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I. Introduction

C ONVENTIONAL streamlined autonomous underwater ve-
hicles (AUVs) are underactuated by design. Typically, they

include a propulsor and torque actuators, such as control planes. In
this Note, it is assumed that the 6 degrees of freedom vehicle is
actuated in 4 degrees of freedom: surge, roll, pitch, and yaw. The
control objective is to globally asymptotically stabilize longitudinal-
axis translation of the vehicle in a desired inertial direction. A
provably convergent, global directional controller could enhance the
operation of agile vehicles in dynamic environments, such as rivers,
tidal basins, or other coastal areas. Energy-based tools are appealing
for designing such controllers because they provide natural candidate
Lyapunov functions for stability analysis. As an example, a
passivity-based technique known as interconnection and damping
assignment was used to stabilize the unstable dynamics of a slender,
underactuatedAUV in [1]. The paper assumed an idealized (inviscid)
dynamic model and did not consider the attitude kinematics. A
nonlinear directional controller was developed in [2] using potential
energy shaping, although that model also omitted viscous effects.
This Note treats the directional stabilization problem for a vehicle
model which requires minimal assumptions about the viscous
effects. The result therefore allows a broad range of viscous force and
moment models.

Directional stabilization for AUVs may be considered a natural,
intermediate step between waypoint navigation and general, three-
dimensional path following, as described in [3], for example. Several
approaches have been proposed to address three-dimensional path
following for underactuated, 6 degrees of freedom AUVs. These
approaches include adaptive feedback [4], switching theory [5], and
backstepping [3,6]. Here, we consider the more fundamental
problem of directional stabilization for a slender, underactuated
AUV and we approach the problem from an energy perspective. The

stabilization result, which is adapted from [7], is based on themethod
of feedback passivation described in [8]. In this approach, a given
system is transformed into a feedback interconnection of two passive
subsystems. It follows from passive system theory that the
interconnection is passive and therefore that the system is stable.
Asymptotic stability may be shown through further analysis, with
suitably defined feedback dissipation included, if necessary. As is the
case in this Note, exploiting intrinsic properties such as passivity
often allows one to derive control algorithms which are globally
effective and which work with the natural dynamics rather than
dominate or supplant them.

II. AUV Equations of Motion

TheAUV ismodeled as a slender, axisymmetric rigid bodywhose
mass m equals the mass of the fluid which it displaces; thus, the
vehicle is neutrally buoyant. The vehicle is equipped with a single
propulsor, which is aligned with the axis of symmetry, and with
torque actuators that provide independent control moments about all
three axes.

Vehicle kinematics: The principal axes of the displacedfluid define
a body-fixed reference frame represented by the unit vectors b1, b2,
and b3 in Fig. 1. Another reference frame, denoted by the unit vectors
i1, i2, and i3, is fixed in inertial space. The location of the body frame
with respect to the inertial frame is given by the inertial vector x. The
body’s orientation with respect to inertial space is given by the unit
quaternion q� �q0; q

T
� �T . The unit quaternions provide a global, if

redundant, parameterization of vehicle attitude; see [9] for a general
review of attitude parameterizations and [10] for an early application
of quaternions for underwater vehicle control.

Let v� �v1; v2; v3�T represent the translational velocity and let
!� �!1; !2; !3�T represent the rotational velocity of the AUV with
respect to inertial space, where v and ! are both expressed in the
body frame. Also, define the operator �̂ such that for any 3-vectors a
and b, âb� a � b. The 3 � 3 skew-symmetric matrix â is
sometimes called the “cross-product equivalent”matrix correspond-
ing to the vector a. The kinematic equations are

_x� RIB�q�v (1)

_q� 1
2
Q�q�! (2)

where

R IB�q� � 1 � 2�q01 � q̂ ��q̂� and Q�q� � �qT�
q01	 q̂�

� �

and where 1 is the 3 � 3 identity matrix.
Vehicle dynamics: Having assumed, without further loss of

generality, that the 1-axis is the axis of symmetry, define the diagonal
matrix M11 � diag�m1; m2; m2� as the sum of m1 and the added
mass matrix. Similarly, let M22 represent the sum of the rigid body
inertia and the diagonal added inertia matrix. Finally, suppose that
the center of mass is located by the body frame vector rcm and let
M12 ��mr̂cm. Then v and ! can be related to the body/fluid linear
momentum p and the body/fluid angular momentum h as follows:

p
h

� �
� M11 M12

MT
12 M22

� �
v
!

