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ABSTRACT

A major concern of washing machine design is controlling walking and load
transmission to the floor. A suspension system must do this without large de-
flection. Given preliminary design data about a horizontal axis washing ma-
chine, a procedure was developed to design a spring-damper suspension system.
Parts of the procedure were given limited testing and accuracy within 359, was
found. Suggestions for improving the design procedure and suspension system
conclude the report.
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INTRODUCTION

The horizontal axis washing machine, while having advantages over verti-
cal axis machines, has some disadvantages. One of the problems encountered in
these machines is controlling the dynamics of the spin cycle when the load in
the basket is not evenly distributed. Machine movement (walking) and large
load transmission to the floor (i.e., causing dishes to shake off kitchen
shelves) are the two basic concerns of the spin cycle dynamics problem.

There are at least two methods for dealing with these conditions. The
Tirst is to balance the basket during the spin cycle to eliminate the imbal-
ance. This has been investigated by Whirlpool, and the last production model
contained a balancing mechanism. Unfortunately, the mechanism was very expen-
sive and therefore was discontinued.

The second method is to suspend the chassis (i.e., springs) to absorb de-
flections without walking and transmitting excessive loads to the floor. This
method is the subject of this report. A mathematical model of a horizontal
axis washing machine is constructed and tested and a design procedure formu-
lated.

THE MATHEMATICAL MODEL

A mathematical model of a spring suspended chassis was formulated. It
describes the physical machine of Figure 1. This is a six-degree-of-freedom
system with a rotating imbalance.

Ordinarily a ground reference frame would be chosen at A. From A, a
vector é describes the position of the machine, as represented by coordinate
system B imbedded in the machine halfway along the drum's axis of rotation (or
at any convenient point). The rotation of B relative to A is described by a
transformation matrix (i.e., the Euler transformation). A vector D in frame B
locates the imbalance in the basket. A vector describing the imbalance rela-
tive to ground, QB, requires three comgonents of vector @, a transformation
matrix and three components of vector D. I decided that the machine could be
modeled adequately with a simple set of linear, ordinary differential equations
whose solutions could be obtained analytically. Although numerical methods
were feasible, 1t is easier to work with an explicit expression of the form
x = FUNCTION (machine parameters), where x is the machine displacement and the
parameters are damping coefficients, masses, spring constants, etec. This form
of equation i1s more flexible.
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The mathematical model formulation was attempted using the standard ng-
erence frame, and was abandoned because the complexity of expressions of QD
appeared Eg require a very tedious derivation of the governing equations. To
simplify QD, the coordinate system A for the ground frame was to consist of
three axes fixed to ground located in the center of the drum axis such that at
static equilibrium the z axis runs along the axis of rotation of the drum.
Coordinate systems A and B are superimposed at static equilibrium and vector
Q becomes the deflection of the machine in the dynamic state.

Since |§| is small compared to |5|, |§|, or other vectors of the problem
(18] ~ .5 in., |D| = 15 in., |R| ~ 8 in.), the coordinate systems A and B are
assumed superimposed DURING THE DYNAMIC STATE. This does not mean deflections
are assumed to be zero; it is the deflections we wish to solve for. It means
deflections are assumed not to influence the position vectors locating the
imbalance masses. Note also, that the angles of machine rotation Oy, ey, 0,
are also assumed small to justify the above assumption. These assumptions
will reduce the former vector QD to only three components (see Figure 2).

This unusual approach is taken because the Lagrange equation will be used.
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where T = kinetic energy of system
V = potential energy of system
Qi = nonconservative forces associated with system

This equation will require three vectors of the type QB to locate two im-
balances in the basket and the center of mass of the machine in a six-degree-
of-freedom system. These vectors must be used for the kinetic and potential
energy of the system and therefore were chosen to be as simple as possible.
The Lagrange approach with the first coordinate system would consume a much
larger portion of the project time. The angular coordinates are the rotations
observed around the individual axes if no other deflections were present in
the system. Due to the deflections being small, this is a reasonable assump-
tion which further simplifies the problemn.



