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TECHNIQUES FOR IMPROVED CONVERGENCE IN NEIGHBORING OPTIMUM GUIDANCEt 

William F. Powers'' 
The University of Michigan, Ann Arbor  

v Abstract  ~- 

In the application of neighboring optimum feed- 
back guidance schemes  the choice of the optimum 
reference  s t a t e  to compare  with the per turbed 
s ta te  is not s t ra ightforward.  Recent studies have 
shown that time-to-go is preferab le  to  clock t ime 
and performance index-to-go as a lookup parame-  
t e r .  In this analysis  the basic  theory of neighbor- 
ing optimum guidance is used to motivate a new 
lookup pa rame te r  called min-dis tance which is de-  
termined by minimizing a suitable me t r i c  function 
of the perturbed s ta te  and the re ference  trajectory.  
This lookup pa rame te r  does not requi re  an es t ima-  
tion of the per turbed final t ime whereas  time-to-go 
requires  such an es t imate .  A comparison of time- 
to-go and min-dis tance i s  simulated for Z,ermelo's 
problem, and it is shown that the neighborhood of 
convergence about the nominal t ra jectory is cn- 
larged considerably with the min-distance lookup 
pa ramc te r  technique. 

I.__Introduct ion 

In recent  yea r s  the idea of using a l inear  (and 
possibly higher order)  perturbation of a prede tcr -  
mined optimum t ra jec tory  fo r  the feedback gui- 
dance of space vehicles has  been advanced by a 
number of invest igators . (  The name mos t  
commonly associated with this approach is neigh- 
boring optimum guidance, and the fundamental 
problem which motivates  the technique is the fol-  
lowing: 

.-' 

Fundamental Problem: L,et {x:::(l), u:x(t), X>%(t), 
t €Tr;m denote a nons inmlar  ootimal t ra iec torv  
__ . " ~ _ - I  I 

( the  nominal) such that J =m(tf ,xf)  is  minimized 
and the following conditions a r e  sat isf ied:  

- 
x:'(to) = X i 0  ( i = l  , . . . ,  n) (1) i 

I f  
NE , x : q l  = 0 ( i  = I ,  . . . ,  p 5 n) (2 )  

W t )  = f.[t,x:'(t), u:qt)] ( i  = 1, , , , ,  n) ( 3 )  

or 

k-.~:(t)=f.[t,x::;(t),p[t,x;::(t).h::~(t)]], ( i =  I ,  . . . , n) (4) 

where 
ui(t) = pi( t rx( t ) ,  X ( t ) )  ( i  = 1. . . . , m )  

a r e  defined by the maximum principle.  Let 
(x , ,  . . . ,  xn) he given. 
gram based on the nominal t ra jectory which 
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t r ans fe r s  the vehicle f r o m  ( x i , .  . . ,xn) t o  Ni(tf,xf) 
= 0 (i = 1,. . . , p) while minimizing J = m(tf, xf). 

In References 1-4 techniques a r e  developed to  
dctcrmine guidance functions of the f o r m  

n 
n.  (t) = Ui,P (t) + G . .  (T, t)[X. - X? (T)] , ( 6 )  

where T t [to . tf] is a pa rame te r  which assoc ia tes  
the s to red  nominal values $(t): Gij(T, t ) ,  x"(t1 
with the cu r ren t  s ta te  (x, , . . . ,xn) ,  i. e. , a look- 
up  parameter" .  
the l inear  feedback gains for the guidance function 
In Reference 5 a technique is developed to  de tc r -  
mine the init ial  Lagrange mult ipl iers ,  associated 
with the point (x, , . , . ,xn) ,  which can then be  used 
to integrate  the equations of motion and Euler -  
Lagrange equations, When the resul tant  solutions 
a r e  substituted into Eqs. (5) the guidance function 
is determined.  

1 1 Js, 11 J J  - _  
J, , 

The t ime  functions G i j ( ~ ,  t )  a r e  

In this  paper the underlying theory  of neigh- 
boring optimum guidance is used t o  motivate new 
techniques which enlarge the neighborhood of con- 
vergence about the  nominal t ra jectory.  The tech- 
niques a r e  applied to  an autonomous problem and 
suggestions a r e  given for nonautonomous prob- 
lems .  

II. Theoret ical  Bas i s  f o r  Neighboring 
Optimum Guidance 

In th i s  sect ion c lass ica l  imbedding and im-  
plicit function theorems f r o m  the theory  of differ-  
cntial  equations will  be used to  define the range of 
applicability of neighboring optimum guidance. 
Port ions of this  sect ion a r e  jus t  applications- 
oricntcd iutcrpretat ions of S i lber ' s  excellent 
work. ( 5 )  

Consider  a nonsingular optimal t ra jec tory  
problem fo r  which the maximum principle has  
been applied t o  obtain the t ransversa l i ty  condi- 
t ions and controls  as functions of the s t a t e ,  La- 
grange mult ipl iers ,  and t ime (in genera l ) .  Then,  
the f o l l o ~ n g  equations mus t  be sat isf ied on an 
optimal t ra jectory:  

a.  = f . ( t ,x ,X) (i = 1 , .  . . , n )  (7) 
1 1  

i, 1 = gi(t ,x,h) (8) 

Mi(tf,xf,Af) = O  (i = 1 , .  . . , n +  1) (10) 

( i = l ,  . . . ,  n) ( 9 )  = x. 
10 

where Eqs .  (10) represent  both tho geometr ica l  
t e rmina l  constraints  and the t ransversa l i ty  condi- 
t ions.  We sha l l  usually denote Eqs. (7)-(IO) a s  
vectors ,  e .  g . ,  j, = f ( t ,x ,X),  e tc .  