� �
(3)
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More precisely, p and h represent the translational and rotational
impulse required to instantaneously set the body into motion through
the fluid at velocity v and angular rate!; see [11]. In any case, p and
h evolve according to a finite system of ordinary differential
equations which describe the body’s motion. Let fv and �v represent
the viscous force and moment, respectively, and let fc and �c

represent thrust and the controlmoment. Defining�1 � �1; 0; 0�T , the
AUV dynamic equations are

_p� p � !	 fv 	 fc�1 (4)

_h� h �!	 p � v	 rcm �mg�RT
IBi3� 	 �v 	 �c (5)

Some remarks on the dynamic equations (4) and (5) are in order.
1) Because M11 is not a scalar multiple of the identity, the linear

momentum of an underwater vehicle is generally not collinear with
its linear velocity. This is an important distinction from heavier-than-
air flight vehicles and spacecraft which accounts, for example, for the
“Munk moment” appearing in the term p � v in (5); see [12].

2) While there is no net gravitational force, because the vehicle is
assumed to be neutrally buoyant, a gravitational moment rcm �
mg�RT

IBi3� appears on the right side of Eq. (5). This “restoring
moment” tends to keep the body’s center of mass below its center of
buoyancy, unless themoment is countered by the controlmoment �c.

The terms fv�v;!� and �v�v;!� represent the viscous force and
moment, respectively, that act on the vehicle as a consequence of its
motion through the fluid.We assume quasisteady flow, as is standard
for air and marine vehicle dynamic models. Even under the
quasisteady flow assumption, however, fv and �v are difficult to
express explicitly over the full range of motion. Rather than restrict
the model’s validity to a small neighborhood of the nominal motion,
we make some simple and relatively general modeling assumptions.

Assumption 2.1.

� v � ! 
 0 when ! ≠ 0

� v � 0 when �!; v� � �0; v�1� 8 v 2 R

In words, we assume that the viscous moment opposes the angular
rate, in general, and that it vanishes for pure translation along the
longitudinal axis.

We impose a bit more structure on the model of the viscous force.
By definition, drag opposes vehicle velocity and lift acts
orthogonally to the velocity vector. Considering axial symmetry,
we assume that the lift force acts in the plane determined by the
velocity vector and the vehicle’s longitudinal axis. This assumption
fails to capture out-of-plane forces due to asymmetric fluid flow,
however, it is consistent with standard modeling assumptions. We
also neglect the dependence of fv on !, but we note in Remark 3.2
that our approach could accommodate such dependence, in certain
cases.

To express fv�v�, we introduce two hydrodynamic angles. Let

��
8<
: arctan

�
v2
v3

�
v2 ≠ 0 and=or v3 ≠ 0

0 v2 � v3 � 0

(6)

where the “4-quadrant” arctangent is used. Identifying � with ��,
we have � 2 ���; ��. Rotating the body frame through the angle �
about theb1 axis defines an intermediate reference frame inwhich the
velocity vector has components only in the intermediate frame’s “1–
3” plane. Moreover, the 3-axis component of velocity in this
intermediate frame is nonnegative. Let

��
8<
: arctan

� ����������
v2
2
	v2

3

p
v1

�
v ≠ 0

0 v� 0
(7)

where, once again, the 4-quadrant arctangent is used. Note that
� 2 �0; ��. Rotating through the angle� about the intermediate 2-axis
yields a new reference frame, defined by unit vectors c1, c2, and c3, in
which the 1-axis is aligned with the velocity vector as shown in
Fig. 2. Following the terminology of [13], we refer to this reference
frame as the “current frame.” The proper rotation matrix