DERIVATION OF EQUATIONS OF MOTION

The kinetic energy of the system (see Figure 3) is:
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where rl,r3 = unit vectors

Tt are fixed magnitudes on the basket: drB/dt =0

¢ = angle of drum rotation relative to machine

Figure 3



If the spring rates in the x and z directions are known in terms of the
spring rate in the y direction, the potential energy of the x, y, and z coor-
dinates 1is

The rotational potential energy is

v - L?k. singe, ~Lx e? (W)
Gi 8 i 2 i

Because deflections are small, it is assumed there is no coordinate coupling
in the potential energy terms.

Once T and V are known, the tedious job of differentialing T~V is done.

If the damping coefficients in the x, y, and z directions are known, the
nonconservative forces are:

QX = -CXX
Q = -Cy
N Ng
Q = =C =z
Z Z
Lfcy + L§CZ
- - 5 = -C_86
LECX * L}2§CZ
Qq = - (6.) = -C, 0
9 )
. 2 N -
L§CX + L§Cy
Qez = - 5 (6,) = “Co % (5)

The resulting differential equation of motion in the x-direction is:
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where 9., ¢y, and ¢, are the components of the vector ¢.
X = R *x, Y = Ry +y, z = R +z (7)

->
Where R.X,Ry,RZ = components of R (constants)
X,y,z = machine deflections
Now rxy, Ty, Tz, Txoy Typ, Tzp re the components of single vectors
from the origin of the ground frame to m; and mp, respectively. This equation

is still not simple enough for an analytical solution. The following assump-
tions are made:

M > m +n

1 2
6 = w>>6 ,0 ,6 ,86 .6
7 w X) y) X, y) 7
r =&~ 1r cos wt 8
. cos W (8)

The resulting equation is:

. . 2
MX + CXX + kxx = m]wgr cos wt + W T cos(wt +4) (9)

e

This equation is solvable.

The expressiong in the other coordinate systems are of the same form.
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These equations are suitable to numerical or modal solutions. However,
assumptions similar to the x-direction were used to reduce the equations
further.

2
My - Qy +KY = m ey sin wt + m2w2r sin(wt +2) (15)
Mz - Q + KZZ = 0 (16)
1 2 2 2
e - + = + = - i
Ix . Qex L (Lyk L k> « m, rarl sin at
-m wgr r sin{wt +4) (17)
I T
1 (2 2
e - + — + = - i t
Iy Y Qe L <%xk k L;> y mlw rarl sin
N
n T, T sin(wt +4) (18)
2° "Lk
. 1 2 2 2s
ol - + = + €] = - S]
T8 QGZ m <kay Lyk)) . VRS, (19)

Because the force generated by the rotating imbalances acts directly through
the center of the coordinate system, it is impossible for these forces to gen-
a torque in the 6, direction. The forcing function in the 6, direction is,
therefore, 1mpllc1t in -MR§9 To show this, a free body diagram of the force
on the machine (assumed only to include the effects of the rotating unbalance,
i.e., spring force is small compared to this force) should be drawn. This
force will act at a distance R = |R| from the center of mass. By writing
Newton's motion equations, one obtains

It

F o= Mg, T = -FR = IO (20)
These equations yield 6 = -MRx/I. The 6, equation becomes

2 2
( 2 Y e
kL~ +k L eZ= X (21)

The second derivative of the solution of the x equation is proportional
to the forcing function of the ©, direction. I, is taken about the center of
mass.
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Furthermore, an important assumption must be included to get the last set
of differential equations. That assumption is:

R = R = 0 (22)

i.e., the center of mass of the machine is on the vertical centerline of the
machine (the y axis).