1 
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F o r  a neighboring optimum guidance function 
to  exis t ,  the  functions involved in Eqs.  (7)-(10) 
mus t  sat isfy the following conditions. 

ASSUMPTION 1: Thkre exist  r ea l  numbers  r i  
> O ( i  = 0 , . . .  ,2n)  fo r  each (t,x,A) ~ S , = [ f t , x , A ) }  
such that the vector functions f ( t , x , h )  and g(t ,x,A) 
can be represented by convergent Taylor  s e r i e s  
expansions about the points e , ~ ,  A )  E S, ( i . e . ,  S ,  
is the s e t  of points at  which t h e  fun_ctions a r e  ana- 
1ytii:)Ln a neighborhood N ,  of ( t , x , h ) ,  where N, = 
{ ( t - t l < r . , , / x ,  -? , l<r  ,,..., I X ~ - X ~ ~ < ~ ~ , / A ~ -  K',l 
< , .  . . ,IAn-rnI < r2n}. Also, t he re  ex is t  
r e a l  numbers  Ri > 0 (i = 0 , .  . , ,2n)  for  each 
(t,x,A) E S, - { ( t , x , h ) t  such that the vector  func- 
tion M(tf.xf.Af). 
( t ,x ,X),  is analytic at each (t,x,K') E S, where the 
Taylor  s c r i c s  is valid in a neighborhood N, = 
{ l t -71  < no,. . . , IAn-rn l  < Rzd. 

- -  
- 

when conside_red a s  a function of 

The f i r s t  s t e p  in the application of a neighbor- 
ing optimum guidance scheme is the determination 
of a re ference  optimal t ra jectory,  which we sha l l  
cal l  the nominal tra, jectory.  Actually such a t r a -  
jectory is a par t icular  solution of Eqs.  (7) - (Io) 
which sat isf ies  additional conditions. 

ASSUMPTION 2 (THE NOMINAL TRAJECTORY): 
Let  x = +:t(t), X = $*<(t) represent  a par t icular  solu- 
tion of Eqs. (7) and ( R )  which sa t i s f ies  the boundary 
conditions ( 9 )  and (10) on the interval  [To,<f]. F u r - .  
t he rmore ,  assume that the par t icular  solution 
sat isf ies  the following conditions: 

(a)  

(b) (Ti, +s:c(Tf),$*GfTf)) E S ,  : 

(d) ivr[t,+*(t), 

(t,b':;(t), +':<@))E S, : for  cach  t E po ,Tf ] ;  

( c )  M[<.,+S(ff), *"(ff)l = 0 ;  - _  
*( t ) ]  # 0 for  each t E [ to ,  t f )  ; 

Condition (a) requi res  the functions f(t ,x,A) 
and g(t.x,;\) t o  be analytic a t  each point on the 
nominal; (b) requi res  M(tf,xf.Af) t o  he analytic at 
(tf,?f,T;fl; (c) and (d) requi re  that  the te rmina l  
conditions be sat isf ied once and only once on the 
nominal; and ( e )  is a consequence of the implicit 
function theorem which guarantees  the existence of 
the dcsired feedback guidance function. 

The re  exis ts  a c lose relationship between con- 
dition ( e )  and the generalized Jacohi t e s t  of Refer- 
ence 6 (where the elements  of a mat r ix  P - RQ-'RT 
must  be finite in o rde r  that  a neighboring optimum 
guidance function exis t ) .  
(e) is sat isf ied,  one must  show that  the de te rmi-  
nant of the  (n + 1 X n + 1) mat r ix  [ai ,  bijit,)], 
i = 1 , .  . . , n  + 1; j = 1,. . . , n ,  is nonzero at each  
toE[fO,Tff). where: 

T o  ver i fy  that  condition 

aM. 2~ a+  it ~ t , , x o , ~ ~ o )  k f' 
ah. ( t o )  +<I- tf J 

The  functions in the above equations a r e  defined 
by Eqs. (7) ,  (8) ,  (IO), and Theorem 1, and the 
par t ia l  derivatives 8 & / a h  j , a$k/aAj may be ob- 
tained by integrating the adjoint sys t em of the  
variational equations of Eqs. (7) and (8) backward 
f r o m  tf .  

