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TECHNIQUES FOR IMPROVED CONVERGENCE IN NEIGHBORING OPTIMUM GUIDANCET

William F. Powers™
The University of Michigan, Ann Arbor

Abstract

In the application of neighboring optimum feed-
back guidance schemes the choice of the optimum
reference state to compare with the perturbed
state is not straightforward. Recent studies have
shown that time-to-go ig preferable to clock time
and performance index-to-go as a lookup parame-
ter. In this analysis the basic theory of neighbor-
ing optimum guidance is used to motivate a new
lookup parameter called min-distance which is de-
termined by minimizing a suitable metric function
of the perturbed state and the reference trajectory.
This lookup parameter does not require an estima-
tion of the perturbed final time whereas time-to-go
requires such an estimate, A comparison of time-
to-go and min-distance is simulated for Zermelco's
problem, and it is shown that the neighborhood of
convergence about the nominal trajectory is en-
larged considerably with the min-distance lookup
parameter technigue.

I. Introduction

In recent years the idea of using a linear (and
possibly higher order) perturbation of a predeter-
mined optimum trajectory for the feedback gui-
dance of space vehicles has been advanced by a
number of investigators.{1~5) The name most
commonly associated with this approach is neigh-
boring optimum guidance, and the fundamental
problem which motivates the technique is the fol-
lowing:

Fundamental Problem; Let {x*(t), wH{t), Aok(t),

t € [to, tz]} denote a nonsingular optimal trajectory
{the nominal) such that J =&(tp, x5} is minimized
and the following conditions are satisfied:

le:ﬁo) =% (i=1,...,n (1
Niﬁf, x*(tf)} =0 (i=1. ;P =0 {2)
R(t) = £ [t win] (=1 n) (3)
or
k=i==(t)=f.l[t,x=’=(t),u[t,x=l=(t).k*_(t)]], {i=1,....n0 ({4
where
u(e) = gyt x(t, M E) {i=1,...,m) (5)

are defined by the maximum principle. Let
(%1, ...,xy) be given. Determine a guidance pro-
gram based on the nominal trajectory which
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transfers the vehicle from (x;,,...,x%,) to Ni(tf,xf)
=0(i=1,...,p) while minimizing J = (I){tf, xf).

In References 1-4 techniques are developed fo
determine guidance functions of the form

n
() = ufit) + JZ:)1<3~].Lj('r,t)[xj - XJ ™71, (6)

where T € [t ,Tf] is a parameter which associates
the stored nominal values 1\3 {t) - Gyjlr, 1), xj ()
with the current state (x;,...,xp), i.e., a 'look-
up parameter''. The time functions Gjj(r,t) are
the linear feedback gains for the guidance function
In Reference 5 a technique is developed to deter-
mine the initial Lapgrange multipliers, associated
with the point (%;,...,%n), which can then be used
to integrate the equations of motion and Euler-
Lagrange equations, When the resultant solutions
are substituted into Eqs. (5) the guidance function
is determined,

In this paper the underlying theory of neigh-
boring optimum guidance is used to motivate new
techniques which enlarge the neighborhood of con-
vergence about the nominal trajectory, The tech-
niques are applied to an autonomous problem and
suggestions are given for nonautonomous prob-
lems.

1I. Theoretical Basis for Neipghboring
Optimum Guidance

In this section classical imbedding and im-
plicit function theorems from the theory of differ-
ential equations will be used to define the range of
applicability of neighboring optimum guidance,
Portions of this section are just applications-
oriented interpretations of Silber's excellent
work, (5)

Consider a nonsingular optimal trajectory
problem for which the maximum principle has
been applied to obtain the transversality condi-
tions and controls as functions of the state, La-
grange multipliers, and time (in general). Then,
the following equations must be satisfied on an
optimal trajectory:

k= (5,0 i=1,...,m m
LA 2N i=1,...,m {8)
x;(t) = x; (i=1,...,n (9)
M (6 %) =0 E=1,...,n+1) (10)

where Egs. (10) represent both the geometrical
terminal constraints and the transversality condi-
tions. We ghall usually dencote Egs. (7)-{10) as
vectors, e.g., x = f{t,x,\}, etc,
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For a neighboring optimum guidance functicn
to exist, the functions involved in Eqs. (7j-(i10j)
must satisfy the following conditions,