These uncoupled equations can allow an unlimited number of imbalances to
be accounted for. This is accomplished by a geometric exercise that reduces
the effect of two imbalances into a single effective imbalance. In the
uncoupled x-y plane (see Figure 4):

a b cr,
2 2 2
moT sin at + mw°T sin(wt +4) = mw r sin(wt +A) (23)
1 1
A = tan a 1
1, +
b sin A tan A
b sin A
C —_— (24)
L s1n{AL]
y
4 m
2

OM Imbalance resulting from

A nﬁ({mbination of m and my

Figure 4

In the same manner, the torsional effect of two imbalances can be resolved
into a single effect.



mlwzrer sin wt + mgwgrerL sin(wt +4) = mw2r5r6 sin(wt +Ae)

a b Cq (25)

The above formulas apply again for this Ag and Cy-
Plugging this result into the differential equations results in a set of

six uncoupled equations with a single forcing function for each. The solu-
tions of these equations are

x = X sin(wt+ocl) (26)
y = Ysin(a)t+042) (27)
z = 0 (28)
o = @X sin(wt +oz5) (29)
6, = @y sin(at +q; ) (30)
s, = (), sin(at +o ) (31)

where o = phase angles, see equations (39)-(k3)

2
mr
X = (32)
J <Ac w)e + (Hk - Ma)2>2
X X
2
mr_
- (33)
/ (ch w) 2 + thk - Mw2>2
¥y y
where mraa)2 = the result of resolving the two imbalances
ra = rl = r2, so m is an equivalent imbalance
- 2
mrarbw
+ -
J <2cexa>> <2k@x wa)
-mr T, @

_ a b (35)
O T oo ’
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mry, is the equivalent torsional effect

—er52M/I

[ o, - 1.8 (G + Gy 92

(:)z

WALKING BEHAVIOR

The mathematical model should also contain a routine for predicting if a
washing machine will walk. On a smooth floor, an experimental chassis with a
spring suspension (see Figure 5) was observed to begin walking with an oscil-
lating sliding motion (all four feet moved the same distance in the same di-
rection simultaneously). The machine did not pivot about one foot. It was
assumed the total loads on the individual feet of the machine produce the same
effect as the average load applied to all four feet simultaneously (because
the feet are connected by a rigid structure). The problem then becomes:

-u(vertical forces on the feet) > (horizontal forces on the feet)

u = frictional coefficient

Floor

Machine

Figure 5
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If this equation holds, the machine will not walk. Since the forces on the
feet of the machine are functions only of the weight of the machine and deflec-
tions of the springs in the suspension, (F = kx), the walking equation becomes:

. W Lz .« Lz - 2
- + -=] > k +6 = +6 + +8 — + 6
uéyy ny h> 2z {[x éﬁ v 2 ZR(; . <{ v 2 ZR;:‘
. . 2\1/2
+ 1k B R +6 Lx + ¢ |6 R +60 Lx /
z\Xx ¢ y 2 Z\ X C y 2

(38)

Re is defined in Figure 5. This is a time dependent equation. The gquantities
in it are defined

1 Mcxw
X = Xcos(wt+AL-a) o = tan (39)
2
bk - Mw
X
X = dx A. = defined previousl
dt L P Y
be w
. _ -1 y
y = Y s1n(um-+AIJ—B) B = tan 5 (Lo)
Lk - Mw
Y
- _ 4y
Y at
2cg W
-1 X
= 1 + - = —
6, @X sin(wt Ay ) ¥ tan ; 2 (41)
kex T e
5 - x
X at
1 2cg w
6 = (:) cos{wt +A_ -d) 5 = tan = —L—— (42)
Ng v 2] 2
2kg -1 w
46 y y
6 = L
y dt
2cg w
-1
6 = (:) cos(wt-*AL-e) g = tan — (43)
A A 2
2k@z - Izw

Ap, and Ag defined from equations (24) and (25).
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SUPPLEMENTARY EQUATIONS

In addition to the derived equations, some additional equations were
needed to relate the mathematical model to the physical machine.