If Assumptions 1 and 2 a r e  valid,  then the  
following theorem is t rue .  

u- 

THEOREM 1 (NEIGHBORING OPTIMUM GUID- 
ANCE): If Assumptions 1 and 2 are sat isf ied,  
then there  exis t  functions + (t ; to, xo, A 01, $4 (t ; t o ,  xo, A d ,  
i . e . ,  general  solutions,  such that: 

there  is a r ea l  number p > 0 such  that 
f o r  each to E [To ,if] and for  each (x, ,  A , )  
such that .S ( b i o -  +t(to)J+Jxio-*:(to)Jl< P 

the functions +( t ; to ,  x a , h o )  andJl(t;to. x,,X,) 
a r e  general solutions of i = f(t, x, A )  and 
i= g(t .  x ,A) ,  respectively, on [io,if]; 

n 
1=, 

+(to;to.Xo,Ao) = xo, $(to;to,xo,Xo) = A b :  

+(t; to,xo.Xo) and +( t ; t , ,xo ,Ao)  a r e  analyt- 
ir functions at  each ( t . to ,xo,Xo) E _ S 3  
whereS3  5 { ( t . t o . x o , h o ) :  t E  [ i o , t f ] ,  

toe  [io.TfI,  L=, .C (Jxio-+t ; ( to)I  + Ihio-+i(to)l) 

< P I .  

u 
4; 1, 

the vector function M[tf .  +(if;t$, x$,A$), 
Jl(ff;tz. x$,At)] = 0 defines implicitly the 
functions A ,  = &(to ,  x0), tf = Tff to .  x,,) 
which exist  and a r e  unique, analytic 
functions of to and xo in some neighbor- 
hood of (tg,  .$), 

__ 

Conditions (i)  - (iv) define the propert ies  of 
the analytic solution of Eqs. (7)  and (8 ) .  and the 
proof is a s t ra ightforward modification of Theo- 
r em 8. 2 (page 35) in Reference 7. Condition (v) 
which actually defines the neighboring optimum 
guidance function, i .  e . ,  &(to,  xo) ,  and the cutoff 
equation, i.  e . ,  Tf ( to ,  xo ) ,  i s  a consequence of 
c lass ica l  implicit function theorems fo r  analytic 
functions discussed in Reference 8 .  
section the conclusions of Theorem 1 will be inter-  
preted fur ther  with regard  to  the implementation 
of a neighboring optimum guidance scheme.  

In the next 

111. Implementation of Neighboring 
Optimum Guidance _____-__ 

v Theorem 1 descr ibes  the propert ies  of the 



pertinent functions involved in the optimal guidance 
problem. 
var ious ways to guide a space vehiclc .  
implementations will be  discussed in this sec t ion .  
Since methods for  the computation of the par t ia l  
der ivat ives  of .&,(to , x o )  and Thio ,  xa )  by numerical  
means  a r e  presentpd in References 2-5, 9 ,  1 0 , w c  
sha l l  not be concerned with the problem of numer i -  
cally calculating the functions discussed below. 

These  resu l t s  may thrn be applied in 
Possible  

v 

Suppose that one has  det.rrmined represenla-  
tions fo r  the functions A , ( to ,xo )  and Tf( t , ,xo)  
Then, given a s ta te  xo and a t ime  to, the 
initial Lagrange mul t ip l ie rs  which will cause  the 
vehicle to he t ransfer red  from xo t o M ( t p  X f , X f )  = 0 
are determined by Ao(to, xo). and the t ransfer  lime 
is given by T& t o ,  x,) . 
by thc control commands of Eqs .  (5), i .  e . ,  u(t) 
= p[t ,  +( t ; to  xo,Ao!to,x0)), ~ ( i ; t o , x o , A o ( t o . x o ) ) ~ ,  an 
on-hoard forward integration capahiliiy is ncces-  
s a r y .  That  is, the function Ao(to, xo) gives only the 
initial conditions fo r  the optimum Lagrange mult i -  
p l i e r s .  Thus, t o  obtain the control as afunctionof 
time, the equations of motion an2 Euler-1,agrange 
equations m u s t  be integrated forward to  determine 
the functions x(t) = +[t;to. xoi A,(t,. x,)] and X(t) 
= $[t; to,  xo, A,(to, x,)] fo r  substitution into Eqs. ( 5 ) .  

Since the vrhiclc  is guided 

I n  References 2,  3 ,  4, 9 ,  and 1 0  the feedback 
guidance function u(t, to, x,) is obtained direct ly  
f rom the analysis  as a power s e r i e s  in to and x o .  
Usually only the l inear  t e r m s  a r e  cons idereJ .  
Note that the fcedhack guidance function obtained 
by integrating a l inear  approximation of A,(t,. xa) 
to obtain &;to, xo, Adto,  xo)l and +[t;t,, x,, Ao(to,xO)I. 
which a r e  then substituted into u(t, x,X), is not nec- 
e s sa r i ly  a l inear  function of to and x o ,  
s a m e  amount of ground-based computation goes 
into the determination of the l inear  approximations 
of Ao( to ,  x,) and u( t ,  to, x0), it might prove advnn- 
tageous to allow for  forward  integration in thc on- 
board guidance scheme .  Indecd this is the case  
s ince ,  as wc shal l  show below, the l inear  u(t, to,  xo) 
representat ion is just  a f i r s t -o rde r  approximation 
of the feedback control which is formed by integra- 
t ing the l inear  Ao(to, x,) representat ion.  

