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ABSTRACT
The DIRECT algorithm of Jones et al. is a simple

and effective Lipschitzian-based global optimization al-
gorithm which does not need the evaluation of gradients.
However, the local convergence rate is relatively slow
when compared to popular quasi-Newton techniques. By
incorporating the judicious use of gradients, modifica-
tions are proposed that result in a new algorithm. This
new algorithm still covers effectively the design space
and eliminates regions which are non-optimal but has the
benefit or a fast local convergence rate.

A comparison is made using six standard test prob-
lems showing that utilization of gradients is beneficial
not only for convergence but also during the first few it-
erations.

1 Introduction
We consider the unconstrained optimization prob-

lem with simple bounds, i.e.:

'Address all correspondence to this author.
* Copyright ©1998 by Sigurd A. Nelson II and Panos Y. Papalam-

bros. Published by the American Institute of Aeronautics and Astro-
nautics, Inc., with permission.

mm

i • - I fsubject to -J

(1)

A local optimizer is a point x* such that /(x*) <
/(x) for all x in some neighborhood around x^. For ex-
ample, consider the one dimensional minimization prob-
lem

mm sin(.x)-f-sin(yjc)

(2)
subjectto 2.7<x<7.5

taken from Timenov15 and Hansen et al.7 Figure 1 shows
that points x^, XB, and xc are all local optimizers of (2).

Many methods, including the popular quasi-Newton
and conjugate-gradient methods (see, for example, Den-
nis and Schnabel1 or Gill et al.4) are fast, efficient, and
explicitly designed to find local optimizers.
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Figure 1. On the interval [2.7,7.5], the unconstrained mini-
mization problem (2) is an example of an unconstrained mini-
mization problem with several local solutions.

However, a global optimizer is a point x* such that
/(x*) < /(x) for all feasible x. (In Figure 1, XB is the
global optimizer.) In general, finding the global solu-
tion is more difficult than finding a local solution. Ge-
netic algorithms,5 simulated annealing,10-12 and multi-
start techniques2-6'14 require many more function calls
than local techniques and do not necessarily guaran-
tee that the global minimizer is found in a finite num-
ber of function calls. Deterministic methods such as
Lipschitzian algorithms, space-covering algorithms, and
branch-and-bound algorithms (see, for example, Horst
and Tuy8) are guaranteed to find the global minimizer,
but still require a large number of function calls.

One approach to balance the advantages of different
algorithms is to switch between two or more algorithms
(see Kleinmichel et al.11). For example, one may start
with a convex approximation method or a genetic algo-
rithm and switch later to sequential quadratic program-
ming. This approach can be successful when tuned to
particular applications, but there is often little mathemat-
ical reasoning when to switch algorithms.

In this paper, a global optimization algorithm is
combined with a Quasi-Newton trust region algorithm
so that the steps performed at every iteration are iden-
tical. In the resulting algorithm, a global minimizer is
obtained and the local convergence rate to that minimizer
is q-superlinear.

An overview of a global optimization algorithm by
Jones et al.,9 and a trust-region based quasi-Newton al-
gorithm is given in Sections 2 and 3, respectively An al-
gorithm that combines the speed of the quasi-Newton al-
gorithm and the robustness of the global one is presented

in Section 4. In Section 5 numerical examples are given
followed by a discussion and closing comments in Sec-
tion 6.

2 The DIRECT Algorithm
In the DIRECT algorithm of Jones et al.,9 the design

space is divided into rectangles. A decision process then
selects rectangles which show promise for containing the
global optimizer, and those rectangles are further subdi-
vided. Here we explain how potentially optimal rectan-
gles are chosen without the explicit use of a Lipschitz
constant and then subdivided. The DIRECT algorithm is
then outlined.

A Lipschitz constant is essentially a bound on the
rate of change (i.e. the derivative) of a function, and
knowledge of the Lipschitz constant can be used to place
bounds on the both the distance from a solution and the
extremal value of a function within a given region. A
function / is said to be Lipschitz continuous over a re-
gion X C 91" with Lipschitz constant K if for any two
points x and y in X,

(3)

In global optimization the utility of a Lipschitz constant
stems from rearranging (3) in order to establish a lower
bound of the objective function over a predefined region.
For example, consider a rectangle with the lower left-
most point being xi and the upper-right-most point xu.
Assume for the moment that the Lipschitz constant K is
known, and that the value of the function is also known
at a point x somewhere within the rectangle. The lower
bound on the value of the objective function within the
rectangle is then:

f>f(x)-K max {||y-x||} (4)

In one dimension, a rectangle can be thought of as
an interval along a line, so that (4) can be graphically
portrayed as in Figure 2. Starting from the point where
the function is known, the lines with slopes K and —K
form lower bounds, so that

(5)
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Figure 2. Graphical depiction of how a Lipschitz constant can
be used to calculate a lower bound of a function on an interval.

where a is the distance of the farthest point in the rect-
angle from x:

a = - *,-)2, (xui - (6)
/=l

For each rectangle, it will be necessary to estimate a
lower bound on the objective function, so that rectangles
showing the promise of containing the global minimizer
can be further subdivided.

