Plotting the data points in function space revealed additional information about the location of the design space 

as shown in Figure 8. A large area of function space contained data points with a lower efficiency than was desired. 
There also existed areas of high weight without improvement in efficiency. Additionally, the fidelity of the response 
surface for ηts was apparently compromised by the existence of a design space that was too large as evidenced by the 
fit characteristics given in Table B of the Appendix. These undesirable areas could be eliminated, and the response 
surface fidelity could be improved by refining the design space. The density of points could then be increased within 
the region of interest, eliminating the possibility of unnecessary investigation of undesirable points. The region of 
interest is shown in Figure 8.  

To further test the necessity of a reduced design space, five RSAs each were used to fit the data for Wrotor and ηts 
in the original feasible design space. These response surfaces were constructed using the general loss function given 
in Eq. (7) for p = 1…5. The RSA constructed using the least square loss function (p = 2) was used as a reference 
point. As seen in Figure 9, regardless of the RSA used, the error in the RSA at the data points is high at high Wrotor 
and low ηts. To improve RSA performance, additional data points could be added in these regions, or these data 
regions could be eliminated. 

Pareto fronts were constructed for each RSA set. The results are shown in Figure 10. In this case, the Pareto 
fronts differ by as much as 20%. Because the results differ significantly depending on which RSA is used, this also 
indicates that further design space refinement is necessary.  

0 < Beta1 < 40
React > 0.45

Infeasible Region

Range limit

Feasible Region

0 < Beta1 < 40
React > 0.45

Infeasible Region

Range limit

Feasible Region

 
Figure 7. Constraint surfaces for β1 = 0 and β1 = 40. Values of β1 > 40 lay outside of design 
variable ranges. 
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Figure 8. Region of interest in function space. (The quantity 
1 – ηts is used for improved plot readability.) 
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Figure 9. Error between RSA and actual data point for p = 1.1, 2, and 5. 
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The design variable bounds were further reduced to match the new design space. The new design variable ranges 
are given in Table 2. Response surfaces were constructed for the turbine weight, Wrotor, and the turbine total-to-static 
efficiency, ηts, using the original feasible design space to screen data points. Points predicted to lie outside of the 
new design space would be omitted. For the refined design space, a third set of data was required. As seen in Figure 
8, using a factorial design tended to leave holes in function space. It was possible that this could hamper 
construction of an accurate Pareto front. To prevent this, Latin Hypercube Sampling was the DOE used for the third 
data set. The points were efficiently distributed by maximizing the minimum distance between any points. By 
evaluating the best points from the second data set, it was determined that only RPM, Tip Flw, and U/C isen varied 
among these points. To ensure that this effect was captured in the third data set, additional points were added using a 
5-level factorial design over these three variables. Least square response surfaces previously constructed for the 
turbine weight, Wrotor, and the turbine total to static efficiency, ηts, were used to screen the potential data points. 
Points predicted to lie outside of the new design space would be omitted from the analysis. In summary, 

1. Only the portion of design space with best performance was reserved to allow for a concentrated effort 
on the region of interest and to increase response surface fidelity. 

2. Latin Hypercube Sampling was used over all six variables and was supplemented by a 5-level factorial 
design used over RPM, Tip Flw, and U/C isen. 

3. Points that were predicted to violate constraints or lie outside of region of interest were omitted. 
The combination of the DOEs resulted in a total of 323 feasible design points. 

  

Table 2. Original and final design variable ranges after constraint application and design space 
reduction. 

 MIN MAX MIN MAX Design 
Variable Description Original Range Final Ranges 
RPM Rotational Speed 80,000 150,000 100000 150,000 
React Percentage of stage pressure drop across 

rotor 0.45 0.68 0.40 0.57 

U/C isen Isentropic velocity ratio 0.5 0.63 0.56 0.63 
Tip Flw Ratio of flow parameter to a choked flow 

parameter 0.3 0.65 0.3 0.53 

Dhex% Exit hub diameter as a % of inlet diameter 0.1 0.4 0.1 0.4 
AnsqrFrac Used to calculate annulus area (stress 

indicator) 0.5 0.85 0.68 0.85 

Figure 10. Pareto fronts for p = 1…5 for second data set. 
(The quantity 1 – ηts is used for improved plot 
readability.) Pareto fronts differ by as much as 20%. 
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Phase 3: Construction of the Pareto Front and Validation of Response Surfaces 
 As in the second data set, five RSAs each with p = 1…5 were used to fit the data for Wrotor and ηts for the third 
data set. Pareto fronts were constructed for each RSA set and are shown in Figure 11. In this case, the Pareto fronts 
differed by a maximum of only 5%. Because the difference in the response surfaces for varying values of p is small 
for the third data set, the design space was determined to be adequately refined. 