Since the 

F i r s t ,  let  us derive the l inear  u(1, to, xo) ap-  
proximation which is equivalent to the l inear  guid- 
ance functions of References 2,  3,  4, 9 ,  and 1 0 .  
Consider  Eqs .  (5), i . e . ,  ui = pi(t, x ,X).  Then, the 
neighboring optimum guidance function is defined 
by u i  = pi[t, +(t;to, XO, Adto. XO)) .  L+(t;to. XO, Adto, X O ) ) ] .  
Assume that the functions pi  are analytic functions 
of to and xo about the point (i:, x$ ) .  (Note that we 
a r e  imposing an additional analyticity assumption 
to obtain a l inear  approximation of u(t ,  to, xo) . )  
Then, to f i r s t -order :  

3 

where the zc ro -o rdc r  t e rm is just  ui"'(1). 

Now let  u s  cons ider  the guidance function 
which resu l t s  f rom the integration of the equations 
of motion and the Euler-1,agrange equations with a 
l inear  approximation of A,(t,. x,), In this ca se  the 
guidance function 
componrnts 

is composed of the following 

U .  = pi[t, +( l ; lo ,  xo.$+Aho), $(t;to, xo .X~+Ahd] ,  (1 2 )  
I 

h h 
where 

A X , = % I  ( x o - x $ ) . + h l  at, (to-t:). (1 3 )  

Note that the t rue  initial values of to and x g  a r c  
used to form the guidance function. To show that 
Eq. (11) is just  a f i r s t - o r d e r  apnroximation of Eri. 
(1 2) on? ne:pd only f o r m  a Taylor  s e r i e s  expansion 
of W q .  ( 12 )  ahout (t$,x$,L$) a f t e r  noting that l i q .  
(1 2) can be written equivalently as 

u. = p.[t. +(t;t$ + At,, x,* + Ax,, A: i- Aho) 
, I  

$(t ; t i ' i~  Ato,xf  t A x o , X :  + A h o ) ] ,  ( 1 2 ' )  

where, of course,  Ato = to - t:, Ax, = xo - x$, and 
AAo is defined by Eq.  (1  3 ) .  Thus, the feedback 
guidance function of Eq. (1 2) will he  valid in a 
l a r g e r  region of the nominal t ra jec tory  than the 
guidance function of Eq .  (11). This  is ver i f icd 
numerically f o r  a s imple example in Section V .  

To conclude this section a br ie f  discussion of 
the cutoff-equation Tf(to,  xo) will h e  presented .  The 
main  purpose of this equation is to  deternl inc the 
t ime  when, theoretically,  the te rmina l  conditions 
a r e  sat isf ied.  Since the per turbed t ra jectory wil l  
probably never  sa t i s fy  all  of the te rmina l  condi- 
t ions with a l inear  neighboring optimum guidance 
scheme,  it might be  des i rab le  to choose a cutoff 
condition which is a function of the cur ren t  s ta te  
and will closely approximate miss ion  fulfillment 
( e . g . ,  a velocity cutoff condition), o r  include a 
sepa ra t e  te rmina l  guidance phase .  In such cases  
the re  is noneed for  the Tf(t,,x&equation, Fu r the r ,  
insec t ion  V it is shown that the Taylor  s e r i e s  expan- 
s ion fo r  Tf( to ,xo)  is veryslowlyconvergent  when co rn  
parcd to  the A,(to, xo)-expansion fo r  Zermelo's proh- 
lem.  
avoidingthe Tf(t,,x,)-equationinthe application of a 
neighboring optimufn guidance scheme .  

IV. The  Min-Distance Comparison Technique 

In the application of neighboring optimum 
guidance 'the choice of the nominal re ference  s ta te  
t o  compare  with the  current (per turbed)  s t a t e  is 
not s t ra ightforward.  For example,  a s sume  that 
x;k(t), x;?(t) (or u ~ : ~ ( t ) ) ,  and the feedback guidance 
gain_s,-say G:k(t), a r e  stored-on-hoard f o r  each 
tE[ to ,  tf] ( o r ,  for each t i  €Rob. tf], i = 1, 

Thus ,  one should consider  the possibil i ty of 

6 9 - 8 8 8  



a finite number of data points). Suppose when the 
clock t ime  is equal to T~ that the vehicle is at the 
s t a t e  x .  
with the nominal t ra jec tory  is to choose the values 
X : : + ~ ~ ) , A : S ( T ~ )  (o r ,  U : ~ ( T ~ ) ) ,  and G:.'(T~) f o r  the de- 
termination of the neighboring guidance function 
( i .  e . ,  clock t ime  is the "lookup paramcter") .  
However, x (T , )  m a y  not be c lose  to x:>(T,) whereas  
x(T])  m a y  h e  c lose  to s o m e  o ther  s ta te  on the 
nominal t ra jec tory ,  s a y  x : ~ ( T L )  ( s e e  Figure 1 ) .  In 
References 9 and 10 an  unpublished suggestion by 
J .  C .  Dunn is used to partially alleviate th i s  a m -  
biguity. 
as the lookup pa rame te r  ( e . g . ,  in Figure 1, T~ i s  
the time-to-go lookup pa rame te r  when the per- 
turbed t ra jec tory  is a t  T ,  with t ime-to-go cqual to 
T) and the r e su l t s  dcmonstrate  that l ime-to-go is 
supe r io r  to clock t ime.  However, to determine 
the t ime-to-go one mos t  es t imate  the final t ime  
assoc ia ted  with thc cu r ren t  s t a t e .  This approxi- 
mation depends upon the Tf(to, xo) -equat ion That 
is, to determine thc l ime-to-go lookup pa rame te r  
one a s sumes  that to  is the Clock time, t'i is t he  
lopkup time, and tf - to = t"' ~ t ' i .  f 
ing equations a r e  solved fo r  the unknowns t f  and 