In the book Mechanical Springs by A. M. Wahl, springs are treated as
elastic columns in two cases of interest. The first case deals with the
lateral spring rate (p. 70) (see Figure 6).

B
Il

lateral spring rate

lO6dLL

k = (bL)
% anD<.2ou hi + .265 D2>

ky is the vertical spring rate; the spring was designed for (F., = k,Y).

y oy
kg nZ
'12; = 1.4k Cp |-204 -D—g- + .,265 (45)

These equations are for round wire springs where E = 30 x 106 psi and
G = 11.5 x 100 psi or E/G ~ 2.6.

— 8 |— Lateral Deflection

KX, Lateral
Spring
Rate
Elastic

Column

Figure 6

Observation of the experimental chassis on springs showed still another
problem area. Certain springs are incapable of suppor.ing the weight of the
machine without buckling. This instability occurred if the spring was long or
the spring rate, k, was small. The second case is where Wahl provides two
equations to predict if a spring will buckle under a given load (pp. 279-82).

13
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der .812 [l "_'\ll - 6.87(D/£O)2]

Lo
i
Per = §ﬁ§ g—é—ég (L6)
6L r’n

where G = modulus of rigidity (steel ~ 11.5 x 100 psi)
fo = free length of spring
n = number of active coils
d = wire diameter
r = mean radius of coils, D = 2r
h = compressed length of spring

C. = given by graph in Mechanical Springs, p. T4

Per = vertical load on springs that produces buckling
Scr = lateral deflection which produces bucling with load Per

Because coulomb damping is used more on washing machines than viscous
damping, one needs an equivalent viscous damping coefficient developed from
the coulomb damping factor. This exercise is carried out in Mechanical Vibra-
tions by Tse, Morse, and Hinkle on p. 177. The result is:

2
Ceq = LFk(1 - r=) (47)

® 1t Fon1l- (LF/n Fo)2

where r = frequency ratio = a/am; F is the frictional resisting force of the
damper, and Fo = mew? for a rotating imbalance. Also e = eccentricity.

SUSPENSION DESIGN

With the mathematical model of the suspension complete, how does one use
it? The pupose of this project originally was: Given the machine parameters,
design a suspension that does not walk, does not transmit vibration to the
floor, and deflects within allowable limits.



So a design procedure was formulated to try and do this. The first step
was to try to show that for the given machine parameters there is a single
function of the following form:

function value = function (displacement, walking behavior) (L8)

This function value should have a maximum or minimum value when the best com-
promise is found between walking and deflection behavior. The damping coeffi-
cient, ¢, and spring constants, k, would be the variables.

Optimization routines generally take a complicated function and find the
maximum or minimum points of the function. It was thought that by combining
the walking equation and displacement equations directly, the result would be
something of the form

n
function value = A +B(deflection) + C(walking behavior)

A,B,C = constants m,n = powers (49)

and this could be optimized. The problem was how to find A,B,C,n, and m.
This is when the problem of spring buckling was first noted. This would have
to be included too. Formulating this single function seemed difficult, the
task was given up and another method sought.

The next step was to consider optimizing the deflection alone and using
walking behavior and stability equations as constraints. This would mean
writing and optimization computer program from scratch, as no optimization
computer programs I found could handle constraints.

This appears reasonable, until you realize that the deflection equations
can be optimized by inspection. The larger the values of c and k (the oper-
ating point is above the natural frequency), the smaller the deflections. The
result of optimizing deflection would be k and ¢ values so large, that if they
would be any larger, the machine would walk (see Figure 7). Washing machines
are not to be designed on such "borderlines.'" You need a factor of safety.

Optimization was discarded as a design procedure. The only alternative
was to admit defeat to the original objectives of the research. The following
compromise can be made.

For any given machine parameters, determine the values of the spring con-
stants and damping coefficients which will make the machine stable and will not
let the machine walk. This amounts to describing the region labeled 'solu-
tions" in Figure 8.