Consider now Figure 3 where the interval [xi,xu]
is divided into four intervals [*;,*'], [xf,;^], [^,^],
[xf ,-*£], and one function value fi = /(V) is given within
each interval. Using inequality (5), if the Lipschitz con-
stant were known then a bound for the minimum value
within each interval could be computed.

In engineering it is rare for a Lipschitz constant to be
known a-priori, so the concept of potential optimality9 is
introduced. A rectangle is potentially optimal if there ex-
ists a Lipschitz constant K that will make its lower bound
lower than the lower bound of any other rectangle. More
precisely, if there is a total of m rectangles in the design
space, the rectangle with index j is said to be potentially
optimal if there exists a constant K > 0 such that

fJ-KaJ<fk-Kak

for all k = 1,... ,m (7)

An intuitive graphical method for identifying potentially
optimal rectangles is shown in Figure 3. A point is plot-
ted for each interval in Figure 3. For each point, the ab-

Figure 3.
lem (2) on
tervals.

A plot of the one-dimensional minimization prob-
the interval [2.7,7.5] subdivided into several subin-

Not Potentially Optimal -

Potentially Optimal

0.5 1
distance to edge of interval

Figure 4. Potentially optimal rectangles can be determined
graphically by plotting a7 along the abscissa and the function
value along the ordinate. The potentially optimal rectangles have
points in the lower convex hull.

scissa is given by a-' and the ordinate is the known func-
tion value within that interval. For a given value of K, the
lower bound of the objective function for each rectangle
is found by drawing a line with slope K from the corre-
sponding point (a,/) to the v-intercept. As discussed in
Jones et al.,9 a rectangle is potentially optimal if it is in
the lower convex hull of the points in Figure 4.

Once a set of potentially optimal rectangles has been
selected, each rectangle is subdivided into smaller rect-
angles. In the original DIRECT algorithm, the manner
in which rectangles are subdivided is based on a few key
insights: First, a function call is made as close as possi-
ble to the center of any rectangle. Second, in the absence
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Figure 5. Examples of how rectangles are subdivided and sam-
pled in one, two, and three dimensions.

Figure 6. The first, second, third and eighth iterations of the DI-
RECT algorithm when applied to the optimization problem (8).
The potentially optimal rectangles are shaded and are subdi-
vided during the next iteration. The respective number of func-
tion calls is 1, 5, 13, and 113.

of any directional (i.e., gradient) information, rectangles
are subdivided as evenly as possible. Thus, any poten-
tially optimal rectangle is subdivided into In + 1 rect-
angles, with each new point being along the coordinate
directions from the point in the center of the original rect-
angle. This process is shown in Figure 5.

The DIRECT algorithm is now summarized as fol-
lows:

Algorithm 1 (The DIRECT Algorithm)
1. Start with a set of points {x-7} and corresponding up-

per and lower bounds x^ and xj' representing the sur-
rounding rectangle for each x;.

2. Identify those points whose rectangles are poten-
tially optimal.

3. For every potentially optimal point, subdivide the
corresponding rectangle into 2rc + 1 new rectangles.

4. Check stopping criteria. If appropriate, go to Step 2.

In Figure 6, a few steps of the DIRECT algo-
rithm are portrayed for the two-dimensional minimiza-
tion problem:

The concept of potential optimality allows for a bal-
ance between smaller rectangles with good function val-
ues and large unexplored rectangles, so during every it-
eration many rectangles can be subdivided. The result is
a simultaneous covering of the design space and a heavy
concentration of points near the global optimizer.

The DIRECT algorithm does have some drawbacks.
First, the local convergence rate is slower than bisection
because no gradient information is used. Second, un-
less some upper limit on the Lipschitz constant is known,
the stopping criterion is simply a limit on the number of
function calls. The net result is that DIRECT becomes
slow and expensive in higher dimensions and near the
solution.

3 Quasi-Newton Trust Region Algorithms
In the popular quasi-Newton trust region methods,

at each iteration the function / is quadratically estimated
around the current point x-7 (the superscript j denotes the
iteration) by /apnc using the gradient V/(x;) and an esti-
mate of the Hessian B;. Subsequent iterations are calcu-
lated by minimizing the approximate model:

m n

,. ttsubject toJ

min /aprx = fJ + VfJs + isrB's
s € 91" (9)

(8) subjectto ||s||°o < A

The trust region radius A is necessary because (i) it is
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possible for B-' to be indefinite, so that (9) may be un-
bounded if there were no restriction on s; and (ii) the
approximate model (9) is only useful in the region sur-
rounding x-7 where /apix gives reasonable predictions for
descent directions.