A possible way of comparing this s t a t c  

In both these  ana lyses  t ime-to-go is used 

Then the follow- 

.,. - - 
where t"' = t - t o .  Note that s ince  - f f  . , 
x;k(t%) depend upon 1; an i terative scheme  will 
probably be necessary to  solve f o r  the lookup pa- 
r a m e t e r  t $ .  The solution of Eqs.  (14) and (I 5) is 

i T f  ;:i 

eased considcrably if - = 1 (which is the c a s e  

inslationary systems(")) s ince  then the two equa 
t ions reduce to 

a to 

In Reference I I another cornparison procedure 
called the min-distance technique is suggested.  
This  technique does not depend upon a Tf(to. x d  ap- 
proximation. In addition, it does not depend upon 
clock t ime  if the problem is stationary ( e .  g . ,  r e -  
entry problems).  The m a j o r  motivation f o r  the 
method is that in many guidance missions the 
bas ic  goal is to t r ans fe r  the vehicle f rom a c u r -  
r en t  s ta tc  t o  a s e t  of te rmina l  conditions without 
regard to how the vchiclc got to the cu r ren t  s t a t e .  
( F o r  cxample. in a reent ry  problem the cur ren t  
position, velocity, and orientation of the vehicle 
a r e  the important quantities; the period of t ime 
that it his takcn thc vehicle to get to this s t a t e  is 
not important.)  

and 1 0  show, the applicability of neighboring opti- 
mum guidance i s  strongly dependent upon the 
choice. Thus, in th i s  section c r i t e r i a  for  defining 
a comparison procedure will b e  suggested and then 
used to determine a comparison function which is 
problem dependent. 

Given a nominal optimal t ra jec tory  which 
sa t i s f ies  a specified miss ion ,  one can define l inear  
(and higher order )  feedback gains based on the 
nominal. Let x be the cu r ren t  s t a t e  of the vehicle, 
and le t  x:*(t), t E [io,Tf], be the nominal s t a t e .  By 
Theorem 1, a f i r s t  c r i te r ion  for the  comparison 
function is that it determines a lookup pa rame te r  
which causes x to be c lose  to a nominal s t a t e .  
This suggests a minimum distance comparison 
procedure.  e .  g . ,  the pa rame te r  is defined by the 
value of t which minimizes  the distance betwcen x 
and x::;(t) : 

1 

(t))'I7. (17) 

This c r i te r ion  is not enough, though, s ince  it does 
not take into account the fact that the optimal con- 
t r o l  is, in m o s t  instances, relatively insensitivr 
t o  perturbations in s o m e  of the s ta te  var iab les  
(whereas  Eq.  (17) t r ea t s  all s t a t e  perturbations 
equally). Therefore ,  a second cr i te r ion  is that 
the comparison function should be defined in such 
a way that s o m e  of the s ta te  variable perturbations 
have l e s s  influence than o thers  in determining the 
lookup pa rame te r .  
weighting procedure .  

,., p(x, x:>(t)) =[ (x ,  - x l ( t ) ) z +  

This  c r i te r ion  suggests a 

By incorporating weighting fac tors  into Eq.  
(17) ,  i . e . ,  

1 
p(x,x";(t))= [k,(x,-xY(t)) '+.  . . + k  ( x  -x:*(t))'T n n  n 

(1 8)  

where the k;s a r e  sensitivity coefficients assoc i -  
ated with pcrturbations in the x i f s ,  both c r i t c r i a  
mentioned above may he satisfied.  That is, the 
lookup pa rame te r  is defined by the value of t which 
minimizes  Ec,. (18) .  If the process  is nonstation- 
a r y  ( i .  e . ,  t ime  appea r s  in the right-hand s ides  of 
the equations of motion and /o r  the geometrical  
boundary conditions), then t ime should be treated 
a s  a s ta te  variable in Eq. (18), e . g . ,  xn = t (clock 
t ime) .  

Le t  u s  now cons ider  the possibility of de t c r -  
The f i r s t  mining a method fo r  computing the k i t s .  

question to  he  answered is: "Which variables do 
the k i ' s  dcF'nd upon?" Since the purpose of the 
k i ' s  is to indicate the sensitivity of the optimal 
feedback guidance function to  changes in the s t a t e  
variables,  it follows that ki = ki(x), i . e . ,  the k < s  
a r e  dependent upon the s t a t e  of the vehicle.  
will be argued below, a deterministic method fo r  
computing thc k ; ' s  does not appear  to he  feasible.  