15



Deflection Solution given

S Equation by Optimizing
3 Deflection
2 Walking
K, C values Constraint
Figure 7

Z

& Values above this line
are no good because the

machine will walk

K
Spring
Constant

Solutions

< Values below this line are
no good due to instability or

C, Damping Factor buckling of the springs

Figure 8

A close examination of the stability equations reveals that very soft
springs, in general, will be unstable under the weight of the machine and,
therefore, unsuitable. Examination of the walking equations (or force trans-
mission curves of rotating imbalances—rfound in many dynamics textbooks) will
show that when spring constant and damping coefficient combinations become
large, the machine will walk. Using physical reasoning, if k = o and ¢ = o,
i.e., no suspension at all, when a 4-1b rotating imbalance reaches 500 rpm,
the centripetal load generated (approximately 300 1bf) could 1lift a 200-1b
machine completely off the floor. This is the extreme case of walking.

If a designer of a washing machine were given the region labeled "solu-
tions," he could pick the values he feels is the best comprmise between
walking and instability and then see if the deflections with these k and c
values are acceptable.

The procedure designed to produce the "solutions" region picks values of
k and ¢ in an orderly fashion, and tests the combination for walking behavior
or instability with the machine parameters given. It can be changed into a
computer program where the acceptable values are remembered and printed as
output.

16
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PEERORADEOPOBOHLWEOO DOLOLL GO

BASIC PROCEDURE
An explanation of the following routine follows it.

Read (M,g,dc,dk,5A,d,n,G,D,m,e,w,C

)

»K ,D s Lo
max’ max’ max’  max

C = -8C

m =0
C=C+0C
m=mn+1
K = -8K
N=0
K=K + 38K
N=N+1
& = Mg/K

LOMN=(6+6A)+d'n
Ser/fo = Mg/K L
cr/ o g/ OMN

Dy = LOyg((1 - ((Ber/40)/.812 - 1)2)/6.87)1/2

If (D 8, 15, 15

max'-DMN)
If (LomaX-LMN) 8, 16, 16
If DMN is complex, go to 8

Choose value of CL

h
8

1

I -0
Loy

lo6d”/ QJLHD <2ol+ hi + .265 D2>>

2y2y1/2

1l

K
X = m.ewg/((cw)2 + (K - Mw

Ger = der/fo -« L
er cr/ o

18



@ If (der-X) 8, 8, 23
€,

If (-u(Kyy + ny - Mg/L) - [[Kx(x +ey LZ/2+9ZRC)
. s . o)

+ Cx(x +ey Lz/2 +ech)] + [KZ(GXRC + ey Ix/2)

+ CZ(éch + éy Lx/2)]2]l/2) L, 24, 24

C = CMN

(@)
@ t-xy

@ If (c-cmax) 27, 100, 100
@

If (Kmax-K) L, 4, 8

K

Print LOMN’ DMN’ CMN’ KMN for all values which are solutions
€:9 End
where g = acceleration of gravity

dc = arbitrary increment of the damping coefficient
8k = arbitrary increment of the spring constant

®A = expected maximum deflection; BA may require a separate equation
to evaluate it if real accuracy is to be obtained

e = radius of rotation of imbalance

Cmax = maximum range of C you want to evaluate
Kmax = maximum range of K you want to evaluate
Dmax = maximum acceptable spring diameter
Lomax = maximum acceptable free spring length

Lines @ through @ read the data, increment C and K, and increment subscript
indices M and N.

Lines and @ define the free length of the spring.

Lines @ and @ define the stable diameter of the spring.

19



Lines (:) through <:> check to see if diameters and lengths of spring are
acceptable.

Lines @ through compute expected lateral deflection.

Lines (:) and (:} check to see that lateral deflection does not exceed the
critical buckling deflection of the spring.

Line <:> insures machine does not walk.
Lines (:) and (:) index C and K to be remembered.

Lines and @ check whether Cmax or Kmax have been exceeded.