R BC��; �� � e���̂1e���̂2

�
cos� 0 � sin�

sin� sin� cos� sin� cos�
cos� sin� � sin� cos� cos�

0
@

1
A

transforms free vectors from the current frame to the body frame.
Remark 2.2: The hydrodynamic angles � and � are not the

standard angle of attack and sideslip angle; however, the given
definitions are more convenient for this work. Note that � is
discontinuous when v� 0 and that � is discontinuous when �� 0.
Thus,RBC��; �� is discontinuous under these conditions. Of course,
the discontinuities are an artifact of the definition of the current frame
and do not represent any physical effect. Still, special care must be
taken in the stability analysis; in fact, the discontinuities are easily
treated using Filippov’s theory [14] and some extensions described
in [15].

It is standard practice to express lift and drag in terms of
nondimensional coefficients. To nondimensionalize the forces, we
define f0�v� as the product of dynamic pressure and a reference area
S:

f0�v� � 1
2
�kvk2S

where � is the fluid density. The viscous force takes the form

f v�v� � �f0�v�RBC��; ��
CD���

0

CL���

0
@

1
A (8)

We make the following assumptions about the form of the drag and
lift coefficients.

Assumption 2.3.
1)CD��� is a continuous, even function which is positive for all �.
2)CL��� is a continuous, odd functionwhich is positive (negative)

when ei� lies in the first or third (second or fourth) quadrant of the
complex plane.

b1 b2

b3

i 1

i 2

i 3

rcm

Fig. 1 Spheroidal underwater vehicle.
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Fig. 2 Hydrodynamic angles for an axisymmetric body.
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In general, the dimensionless coefficients CD and CL depend on
Reynolds number as well as angle of attack. This effect can be
incorporated with little impact on the assumptions and the
conclusions, but we ignore Reynolds number effects in this
presentation.

For a slender, axisymmetric rigid body, the assumption that CD is
even and positive is an empirical fact. The assumption regarding the
form of CL is consistent with intuition for a slender body in a steady
flow. In reality, at large angles of attack, such a body is subject to
complicated, unsteady forces that are not captured by simplemodels;
see [16], for example. While these effects certainly impact the
dynamics, they are difficult to model accurately. Such effects are
typically ignored in control design with the understanding that well-
designed model-based feedback can provide suitable system
performance even when the model is imperfect.

III. Global Asymptotic Directional Stabilization

The main objective is to stabilize the steady motion

q eq � qd; !eq � 0; veq � vd

where qd is a unit quaternion representing some constant, desired
attitude and vd � vd�1 where vd > 0 is a constant desired speed.We
will first transform the problem, so that the equilibrium is at the
origin.

Let �qd represent the quaternion conjugate of qd and define the
attitude error quaternion

e � e0
e�

� �
� �qd � q

where * denotes quaternion multiplication; see [9], for example.
When q� qd, we have e� ed � �1; 0; 0; 0�T . To shift the
equilibrium to the origin, define the attitude error vector

~e� e � ed

Also, define the velocity and correspondingmomentum error vectors

~v
~!

� �
� v � veq

! �!eq

� �
� v � vd

!

� �
and

~p
~h

� �
� M11 M12

MT
12 M22

� �
~v
~!

� �

The complete error dynamics are

_~e� 1
2
Q� ~e	 ed� ~! (9)

_~p� � ~p	 pd� � ~!	 fv 	 fc�1 (10)

_~h� � ~h	 hd� � ~!	 � ~p	 pd� � � ~v	 vd�
	 rcm �mg�RT

IBi3� 	 �v 	 �c (11)

The revised control objective is to stabilize the equilibrium at the
origin for Eqs. (9–11).

By defining the thrust and control moments appropriately,
Eqs. (10) and (11) may be transformed so that they form a passive
map from the control moment (the passive input) to the body angular
rate (the passive output). The rotational kinematics (9) are well
known to be passive. Moreover, the complete equations (9–11) may
be written in a nonlinear cascade form which is amenable to the
method of feedback passivation described in [8].