ASSUMPTION 1: There exist real numbers rj

> 0(i=0,...,2n) for each (t,x,7\) €S,={(t,x,\}
such that the vector functions f{t,x,\) and g(t,x,X)
can be represented by convergent Taylor series
expansions about the points (¥,%, %) ¢ 8, (di.e., S,
is the set of points at which the functions are ana-
lytic) in a neighborhood N; of (t,x,?\) , where N, =

{1t-Tlerofx, - % <ry,... Asp - Rl <rpg, hy- 81
< Pptyse s hnm Al < ran Also, there exist
real numbers Ri> 0 (i = 0,,..,2n) for each

{t,x,z) €8, ={t,x,0)} such that the vector func-
tion M {ty, x5, M8), when con51dered as a function of
(t,=,\), is analytic at each (t %,%) € 5, where the
Taylor series is Valld in a neighborhood N, =

{1t-T] < Ro, ..., Ing - R4 < Rop}.

The first step in the application of a neighbor-
ing optimum guidance scheme ig the determination
of a reference optimazl trajectory, which we shall
call the nomirnal trajectory. Actually such a tra-
jectory is a particular solution of Xqs. (7) - (10)
which satisfies additicnal conditions,

ASSUMPTION 2 (THE NOMINAL TRAJECTORY):
Let x = %), X = ¢*(t) represent a particular solu-
tion of Eqs. (7) and (8) which satisfies _the boundary
conditions (9) and (10) on the interwval [to,tf] Fur-
thermore, assume that the particular solution
satisfies the following conditions:

(@) (t,o%(t), g t)re 3, for cach t € [T, tf);
(B} (ip o¥(t), w5 (30) €525

{c) {t LH(t ) (e ] =0;

(d) VL[tJ¢=_=<(t), MEIGN! f 0 for each t ¢ [?o,"t"f) ;
BMF,. .., M, )

() 8(_tf, q_‘;::(t), \b“ o #0 for eachte [ £ to, f)

Cendition (a) requires the functicons flt,x,N)
and git,x,\} to be analytic at each point on the
nominal; (b} requires M{ts, x¢,%¢) to be analytic at
(t£,%,%5); (¢) and (d) require that the terminal
conditions be satisfied once and only once on the
nominal; and {e) i a consequence of the implicit
function theorem which guarantees the existence of
the desired feedback guidance function,

There exists a close relationship between con-
dition (e) and the generalized Jacobi test of Refer-
ence 6 (where the elements of a matrix - RG7R
must be finite in order that a neighboring optimum
guidance function exist). To verify that condition
(e) is satisfied, one must show that the determi-
nant of the (n+ 1 X n + 1) matrix [ay; by ijto) 1,
i=1, ,a+ Y j=1,...,n, is nonzero at each
ty€ [_0, tf where:

4‘
7 81: Z( e

M
5 g )J
k )’<_
kf (t, x> (. ph Mt )

=2

o i [8Mi * B9 tg 5t0, 30, No) ¥
ij-e SREEW: a}\j (to)
k=1 tf

* alJJk f,to,xo,)\o) *
37\j (to) ]

aM,
i
an

+

Kf|—
b

The functions in the above equations are defined
by Egs. (7), (8}, {10), and Theorem 1, and the
partial derivatives d¢i/a\j, au,k/axJ may be ob-
tained by integrating the adjeint system of the
variaticnal equations of Eqgs, (7) and (8) backward
from tf.

If Assumptions 1 and 2 are valid, then the
following theorem is true.