At every iteration, the trust region is modified when
the approximate model /apix gives a good prediction for
the change in the objective function using the rule:

max{2A,4||s;'||=o} if0.9 < r
= ^ A ^ if0.1<r<0.9 (10)

min{A/4,||s-7'||oo/2}ifr<0.1

where r =
/aprx(0)-/aprx(^)

The resulting algorithm is summarized as:

Algorithm 2 (Quasi-Newton Trust Region)
1. Set the iteration counter j — 1. Choose some x1 as

an initial point and B1 as an initial Hessian estimate.
Define a trust region radius A1 > 0.

2. Solve the approximate problem (9) and denote the
solution S-7'. If s-7 = 0 then stop.

3. Calculate the objective function /, the approximate
penalty function /aprx. and ratio r at the point x-7 + s-'.
If r > 0 (i.e., the step produces descent) go to Step 4;
otherwise set A-' = ||s-/||,>5/4, xj+l = xj, j = j + 1,
and go to Step 2.

4. Alter the trust region radius according to (10).
5. Generate B-7'*1. Set x;'+1 = x-' + s-7, j - j + I and go

to Step 2.

Because the Hessian estimate need not be posi-
tive definite, a straightforward BFGS update without the
Powell safeguard for positive definiteness13 is used.

Quasi-Newton methods are powerful and fast, usu-
ally characterized by q-superlinear convergence. That is,
if a point x-7 is close to a local minimizer x* and the Hes-
sian estimate B is close enough to the Hessian V2/(x*),
then every iteration will be closer to the local minimizer
in the following manner:

for all j greater than some jo (ID

where each c-7 is not only less than one but also vanishes
as j tends to infinity. Even though q-superlinear behavior
is a strong statement, the algorithm will only converge to
a nearby local minimizer because there is no mechanism
to search elsewhere in the design space.

4 A Faster Global Optimization Algorithm
The global optimization algorithm discussed in Sec-

tion 2 and the quasi-Newton algorithm discussed in Sec-
tion 3 have weaknesses and strengths that are comple-
mentary: The DIRECT algorithm can find a global opti-
mizer but has very slow local convergence, whereas the
quasi-Newton algorithm has no mechanism to find the
global optimizer but has fast local convergence. One is
tempted then to examine how to blend these two algo-
rithms in a manner that preserves the strengths of each.

In the proposed algorithm, the design space is subdi-
vided into rectangles, and potentially optimal rectangles
are further subdivided. The difference is that not all po-
tentially optimal rectangles are divided in the same man-
ner. Most rectangles are divided in the manner described
in the original DIRECT algorithm. However the point
corresponding to the best known function value is used
to calculate a single quasi-Newton step by solving:

m n

subject to x\i < ;c/ + sf < *„
(12)

The quantities B-7 and A^ depend upon how the point x-'
was originally determined. If x-7 was the result of a quasi-
Newton calculation during some previous iteration, then
it is possible to estimate B-7 using previously obtained
gradient information. Additionally, an appropriate value
for A-7 is also available based on past calculations. If x-7

was not the result of a quasi-Newton calculation during
some past iteration, reasonable default values can be used
such as the identity matrix for B-7 and A-7 = 1.

Two procedures must be performed with the new
point x-7"1" = x-7 + s-'. First, x;+ may not necessarily reside
in the same rectangle as x-7, so the rectangle containing
xi+ must be identified and divided into two new rectan-
gles, with x-/+ as close to the center of one of the new
rectangles as possible.

Second, if/(x-7"1") < /(x-7), then x-7 has successfully
been used to calculate a new point, it is reasonable to
assume that xj+ is closer to an optimum than x-7. There-
fore, if during future iterations a rectangle containing x-'
is ever deemed potentially optimal, then it is only sub-
divided into thirds along the longest side, as opposed to
being divided into In + 1 new rectangles.

The newly proposed algorithm is outlined below:

Algorithm 3 (The Modified DIRECT Algorithm)
1. Start with a set of points {x-7}. For each point x-7
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there is a corresponding upper and lower bounds Xj[
and xi.

2. Identify those points whose rectangles are poten-
tially optimal.

3. Of the potentially optimal rectangles, identify the
rectangle containing the best function value. For the
moment, denote this point x^st.

4. For the point x^st:

(a) define a new point x-7"1" = x£st + sj by through
the use of (12);

(b) Find the rectangle which contains x;+ and di-
vide it into two rectangles so that xj+ is as
close as possible to the center of the new rect-
angle.

5. For every potentially optimal rectangle that has not
been used to successfully produce a point via (12),
divide it into 2n+l new rectangles as described in
the original DIRECT algorithm.