Consider the feedback control law

fc � f0�v��cos�CD��� � sin�CL���� � kv1 ~v1 (12)

and

� c ���rcm �mg�RT
IBi3� 	 p � vd� 	 u (13)

where kv1 > 0 is a control gain and u is a control moment which
remains to be determined. The first term in (12) requires that thrust
balance the longitudinal component of viscous force and the second
term ensures convergence to the desired speed.

In the language of passive systems theory [8], consider the
“storage function”

Sdyn �
1

2

~p
~h

� �
T M11 M12

MT
12 M22

� ��1 ~p
~h

� �
(14)

Under the given choice of feedback,

_S dyn � ~v � �fc 	 fv� 	 ~! � u	 ~! � �v (15)

The last term is nonpositive by Assumption 2.1. The first term
satisfies

~v � �fc 	 fv� � �f0�v�
0

~v2

~v3

0
B@

1
CA

T

RBC��; ��
CD���

0

CL���

0
B@

1
CA

	 ~v1

2
64fc � f0�v�

1

0

0

0
B@

1
CA

T

RBC��; ��
CD���

0

CL���

0
B@

1
CA
3
75

��� ~v2 sin�	 ~v3 cos���sin�CD��� 	 cos�CL����f0�v�
	 ~v1ffc � f0�v��cos�CD��� � sin�CL����g (16)

Consider the first term in (16). By definition of the angle �,

~v 2 sin�	 ~v3 cos��
����������������
~v22 	 ~v23

q
� 0

Also, given the assumptions on the form of CD and CL and the fact
that � 2 �0; ��, we have

sin�CD��� 	 cos�CL��� � 0

[and strictly positive for � 2 �0; ��]. Therefore, the first term in (16)
is nonpositive. Now consider the second term in (16) and define fc
according to (12). The rate of change of Sdyn becomes

_Sdyn ��
����������������
~v22 	 ~v23

q
�sin�CD��� 	 cos�CL����f0�v�

� kv1 ~v
2
1 	 ~! � u	 ~! � �v 
 ~! � u

The dissipation inequality above suggests that the subsystem (10)
and (11) has been rendered passivewith inputu and outputy� ~!. Of
course, recalling Remark 2.2, the notion of passivity for systems
defined by discontinuous equations requires some care. Regardless,
onemay conclude from Theorem 1 on p. 153 of [14] that the origin is
a stable equilibrium of the system (10) and (11) when u� 0.
Moreover, one may use an extension of Lasalle’s invariance
principle presented in [15] to conclude asymptotic stability. At this
point, we have completed thefirst step of a two-step design procedure
in which we first stabilize the vehicle dynamics and then the attitude
kinematics.

Remark 3.1: Although Assumption 2.3 concerning the form of
CD��� and CL��� is quite mild, the thrust control law (12) assumes
precise knowledge of these functions. One can improve robustness to
uncertainty in these coefficients by instead choosing

fc ���sgn� ~v1�f0�v� � kv1 ~v1

where

� > sup
�
j cos�CD��� � sin�CL���j

Of course, the signum function introduces another discontinuity into
the system dynamics. Such discontinuities appear in certain robust
nonlinear control methods, such as sliding mode control.
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Implementation difficulties, such as chattering behavior, can be
avoided by replacing the discontinuous signum function with a
smooth approximation. See [17], for example.

Remark 3.2: Referring to (15), note that one could accommodate
angular rate dependency in the viscous force fv, provided! appears
as follows:

f v�v;!� � fvv
�v� 	 Fv!

�v;!�!

where fvv takes the form (8) and where the components of the 3 � 3
matrix Fv!

�v;!� are known.
The rotational error kinematics (9) are passivewith input ~!, output

e�, and storage function

Skin� ~e� � 1
2
ke ~e � ~e

where ke > 0; see [18], for example. Note that

Skin� ~e� � 1
2
ke��1 � e0�2 	 e� � e�� � ke�1 � e0�

The feedback passivation technique described in Sec. 4.3 of [8]
suggests choosing

u �w �
�
@Skin

@ ~e
�
�
1

2
Q� ~e	 ed�

��
T

�w � 1

2
kee�

Keeping in mind the technical implications of Remark 2.2, the
control law given abovewould appear to render the complete closed-
loop system passive from the new input w to the output y� ~! with
respect to the positive definite storage function