THEOREM 1 (NEIGHBORING OPTIMUM GUID-
ANCE): TIf Assumptions 1 and 2 are satisfied,

then there exist functions ${t;ty, %0, Mo, ke (E; 1o, %o, Mol,
i.e., general sclutions, such that:

(i} there is a real number p > 0 such that
for each to € € [T,.T.] and for each {xg.7g)
such that ¥ (|X10 PAltat] + o - 0t < p

the functions d(t;tg. xg, o) and pt;ty Xq, Ao}
are general solutions of x=1f(%, x,\} and
X = g{t, x,\), respectively, on [T, T¢];

(1) dltosty, Xo,he) = %o, Pltgity, X0, hg) = No;

(111)  dft;tp, %o, ho) and Pltity, %y, ko) are analyt-
ic functions at each (t, 15, Xp,Ap) € S;
where S; = {{t, tg, %o, he): t € [To,T(l,

to€ [y, 7T, i%IUXio' lﬂt(tn)[ + lkio"l’r(to)l)
< p}.
(iv) ¢(tt°,x0, A = oMY and gtk 2T )

= u#(t} for each t € [T .%5]:

{v) the vector function M[Tz, & Trte, x3 2 %),
(Tt 23051 = 0 defines implicitly the
functions kg = Ag{te, %0}, tp = T{tg, %)
which exist and are unigque, analytic
functions of t;, and %, in some neighbor-
hood of (t§, x*o) .

Conditions (i} - {iv) define the properties of
the analytic solution of Eqgs. {(7) and {8}, and the
proof is a straightforward modification of Theo-
rem 8. 2 {page 35} in Reference 7. Condition {v)
which actually defines the neighboring optimum
guidance function, i,e,, Aglte, %¢), and the cutoff
equation, i, e., Tylty, %}, is a consequence of
classical implicit function theorems for analytic
functions discussed in Reference 8. In the next
gection the conclusions of Theorem 1 will be inter-
preted further with regard to the implementation
of a neighboring optimum guidance scheme.

III. Implementation of Neighboring
Optimum Guidance

Theorem 1 describes the properties of the



pertinent functions involved in the optimal guidance
problem. These results may then be applied in
varicus ways to guide a space vehicle. Poggible
implementations will be discussed in this section.
Since methods for the computation of the partial
derivatives of Agq{ty. %o) and Tf(to,xn) by numerical
means are presented in References 2-5, 9, 10, we
shall not be concerned with the problem of numeri-
cally calculating the functions discussed below.

Suppose that one has determined representa-
tions for the functions Ag{ts. %) and Tglte. x,).
Then, given a state xg and a time t,, the
initial Lagrange multipliers which will cause the
vehicle to be transferred from x, to M({ty X, 0 g) =0
are determined by Aty %g). and the transfer time
is given by Ti{te, Xo). Since the vehicle is guided
by the control commands of Egs. {5), i.e., ult}
= ul t. {151y %0, Aolto, X)), Phite, %o Holte X)), an
on-board forward integration capability is neces-
sary. That is, the function Aglts x¢) gives only the
initial conditions for the coptimum Lagrange multi-
pliers. Thus, to obtain the control as a function of
time, the equations of motion and Euler-Ilagrange
equations must be integrated forward to determine
the functions x{t) = &[t;te, %o, Aglte X¢)] and A {t)
= Ultitg %o Aglte. Xo)] for substitution into Egs. (5).

In References 2,3,4, 9, end 10 the feedback
guidance function u(t, ty, x4) is obtained directly
from the analysis as a power series in tp and X¢ -
Usually only the linear terms are considered.

Note that the feedback guidance function obtained
by integrating a linear approximation of Aylt,, x4

to obtain $ft;te. %o, Aglte, xo)] and t;ly, e, Aglte. %)),
which are then substituted into ult, x, )}, is not nec-
essarily a linear function of iy and x4, Since the
same amount of ground-based computation goes
into the determination of the linear approximations
of Aglte, xp} and ult, tg, %}, it might prove advan-
tageous to allow for forward integration in the on-
board guidance scheme. Indeed this is the case
since, as we shall show below, the linear u{t, tg, xg)
representation is just a first-order approximation
of the feedback control which is formed by integra-
ting the linear Aylty, %) repregentation.