As 

v 

LJ 

- .. 
However, one should be able to use  physical 
knowledge of the problem and numerical  s imula-  
t ions of the guidance function from perturbed s ta tes  

It appears  that one cannot prove mathemati-  
caliy which comparison procedure is the hest for 
all problems.  Flowtwcr, as thc studies in Refs  9 V' 
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ahout the nominal to charac te r ize  the k c s .  
pea r s  likely that in many cases  the k i f s  may  be 
suitably approximated by constants o r  s imple  func- 
tions of the s ta te .  

It ap-  

- Suppose the vehicle is a t  a s t a t e  x .  Upon 
specification of the lookup parameter ,  tL. the 
neighboring optimum guidance function can be de-  
termined.  
c ients  depend upon the s ta te ,  the value of tL  is de- 
termined by solving 

Assuming that the sensit ivity cocffi- 

Since the main goal of a guidance function i s  
satisfaction of the mission,  and optimality is s e c -  
ondary, it is natural  t o  choose the kits in such a 
way that a function which charac te r izes  miss ion  
dissatisfaction is minimized.  An example of such 
a function is the te rmina l  m i s s  distance. For this  
development suppose that we wish to choose the 
k i t s  so that the m i s s  distance 

is minimized, where Nl ( tp  xr), . . . , Np(tf, xf) a r e  
the values of the specified geometr ical  boundary 
conditions a t  the te rmina l  point of the per turhed 
t ra jec tory .  F rom Eq. (20), the  lookup pa rame te r  
can be determined as a function of the  s ta te  and 
sensit ivity cocfficients, i .  e . ,  

.- 

tL = q(xo ,k)  . 12.2) 

Since the neighboring optimum guidance function is 
character ized by the approximations A i ( t b  XO) 

( i  = 1, . , . , n), and tf is approximated hy T&tL, XO), 
Eq. ( 2 1 )  is s t r ic t ly  a function of tI, and xo: 

where x(t) = ~ t ; t o ,  x0,ho) is the general  solution of 
the s t a t e .  Finally, by Eq. (22) the m i s s  distance 
can be determined as a function of the per turbed 
s ta te  and sensit ivity coefficients, i .  e . ,  

M i s s  = CNf[Tf(q(x,, k), x d .  MTf(qIx0. k), XO): 

P 

i=1  

q(xo, k), YO, Ao(dxo, X O ) ) ~  . ( 24) 

Therefore ,  the sensit ivity coefficients may  be  de-  
fined as functions of the s ta te  by minimizing Eq.  
(24 )  : 

__ a(Miss) = P.(xo, k) = 0 [ i = l ,  , . . , n) (25) aki 1 

Even though the  method descr ibed above does 
not appear  to be feasible f o r  the  computation of the 
k c s ,  it demonstrates  that  determinis t ic  methods 
a r e  conceivable. Until workable sensit ivity com-  
putation methods a r e  developed, physical insight 
and numerical  simulations should be sufficicnl fo r  
the approximation of the  sensit ivity coefficients.  
In the next sect ion such a procedure wil lheappl ied 
to  an example problem. 

To implement the min-dis tance technique on- 
board, one may  represent  the nominal t ra jectory 
ei ther  by polynomials in t ime or by a finite number  
of data points. 
polynomial equation in t L ( i . e . ,  Eq .  
solved, and in the la t te r  c a s e  a finite s ea rch  f o r  
the value of tL which minimizes  Eq. (19) may  be  
performed 

In the f o r m e r  c a s e  a precalculated 
( 2 0 ) )  mus t  be  

li, Simulation Resul ts  

In Reference 9 it is shown that t ime-to-go is a 

Since Ze rme lo ' s  problem can be 
bet ter  lookup pa rame te r  than clock t ime f o r  Z e r -  
melo ls  problem. 
solved in c losed-form,  we shal l  a l so  employ this  
example to demonstrate  the ideas presented in the 
previous sec t ions .  Fu r the rmore ,  we sha l l  use  the 
s a m e  pa rame te r  values as Kelley so that  one can 
consult Reference  9 f o r  the detai ls  of the analysis .  

Consider  the task  of guiding a boat f rom (0,O) 
to ( 2 , l )  in minimum t ime with boat speed V i 1 and 
a cu r ren t  in the z-direction with velocity p = 0.  5.  
Thc equations of motion a r e  

(27)  
x = v c o s y  

i = p + V s iny ,  

where the resul tant  nominal t ra jec tory  and control 
angle definition are shown in F ig .  2 .  In Reference 
9 the m i s s  dis tance a t  cutoff was determined for 
various per turbat ions in the init ial  s t a t e  (0,  0) .  
t h a t  analysis  a number of guidance cor rec t ions  
were  applied between the initial per turbat ion and 
cutoff.  
guidance correct ion and it will be  applied a t  the 
per turbed s ta te .  
one guidance command is that this  analysis  is 
basically concerned with determining the best  pos-  
s ib le  command at  a given per turbed s t a t e .  