EXPERIMENT

Due to the many assumptions made to arrive at the final form of the de-
flection equations, it seemed appropriate to seek correlation with the actual
deflection of an experimental machine. A chassis with motor and drum was ob-
tained and mounted on springs. Two sets of springs were obtained; one set
having a large spring constant (86 1b/in. for each of four springs) and the
other set having a small spring constant (8 1b/in. for each spring). Deflec-
tions were to be measured at angular drum velocities lower than and exceeding
the natural frequency of the washing machine mass on the springs. The 8 lb/in.
springs, however, were unstable (which prompted the search for a stability
routine) and had poor fasteners at each end due to the large diameter of the
spring. Tests were conducted only with the 86 lb/in. springs below the natu-
ral frequency.

The simple case of one imbalance in the axially centered plane of the
drum was tested (m2 = 0, rz = 0). Then the x and y displacements were mea-
sured. Displacement was measured with a load cell; an amplifier bridge circuit
boosted the signal; and the displacement was drawn on a strip chart recorder.

Because the deflection readings are so small, it is difficult to obtain
accurate data. Barring some basic misunderstanding of the experiment, it is
estimated the recorded data should not be more than 104 in error. The following
were the machine parameters:

20



Drum radius = 12.5 in.

m = 2.1 lbm
M = 92 lbm
k = 86 1b/in. per spring (k4 springs),

(lateral spring rate, K> was calculated)

c = 0

The experimental data:

» 1.7 cycles/sec 2.1 cycles/sec
N .0346 in. .062 in.

X .0825 in. .135 in.

Calculated values for these conditions:

o 1.7 cycles/sec 2.1 cycles/sec
Ng .0234 1in. .04 in.
X .0445 in. .079 in.

The calculated values are about 6L% of the measured values
age. I discovered that the weight distribution on each side of

on the aver-
the drum axis

measured at the springs was 44 1b on one side and 48 1b on the other., This
means that the center of mass of the machine is not on the vertical centerline
of the machine, a basic assumption of the derived equations. The machine was
balanced and the experiment repeated. M = 100 lbm. The experimental data:

w  1.57 cycles/sec 1.5 cycles/sec 2.12 cycles/sec
y -0299 in. --- L0543 in.
p's - .0469 in. .115 in.

21



The calculated values:

w 1.57 cycles/sec 1.5 cycles/sec 2.12 cycles/sec
y .0208 in. ——- .0406 in.

X ——— .0356 in. .0816 in.

The calculated values are now 739 of the measured values on the average.
The small center of mass offset cost about 129 of the accuracy.

Better agreement would be welcome, but it does suggest that the displace-
ment equations of the type derived should be checked at drum rotation veloci-
ties above the natural frequencies. The equations derived may be suitable,
however, for rough estimates of spring constants and dampers.

The lateral spring constant and stability equations were checked. The
lateral spring rate was computed to be 287 lb/in. (for all four springs
together). It was difficult to measure the lateral spring rate on the test
machine and recorded values fluctuated between 200 and 280 1lb/in.

For the weight of the machine, the stability equations predicted that
springs of .188 in. diameter round wire (G = 20 x 106 psi) should be 10.9 in.
in free length. The 8 lb/in. springs were 12 in. long and unstable. These
springs were cut down to 7-1/2 in. and were very stable. The lateral spring
constant equations and stability equations are, therefore, considered to be
fairly accurate.

Obtaining data for evaluating the walking equation's accuracy was diffi-
cult and time would not permit this experiment. The mathematical model appears
good enough to get a "ball park" value of springs and dampers. It is suggested
that additional testing be carried out, especially for drum rotation velocities
above the natural frequency.

CONCLUSIONS

The problems associated with spring suspensions applied to horizontal
axis washing machines are: deflection control; load transmission (walking);
and stability under the machine weight. Finding a spring-damper combination
which will satisfy all three of these conditions simultaneously may be possi-
ble, but difficult. An alternative is to satisfy the walking and stability
conditions, and see if the resulting deflection of the machine can be
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accommodated. If the deflection is too large, some of the machine parameters
will have to be changed.