First, let us derive the linear u{t, te, x¢) ap-
proximation which is equivalent to the linear guid-
ance functions of References 2,3, 4, 9, and 10,
Consider Egs. (5}, i.e., u; = p,i(t, x,\). Then, the
neighboring optimum guidance function is defined
by up = plt, olt;te, %o, Aolte, Xa)), W(E;te. o Aglte, X)) ].
Assume that the functions py are analytlc functions
of ty and x4 about the point (t ,x,,) (Note that we
are imposing an additional analytlmty assumption
to obtain a linear approximation of u{t, ty, xg).)
Then, to first-order:

u, ."{’p.[t titgh xXk Ao(t xg‘)) Plt; t& &k Aoltd xi]

B [rmd g ey T
+ ) =2+ {to - t&)
ij 3to axko Btg o0

Jj=1 =1

n

+ZZ[

j=1t=1

a¢ BA
7 ) ax( >("o'

{11)
where the zero-order term is just u;*(t).

Now let us consider the guidance function
which results from the integration of the eguations
of motion and the Euler-Lagrange equaticns with a
linear approximation of Aglty. x¢). In this case the
guidance function is composced of the following
components

u, = s dltte, Xo. A+ Akl Wt to, X0 A3+ AN ] (12)
where
on 518
Ao = ax" (o =3y + 222 (to tg). (13)

Note that the true initial values of t, and x4 are

used to form the guidance function. 7To show that
Eq. (11} is just a first-order aporoximation of Eq.
(12) one need only form a Taylor series expansion

Cof Eqg. {12} about {tg, xF \%) after noting that g
{12) can be written equivalently as
_ . * %
u, - Mi[t: Pt;tg + Atg, Xg + Axe kg + Akg),
Bt + Aty xF + Axg,N§ +ANY] (121
where, of course, Aty = to-tF, Axy = xp-x%, and

AM)g is defined by Eq. (13). Thus, the feedback
suidance function of Eg. {12} will be valid in a
larger region of the nominal trajectory than the
guidance function of Tq. (LI}, This is verificd
numerically for a simple exarnple in Scction V.

To conclude thig gection & brief discussion of
the cuteff-equation Tf{to, xg} will be presented. The
main purpose of this equation is to determine the
time when, theoretically, the terminal conditions
are satisfied. Since the perturbed trajectory will
probably never satisfy all of the terminal condi-
tions with a linear neighboring optimum guidance
scheme, it might be desirable to chooge & cutoff
condition which is a function of the current state
and will closely approximate mission fulfillment
fe.g., a velocity cutoff condition), or include a
separate terminal guidance phase. In such cases
there is noneed for the Tz(ty, xorequation, Further,
inSection Vitis shownthat the Taylor series expan-
sion for Tf(tn, %g) is very slowly convergent when com-
parcd tothe Aylty, Xp)-expansion for Zermelo's prob-
lem. Thus, one should consider the possibility of
avoidingthe T(ty, %o} equation in the applicationof a
neighboring optimuin guidance scheme,

IV. The Min-Distance Comparison Technique

" In the application of neighboring optimum
guidance the choice of the nominal reference state
to compare with the current {perturbed) state is
not straightfcrward. For example, assume that

. M) (or u¥(t)), and the feedback guidance
gams _say G%(t), sre stored on-board for each
te[to, t;] (or, for eacht; €[k, Tl i=1...,9;i.e.,
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a finite number of data points). Suppose when the
clock time is equal to 1, that the vehicle is at the
state x. A possible way of comparing this state
with the nominal trajectory is to choose the values
x¥{ ), A% (1, ) {or, wi(m)), and G*(r;) for the de-
‘termination of the neighboring guidance function
{i.e., clock time is the "lookup parameter').
However, x{m;) may not be close to x*{1,) whereas
x{T,) may be close to some other state on the
nominal trajectory, say x*{r;) (see Figure l}. n
References 9 and 10 an unpublished suggestion by
J. C. Dunn is used to partially alleviate this am-
biguity. In both these analyses time-to-go is used
ag the lookup parameter (e.g., in Figure l, +; is
the time-to-go lookup parameter when the per-
turbed trajectory is at 7, with time-to-go cqual to
T} and the results demonstrate that time-to-go is
superior to clock time. However, lo determine
the time-to-go one must estimate the final time
associated with the current state. This approxi-
mation depends upon the Ty(ig, x¢) -cquation. That
is, to determine the time-to-go lookup parameter
one assumes that {; is the ¢lock time, t% is the
logkup time, and tf = tp = tf - th. Then the follow-
ing equations are solved for the unknowns t; and
t’fi‘:

aT, aT,
tp =85+ g [x(toh -xx(tF) ] + By [ty - t51 (149
tf-tl,:t}"- ty {15
aT,|" 8T,

where tf :—tf —?0 . Note that since % o,

®%(t§) depend upon (} an iterative scheme will

probably be necessary to solve for the lockup pa-

rameter t5 . The solutﬂi%n of Egs. (14} and (15) is
o =

and

3

eased congiderably if =1 (which is the case

dtg
in stationary system s(w)) since then the two equa-
tions reduce to

aT

BXQ

r
3¢

[x(te) - x*(tg)] = 0 . (16)

In Reference 11 another comparison proccdure
called the min-distance technique is suggested.
This techniguée does not depend upon a Tylty xo ap-
proximation. In addition, it does not depend upon
clock time if the problem is stationary (e.g., re-
entry problems). The major motivation for the
method is that in many guidance missions the
basic geal is to transfer the vehicle from a cur-
rent state to a set of terminal conditions without
regard to how the vchicle got to the current state,
{(For example, in a reentry problem the current
position, velocity, and orientaticn of the vehicle
are the important quantities; the period of lime
that it has taken the vchicle to get to this state is
not important.}

It appears that onc cannot prove mathemati-
cally which comparison procedure is the best for
all problems. However, as the studies in Refs 9

and 10 show, the applicability of neighboring opti-
mum guidance is strongly dependent upon the
choice. Thus, in this section criteria for defining
a comparison procedure will be suggested and then
used to determine a comparison function which is
problem dependent.

Given a nominal optimal trajectory which
satisfies a specified mission, one can define linear
(and higher order) feedback gains based on the
nominal, Let x be the current state of the vehicle,
and let x#(t), t € [T, T], be the nominal state. By
Theorem 1, a first criterion for the comparison
function is that it determines a lookup parameter
which causes x to be closge to a nominal state.
This suggests a minimum distance comparison
procedure, e.g., the parameter is defined by the
valuc ef t which minimizes the distance between x
and x*(t):

1
Bl (1)) =[xy - xOF 440 -XOPF . ()

This criterion is not enough, though, since it does
not take into account the fact that the optimal con-
trol is, in most instances, relatively insensitive
to perturbations in some of the state variables
(whereas Eq. (17) treats all state perturbations
equallyy. Therefore, a second criterion is that
the comparison function should be defined in such
a way that some of the state variable perturbations
have less influence than others in determining the
lookup parameter. This criterion suggests a
weighting procedure,

By incorporating weighting factors inteo Eq.
(17), i.e.,

1
plx. x4(1) = [ Oy - x4+ (x - xx(0) T
(18)

where the ki's are sengitivity coefficients associ-
ated with perturbations in the xi's, both criteria
mentioned above may be satisfied. That is, the
lookup parameter is defined by the value of t which
minimizes E¢. (18). If the process is nonstation-
ary {i.e., time appears in the right-hand sides of
the equations of motion and/or the geometrical
boundary conditions), then time should be treated
as a state variable in Eq. {18}, e.g., x, =t {clock
time}.

Let us now consider the possibility of deter-
mining a method for computing the k;'s. The first
question to be answered is: "Which variables do
the ki's depend upon?' Since the purpose of the
k{’'s ig to indicate the sensitivity of the optimal
feedback guidance function to changes in the state
variables, it follows that k; = ki(x)’ i.e., the ki's
are dependent upon the state of the vehicle. As
will be srgued below, a deterministic method for
computing the ki's does not appear to be feasible,
However, one should be able to use physical
knowledge of the problem and numerical simula-
tions of the guidance function from perturbed states
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about the nominal to characterize the ki's. It ap-
pears likely that in many cases the ki's may be
suitably approximsaied by constants or simple func-
tions of the state.