S� ~e; ~p; ~h� � Skin� ~e� 	 Sdyn� ~p; ~h�

To see this, observe that

_S��
����������������
~v22 	 ~v23

q
�sin�CD��� 	 cos �CL����f0�v� � kv1 ~v

2
1

	 �v � ~!	 y �w 
 y �w

Apart from any concern over passivity for discontinuous systems,
one may recognize that S is a Lyapunov function and that choosing

w��K ~! with K > 0 ensures that _S 
 0. To conclude global
asymptotic stability, note that S is radially unbounded, and apply
Lasalle’s invariance principle, as extended for nonsmooth systems
[15]. Define the set

E� f� ~e; ~p; ~h�j _S� 0g
and let M be the largest invariant set contained in E. By Lasalle’s
principle, trajectories converge to the setM as t ! 1. IfM� f0g,
then the equilibrium is globally asymptotically stable. Now, _S 
 0
implies that v 
 vd and that ! 
 0. This implies that p 
 pd and
h 
 hd. Thus, within the set M,

_~h� 0��1
2
kee�

It follows that e� � 0 which implies that e0 � 1 and ~e� 0.
Theorem 3.3: The feedback control law

fc � f0�v��cos�CD��� � sin�CL���� � kv1 ~v1 (17)

and

� c ���rcm �mg�RT
IBi3� 	 p � vd� � K! � 1

2
kee� (18)

globally asymptotically stabilizes the steady motion

e �
1

0

0

0

0
BB@

1
CCA; v�

vd
0

0

0
@

1
A; !�

0

0

0

0
@

1
A

with vd > 0 provided

ke > 0; kv1 > 0; and K > 0

Remark 3.4: One may modify the control law proposed in
Theorem 3.3, using a simple line-of-sight scheme, to drive the
vehicle to a desired linear path in inertial space. This is a special case
of the more general (and more difficult) problem of three-
dimensional path following. Recall that the control law given by (17)
and (18) stabilizes steady longitudinal translation in a particular
inertial direction. To stabilize motion along a line, onemight vary the
desired orientation, expressed by qd, in a way that causes the
vehicle’s trajectory to converge to the line.

Considering only linear paths, one may assume without further
loss of generality that the desired path coincides with the positive
inertial i1 axis. Let � be the vector (expressed in the inertial frame)
from the body frame origin to a point on the i1 axis which is some
“look-ahead distance” kxL further along the line:

� �
x�1� 	 kxL

0

0

0
@

1
A � x�

kxL
�x�2�
�x�3�

0
@

1
A

The vector � provides coordinates for the translational kinematics
normal to the i1 axis. [Note that the along-track position x�1� is
ignored]. The translational kinematics are

_����1 � �1�
T
1 �RIB�q�v (19)

The desired orientation, which depends on the translational error,
may be obtained by using the vector � to define the desired attitude
matrix RIB�qd�. (In this case, if the vehicle assumes the desired
attitude, the b1 axis is directed toward a point some distance kxL
ahead on the i1 axis.)

Of course, this modification of the directional stabilization
algorithm violates the stability analysis supporting Theorem 3.3,
since qd now varies with the system state. A more involved stability
analysis is required to show global asymptotic stability to the desired
linear path. For a simple AUV model, spectral analysis verifies that
the approach works locally, provided the conditions of Theorem 3.3
are met and provided kx > 0. Simulations suggest that the proposed
line-following algorithm provides global asymptotic stability, but
this claim has not been proven.

IV. Conclusions

Feedback passivation was used to develop a nonlinear feedback
control law which globally asymptotically stabilizes longitudinal-
axis translation of a slender AUV in a desired inertial direction.
Because the hydrodynamic angles which transform the viscous force
into the body reference frame are discontinuous at the desired
equilibrium, the analysis required the use of extended versions of
Lyapunov’s direct method and Lasalle’s invariance principle to
systems with discontinuous equations. The stability result was
proven using very general assumptions about the viscous force and
moment, allowing for a broad range of global, viscous models.
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