Changing the parameters to reduce deflection is an intuitive operation,
and the following examples should help illustrate how it is done (w > wn).

1. From the walking equation (38), as R, becomes smaller it is pos-
sible to use stiffer springs without the machine walking. This
means the center of gravity should be as low as possible.

2. From the deflection equation (37), if Ry is made small, the an-
gular ©, deflections hould be reduced. In other words, the drum
axis should be close to the center of mass.

3. TFrom the deflection equations in general (3%2)-(37), increasing
the sprung mass of the machine will reduce deflections once be-
yond the natural frequency.

Choosing spring rates and damping coefficients can be done using the rou-
tine given in this report. The values received should be rough approximations
due to the difficulty of getting an exact mathematical model of the machine.

A more accurate mathematical model may be obtained using the coupled differen-
tial equations given by equations (9)-(14) or one may start from scratch and
derive his own equations. These equations should require more detailed devel-
opment and solution by computer.

It is felt that further testing of the deflection equations should be
done, especially for drum rotation velocities above the natural frequencies of
the system. The importance of having the center of mass on the vertical cen-
terline of the machine, equations (22), should be emphasized also.

Anticipating problems, the start-up phase, where drum rotation velocity
goes from O to 50 rad/sec, will be difficult. Some informal testing was done
with the experimental machine. It was found that excessive deflections re-
sulted when trying to go through the natural frequency at a moderate pace.

When the machine was rushed through the natural frequency, the d'Alembert reac-
tion torque (J%) on the drum caused the machine to "dance" around the floor.

A separate device, such as a dual spring rate or damping coefficient, may be
needed to cope with this problem.

THE BELLEVILLE SPRING SUSPENSION

Belleville springs offer an unusual load-deflection relationship which
might be exploited in this situation. The curve in Figure 9 is the one of
interest in washing machine suspensions.
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Figure 9

A brief study was done into Belleville spring design, and it is considered
possible to design a spring with the following properties. The weight of the
machine will load the spring to the static deflection located at b in Figureg.
With the rotating unbalance spinning at frequencies above the natural frequency
of the system, the machine can deflect from b to a when it is lifting up on
the suspension. This is the moment when the machine will walk with present
suspensions. The Belleville spring, however, has a very "soft" spring rate
from b to a; there is a lot of deflection allowed without much changing of the
normal force on the feet of the machine. This will help keep the machine with
Belleville springs from walking by maintaining a high frictional force on the
floor while the machine 1s deflecting the suspension.

When the machine is traveling downward on the suspension, the Belleville
spring deflects frombto c. The spring rate from b to ¢ is much "stiffer"
than a to b. This will help keep deflections small, but also will help keep
the machine stable. From the stability equations already presented, it can be
gseen, in general, that larger spring rates are more stable than softer ones
for a given diameter and free length of the spring.

The shape of the Belleville spring also enhances the stability. It is a
slightly conical circular disk with a hole in the center (see Figure 10). The
load is applied on the circumference of the hole on the inside. This shape
cannot buckle as coil springs do. It is also a very compact spring. A rough
guess for the size spring needed to support a washing machine might be 5 in.
in diameter and 1/2 in. tall.
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Belleville Spring

Figure 10

There is a small amount of damping action associated with deflection of a
Belleville spring, especially when they are stacked on top of each other. It
is also suspected that since the spring rate changes so drastically as the
spring deflects, a Belleville spring will not have a true natural frequency.
The instantaneous natural frequency will fluctuate over large ranges as the
spring constant changes with deflection. This should aid in keeping deflec-
tions reasonable when running up through the natural frequency to the operating
speed of the machine.

In summary, a properly designed Belleville spring offers many advantages
over coil springs. Although no actual designing of the spring was done, the
design parameters are considered flexible enough to allow design of the spring
to produce these davantages.
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