Suppose the vehicle is at a state x. Upon
specification of the lookup parameter, t;, the
neighboring optimum guidance function can he de-
termined. Assuming that the sensitivity coeffi-
cients depend upon the state, the value of i, is de-
termined by solving

[gt- >k {x)x, -xa:ft))z] = 0 (19)
i=r bbb ey
L.
or,
n .
2300 g -y e ) < 0 (20)

Since the main goal of a guidance function is
satisfaction of the mission, and optimality is sec-
ondary, it is natural to choose the k;'s in such a
way that a function which charactevizes mission
dissatisfaction is minimized. An example of such
a function is the terminal miss distance. For this
development suppose that we wish to choose the
ki's so that the miss distance

Miss=§N?(t,x) {zN
=1 1 ff

is minimized, where Ny(tg xf), .. .,Np(tf, X¢) are
the values of the specified geometrical boundary
conditiong at the terminal point of the perturhed
trajectory. From Eq. (20}, the lookup parameter
can be determined as a function of the state and
sensgitivity coefficients, i.e.,

o= alxe, k) . {22)
Since the neighboring optimum guidance function is
characterized by the approximations Aty %)
(i=1,...,n), and ty is approximated by Tty . xo).
Eq. (21} is strictly & function of t; and x:

b
. _ 2 . . .
Miss = izz}lNi[Tf(tL. %o), LTy Xa)5ty X0, Aolt) xo)}].
(23)

where x{t) = &{t;ip Xp. ho) 1S the general solution of
the state. Finally, by Eq. (22} the miss distance
can be determined as a function of the perturbed
state and sensitivity coefficients, i.e,,

P
Miss = 2NI{(T (alxe k), xa), $(T{alxo, kb xqh;
1=1

9(%0, K, %o Aefaixo, K, %o} (24)

Therefore, the sensitivity coefficients may be de-
fined as functions of the state by minimizing Eq.
(24):
3{Miss)
Bk,

Plxe k) =0 {i=l....n {25

or. k, = K {xd. (26)

Even though the method described above does
not appear to be feasible for the computation of the
ki's, it demonstrates that deterministic methods
are conceivable. Until workable sensitivity com-
putation methods are developed, physical ingight
and numerical simulations should be sufficient for
the approximation of the sensitivity coefficients.
In the next section such a procedure willbe applied
to an example problem.

To implement the min-distance technique on-
board, one may represent the nominal trajectory
either by polynomials in time or by a finite number
of data points. In the former case a precalculated
polynomial equation in ty (i,e., Eq. (20)) must be
solved, and in the latter case a finite search for
the value of {7 which minimizes Eq. (19) may be
performed

Y. Simulation Results‘

In Reference 9 it is shown that time-to-go is a
better lookup parameter than c¢lock time for Zer-
melo's problem. Since Zermelo's problem can he
solved in closed-form, we shall also employ this
example to demonstrate the ideas presented in the
previous sectionsg. Furthermore, we shall use the
same parameter values as Kelley so that one can
consult Reference 9 for the details of the analysis.

Cansider the task of guiding a hoat from (0, 0
to (2,1} in minimum time with boat speed V =1 and
a current in the z-direction with velocity p = 0.5,
The equations of motion are

X Vcosy (27)

z = p+ V siny,

where the resultant nominal trajectory and control
angle definition are shown in Fig. 2. In Reference
9 the miss distance at cutoff was determined for
various perturbations in the initial state {0,0). 1In
that analysis a number of guidance corrections
were applied between the initial perturbation and
cutoff. In this section we shall consider only one
guidance correction and it will be applied at the
perturbed state. The reason for considering only
one guidance command is that this analysis is
basically concerned with determining the best pos-
sible command at a given perturbed state.