In 

In this section we shall  consider  only one 

The reason  for consider ing only 

Before we consider  the fo rm of Z e r m d o ' s  
problem stated above, it i s  instruct ive to  cons ider  
a symmetr ica l  vers ion with no cur ren t ,  i .  e . ,  Eqs. 
(27 )  with p z 0 .  The  optimal nominal s t a t e  f o r  th i s  
problem is  x:!(t) = 2t/&, z:::(t) = t / 6  .. Since the 
problem is stationary, the comparison function to  
be minimized is 

p z  = (x - 2 t / ~ ) ' + k 2 ( z - t / f i ) ' ,  (28) 

where k, = 1 can be specified a rb i t r a r i l y  s ince  
dpz/dt  is a homogeneous function of the k i ' s .  
the symmet ry  of the  problem one would suspect  
that  k2 = 1, a l so .  Indeed, if one de te rmines  

By 
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and then computes x(t), z(t) with the l inear  ap- 
proximatibn fo r  Ao(tL,x.  2). the terminal  m i s s d i s -  
tance is minimized when k2 = 1. Fur thermore ,  
Eq.  (29) a l so  defines the t ime-to-go lookup pa- 
r a m e t e r  f o r  this problem, and by using this  value 
of tL. the exact optimum control is obtained. It is 
interesting to  note that if the t rue  value of 
t ime-to-go is used a s  the lookup parameter ,  the 
resultant m i s s  distance is l a r g e r  than with the ap-  
proximate t ime-to-go index (or the min-distance 
index for  this problem). 

Let u s  now consider the unsymmetrical  form 
of Zermelo ' s  problem with p = 0. 5 .  
nominal s ta te  is given by x.:c(t) = t ,  zVt)  = t / 2 .  
Again the problem is stationary,  and the compari-  
son function to be minimized is 

The optimal 

p z  = (x  - t)' + k,(z - t/2)' . ( 3 0 )  

Since there  exis ts  a cur ren t  in the z-direction;one, 
would expect the problem to be m o r e  sensi t ive to 
perturbations in z (as opposed to perturbations in 
x ) ,  Thus, one would expect k2 > 1. Also,  s ince 
t ra jec tor ies  from perturbed s ta tes  below the nomi- 
nal path ( s e e  Figure 2) do not have to "fight the 
current"  a s  much a s  t ra jec tor ies  f rom perturbed 
s ta tes  above the nominal to meet  the z(tf) = 1 
boundary condition, the control might be m o r e  
sensit ive to z-perturbatipns above the nominal 
than below. 
z < 2:::). 

ation might occur with gravitational fo rces .  

If so, then l&(x = x;*, z > z:?) > kz(x =x'*, 
In space flight guidance an analogous s i tu-  

F o r  various perturbed s ta tes ,  the values of k, 
which minimized the m i s s  distance were  de te r -  
mined,  The approximate range for k2 was 2 .0  5 k2 
5 2 .  5 ,  with kz near  2 . 0  only for  l a rge  per turba-  
tions below the nominal (which demonstrates  a de- 
c r e a s e  in sensitivity with respect  to z-per turba-  
tions in the negative z-direction).  In the immedi- 
a te  neighborhood of the nominal, k2  z 2. 5.  Even 
though one can define a s imple function k2(x, z )  
which approximately minimizes  the terminal  m i s s  
distance,  k2 = 2. 5 was chosen for  the example 
presented here  since it is the most  representat ive 
coefficient in a smal l  neighborhood of the nominal. 
The effect of this  approximation wi l l  be  discussed 
l a t e r .  

Two comparison schemes for  this problem 
were compared: (1) min-dis tance with k2 = 2. 5. in 
which case  the lookup parameter  is 

and (2) t ime-to-go, in which case  the lookup pa- 
r a m e t e r  is 

tL  = x.  (32)  

Note that Eq.  (32) can be formed by minimizingthe 
distance function in Eq. (30) with kz = 0 ,  and that 
the t ime-to-go lookup parameter  is independent of 
z .  This  fact is contrary to  intuition, and to the 
sensit ivity analysis which emphasizes  the depen- 
dence on z .  w 

A s  previously stated,  only one guidance c o r -  
rection, applied a t  the perturbed s ta te ,  was con- 
s idered.  The perturbed s ta tes  w e r e  defined by de- 
viations along the x = l .  0 and z = 0 .  5 axes  away 
from the nominal s ta te  ( 1 . 0 ,  0 .  5 ) .  F o r  some la rge  
perturbations,  the lookup p a r a m e t e r s  determined 
by Eqs'. (31) and (32) were not on the interval 
[T,,Tf) = [ 0, 2).  In such c a s e s  the following rule  
was applied: if tL  < 0, then t = 0 was used as the 
index time; if t L  2 2, then t = 1 . 9  was used a s  the 
index t ime.  
before cutoff, then Eq. (32) detei-mines a negative 
t ime-to-go.  
tive t imc-to-go may not be probable in a space  
mission,  the possibility exis ts . )  

(Note that if the  vehicle is a t  x > 2 

Although the determination of a nega- 

In Fig.  2 the resultant t ra jec tor ies  f rom the 
perturbed s ta te  (1.0. - 0 .  5) a r e  shown. The t ime-  
to-go reference s ta te  is (1.0,  0 .  5) and the min- 
distance re ference  s t a t e  is (0,230,  0,115). The 
neighboring optimum trajectory which resu l t s  f rom 
the min-distance comparison technique is appre-  
ciably c loser  to the desired te rmina l  conditions 
than the corresponding t ime-to-go t ra jec tory ,  
Also ,  
m i s s  distance than the neighboring optimum which 
resu l t s  from the t rue  t ime-to-go reference s ta te .  