Function evaluations from the least square response surfaces (p = 2) were used to construct the Pareto Front 
shown in Figure 12. Within the Pareto front, a region was identified that would provide the best value in terms of 
maximizing efficiency and minimizing weight. This trade-off region was selected for the validation of the Pareto 
front. The results of the subsequent validation simulations indicated that the response surfaces and corresponding 
Pareto front were very accurate. A noticeable improvement was attained compared to the baseline radial turbine 
design. The design selected had the same weight (Wrotor) as the baseline case with approximately 5% improvement 
in efficiency. The specifications for the optimum design are given in Table 3. 

 
 

Within the best trade-off region, only RPM and Tip Flw vary along the Pareto front as seen in Figure 13. The 
other variables are constant within the trade-off region and are set to their maximum or minimum value. This 
indicates that increasing the range of one of these variables might result in an increase in performance. The 
minimum value of the variable React was chosen as the only variable range that could reasonably be adjusted. The 
validation points were simulated again using a reduced React value. Reducing the minimum value of React from 
0.45 to 0.40 increased the maximum efficiency only for Wrotor > 1. The maximum increase in efficiency improved 
from 4.7% to 6.5%, but this increase occurred outside of the preferred trade-off region. It was further determined 
that using a React value of 0.40 resulted in a turbine design that was too extreme. 

Based on the results of the current study, several observations can be made concerning the design of high-
performance radial turbines. The trends of the trade-off designs are shown in Figure 13. 

1. The more efficient designs have a higher velocity ratio based on the rotational speed as shown by U/C isen 
in Figure 13. This is a result of the inlet blade angle being fixed at 0.0 degrees due to structural 
considerations. Classic radial turbine designs have velocity ratios of approximately 0.70. 

2. The more efficient designs have a smaller tip radius and larger blades (AnsqrFrac) as compared to designs 
with a larger radius and smaller blades. Increasing the annulus area leads to higher efficiencies. In this case, 
the annulus area (AnsqrFrac) is set to the highest value allowable while respecting stress limitations. 

3. The higher performing designs have higher rotational speeds (as compared to the original minimum RPM 
value of 80,000 given in Table 1) as a result of the smaller radius and large blades. The higher rotational 
speeds also lead to more efficient pump operation. 

 
 

Table 3. Baseline and optimum design comparison. 

Objectives Description Baseline Optimum 
Wrotor Relative measure of “goodness” for overall weight 1.147 1.147 
ηts Total-to-static efficiency 85.0% 89.7% 
Design Variables  Baseline Optimum 
RPM Rotational Speed 122,000 124,500 
React Percentage of stage pressure drop across rotor 0.55 0.45 
U/C isen Isentropic velocity ratio 0.61 0.63 
Tip Flw Ratio of flow parameter to a choked flow parameter 0.25 0.30 
Dhex % Exit hub diameter as a % of inlet diameter 0.58 0.10 
AnsqrFrac Used to calculate annulus area (stress indicator) 0.83 0.85 
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Figure 11. Pareto fronts for p = 1…5 for third data set. 
(The quantity 1 – ηts is used for improved plot readability.) 
Pareto fronts differ by no more than 5%. 