Before we consider the form of Zermelo's
problem stated above, it is instructive to consider
a symmetrical version with no current, i.e., Egs.
{27) with p = 0. The optimzl nominal state for this
problem is x¥(t) = 2t/N5, zu(t) = t/5 . Since the
problem is stationary, the comparison function to
be minimized is

pl = (x - 2t/N5 ¥z -t/ING Y, (28)
where k; =1 can be specified arbitrarily since

dp®/dt is 2 homogeneous function of the ki's. By
the symmetry of the problem one would suspect

that k; =1, also. Indeed, if one determines
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il =0 = t; =(10x+5k; 2 [NE (4+ k) ], (29)

and then computes x({t), z{t) with the linear ap-
proximation for Aty X, z). the terminal missdis-
tance is minimiZzed when k, =1, Furthermore,
Eqg. {29} also defines the time-to-go lookup pa-
rameter for this problem, and by using this value
of t7,, the exact optimum control is obtained. It is
interesting to note that if the true value of
time-to-go is used as the loockup parameter, the
resultant miss distance {s larger than with the ap-
proximate time-~to-go index {or the min-distance
index for this problem}.

Let us now congider the unsymmetrical form
of Zermelo's problem with p =0,5, The optimal
nominal state is given by x#(t) = t, z*{t) = t/2.
Again the problem is stationary, and the compari-
son function to be minimized is

pl = {x - 0 + kplz - /27 . {30

Since there exists a current in the z-direction, one

would expect the problem {o be more sensitive to
perturbations in z {as opposed to periurbations in
%x}. Thus, one would expect kp; > 1. Also, since
trajectories from perturbed states below the nomi-
nal path {see Figure 2} do not have to "fight the
current” as much as trajectories from perturbed-
states above the nominal to meet the z{tg} =1
boundary condition, the contrel might be more
sensgitive to z-perturbatipns above the nominal
than below. If so, then k;(x = x%,z > z¥) > ks (x = x%,
z < z¥), 1In space flight guidance an analogous situ-
ation might occur with gravitational forces.

For various perturbed states, the values of k,
which minimized the miss distance were deter-
mined. The approximate range for k; was 2.0=k;,
% 2.5, with k; near 2.0 only for large perturba-
tions below the nominal {which demonstrates a de-
crease in sensitivity with respect to z-perturba-
tions in the negative z-direction). In the immedi-
ate neighborhood of the nominal, k; = 2. 5. Even
though one can define a simple function k;(x, z}
which approximately minimizes the terminal miss
distance, k; = 2.5 was chosen for the example
presented here since it is the most representative
coefficient in a small neighborhood of the nominal,
The effect of this approximation will be discussed
later,

Two comparison schemes for this problem
were compared: {1) min-distance with k; = 2.5, in
which case the lockup parameter is

4x + 2k; 2 8x + 10z

b, T4Tx%, T 13 ¢ 30

and (2) time-to-go, in which case the lookup pa-
rameter is

ty = . (32}

Note'that Eq. (32) can be formed by minimizing the
distance function in Eq. (30) with k; = 0, and that
the time-to-go lookup parameter is independent of
z. This fact is contrary to intuition, and to the
sensitivity analysis which emphasizes the depen-
dence on =z.

As previously stated, only one guidance cor-
rection, applied at the perturbed state, was con-
sidered. The perturbed states were defined by de-
viations along the x = 1.0 and z = 0. 5 axes away
from the nominal state (1.0, 0.5). For some large
perturbations, the lookup parameters determined
by Egs’. (31) and {32) were not on the interval
[T.F) =[0,2). In such cases the following rule
was applied: if t; <0, thent = 0 was used as the
index time; if ty, 2 2, thent =1.9 was used as the
index time. (Note that if the vehicle is at x> 2
before cutoff, then Eg, {32} determines 2 negative
time-to-go. Although the determination of a nega-
tive time~to-go may not be probable in a space
mission, the possibility exists.)

In Fig. 2 the resultant trajectories from the
perturbed state (1.0, -0, 5 are shown, The time-
to-go reference state is (1.0, 0.5) and the min-
distance reference state is {0. 230, 0.115). The
neighboring optimum trajectory which results from
the min-distance comparison technigue ig appre-
ciably closer to the desired terminzal conditions
than the corresponding time-to-go trajectory.
Also, the min-distance trajectory has a smaller
miss distance than the neighboring optimum which
results from the true time-to-go reference state.