the min-distance t ra jectory h a s  a s m a l l e r  

</ 
In Figs .  3 and 4 the m i s s  dis tances  due to  

perturbations along the x = 1 . 0  and z = 0 .  5 axes  a r e  
presented for  both comparison techniques with the 
optimal control determined by both Eqs. (11) and 
(1 2). The m i s s  distance var ies  nearly l inearly 
with respect  to s ta te  perturbations,  and is l e s s  
than 0 . 0 1  on the intervals  [-I. 0 ,  0 .  51 and [ - 0 .  5 , l .  01 
in F igs .  3 and 4, respectively,  when the min-  
distance scheme with the control of Eq.  (1 2) i s  
used. 
met r ica l  is that k, = 2 . 5  was chosen. Thus, con- 
vergence would have been near ly  symmetr ic  i€ 
k,(x, z) had been uti l ized. 

The reason why the intervals a r e  unsym- 

Figures  3 and 4 show that in a smal l  neighbor- 
hood of the nominal s ta te ,  the control of Eq. (12) 
gives bet ter  convergence than Eq. (11) for  both 
comparison schemes.  
hood the behavior becomes more  e r r a t i c  due t o  the 
nonlinearit ies in  the problem. Also, neither one 
of the comparison schemes  considered h e r e  can be 
classified be t te r  than the other i f  Eq. (11) is used 
a s  the control. If Eq.  01) is used,  then Figs .  3 
and 4 indicate that the sensit ivity coefficient k, 
should be expressed a s  a function of the s t a t e  with 
k, > 1 above the nominal and k, < 1 below the nomi- 
na l .  Clear ly ,  if the control of Eq. (12) is used the 
min-distance technique is appreciably be t te r  than 

Finally,  the reason  why the m i s s  distances a r e  

Outside of a small neighbor- 

t ime-to-go for  both smal l  and l a rge  perturbations.  W 
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l e s s  in  Fig.  3 than in  Fig. 4 is that the per turha-  
t ions in  the x-direction a r e  still relatively close to  
the nominal even when Axo = 2 1 ,  whereas  per tur -  
bations in the z-direction resu l t  in  l a r g e r  d i s -  
tances  away f r o m  the nominal as z increases  and 
d e c r e a s e s  away f r o m  z = 0 . 5  a t  x = 1 .0 .  

v 

In Figs .  5 and 6 the control angles fo r  the 
t rue  optimal,  t ime-to-go comparison t ra jec tory ,  
and min-distance comparison t ra jec tory  a r e  shown 
In all c a s e s  the min-distance approximation is 
c loser  t o  the opt imal  control than the t ime-to-  go 
approximation. 

Finally,  F igs .  7 and 8 present  the t rue  t ime-  
to-go versus  the approximate value obtained f r o m  
the Tf(to,xo)-equation. In Fig.  7 the convergence 
is acceptable for  s m a l l  per turbat ions,  however a s  
was previously noted, the Axo -perturbations r e -  
sul t  in  s ta tes  which a r e  relatively close to  the 
nominal. In Fig.  8 the convergence is unaccept- 
able s incc the approximation is insensit ive to  per -  
turbations in zo (note Eq. (32) o r  Eq. (50) of Ref. 
9). Thus,  in the application of a neighboring opti- 
mum guidance scheme employing t ime-to-go one 
should perform at leas t  a numerical  check of the 
convergence propert ies  of the Tf( to ,xo ) expansion 
Of course ,  if the min-distance comparison tech-  
nique is used,  then the Tf(to,xo)-equation is avoid- 
ed.  

VI. Concluding Remarks  

This  analysis was concerned with the develop- 
ment and clarification of techniques which improve 
the convergence of neighboring optimum guidance. 
Two major  aspects  were  considered: 
lationship between the l inear  approximation of the 
optimal control and the optimal control determined 
by the l inear  approximations of the Lagrange mul- 
t ip l ie rs ,  and (2) the development of c r i t e r i a  f o r  
defining the comparison procedure in  the applica- 
t ion of neighboring optimum guidance. 
shown that the l inear  approximation of the optimal 
control is just the l inear  approximPtion of the con- 
t r o l  determined by the l inear  approximation of the 
Lagrange mult ipl iers .  
par ing the perturbed s ta te  with the nominal which 
minimizes  a weighted distance function was de- 
veloped. A s imple example was used t o  study the 
developments,  and i t  was found that the min-dis- 
tance comparison technique with the optimal con- 
t ro l  determined by the l inear  approximations of the 
Lagrange multipliers enlarged considerably the 
neighborhood of convergence about the nominal 
t ra jec tory .  

./ 

(I) the r e -  

It was 

Also,  a method for  com- 

Although the analysis does not prove mathe- 
matically that the min-distance technique is be t te r  
than t ime-to-go, it does emphasize that the choice 
of the comparison technique is crucial  to the 
scheme,  and that a sensit ivity analysis may  lead t o  
a n e a r  optimum choice for  the comparison function. 
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