trade-off regionbaseline trade-off regionbaseline

 
Figure 12. Pareto Front with validation data. Deviations 
from the predictions are due to rounded values of the 
design variables (predicted quantities use more significant 
digits). The quantity 1 – ηts is used for improved plot 
readability. 
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Phase 4: Global Sensitivity Analysis 
A global sensitivity analysis was conducted using the response surface approximations for the final design 

variable ranges given in Table 3. The results are shown in Figure 14. It was discovered that the turbine rotational 
speed RPM had the largest impact on the variability of the resulting turbine weight Wrotor. The effects of the 
rotational speed RPM along with the isentropic velocity ratio U/C isen make up 97% of the variability in Wrotor. All 
other variables and variable interactions have minimal effect on Wrotor. For the total to static efficiency, ηts, the 
effects of the design variables are more evenly distributed. The reaction variable, React, has the highest overall 
impact on ηts at 28%. This information is useful for future designers. For future designs, it may be possible to 
eliminate all variables except RPM and U/C isen when evaluating Wrotor, while for ηts it may be necessary to keep all 
variables. 

It must be noted that the local variability at any given point can vary significantly from the global sensitivity 
values due to the nonlinear nature of the RSAs. However, the global sensitivity analysis can be scaled to the region 
of interest to explore more localized effects. 
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Figure 13. Variation in design variables along Pareto Front. 
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Figure 14. Global sensitivity analysis. Effect of design variables on (a) Wrotor and (b) ηts. 
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V. Conclusion 
The radial turbine optimization process began without a clear idea of the location of the feasible design region. 

Response surfaces based on output constraints were successfully used to identify feasible design space. The new 
design space was found to be too large to accommodate the construction of accurate response surface 
approximations for the prediction of turbine total-to-static efficiency. Reduction of the design space eliminated 
poorly performing areas while improving response surface fidelity. Using the Pareto front information, a best trade-
off region was identified within which the Pareto front was validated. In general, the best designs had high velocity 
ratios, large blades to extract the maximum energy from the flow, and high rotational speeds as a result of the small 
radius and large blades. A global sensitivity analysis provided a summary of the effects of design variables on 
objective variables. The rotational speed had the highest impact on the turbine weight, while all variables 
investigated had a significant impact on the efficiency. At the same weight, the RSA optimization resulted in 
approximately 5% improvement in efficiency over the baseline case. 

Future work will include a comparison of the 1-D Meanline code results of the selected optimum case with a full 
3-D simulation to determine if the efficiency gains are comparable over the baseline case. The next step in the radial 
turbine design process will be to conduct a blade shape optimization. 

Appendix: Details and Statistics on Selected Response Surface Approximations 
Supplemental information on various response surface approximations are given in Table A and Table B. Table 

A lists the specific response surface approximations for the variable constraints that are used throughout the 
analysis. The constraint approximations limit the number of infeasible points computed by the Meanline code. The 
methodology for obtaining the approximations is given in Phase 1 of Section IV. Table B details the statistics of the 
response surface approximations for the objective functions before and after reduction of the design space with 
design variable ranges given in Table 2. The various methods of measuring the accuracy of fit for RSAs are given in 
Section III.A.  Before reduction of the design space, R2 and R2

adj were low for the total-to-static efficiency ηts.  
Considerable improvement was attained after the design space was reduced, resulting in lower RMS error and R2 
and R2

adj values approximately equal to unity. 
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Table A. Specified output constraints with corresponding design variable constraints 

Output Constraint Design Variable Constraint Approximation 
2 850AN ≤  0.85AnsqrFrac ≤  

2500Tip Spd ≤  0.637U/C isen ≤  
0.2Cx2/Utip ≥  2 235364 270000 34282 258149 12470 38090RPM U A U AU A≥ − + + − + −  

1ß 0≥  2 20.234 2.28 0.745 3.04 0.356 1.11React U T U TU T≤ + + − − −  
0.85Rsex/Rsin ≤  2 20.291 0.487 2.47 4.78 4.49 2.19AnsqrFract U D U DU D≤ − + + + − −  

where , , ,U U/C isen T Tip Flw D Dhex % A AnsqrFrac≡ ≡ ≡ ≡  

Table B. Response surface fit statistics before and after design space reduction. 

 Wrotor ηts  Wrotor ηts 
 Before design space reduction  After design space reduction 
R2 0.987 0.917  0.996 0.995 
R2

adj 0.985 0.905  0.996 0.994 
Root Mean Square Error 0.094 0.020  0.0235 0.00170 
Mean of Response 1.04 0.771  1.04 0.844 
Observations  224 224  310 310 
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