In Figs. 3 and 4 the miss distances due to
perturbations along the x = 1.0 and z = 0.5 axesare
presented for both comparison techniques with the
optimal control determined by both Eqs. ({11} and
{12). The miss distance varies nearly linearly
with respect to state perturbations, and is less
than 0. 01 on the intervals [-1,0,0. 5] and [-0. 5,1.0]
in Figs. 3 and 4, respectively, when the min-
distance scheme with the control of Eq. (12 is
used. The reason why the intervals are unsym-
metrical is that k, = 2,5 was chosen. Thus, con-
vergence would have been nearly symmetric if
kz{x, 2} had been utilized.

Figures 3 and 4 show that in a smzll neighbor-
hood of the nominal state, the confrol of Eq. (12}
gives better convergence than Eg, (11) for both
comparison schemes. Outside of a small neighbor-
hood the behavior becomes more erratic due io the
nonlinearities in the problem. Alsc, neither one
of the comparison schemes considered here can be
classified better than the other if Eq. (11) is used
as the contrel, If Eg, (11) is used, then Figs. 3
and 4 indicate that the sensitivity coefficient k;
should be expressed ag a function of the state with
k, > 1 above the nominal and k, <1 below the nomi=-
nal, Clearly, if the control of Eq, (12) is used the
min-distance technique is appreciably better than
time-to-go for both small and large perturbations,
Finally, the reason why the miss distances are

R



less in Fig. 3 than in Fig. 4 is that the perturba-
tions in the x-direction are still relatively close to
the nominal even when Axp, = x1, whereas pertur-
bations in the z-direction result in larger dis-
tances away from the nominal as z incresses and
decreases away from z = 0.5 atx =1.0,

In Figs. 5 and é the control angles for the
true optimal, time-to-go comparison trajectory,
and min-distance comparison trajectory are shown,
In all cases the min-distance spproximation is
closer to the optimal control than the time-to-go
approximation,

Finally, Figs, 7 and 8 present the true time-
to- go versug the approximate value obtained from
the Tf(to,xo)—equation. In Fig, 7 the convergence
is acceptable for small perturbations, however as
was previously noted, the Ax, -perturbations re-
sult in states which are relatively close to the
nominal. In Fig. 8 the convergence is unaccept-
able since the approximation is insensitive to per-
furbations in z, {note Eq. (32) or Eq. (50) of Ref,

g). Thus, in the application of a neighboring opti-

mum guidance scheme employing time-to-go one
should perform at least a numerical check of the
convergence properties of the Tf(to,xo ) expansion,
Of course, if the min-distance comparison tech-
nique is used, then the Ty(ty,xg)-equation is avoid-
ed,

VI. Concluding Remarks

This analysis was concerned with the develop-
meni and clarification of techniques which improve
the convergence of neighboring optimum guidance.
Two major aspects were considered: (1) the re-
lationship between the linear approximation of the
optimal control and the optimal control determined
by the linear approximations of the L.agrange mul-
tipliers, and (2) the development of criteria for
defining the comparison procedure in the applica-
tion of neighboring optiznum guidance, It was
shown that the linear approximation of the optimal
contrel is just the linear approximestion of the con-
trol determined by the linear approximation of the
Lagrange multipliers. Also, a method for com-
paring the perturbed state with the nominal which
minimizes a welghted distance function was de-
veloped. A simple example was used to study the
developments, and it was found that the min~dis-
tance comparison technique with the optimal con-
trol determined by the linear approximations of the
Lagrange multipliers enlarged considerably the
neighborhood of convergence about the nominal
trajectory.

Although the analysis does not prove mathe-
matically that the min-distance technique is better
than time-to~go, it does emphasize that the choice
of the comparison technique is crucial to the
scheme, and that a sensitivity analysis may lead to

a near optimum choice for the comparison function,
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