6. For every potentially optimal rectangle which has
been used to successfully produce a point via (12),
divide it into 3 new rectangles along the longest
edge.

7. Check stopping criteria. If appropriate, go to Step 2.

For most quasi-Newton algorithms, if the current
point is close enough to a local minimum, then every
iteration produces a point with a better objective func-
tion. With respect to the modified DIRECT algorithm,
this means that if x^st is close to the global minimizer x*,
then /(x;+) < /(x£st). Therefore, during the next itera-
tion the rectangle containing x;+ will not only be poten-
tially optimal, but the point will be used as the basis of
another quasi-Newton step. The result is that once the
modified DIRECT algorithm finds a point close enough
to the global minimizer, a sequence of points is calcu-
lated which converges q-superlinearly to the global min-
imum.

In contrast to multi-start and a number of other
global optimization algorithms, in the modified DIRECT
algorithm every iteration consists of the same steps.
There are no separate phases for the local and global
search, yet a fast local convergence rate is still achieved.

In order to compare with the original DIRECT al-
gorithm, Figure 7 portrays a few steps of the modified
DIRECT algorithm when applied to (8). Although intu-
itive, it is difficult to rigorously explain how the use of
a gradient helps during the first few iterations, long be-
fore q-superlinear convergence is evident. However, with
the computational results discussed in Section 5, the im-
provement was indeed evident.

Figure 7. The first, second, fourth and eleventh iterations of
the modified DIRECT algorithm when applied to the optimization
problem (8). The respective number of function calls (including
those used for finite differences) is 3, 6,12, and 31.

5 Numerical Examples
When comparing the DIRECT and modified DI-

RECT algorithms, we report the number of function calls
required to find a point within some tolerance e/.

£f = I/YX) — f*\ (13)

In all cases, the algorithms were run for several more
iterations than were necessary and we report the first
point which satisfies the tolerances of e/ < 0.01 and e/ <
0.0001. The six unconstrained minimization problems
used in this study were originally proposed by Dixon and
Szego,3 so the locations of the optima are known. The
number of dimensions and local minima are summarized
in Table 1. The number of function calls (including those
needed for finite difference estimations of gradients) re-
quired to meet or exceed set limits of e/ is summarized
in Table 2.

It should be noted that there is a minor difference be-
tween the implementation reported here and the original
DIRECT implementation of Jones et al. The DIRECT
implementation of Jones et al. uses a more sophisticated
method of subdividing rectangles by examining the func-
tion values prior to dividing the rectangles.

From Table 2, it can be seen that the modified DI-
RECT algorithm represents a substantial improvement
over the original DIRECT algorithm. In nearly all cases,
the number of function calls required to locate the global
optimizer was reduced by a factor of two or more. How-
ever, the results presented here can be somewhat deceiv-
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Table 1. Number of dimensions and local minima for the test
problems. Every test function had one unique global minimizer.

Shekel 5

Shekel 7

Shekel 10

Hartman 3

Hartman6

Goldstein & Price

Dimension

4

4

4

3

6

2

Local Min-
ima

5

7

10

4

4

4

Table 2. Number of function evaluations required for the DI-
RECT (D) and modified DIRECT (mD) algorithms to find points
whose objective function value is within a set tolerance of the
global optimum. These figures reflect the additional function
calls necessary to evaluate finite differences.

Shekel 5

Shekel 7

Shekel 10

Hartman 3

Hartman 6

Goldstein & Price

e/ < 0.01

D

371

187

187

194

33559

113

mD

55

85

76

111

81

45

e/ < 0.0001
D

707

278

286

1833

> 50000

201

mD

90

174

180

139

81

65

ing because the criteria do not address the robustness of
the algorithms. For both the DIRECT and modified DI-
RECT algorithms, it is possible that the algorithms found
the global optimizer quickly, but that more function calls
would be necessary to verify that the global optimizer
is indeed found. This is most noticeable for the Hart-
man 6 test problem, where the modified DIRECT algo-
rithm reached the global optimum in 75 function calls,
but needed to run hundreds more to verify that the op-
timum was found. In effect, more reliable and prudent
stopping criteria are needed for both algorithms.

With that said, the results presented in Table 2 imply
that the use of gradients can speed up a global optimiza-
tion algorithm.

6 Conclusions
In this paper, we have modified the DIRECT global

optimization algorithm to speed up the local convergence
rate by combining a trust region step. The resulting al-
gorithm retains the strong qualities of both algorithms in
that in that the global optimizer is found and the conver-
gence rate to the global optimizer is fast.

The computational results verify that the additional
use of gradients and a local search mechanism does in-
deed make the algorithm faster, but work is still needed
in order find more satisfactory stopping criteria.
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